Sanering av gatubelysning – Arbetsprojekt vid Destia Oy

Johan Ström

Examnesarbete för ingjörsexamen (YH)
Utbildningsprogrammet för byggnadsteknik
Vasa 2013
Abstrakt

Efter den utförda gatubelysningssaneringen med högtycksnatriumlampor i Brändö minskar energikonsumtionen med 137 500 kWh/år.
Abstract

This Bachelor’s thesis was made as a working project for the company Destia Oy. The thesis is a reconstruction plan for the street lighting in Brändö, in the City of Vaasa. Street lighting with high energy consumption should, according to the EU-directive 2005/32/EG, which prohibits the use of mercury vapour lamps, be equipped with new more energy efficient lighting engineering.

The thesis comprises street lighting engineering, sources of light and EU-directives. The planning and execution include the time planning, the mapping and the working progress. The reconstruction plan describes the introductory construction meeting, the cable mapping as well as the inspection of wooden pillars and material. Moreover, there are descriptions of the set-up of pillars with reference to ground cables, clutchings and shelters, rock pillars and the foundation. Lastly, the set-up of wires and metal pillars, the measurements of short circuit electricity and the measurement of the lighting intensity are described.

After the executed street lighting clearance with high pressure sodium lamps in Brändö, the energy consumption will decrease by 137 500 kWh/year.

Language: Swedish
Key words: street lighting, reconstruction, fitting
Tiivistelmä

Suoritetun kunnostuksen jälkeen katuvalaistuksen suurpainenatriumlampuilla energiankulutus vähenee 137 500 kWh / vuosi Palosaarella, Vaasan kaupungissa.

Kieli: ruotsi
Avainsanat: katuvalaistus, saneeraus, asennus
Innehåll

1 Inledning .. 1
 1.1 Bakgrund .. 1
 1.2 Målsättning .. 1
2 Forskning och teorier .. 2
 2.1 Gatubelysningsteknik ... 2
 2.2 Planering och kvalitetskrav ... 4
 2.2 Ljuskällor .. 7
 2.3 EU-direktiv .. 9
3 Planering och utförande ... 10
 3.1 Tidsplanering .. 10
 3.2 Kartläggning ... 12
 3.3 Arbetsuppföljning ... 15
 3.3.1 Mall för veckorapport ... 16
4 Saneringsskedet ... 18
 4.1 Inledande byggmöte ... 18
 4.2 Kabelvisning .. 18
 4.3 Kontroll av trästolpar och material ... 19
5 Stolpmontering .. 21
 5.1 Jordkabel ... 23
 5.2 Koppling och skydd .. 23
 5.3 Bergstolpar .. 24
 5.4 Fundament .. 28
 5.5 Bergfundament .. 29
6 Montering av vajer och metallstolpar ... 30
 6.1 Vajermontering .. 31
 6.2 Armaturer .. 33
7 Mätning av kortslutningsströmmar ... 34
8 Mätning av ljusstyrka ... 35
9 Sammanfattning .. 37
Källförteckning .. 38
Begreppsförklaringar

Här beskrivs olika föremål och benämningar som kommer att användas i olika kapitel i examensarbetet.

Armatur
Teknisk belysningsutrustning, innehåller teknik som gör att vald lampmodell ger ljus.

Belysningspunkt
Utritat på karta eller i verkligheten en byggd konstruktion som ger belysning.

Belysningsgrupp
En krets av belysningspunkter som belastar elcentral. På karta krets med nummer från elcentral.

Fas
En ledare i kabel som överför elektricitet inom gatubelysningsteknik finns vanligtvis i tre faser (L1,L2,L3) per kabel.

Färgåtervinning
Ljuskällans förmåga att återge färger. Beskrivs med SI - enheten \(R_a \). Vid \(R_a 100 \) återges färger på ett naturligt sett.

Färgtemperatur
Färgen på ljuset från ljuskällan. Hög färgtemperatur har blåaktig färgton och låg färgtemperatur har gul färgton. Enheten för färgtemperatur är kelvin (K).

Illuminans
Illuminans (belysning) är en fotometrisk storhet för att mäta hur mycket en yta belyses, kan även benämnas belysningsstyrka. SI - enheten är lux och betecknas som \(\text{lx} \).

Ljuspunkt
Samma betydelse som belysningspunkt.

Ljusflöde
Strålningen från ljuskällan och effekten mäts i lumen.

Ljusutbyte
Beskriver hur effektiv en ljuskälla är och benämns med \(\text{lm}/\text{W} \) dvs. ljusflöde för förbrukad effekt.
1 Inledning

Slutligen beskriver examensarbetet hur belysningsstyrka mäts.

1.1 Bakgrund

Arbetet gjordes vid företaget Destia Oy som hade vunnit entreprenaden om sanering av gatubelysning för Vasa Stad. En gatubelysningssanering planerades för stadsdelen Brändö som hade ca 500 st. föråldrade belysningspunkter.

Jag har under min praktikperiod tidigare arbetat i företaget som arbetsledare och är till min utbildning elmontör. Detta gav mig en bättre förståelse om hur belysningsteknikens tekniska installationer skall utföras.

1.2 Målsättning

Mina uppgifter i företaget var projekt- och arbetsledning under entreprenaden. Från företagets sida blev min uppgift att arbetseffektivera och utföra entreprenaden. Detta resulterade i detta examensarbete. Målsättningen med arbetet är arbetseffektivering samt rätt utförande för sanering av gatubelysning.
2. Forskning och teorier

2.1 Gatubelysningsteknik

Inom dagens gatubelysning finns ett stort utbud på armaturer och lampmodeller. Största delen av nyinstallation görs med högtrycksnatrium, metallhalogen eller ny LED-belysningsteknik vilket ger en inbesparing av ca 50 % jämfört med teknik med kvicksilverlampor. (Se Figur 1).

Figur 1. Teknisk utveckling gör möjligheter till besparingar. Modell från ljuskultur.se

När en planering görs av gatubelysning är ljusflödet den viktigaste faktorn, dvs. att ljuset sprider sig tillräckligt brett på körbanan och tillräcklig ljusstyrka uppnås. Med de nya armaturerna kan man sänka effekten samtidigt som ljusflödet blir bättre (lm/W). Ljuset kan även riktas så att det inte bländar trafikanter och få bort eventuellt spilljus som stör fastigheter.

"Det är idag, i de flesta LED-armaturer beräknade för vägbelysning, problem med låga lumenpaket, bländning och oavsiktlig ljusspridning" (Ljuskultur.se – Framtidens vägbelysning nr. 6/2009)

För att få en jämn och bra belysning krävs:

- Monteringshöjden för ljuskällan bör vara lika bred som körbanan.
- Stolpavståndet bör högst vara fem gånger monteringshöjden för att jämnheten på belysningen skall bli tillräckligt bra.
- Armaturen bör vara placerad vid körbanekant.

Här bör även beaktas att ljuskällan uppfyller krav för ljusspridning och ljussfyrk. Rätt belysning ger upphov till färre olyckor och dödsfall för trafikanter och fotgängare.

Det är viktigt att belysningen är jämn för att inte mörka områden uppstår mellan ljuspunkterna på körbanan. Detta skulle ge en bländande effekt för trafikanten, och även en risk för att djur eller människor kan vara skymda på mörka områden. Föråldrad belysning, särskilt med kvicksilverlampor, förövar sitt ljusflöde med tiden och kan ge upphov till en halvering av ljusflödet. Detta innebär risk för olyckor och dödsfall.

1 SFS-EN 13201-3
2 Ljuskultur.se – artikel "framtidens vägbelysning"
2.2 Planering och kvalitetskrav

Först avgörs vilken belysningsklass som gäller för gata eller vägskärning. För belysningsklasserna varierar kraven på ljusstyrkor beroende på gatskärningar, vägskärningar, körhastigheter samt omgivning (Se Tabell 1).

Tabell 1. Allmänna vägars belysningsklasser

| Tabellen beskriver belysningsklasserna för olika vägskärningar. Notera till höger att belysningsklasserna ändrar beroende på omgivning. |
|---|---|---|---|
| Trafikplan]| Polttie-läke]| Liikenne | Åpup-ope | Liitymät | Valoi-sia | Pi-ma-
Moottorivaljat	2x12,5/7,50=15,00	M	80	Er-tass	AL2	AL3
2x12,5/7,50=4,50	M	80	Er-tass	AL2	AL3	
12,50/7,50	M	80	Er-tass	AL2	AL3	
Påallet	2x9,7+4,50	M+P+J	60	Tass	AL2	AL3
17,50/14,50	M+P+J	60	Tass	AL2	AL3+K4	
10,50/7,50	M+P+J	60	Tass	AL2	AL3+K4	
8/7	M+P+J	60	Tass	AL2	AL3+K4	
Muutut tilat	8/7	M+P+J	60	Tass	AL2	AL3+K4
7/6	M+P+J	60	Tass	AL2	AL3+K4	
4.6	M+P+J	60	Tass	AL2	AL3+K4	
Lantut					AL1	AL2

³ Liikennevirasto 2012
För varje vägskärning finns det anvisningar vilka klasser som belysningen skall dimensioneras efter. Här ges ett exempel på en lätt trafikled med 4 m vägbana tillhanda:

Tabell 2. Modell på monteringsanvisningar för en lätt trafikled enligt ”Tievalaistuksen suunnittelu 2006”.

<table>
<thead>
<tr>
<th>Vaadittu valaistusluokka</th>
<th>Lampput</th>
<th>S</th>
<th>Nimellisteho</th>
<th>KL</th>
<th>Huom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K4</td>
<td>ST-70S</td>
<td>40</td>
<td>1,75</td>
<td>23 611</td>
<td>1</td>
</tr>
<tr>
<td>K4</td>
<td>SE-70</td>
<td>37</td>
<td>1,89</td>
<td>25 525</td>
<td>3</td>
</tr>
<tr>
<td>K4</td>
<td>QE-125S</td>
<td>39</td>
<td>3,21</td>
<td>32 086</td>
<td>2</td>
</tr>
<tr>
<td>K3</td>
<td>ST-70S</td>
<td>39</td>
<td>1,89</td>
<td>25 525</td>
<td>4</td>
</tr>
<tr>
<td>K3</td>
<td>SE-70</td>
<td>35</td>
<td>2</td>
<td>26 984</td>
<td>3</td>
</tr>
<tr>
<td>K3</td>
<td>QE-125S</td>
<td>35</td>
<td>3,57</td>
<td>35 753</td>
<td>5</td>
</tr>
</tbody>
</table>

1. Referenssi, kun valaistusluokka on K4
2. Referenssi, kun valaistusluokka on K4 ja tilaaja vaatii elohopealamput
3. Ei sovellu referenssiksi
4. Referenssi, kun valaistusluokka on K3
5. Referenssi, kun valaistusluokka on K3 ja tilaaja vaatii elohopealamput.

I tabellens första spalt beskrivs vilken belysningsklass som gäller. I andra spalten föreslås två olika lampmodeller nämligen högtrycksnatriumlampa på 70 W och halogenlampa på 125W. Stolpavståndet (S) mellan belysningspunkterna ges i tredje spalten. Efteråt ges effektförbrukning per kilometer (kW/km) tillhanda i fjärde spalten. I femte spalten definieras KL, kostnader för montering samt driftskostnader under 20 år €/km.4

4 Tievalaistuksen suunnittelu 2006 punkt 2.2.3
Översättning av punkterna 1–5 är följande:

1. Referens, då belysningsklassen är K4.
2. Referens, då belysningsklassen är K4 och beställaren fordrar kvicksilverlampor.
3. Lämpar sig inte som referens.
4. Referens, då belysningsklassen är K3.
5. Referens då belysningsklassen är K3 och beställaren fordrar kvicksilverlampor.

Från tabellen kan man se tydligt att högtrycksnatrium (ST-70S) lamporna är det för-
månligaste alternativet i längden med en lägre effektförbrukning. Stolpavstånden blir tätare
för belysningsklass K3, detta p.g.a. strängare krav för ljusstyrka (Se Tabell 3). I
nedanstående tabell finns minimumkraven för belysningsstyrka för K-klasser:

Tabell 3. K-belysningsklasser

<table>
<thead>
<tr>
<th>Luokka</th>
<th>Vaakatason valaistusvoimakkuus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Em)</td>
</tr>
<tr>
<td></td>
<td>lx, min</td>
</tr>
<tr>
<td>K1</td>
<td>15</td>
</tr>
<tr>
<td>K2</td>
<td>10</td>
</tr>
<tr>
<td>K3</td>
<td>7,5</td>
</tr>
<tr>
<td>K4</td>
<td>5</td>
</tr>
<tr>
<td>K5</td>
<td>3</td>
</tr>
<tr>
<td>K6</td>
<td>2</td>
</tr>
</tbody>
</table>

1) Riittävän tasaisuuden vuoksi hankokohtainen keskiarvo ei saa ylittää 1,5-kertaista luokan edellyttämää keskiarvon minimiä

Första spalten visar minimikrav för belysningsstyrkans medelvärde på vägbanan. Andra spalten visar minsta tillåtna uppmätta ljusstyrka på vägbanan. Enheten är illuminans (lux.)
2.2 Ljuskällor

Här beskrivs olika ljuskällors egenskaper samt jämförelser inom belysningstekniken. För att få en uppfattning av nedanstående tabell hänvisas till begreppsförklaringarna.

Tabell 4. Ljuskällornas egenskaper

<table>
<thead>
<tr>
<th>Ljuskälla</th>
<th>Ljusutbyte lm/W</th>
<th>Bränntid 1000h</th>
<th>Färgåtergivning Ra</th>
<th>Färgtemperatur K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Högtrycksnatrium</td>
<td>70-120</td>
<td>12-22</td>
<td>20-65</td>
<td>2000-2200</td>
</tr>
<tr>
<td>Halogen keramisk</td>
<td>85-95</td>
<td>5-12</td>
<td>80-95</td>
<td>3000-4200</td>
</tr>
<tr>
<td>Kvicksilver</td>
<td>40-55</td>
<td>12-16</td>
<td>50-60</td>
<td>3200-4200</td>
</tr>
<tr>
<td>Lysrör</td>
<td>60-100</td>
<td>11-40</td>
<td>80-90</td>
<td>2700-4000</td>
</tr>
<tr>
<td>Kompaktlysrör</td>
<td>60-80</td>
<td>8-12</td>
<td>80-90</td>
<td>2700-4000</td>
</tr>
<tr>
<td>Induktionslampa</td>
<td>60-80</td>
<td>60</td>
<td>80</td>
<td>2700-4000</td>
</tr>
<tr>
<td>LED</td>
<td>Flera modeller, färger och värden.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exempel på olika ljuskällors egenskaper enligt ”Tievalaistuksen suunnittelu 2006” av vägförvaltningen.

Tabell 5. Exempel på två olika tillverkares LED-armaturers egenskaper.\(^5\)\(^6\)

<table>
<thead>
<tr>
<th>Ljuskälla LED</th>
<th>Ljusutbyte lm/W</th>
<th>Bränntid 1000h</th>
<th>Färgåtergivning Ra</th>
<th>Färgtemperatur K</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP1402 M4</td>
<td>92</td>
<td>50-100</td>
<td></td>
<td>4100</td>
</tr>
<tr>
<td>Koffer(^2) LED BGP070</td>
<td>58</td>
<td>50-100</td>
<td>70</td>
<td>3000</td>
</tr>
</tbody>
</table>

\(^5\) Valopaa armaturer
\(^6\) Philips armaturer
Färgtemperaturen från en ljuskälla kan variera från rödaktigt (1000 K) ljus till blåaktigt ljus (8000 K) som även beskrivs som varmt eller kallt ljus (Se tabell 6).\(^7\) Den önskade färgtemperaturen varierar, t.ex. i Norden föredras ett varmt ljus och i varma länder kallt ljus.

Färgåtervinning är ljuskällans förmåga att uppta färger. Kvaliteten i färgåtergivning påverkar intensiteten i färgerna och nyansrikedomen. Vid en dålig färgåtervinning kan färgerna upplevas matta och bleka. Därför är färgåtervinning viktig i lokaler och i utrymmen där människor vistas.

Detta medför att gatubelysningen i tätorter bör få ett ljus som upptar färgerna naturligt men även för att människor skall uppfattas med rätt färgåtervinning av säkerhetsskäl eller för att erhålla en trevligare miljö.

För vägbelysning på allmänna vägar är inte färgtemperatur och färgåtervinning lika viktiga. Viktigaste funktionen för ljuskällan är att ljusutbytet är högt och att ljuskällans bränttid är lång. Detta för att få en lägre drift- och underhållskostnad vilket sparar energi.\(^8\)

\(^7\) Wikipedia – sökord färgtemperatur
\(^8\) www.trafikverket.se – väg- och gatubelysning
2.3 EU-direktiv

"Gemenskapens årliga elförbrukning relaterade till produkter som omfattas av denna förordning har uppskattats till 200 TWh år 2005, vilket motsvarar 80 Mt CO₂-utsläpp. Om inga åtgärder vidtas förutspås förbrukningen öka till 260 TWh år 2020." (Europeiska unionens officiella tidning L76/17 nr. 245/2009)

Uppfylls kravet kan en energibesparing göras på 20 % till år 2020, vilket minskar koldioxidutsläpp på motsvarande sätt.⁹

3 Planering och utförande

Det beskrivs i delkapitel hur entreprenaden blev utförd samt hur arbetseffektiveringar inom sanering av gatubelysning gjordes.

3.1 Tidsplanering

Efter genomgången av entreprenadhandlingarna påbörjades planeringen av projektet. Tidsplaneringen uppgjordes varvid informationen erhölls från offertberäkningarna som hade uppgjorts av elingenjör Veli Yli-Kuha vid Destia i Tammerfors.

Allmänna avtalsvillkor för byggnad entreprenader (YSE 1998)
Tabell 8. Tidsplan för saneringen av entreprenaden.

I (Tabell 8) kan man se den veckovisa tidsplaneringen för olika arbetsutföranden. Tidtabellens information används som en utgångspunkt under byggprojektet.

Vid tidsplanering skall fastslaget datum beaktas med ledningen. En kontroll av underleverantörers förmåga att hålla tidtabellen är nödvändig. Resursplanering bör göras för att säkerställa att arbetsmaskiner är tillgängliga enligt tidsplanen. Arbetsmaskinerna måste vara typgodkända (CE-märkta) och uppfylla arbetssäkerhetskra

Följande kan tas i beaktande då en tidplanering görs:

- Projektet delas i delprojekter.
- Man väljer delprojektens prestationsordning.
- Man gör en förteckning över uppgifterna, man definierar uppgifterna och mängdmatningen.
- Kontroll av tidsplanens genomförbarhet, hänsyn bör tas till semesterdagar, helgdagar och eventuella störningar.
- Man bör komma ihåg att styrning av arbetet är viktigare än tidsplanering, tidsplaneringens syfte är att stöda produktionen.

Typiska situationer då tidsplanen inte håller är att materialbeställningar inte levereras i tid. Klara beslut på leveranstider bör beaktas vid tidsplaneringen. Beställningarna bör göras i god tid.
3.2 Kartläggning

En lista över saneringsplanen (Se bilaga 1) med gatuadresser samt information av saneringsutföranden per gata fanns med i entreprenadshandlingarna.

<table>
<thead>
<tr>
<th>Sanerattna alue</th>
<th>Palosaari I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kartläggning</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 9.

<table>
<thead>
<tr>
<th>Kauppatunnus</th>
<th>Palosaari I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pituus</td>
<td>Valdelaan pylväslaisimia</td>
</tr>
<tr>
<td></td>
<td>Vahdelaan pylväslaisimia</td>
</tr>
<tr>
<td></td>
<td>Vahdelaan valonneettimä</td>
</tr>
<tr>
<td></td>
<td>Valdelaan puupylväät as h ≤ 9m</td>
</tr>
<tr>
<td></td>
<td>Asennataan met pylväät as h ≤ 9m</td>
</tr>
<tr>
<td></td>
<td>Asennataan met pylväät as h ≤ 10m</td>
</tr>
<tr>
<td></td>
<td>Uusi taan puupylväät</td>
</tr>
<tr>
<td></td>
<td>Neptunistell 1 valopiste puretaan kokonaan</td>
</tr>
<tr>
<td></td>
<td>Valdelaan inti kannatiin pylväät uusitaan</td>
</tr>
<tr>
<td></td>
<td>Valdelaan inti kannatiin pylväät uusitaan</td>
</tr>
</tbody>
</table>

Tabell 9.

<table>
<thead>
<tr>
<th>Katu</th>
<th>Pituus</th>
<th>Pituus</th>
<th>Nyk km</th>
<th>Nyk pylv</th>
<th>Uusi valkoj ja -taho</th>
<th>Valaisin-hypoti</th>
<th>Val km</th>
<th>Uudet pylvätät puu</th>
<th>Uudet pylvätät met</th>
<th>Varrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahveniste</td>
<td>955</td>
<td>TKI</td>
<td>27</td>
<td>puu</td>
<td>ST-50W Odyssey</td>
<td>19</td>
<td>19</td>
<td>Kaap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apollonitna</td>
<td>277</td>
<td>TKI</td>
<td>10</td>
<td>met puu</td>
<td>ST-50W Odyssey</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hausenite</td>
<td>445</td>
<td>TKI</td>
<td>18</td>
<td>puu</td>
<td>ST-50W Odyssey</td>
<td>14</td>
<td>14</td>
<td>Kaap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heidhetjantti</td>
<td>321</td>
<td>TKI</td>
<td>11</td>
<td>met puu</td>
<td>ST-50W Odyssey</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holminde</td>
<td>281</td>
<td>TKI</td>
<td>7</td>
<td>met puu</td>
<td>ST-50W Odyssey</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ilmarinkatu</td>
<td>244</td>
<td>TKI</td>
<td>9</td>
<td>met puu</td>
<td>ST-50W Odyssey</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kakkuvuoki</td>
<td>382</td>
<td>TKI</td>
<td>14</td>
<td>met puu</td>
<td>ST-50W Odyssey</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kankaanperukatu</td>
<td>270</td>
<td>TK II</td>
<td>8</td>
<td>met puu</td>
<td>ST-50W Odyssey</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kappelenkatu</td>
<td>731</td>
<td>TK III</td>
<td>29</td>
<td>puu</td>
<td>ST-70W Odyssey</td>
<td>29</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kappelenkatu</td>
<td>731</td>
<td>TK III</td>
<td>29</td>
<td>puu</td>
<td>ST-70W Odyssey</td>
<td>29</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kappelenkatu</td>
<td>731</td>
<td>TK III</td>
<td>29</td>
<td>puu</td>
<td>ST-70W Odyssey</td>
<td>29</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kappelenkatu</td>
<td>731</td>
<td>TK III</td>
<td>29</td>
<td>puu</td>
<td>ST-70W Odyssey</td>
<td>29</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koulunuoki</td>
<td>123</td>
<td>KPP</td>
<td>5</td>
<td>puu</td>
<td>ST-50W Odyssey</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kumimakatu</td>
<td>68</td>
<td>TK II</td>
<td>5</td>
<td>puu</td>
<td>ST-50W Odyssey</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Käpytytiskakkatu</td>
<td>240</td>
<td>TK I</td>
<td>14</td>
<td>puu</td>
<td>ST-50W Odyssey</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mäenysternallinna</td>
<td>309</td>
<td>TK III</td>
<td>12</td>
<td>puu</td>
<td>ST-10W SC10</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neptuniste</td>
<td>0,1</td>
<td>KPP</td>
<td>2</td>
<td>puu</td>
<td>ST-50W Odyssey</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neptuniste</td>
<td>3,2</td>
<td>KPP</td>
<td>2</td>
<td>puu</td>
<td>MM-150W NEC52</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neptuniste</td>
<td>9,0</td>
<td>KPP</td>
<td>9</td>
<td>met puu</td>
<td>ST-50W Odyssey</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onkolaistenkatu</td>
<td>100</td>
<td>KPP</td>
<td>8</td>
<td>puu</td>
<td>ST-50W Odyssey</td>
<td>3</td>
<td>3</td>
<td>Kaap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onni Koonenkatu</td>
<td>234</td>
<td>TK I</td>
<td>8</td>
<td>puu</td>
<td>ST-50W Odyssey</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pallakseeta</td>
<td>234</td>
<td>TK I</td>
<td>8</td>
<td>puu</td>
<td>ST-50W Odyssey</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palosaaranti</td>
<td>699</td>
<td>TK IV</td>
<td>7</td>
<td>vaheri</td>
<td>ST-150W Victor</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palosaaranti</td>
<td>45</td>
<td>KIV</td>
<td>15</td>
<td>puu</td>
<td>ST-70W SC50</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palosaaranti</td>
<td>45</td>
<td>KIV</td>
<td>15</td>
<td>puu</td>
<td>ST-70W SC50</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palosaaranti</td>
<td>45</td>
<td>KIV</td>
<td>15</td>
<td>puu</td>
<td>ST-70W SC50</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Listan beskriver antal belysningspunkter samt saneringsmoment som skall utföras.

Från denna lista kontrollerades antalet belysningspunkter som skulle saneras och jämfördes med kartor över gatubelysningsnätet så att de stämde överens. Efteråt gjordes en kontroll av varje saneringsmoment med bil.
Ett antal fel hittades i saneringslistan och dessa korrigerades på möten med byggherren. En beställning på ca 80 stolparmar fick beställas på grund av fel i saneringslistan.

Det är därmed viktigt att i ett tidigt skede kontrollera att materialmängder stämmer överens. Beställningstider från materialtillverkare kan vara långa. I detta fall fick vi inga fördröjningar som försenade entreprenaden.

Kartorna över Brändö gatubelysningselnät erhålls från Vasa Elektriska (Se figur 2). Gatubelysningskartorna beskriver i huvudsak var gatubelysningspunkterna, elcentralerna och belysningsgrupperna är belägna (Se figur 3 och 4).

3.3 Arbetsuppföljning

Arbetsuppföljningen kräver att man diskuterar och kontrollerar utförda moment på arbetsplatsen. En arbetsplatsdagbok bör göras för noteringar av utförda moment, ändringar, avtalade extra arbeten med byggherren. Dessa arbetsmoment görs varje dag. Görs det extra arbeten bör man gärna begära enunderskrift av byggherren i arbetsplatsdagboken för att undvika eventuella problem vid tilläggsfaktureringar. Arbetsplatsdagbokens noteringar kan ofta vara avgörande i tvister mellan byggherre och entreprenör\(^\text{11}\).

\(^{11}\) Enligt paragraf I YSE 1998.
3.3.1 Mall för veckorapport

Veckorapporttabellen gjordes med hjälp av listan över saneringsplanen (Bilaga 2) i dataprogrammet Excel.

När arbetet med tabellen blev klart kan man till vänster av (Figur 5) se datum och utförda moment för varje adress, högra delen av tabellen kan man se enheter och totalantal monterade enheter.

![Figur 5](resultat_av_arbete_med_veckorapport_tabellen_kompletterades_fra_fra_procentuell_arbetsuppföljning_(se_bilaga_3).)

Därefter diskuterades det med arbetsplatschefen om uppgörandet av en procentuell jämförelse med totala antalet enheter som skall monteras. Beräkningar gjordes av totala antalet osanerade enheter med hjälp från listan över saneringsplanen (Bilaga 1).
Figur 6. Veckorapporten kompletterades med procentuell uppföljning av sanerade enheter.

I nedersta delen av tabellen kan man se uppföljning av monterade enheter. Man kan följa upp enheter som skall monteras och redan monterade enheter under projektet. Slutligen ges en procentuell uppföljning av sanerade enheter. I figur 6 kan man se ett klipp av veckorapporten i slutskedet av entreprenaden.

Man kan i den procentuelle delen av tabellen se ett resultat på över 100 % som beror på tilläggsarbeten. Dessa har tillkommit under entreprenaden. Ändringar och tilläggsarbeten gjordes med olika färger för att få en bättre och snabbare överblick av veckorapporten.

Man bör ha full kontroll av utförda arbetsmoment under projektet. Anteckningar i arbetsplatsdagboken skall göras varje dag för att man i efterhand skall kunna fylla i tabellen rätt. Man bör även se till att Excel-programmet räknar rätt då siffervärdena fylls i kolumnerna.

Resultatet av tabellen blev överraskande bra, det gav en snabbare uppföljning och kontroll av klara arbetsmoment. Tabellen kan jämföras med tidsplanen för att man skall få en lättare uppföljning av entreprenaden.
4 Saneringsskedet

I detta kapitel redogörs det för vilka faktorer som är viktiga i saneringsskedet. Detta för att undvika problem i entreprenaden. Instruktioner ges tillhandahålla om arbetseffektivering vid sanering av gatubelysning. I huvudsak bestod saneringen av stolpbyten och armaturbyten. Även vajerbelysningar och nya matningar grävdes ned.

4.1 Inledande byggmöte

Först bör man hålla ett inledande byggmöte med personal samt eventuella underentreprenörer och där gå igenom arbetsmoment och säkerhetsföreskrifter. Man skall komma överens när arbetet skall inledas samt att arbetarna har arbetssäkerhetskort och behörigheter för att utföra arbetet.

När man gör vägarbeten krävs vägsäkerhetskort samt arbetssäkerhetskort enligt arbetsskyddslagen. En underteckning av arbetare och underentreprenörer bör fås för att undvika tvister vid eventuella arbetsolyckor eller vållande av arbetsskyddslag.

4.2 Kabelvisning

Man bör beställa kabelvisning från Johtotieto Oy, som är ett företag som har uppgifter om kabeloperatörers kabelnät i Finland. Företaget informerar vems kablar som är nedgrävda i området. Därefter kan kabelvisning beställas via deras tjänst som förenas till områdets kabeloperatörer.

Att kablar grävs av är väldigt vanligt i tätorter och om inte en kabelvisning har gjorts står entreprenören för reparationskostnaden. Kostnaden kan vara hög om t.ex. fiberkablar eller högspänningskablar skadas eller grävs av. Om en kabelvisning har beställts och en kabel grävs av som inte är spraymarkerad måste kabeloperatören stå för kostnaderna.

Man bör tänka på att det under sommarhalvåret kan vara långa väntetider och man rekommenderar beställning av kabelvisning två veckor innan arbetet påbörjas. Kabelvisningens utförs med kabeldetektor och spraymarkeringar. Spraymarkeringarna försvinner dock lätt beroende på väder eller fastigheters gårdsarbeten. Detta gör att

13 www.johtotieto.fi
beställning kan göras för hela området, men man bör uppdela kabelvisningen under arbetets gång för att ha tydliga markeringar var kablar finns.

4.3 Kontroll av trästolpar och material

Innan entreprenaden påbörjas bör man alltid kontrollera att allt material finns tillgängligt och att beställningar stämmer överens. Man bör göra en checklista för att underlätta kontrollen av materialleveranser. Man måste planera var material skall lagras för att en senare smidig hämtning av material levereras till arbetsplats. Elprodukter bör även eventuellt vara under tak för att skyddas mot fukt.

Krav finns på stolpar som skall monteras i gatubelysning. Stolparna får inte vara för sneda när de levereras från fabrik. Stolparna beställdes från Versowood och vid leverans ansågs en del stolpar vara väldigt sneda. För att göra en kontroll om stolpar får monteras skall stolparna uppfylla krav enligt SFS 2662.\(^\text{14}\) Enligt SFS finns det anvisningar om hur sned en stolpe får vara för att vara godkänd.

I Figur 7 och 8 kan man se hur man går till väga för att få en bedömning om stolpen uppfyller kravet. En lina spänns från stolpens rot till stolpens sneda sids topp (Se Figur 7).

\(\text{Beräkningsexempel av } s_{\text{max}} \text{ beskriver hur mycket kast som får finnas enligt figur 4.} \)

\[h = 12000mm - 1500mm \]

\(\text{Längden subtraherat med 1500 mm.}\)

\(^{14}\) Suomen Standardisoimisliitto SFS 2662
\[h = 10500\text{mm} \quad \text{Längd för beräkning} \]

\[\frac{h}{2} = 5250\text{mm} \quad \text{För att få mittpunkt på stolpe.} \]

\[\frac{s}{5250\text{mm}} = 10\text{mm/m} \quad \text{Enligt formel.} \]

\[s_{\text{max}} = \frac{(5250\text{mm} \times 10\text{mm})}{1000\text{mm}} \quad \text{Lösning av ekvation.} \]

\[s_{\text{max}} = 52,5\text{mm} \quad \text{Svar: max 52,5 mm kast vid mittpunkt.} \]
Andra fall av sneda stolpar kan beräknas enligt (Figur 5).

Figur 8. Figuren beskriver hur man mäter stolpurs olika fall av böjningar enligt SFS 2662. Kastningen mellan linjernas centrum beräknas med formeln \(p < 0.5 \cdot d \).

Här mäter man trästolpens avvikelse mellan stolpens mitt enligt figur. Man kan använda sig av märklina för att underlätta mätningen. Följande formel används för kontroll:

\[
p < 0.5 \cdot d
\]

Avvikelse av måttet \(p \) skall vara mindre än halva diametern enligt (Figur 8).

Resultatet av mätningar blev en returnering av trästolpar till Versowood.

5 Stolpmontering

används för nyinstallation i gatubelysning skall vara CE- märkta och uppfylla krav enligt SFS-EN40.15

Man bör under montering av trästolpar gräva ner till ett minimidjup på 1,7 m. I undantag får djupet vara 1,5 m om man har en fast jord och man kan kila med stenblock (0,2 m – 0,3 m) och sand 0,4 m runt stolpe. Stolpara monteras raka och i linje med en tolerans på 50 mm avvikelse.16

Jordkablar skall hanteras varsamt för att inte skadas och längden bör vara ca 2 m för att en senare installation skall kunna utföras. Kablarna bör komma upp på motsatt sida av körriktning där kopplingsskydd monteras av el-montör.

Gripklo används på grävmaskinsarm för att lyfta stolpen på plats. Att ha en så kallad Rototilt med gripklo arbetseffektiverar stolpmonteringen avsevärt. (Se figur 9 och 10).

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{gripmodul.png}
\caption{Gripmodul på Rototilt.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{gripmodul_rototilt.png}
\caption{Gripmodul på Rototilt är bra för arbetseffektiverande av stolpmontering.}
\end{figure}

För att montera stolpen rak kan man använda sig av lod. Lodet kan placeras på stolpe eller mätas för hand ca 5 m från stolpen. Vattenpass kan inte användas eftersom trästolpen har konisk form. Man kan klappa eller trycka med grävmaskin för att göra en liten justering av stolpen som är nedgrävd. Mer avancerade mätinstrument behövs nödvändigvis inte vid stolpmontering.

15 InfraRYL 2006 Del 2 33610
16 InfraRYL 2006 Del 2 33610
5.1 Jordkabel

Vid nya installationer grävs jordkablar ner till 0,5 m djup med ett underliggande sandskikt på 100 mm samt täckande sandskikt på 150 mm. Undantag finns när dessa grävs ner till 0,7 m djup om kabeln korsar gator, vägar eller om kabeln grävs ner på jordbruksmark. Gul varnings-plast för jordkabel skall rullas ovanför dragen jordkabel, 300 mm från markyta.17

Jordkablar för belysningen skall hanteras varsamt och monteras intill stolpen med längd på ca 2 m för installation. Jordkablarna skall komma upp på motstående sida av körriktning där man sedan monterar kopplingsskydd.

Jordkablar finns av många olika modeller. Jordkabeltyp bestäms av belastad belysnings-krets. För gatubelysning är minsta tillåtna storlek 10 mm² koppar eller 16 mm² aluminium.18 Elnätmätning för gatubelysning är 230V/400V svagströms-nät.

Inom gatubelysning används kabel med fyra ledare (L1,L2,L3,PE- eller PEN) som matningskabel till varje belysningspunkt.19 Exempel på jordkabel MCMK 4x16+16 som är godkänd enligt SFS 4880.

5.2 Koppling och skydd

Kopplingsskydd monteras från marknivå till en höjd på 1,7 m.20 Kopplingsskyddet monteras på motsatta sidan från körbanan. Efteråt skall man montera en smålsturmpa på jordkablarna ändor för att undvika att fukt tränger in i kabeln. Jordkablarna kopplas ihop och en fas väljs ut för belysningspunkten. Faserna (L1, L2, L3) skall växlas vid varje belysningspunkt för att kretsen skall jämnt belasta gruppens tre säkringar.

Elcentralernas gruppsäkringar varierar i storlek på belastning av belysningskrets. Varje belysningspunkt skall ha en egen säkring (10/25 A) beroende på armatureffekt monterat i kopplingsskydd. Detta för att underlätta en eventuell reparation eller armaturbyte utan att behöva slå av ström för hela belysningsgruppen.

Kabel som går från belysningspunktens kopplingsskydd till armatur skall vara 3x2,5 mm² (L,N och PE) kabel som spikas fast med kabelklämmor på trästolpen.

17 InfraRYL 2006 Del 2 33300
18 Tievalaistuksen suunnittelu s 100
19 InfraRYL 2006 Del 2 33650
20 InfraRYL 2006 Del 2 33650
För metallstolpar där kabeln är dragen inne i stolpen rekommenderas MMJ 3x2,5 mm² eller 5x2,5 mm². Varje armatur skall ha egen fas (L) och egen stolpsäkring. Vid vajerbelysning är det ofta 1–3 armaturer inkopplade från samma stolpes kopplingsskydd.

5.3 Bergstolpar

Under monteringen av nya trästolpar kan man stöta på berggrunden. För att undvika att stolpen skall stjälpa bör man göra en fästning i berg. Vippningsmoment kan vid gatubelysningsstolpar uppnå krafter av 20 kNm. Stolplängd, armlängd och armaturvikt påverkar vippningsmomentet. Man bör under montering av trästolpar gräva ner till ett minimidjup av 1,7 m. I undantag får djupet vara 1,5 m om man har en fast jord och man kan kila med stenblock (0,2 m – 0,3 m) och sand 0,4 m runt stolpe.

En regel enligt InfraRYL är 1,4 m + (L/20) var L är stolpens längd.

T.ex. 1,4m + \(\frac{1,1m}{20} \) = 1,95 m

Om djupet underskridet 1,5 m bör man fästa stolpens rot med tre stödjärn för att få stolpen fäst i berg, därtill behövs tre stödstag eller stödvajrar (Se Figur 11 och 12).

21 InfraRYL 2006 Del 2 33650
22 InfraRYL 2006 Del 2 33610
23 InfraRYL 2006 Del 2 33300

Stödjärnen borras och kilas fast intill stolpen. Stolpen placeras och skruvas fast med 12 x 100 däckskruvar. Stödstagen placeras och kilas fast med 22 x 150 kilbultar. Ett annat alternativ är att fästa stolpens övre kant med stödvajrar (se figur 6). Denna metod är inte lämplig för gatubelysning med armar utan för vajerbelysningsstolpar där utrymmet är tillräckligt.

Figur 13 beskriver monteringsanvisningar vid vajerlutning, 1:2,5. h1 är monteringshöjd, b1 stödets mått från stolpe, b2 stödmått från varandra.

För montering av stödvajar finns färdiga paket med fästen och skyddsmarkering för vajer (Se Figur 14). Jordfästen skall grävas ner till ett djup på 1,2 med en HL 35 mm betongplatta. Man kan även borra och fästa i större stenar eller berggrund med kilbultar.24

24 InfraRYL 2006 Del 2 33610
Om man under saneringsskedet vill veta var bergstolparna kommer att vara belägna så skall man kontrollera var trästolpens tillverkningsmärke är placera. Detta märke är fabrikstillverkat, monterat tre meter från stolpens rot. Bevgsjärn kan ofta vara monterade under marknivå och är således inte synliga.

Figur 14. Stödvajerpaket finns i olika vajer-längder från Elektroskandia.

Figur 15. Stödvajerfäste, kan grävas ned med en HL35 betongplatta eller fästas med kilbult i sten.

25 InfraRYL 2006 Del 2 33610
5.4 Fundament

Fundament monteras för metallstolpar och finns i olika dimensioner beroende på stolpens höjd och tjocklek. Tillverkarna ger uppgifter om lämpliga fundament för metallstolpar samt är beräknade för att klara av betydande momentkrafter. (Se figur 16).

Figur 16. Rekommendationer från Sähköjokinen Oy om fundament och metallstolpmätt.

![Figur 16. Rekommendationer från Sähköjokinen Oy om fundament och metallstolpmätt.](image)

Figur 17. Fundamentskärning från Sähköjokinens SJ-serie.

Vid montering av fundament skall i regel 50–150 mm av fundamentets övre kant vara synlig ovanför marknivå. Detta för att kunna reglera stolpens lutning med fundamentets regleringsskruvar som syns i skärningen (Se figur 17). Detta är också ett krav för att undvika farliga kollisionsrisiker.

26 InfraRYL 2006 Del 2 kapitel 33610
5.5 Bergfundament

När bergrunden kommer emot finns det olika lösningar. Man kan spränga, beställa nytt kortare fundament med bergfäste, göra en avkapning av fundament med eget bergfäste eller gjuta (Se figur 19).

Sprängning gjordes inte p.g.a. risker i tätort eftersom fastigheter kunde skadas. Beställning av nya bergfundament uteslöts med tanke på väntetid och transportkostnader. Därmed blev lösningen att förkorta fundamenten och göra en fastgjutning i bergrunden.

Fundamenten var ca 800 mm tjocka på stället där avskärning gjordes. Klingan på diamantskäraren tog endast 150 mm djupt medan en knackning med grävmaskinsskopa gjordes och fundamentet brast vid skuren punkt (Se figur 18).

![Figur 18. Avskärning med diamantsåg av fundament.](image1)

![Figur 19. Armeringsjärn borrades ner i bergrunden för en övertäckande gjutning med betong.](image2)
Montering av vajer och metallstolpar.

En skyltning med parkeringsförbud bör sättas upp före nedmonteringen sker. Fordon med ”pil-blinkvagn” och två personer som dirigerar trafik bör finnas på plats enligt vägarbetsföreskrifter.27 Största delen av vajerbelysningen fanns på gator med trottoarer vilket underlättade nedtagningen av vajerbelysningen en aning trots att trafiken var livlig.

Nedmonteringen av vajer gjordes med en korgkranbil, en hjälpkarl och två vägarbetare som dirigerade trafiken. Vajern drogs över gata och klipptes av vid andra sidans trottoar för att undvika eventuella olycksrisken för fotgängare.

Metallstolparna kördes ut med kranbil och monterades samtidigt på plats. Arbetet utfördes varsamt av en erfaren kranförare för att undvika eventuella olyckor. Bilkranen bör vara besiktigad. Vid stolpmonteringen är det viktigt att man ser efter att jordkablarna som skall kopplas inne i stolpen inte kommer i kläm mellan stolpen och fundamentet. Stolparna skall även vridas i rätt riktning med järnspett eller dylik utrustning för att få kopplingslucka och vajerfäste på rätt ställe.

Figur 20. Ett bergsfundament gjöts över med betong. Man bör beakta att kablar inte får gjutas fast utan att de skyddas i rör.

67 Beslutat med kompetent person vid Destia Oy (Enligt anvisningar från Liikennevirasto).
6.1 Vajermontering

För monteringen av vajer till vajerbelysningen bör avståndet mätas upp mellan fästpunkter före vajern klipps av. Mätningen kan göras med ett "hjulmått" (Se figur 23). Mätinstrumentet har analog eller digital mätare beroende på vilken modell som är kalibrerad till hjulets omkrets.

Efter mätningen bör trafiken tillfälligt stoppas och upplyftning av vajer gjordes från två bilkranskorgar. Vajern spändes med "talja”, vajerspännare (Se figur 22) till en nedböjning av ungefär 20–25 cm. Stolparna och väggfästena skall inte påfrestas av allt för stora momentkrafter. Längdutvidgning av stål vajer under sommarhalvåret bör beaktas.

![Figur 22. En "talja", spännare användes till vajerarbetet under saneringen.](image1)

![Figur 23. Rolatape hjulmått som användes vid mätning av vajermått.](image2)

Vajerfästena hade inte bestämts och för att veta vilka låsfästen som passar bör vajerarean mätas. Som fås ur formel:

\[A = \pi r^2 \]

Olika modeller på fästen finns, men för att effektivera arbetet, är vajerlåsfästet väldigt prisvärt för sin effektiva vajerfästning. Utrymmen i bilkranskorg kan vara snäva och detta fäste kan därmed anses vara lämpligt.

Vajerfästning modell 1: \[\text{Monteringstid} = 5 - 10 \text{ min} \]

Vajerfästning modell 2: \[\text{Monteringstid} = 1 - 2 \text{ min} \]

Sammalagt monterades över hundra vajerfästen och en uppskattning på inbesparad tid är:

Vajerfäste modell 1: \[Tid = \frac{100\text{st}+5\text{min}}{60} = 8,3 \text{ h} \]

Vajerfäste modell 2: \[Tid = \frac{100\text{st}+1\text{min}}{60} = 1,6 \text{ h} \]

Inbesparing monteringtid: \[Tid = 6,7 - 13,3 \text{ h} \]

Resultatet visar att ca två arbetsdagar kan inbesparas för att göra vajerfästning med modell 2 (Se figur 25).
Vid montering av 6 m metallstolpar utan arm, lyftes stolparna först på plats och därefter monterades färdig kopplad armatur på stolpen. Metoden är väldigt effektiv om inte trafik och parkerade bilar är ett hinder för montering.

Metallstolpar med arm och armatur kan monteras färdigt på mark för en senare upplyftning (Se figur 27). Denna metod är väldigt bra i högtrafikerade lägen där en vistelse med tunga fordon behöver högre vägsäkerhetsarrangemang.

6.2 Armaturer

InfraRYL Del 2 33630
7 Mätning av kortslutningsströmmar

Efter saneringen skulle en elgranskning enligt SFS 6000 göras. Byggherren krävde en elmättningsrapport av kortslutningsströmmar och spänningsförluster (Se Bilaga 5). Mätningen görs från belysningscentralen till belysningsgruppernas ändor.

Här beskrivs grunderna hur mätning görs:

Mätningen görs på varje belysningsgrupp och belysningscentral. Belysningsgruppen kan ha flera slut beroende på var jordkabeln är dragen. Här gäller det att använda sig av belysningskartor för att hitta var gruppen har sina slut (Se figur 4). I praktiken betyder detta att man måste hitta en belysningspunkt där kabelkretsen inte blir inkopplad till följande belysningspunkt.

När man har funnit kretens slut görs en mätning med specialmätare som kan mäta kortslutningsström och spänningsförluster. Mätningen görs på belysningsgruppens alla ändor samt i el-centralen.

Tabell finns på olika säkringarnas gränsvärden enligt SFS 6000 för kortslutningsström (se tabell 10). Inom gatubelysning används tröga säkringar gG med 5 sekunders avbrännings- tid.29

Tabell 10. Toleranser för kortslutningsströmmar för gG säkringar enligt ST-handbok 33.33.
8 Mätning av ljusstyrka

Detta kapitel kommer att beskriva hur en mätning av ljusstyrka av gatubelysning gjordes på begäran av byggherren. För justekniska storheter, se begrepp förklaringar.

I slutet av entreprenaden skulle ljusstyrka mätas vid varje gatukärning som hade armaturmodell Callis ST 50/70. Under entreprenadens gång kom en ändring från byggherren med monteringshöjd på stolpararmaturer. Orsaken var fel i entreprenadhandlingarna. Monteringshöjden blev ändrad från 9 m till 8 m.

Efter denna ändring ville byggherren ha en rapport på ljusstyrka för samtliga gatukärningar. Armaturen som ändringen berörde var Callis ST 50/70 och kunde regleras med 50 W eller 70 W effekt. Ifall ljusstyrkan var för svag kunde ett lampbyte till 70 W göras för att få mer ljusstyrka. Uppgiften blev att göra en kontrollmätning av ljusstyrka för att se om armaturen uppfyllde kraven.

Mätningen gjordes med en lux-mätare (Se figur 28). Metoden mäter illuminansen, vilket är ljusflödet som träffar en yta, dvs. lux-mätarens öga. När man gör mätningen skall man placera mätaren på markyta och inte skymma mätarens öga med skugga för att uppnå mätrésultatet.

Figur 28. Luxmätare som användes för ljusflödesmätningen.

30 Wikipedia – sökord Illuminans
Under ett möte med byggherre diskuterades det hur mätningen skulle utföras och information gavs för tillvägagångssättet.

När man gör mätningen skall man placera mätaren på markyta och inte skymma mätarens öga med någon skugga för att uppnå mätresultatet.

Vid ljusmätningen togs modell från Vialuksi Oy som exempel (Se Bilaga 4). Mätningen gjordes på olika X,Y koordinater, på gångbana och körbanor med hjulmått. Avståndet mellan belysningsstolparna uppmättes samt gatubredd.

En rapport gjordes enligt följande:

<table>
<thead>
<tr>
<th>Vägyta</th>
<th>GB+KB+GB (2+10+2)m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X (m)</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td>10,5</td>
</tr>
<tr>
<td></td>
<td>15,0</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
</tr>
<tr>
<td></td>
<td>24,0</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
</tr>
</tbody>
</table>

Medeltal 9,9 lx

De ovanstående mätresultaten är en gata med två gångbanor och en körbana. Mätningen gjordes på sju ställen mellan belysningsstolparna, som (Y-koordinat) och fyra för gång och körbans mitt, som (X-koordinat). En medeltalsberäkning gjordes av värdena för att kunna se resultatskillnaden.

Efter utförda mätningssrapporter (Se Bilaga 6), för olika gatuskärningar, skulle rapporterna skickas till företaget Vialuksi Oy för att få mätresultaten granskade och godkända. Resultatet från Vialuksi Oy blev godkänt och ingen ändring behövde göras med stolparmaturerna.
9 Sammanfattning

Saneringen resulterade i en ny gatubelysning med högtrycksnatriumlampor vilka har en bräntid på 12-22 000 h (Tabell 4). Därtill förbättrades belysningsstyrkan på gatorna för en ökad trafiksäkerhet.

En förfarang av energiförbrukning gjordes av byggherren Vasa stad som gav nedanstående uppgifter tillhanda (Se Bilaga 7).

Gatubelysningen som saneringsområdet omfattade hade en elförbrukning på 323 400 kWh/år. Efter att saneringen utfördes med nya belysningstekniken, sänktes elförbrukningen till 185 900 kWh/år. Detta ger som resultat en sänkning på elförbrukningen med 137 500 kWh/år i Brändöområdet.31

Detta examensarbete har gett en ökad förståelse för energieffektivering av gatubelysningen samt gett mig en inblick i ljustekniska storheter. Arbetet har även gett mig en klarare bild av hur projekttledning och arbetsledning utförs.

Största utmaningen med arbetsprojektet var att under stress lyckas fullfölja arbetsplanering och saneringslista samtidigt som kontorsarbete skulle utföras.

31 Uppgifter från Harri Heino, Vasa Stad (Se Bilaga 7).
Källförteckning

Europaparlamentets och – rådets direktiv 2005/32/EG.

Europeiska unionens officiella tidning – Kommissionens förordning (EG) nr. 245/2009

Elsäkerhetsveket – Starkströmsföreskrifterna ELSÄK-FS 1999:5
http://www.elsakerhetsverket.se/Global/F%C3%B6reskrifter/%C3%84ldre%20f%C3%B6reskrifter/1999-5.pdf (hämtat 07.05.2013)

Energimyndigheten – Högtrycksnatriumlampor (17.11.2013)
http://energimyndigheten.se/ (hämtat: 14.01.2013)

Elektro Skandia – Suuret, yksiköt ja niiden merkitys

InfraRYL 2006, Infrarakentamisen yleiset laatuvaatimukset

InfraRYL 2006, Infrarakentamisen yleiset laatuvaatimukset Osa 2

Odenman – Produkter

Tiehallinto. (2006) Tievalaistuksen suunnittelu (pdf–fil)

Philips Lightning Tuoteluettelo - Lamput ja liitännälaitteet 2011
Elektro Skandia - Suuret, yksiköt ja niiden merkitys

Liikennevirasto- Tien valaisimien laatuvaatimukset (17.10.2012)

Ljuskultur – Framtidens vägbelysning 6/09

Valopaa – Led katuvalaisimet

Philips Lightning Tuoteluettelo – Lamput ja liitäntälaitteet (2011)

Philips Lightning – Produkter – Vägbelysning
http://www.ecat.lighting.philips.se (hämtat 20.04.2013)

Sähköjokinen – Betnoijalustat (30.4.2013)

Bilaga I

<table>
<thead>
<tr>
<th>Kausi</th>
<th>Vaihdetaan pylväsvalaisimisä</th>
<th>Vaihdetaan valojenvalaisimisä</th>
<th>Vaihdetaan valojenvalaisimisä</th>
<th>Vaihdetaan puupylväät as. h ≤ 3m</th>
<th>Vaihdetaan puupylväät as. h ≤ 10m</th>
<th>Vaihdetaan puupylväät as. h ≤ 10m</th>
<th>Osuus puupylväät as. h ≤ 10m</th>
<th>Uusi puupylväät puupylväät</th>
<th>Neutrieni</th>
<th>Valojen / puupylväät puupylväät / puupylväät</th>
<th>Valojen / puupylväät puupylväät / puupylväät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kausi</td>
<td>400 kpl</td>
<td>42 kpl</td>
<td>2 kpl</td>
<td>108 kpl</td>
<td>73 kpl</td>
<td>88 kpl</td>
<td>51 kpl</td>
<td>24 kpl</td>
<td>Ripustuspuupylväät H9/273/E Tehomet</td>
<td>3 kpl</td>
<td></td>
</tr>
<tr>
<td>Kausi</td>
<td>Puu H10,5</td>
<td>24 kpl</td>
<td>3 kpl</td>
<td>24 kpl</td>
<td>3 kpl</td>
<td>24 kpl</td>
<td>3 kpl</td>
<td>24 kpl</td>
<td>Ripustuspuupylväät H9/273/E Tehomet</td>
<td>3 kpl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Katu</th>
<th>Pituus / m</th>
<th>Katu-ka</th>
<th>Nyk km</th>
<th>Nyk pylv</th>
<th>lusui valojen ja-teho</th>
<th>Valojen-tyyppi</th>
<th>Val km</th>
<th>Uudet pytvät vtu</th>
<th>Uudetpytvät ntk</th>
<th>Varret</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apollonite</td>
<td>277 TKI</td>
<td>10</td>
<td>met ppy</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>19</td>
<td>16</td>
<td>Kaap</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Haantie</td>
<td>445 TKII</td>
<td>18</td>
<td>puu</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>14</td>
<td>14</td>
<td>Kaap</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Hedbergine</td>
<td>321 TKI</td>
<td>11</td>
<td>met ppy</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>11</td>
<td>11</td>
<td>Kaap</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Holminite</td>
<td>281 TKI</td>
<td>7</td>
<td>met ppy</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>8</td>
<td>8</td>
<td>Kaap</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Holmante</td>
<td>244 TKI</td>
<td>9</td>
<td>met ppy</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>8</td>
<td>8</td>
<td>Kaap</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Karvoksi</td>
<td>382 TKI</td>
<td>14</td>
<td>met ppy</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>14</td>
<td>14</td>
<td>Kaap</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Kannaksenkatu</td>
<td>270 TKI</td>
<td>8</td>
<td>met ppy</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>8</td>
<td>8</td>
<td>Kaap</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Kapteeninkatu</td>
<td>731 TKII</td>
<td>28</td>
<td>puu</td>
<td>ST-700</td>
<td>Odyssey</td>
<td>28</td>
<td>28</td>
<td>Kaap</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Kapteeninkatu</td>
<td>TKII</td>
<td>3</td>
<td>met ppy</td>
<td>ST-700</td>
<td>Odyssey</td>
<td>3</td>
<td>3</td>
<td>Kaap</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Koulukaja</td>
<td>258 JKPP</td>
<td>5</td>
<td>puu</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>5</td>
<td>5</td>
<td>Kaap</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Kulmakatu</td>
<td>68 TKII</td>
<td>5</td>
<td>puu</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>5</td>
<td>5</td>
<td>Kaap</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Käthyöläiskatu</td>
<td>340 TKII</td>
<td>14</td>
<td>puu</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>14</td>
<td>14</td>
<td>Kaap</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Mantymäentie</td>
<td>309 TKIII</td>
<td>12</td>
<td>puu</td>
<td>ST-1000</td>
<td>SC100</td>
<td>12</td>
<td>12</td>
<td>Kaap</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Neptuninlaiti</td>
<td>61 JKPP</td>
<td>2</td>
<td>puu</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>2</td>
<td>2</td>
<td>Kaap</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Neptuninlaiti</td>
<td>A lue</td>
<td>2</td>
<td>MM-1500</td>
<td>NFOS2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>Kaap</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Neptuninlaiti</td>
<td>JKPP</td>
<td>9</td>
<td>met ppy</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>9</td>
<td>9</td>
<td>Kaap</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Onikahdenkatu</td>
<td>100 JKPP</td>
<td>6</td>
<td>puu</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>3</td>
<td>3</td>
<td>Kaap</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Onni Kokonetta</td>
<td>236 TKI</td>
<td>8</td>
<td>met ppy</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>8</td>
<td>8</td>
<td>Kaap</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Pallokorpi</td>
<td>254 TKI</td>
<td>9</td>
<td>met ppy</td>
<td>ST-500</td>
<td>Odyssey</td>
<td>9</td>
<td>9</td>
<td>Kaap</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Pallokorpi</td>
<td>836 TKIV</td>
<td>7</td>
<td>met ppy</td>
<td>ST-700</td>
<td>Victor</td>
<td>7</td>
<td>7</td>
<td>Kaap</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Pallokorpi</td>
<td>KKIV</td>
<td>14</td>
<td>met ppy</td>
<td>ST-1500</td>
<td>Victor</td>
<td>14</td>
<td>14</td>
<td>Kaap</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Pallokorpi</td>
<td>KKIV</td>
<td>1</td>
<td>puu</td>
<td>ST-700</td>
<td>SC50</td>
<td>1</td>
<td>1</td>
<td>Kaap</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pallokorpi</td>
<td>KKIV</td>
<td>7</td>
<td>puu</td>
<td>ST-1500</td>
<td>SC100</td>
<td>7</td>
<td>7</td>
<td>Kaap</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
Palosaari II

<table>
<thead>
<tr>
<th>Katu</th>
<th>Pituus / m</th>
<th>Katu- lka</th>
<th>Nyk. lkm</th>
<th>Uusi valolaji ja -teho</th>
<th>Valaisin- tyyppi</th>
<th>Valaisimet uusitaan</th>
<th>Vaijerivalaisimet uusitaan</th>
<th>Puupylväät varsineen uusitaan</th>
<th>Ripustusval. puupylväät uusitaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huvilakatu</td>
<td>290</td>
<td>TK III</td>
<td>12</td>
<td>ST-70W Odyssey</td>
<td>Odyssey</td>
<td>140-139 kpl</td>
<td>4-5 kpl</td>
<td>140-139 kpl</td>
<td>5 kpl</td>
</tr>
<tr>
<td>Levoninkatu</td>
<td>650</td>
<td>TK III</td>
<td>18</td>
<td>ST-70W Odyssey</td>
<td>Odyssey</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
</tr>
<tr>
<td>Levoninkatu</td>
<td>190</td>
<td>TK III</td>
<td>8</td>
<td>ST-50W Odyssey</td>
<td>Odyssey</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
</tr>
<tr>
<td>Luotsikatu</td>
<td>190</td>
<td>TK III</td>
<td>8</td>
<td>ST-50W Odyssey</td>
<td>Odyssey</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
</tr>
<tr>
<td>Majakkakatu</td>
<td>100</td>
<td>TK I</td>
<td>4</td>
<td>ST-50W Odyssey</td>
<td>Odyssey</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
</tr>
<tr>
<td>Merimiehenkatu</td>
<td>140</td>
<td>TK III</td>
<td>5</td>
<td>ST-70W Odyssey</td>
<td>Odyssey</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
</tr>
<tr>
<td>Perämiehenkatu</td>
<td>354</td>
<td>TK III</td>
<td>16</td>
<td>ST-70W Odyssey</td>
<td>Odyssey</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
</tr>
<tr>
<td>Pikitehtaankatu</td>
<td>548</td>
<td>TK IV</td>
<td>14</td>
<td>ST-70W Odyssey</td>
<td>Odyssey</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
</tr>
<tr>
<td>Pursimiehenkatu</td>
<td>890</td>
<td>TK II</td>
<td>≥ 26</td>
<td>ST-50W Odyssey</td>
<td>Odyssey</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
</tr>
<tr>
<td>Pursimiehenkatu</td>
<td>132</td>
<td>TK II</td>
<td>3</td>
<td>ST-70W Odyssey</td>
<td>Victor</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
</tr>
<tr>
<td>Työväenkatu</td>
<td>255</td>
<td>TK II</td>
<td>≥ 10</td>
<td>ST-50W Odyssey</td>
<td>Odyssey</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
</tr>
<tr>
<td>Varisselänkatu</td>
<td>748</td>
<td>TK III</td>
<td>≥ 26</td>
<td>ST-70W Odyssey</td>
<td>Odyssey</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
</tr>
<tr>
<td>Varisselänkatu</td>
<td>132</td>
<td>TK II</td>
<td>≥ 3</td>
<td>ST-70W Odyssey</td>
<td>Victor</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
<td>1 m varsi</td>
</tr>
</tbody>
</table>
Bilaga 2

Tarkastuspöytäkirja

Katu: ___

Katuosuus: (-)

Kännitys kohta: ___

<table>
<thead>
<tr>
<th>Nro.</th>
<th>A</th>
<th>B</th>
<th>C1/C2</th>
<th>Muuta</th>
<th>Päivämäärä</th>
<th>Kuitaus</th>
</tr>
</thead>
</table>

Parintomat
Katunumerot
1,3,5 jne jne

Päivämäärä_________________ Allekirjoitus___________________

Parilliset
Katunumerot
2,4,6 jne jne
| Datum | A/T | Utförda Arbetsmoment / Namn | Adress | Armatur C 50X | Armatur C 70X | Armatur SC 60/70X | Variação SC 100W | Variação Vicor 150W | Träsljutarm 107/90 | Träsljutarm 50/40 | Träsljutarm 1 fm | Träsljutarm 1,5 fm | Mätelutför bräd | Mt | Kpl |
|----------|-----|----------------------------|---------------|---------------|---------------|-------------------|------------------|-------------------|-------------------|-----------------|----------------|-----------------|----------------|------|
| 11.5.2012 | | Stolpmontering + Arm montage / J. Störm | Valhallavägen | 19 | 19 | | | | | | | | | 0 | |
| 12.5.2012 | | Armaturmontering + Arm montage | Kaptensgatan | 21 | | | | | 56 | | | | | 0 | |
| | | | | 12 | | | | | | | | | | 0 | |
| | | | | 24 | 12 | | | | 22 | | | | | 0 | |
| | | | | 12 | 34 | | | | | | | | | 0 | |
| | | | | 12 | 43 | | | | 23 | | | | | 0 | |
| | | | | 32 | 19 | | | | | | | | | 0 | |
| | | | | 12 | 12 | | | | 23 | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |
| | | | | | | | | | | | | | | 0 | |

<table>
<thead>
<tr>
<th>Monterade enheter</th>
<th>86.0</th>
<th>151.0</th>
<th>12.0</th>
<th>12.0</th>
<th>18.0</th>
<th>12.0</th>
<th>19.0</th>
<th>137.0</th>
<th>21.0</th>
<th>22.0</th>
<th>57.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totala enheter</td>
<td>234.0</td>
<td>191.0</td>
<td>16.0</td>
<td>21.0</td>
<td>39.0</td>
<td>48.0</td>
<td>32.0</td>
<td>225.0</td>
<td>269.0</td>
<td>29.0</td>
<td>195.0</td>
</tr>
<tr>
<td>Upptäckning %</td>
<td>30.3</td>
<td>93.4</td>
<td>75.0</td>
<td>57.1</td>
<td>46.2</td>
<td>25.0</td>
<td>59.4</td>
<td>66.0</td>
<td>7.8</td>
<td>75.9</td>
<td>29.1</td>
</tr>
</tbody>
</table>
3. Laskentatulokset

3.1 Kevytiliikenne: Tasa-arvokäyrä

Plateverkko: Kevytiliikenne et Z = -0.00 m
Laskelma: Pinnan valaistusvoimakkuus (lukei)
Bilaga 5

Vaasan kaupungin katuvalaistuksen saneeraus 2012

Palosaari I ja II

Keskus KV 3650/557 Mansilka-saari

<table>
<thead>
<tr>
<th>K. Ryhmä</th>
<th>R1</th>
<th>R2</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L1 - L2</th>
<th>L2 - L3</th>
<th>L1 - L3</th>
<th>IK/OSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulakset</td>
<td>20A</td>
<td>20A</td>
<td>238 V</td>
<td>238 V</td>
<td>238 V</td>
<td>408 V</td>
<td>408 V</td>
<td>410 V</td>
<td>2,4 kA</td>
</tr>
</tbody>
</table>

Linjan pää, (Pikitehtaankatu 2)

<table>
<thead>
<tr>
<th>Mp. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
</tr>
<tr>
<td>L3</td>
</tr>
<tr>
<td>L1 - L2</td>
</tr>
<tr>
<td>L2 - L3</td>
</tr>
<tr>
<td>L1 - L3</td>
</tr>
</tbody>
</table>

Linjan pää, (Palosaarentie 11)

<table>
<thead>
<tr>
<th>Mp. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
</tr>
<tr>
<td>L3</td>
</tr>
<tr>
<td>L1 - L2</td>
</tr>
<tr>
<td>L2 - L3</td>
</tr>
<tr>
<td>L1 - L3</td>
</tr>
</tbody>
</table>

Linjan pää, (Tervahovinkuja pyröteil)

<table>
<thead>
<tr>
<th>Mp. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
</tr>
<tr>
<td>L3</td>
</tr>
<tr>
<td>L1 - L2</td>
</tr>
<tr>
<td>L2 - L3</td>
</tr>
<tr>
<td>L1 - L3</td>
</tr>
</tbody>
</table>

Linjan pää, (Salmikatu.Pikitehtaankatu riseys)

<table>
<thead>
<tr>
<th>Mp. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
</tr>
<tr>
<td>L3</td>
</tr>
<tr>
<td>L1 - L2</td>
</tr>
<tr>
<td>L2 - L3</td>
</tr>
<tr>
<td>L1 - L3</td>
</tr>
</tbody>
</table>

Keskus KV 3635/63 Salmikadula

<table>
<thead>
<tr>
<th>K. Ryhmä</th>
<th>R2</th>
<th>R3</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L1 - L2</th>
<th>L2 - L3</th>
<th>L1 - L3</th>
<th>IK/OSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulakset</td>
<td>25A</td>
<td>25A</td>
<td>239 V</td>
<td>237 V</td>
<td>238 V</td>
<td>410 V</td>
<td>410 V</td>
<td>410 V</td>
<td>2,4 kA</td>
</tr>
</tbody>
</table>

Linjan pää, (Wolfinnie 28)

<table>
<thead>
<tr>
<th>Mp. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
</tr>
<tr>
<td>L3</td>
</tr>
<tr>
<td>L1 - L2</td>
</tr>
<tr>
<td>L2 - L3</td>
</tr>
<tr>
<td>L1 - L3</td>
</tr>
</tbody>
</table>

Linjan pää, (Wolfinnie 2)

<table>
<thead>
<tr>
<th>Mp. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
</tr>
<tr>
<td>L3</td>
</tr>
<tr>
<td>L1 - L2</td>
</tr>
<tr>
<td>L2 - L3</td>
</tr>
<tr>
<td>L1 - L3</td>
</tr>
</tbody>
</table>

Linjan pää, (Levoninkatu 24)

<table>
<thead>
<tr>
<th>Mp. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
</tr>
<tr>
<td>L3</td>
</tr>
<tr>
<td>L1 - L2</td>
</tr>
<tr>
<td>L2 - L3</td>
</tr>
<tr>
<td>L1 - L3</td>
</tr>
</tbody>
</table>
Valaistusmittaus laskelma

- Länsi-Suomi / Vaasa

23.10.2012

Osoite
Pikitehtaankatu 6

Säätö
Kuiva

Kadun
Poikkileikkauk

Asennuskorkeus
9m

Teho
70 W

Valaisin
Callis ST 50/70

<table>
<thead>
<tr>
<th>Pvm</th>
<th>20.10.2012 ki 20.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pikitehtaankatu</td>
<td>JK + AR + JK (2+10+2)m</td>
</tr>
<tr>
<td>Tienpinta</td>
<td>JK+AR+JK (2+10+2)m</td>
</tr>
<tr>
<td>X (m)</td>
<td>1,0</td>
</tr>
<tr>
<td>Y (m)</td>
<td></td>
</tr>
<tr>
<td>1,5</td>
<td>29,8</td>
</tr>
<tr>
<td>6,0</td>
<td>25,3</td>
</tr>
<tr>
<td>10,5</td>
<td>16,3</td>
</tr>
<tr>
<td>15,0</td>
<td>10,4</td>
</tr>
<tr>
<td>19,5</td>
<td>15,3</td>
</tr>
<tr>
<td>24,0</td>
<td>22,5</td>
</tr>
<tr>
<td>28,5</td>
<td>24,7</td>
</tr>
</tbody>
</table>

Keskiarvo
9,9

Mittaajat
T&J Holmback / J.Ström
Valaistusmittaus laskelma

Länsi-Suomi / Vaasa

23.10.2012

<table>
<thead>
<tr>
<th>Ososite</th>
<th>Hauentie 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säätila</td>
<td>Märkä</td>
</tr>
<tr>
<td>Kadun</td>
<td>AR</td>
</tr>
<tr>
<td>Poikkileikkus</td>
<td>9m</td>
</tr>
<tr>
<td>Asennuskorkeus</td>
<td>90 W</td>
</tr>
<tr>
<td>Teho</td>
<td></td>
</tr>
<tr>
<td>Valaisin</td>
<td>Callis ST 50/70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pvm</th>
<th>23.10.2012</th>
<th>kl 7:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauentie</td>
<td>AR</td>
<td>(5,5) m</td>
</tr>
</tbody>
</table>

X (m)	1,40	4,20
Y (m)	18,3	10,2
6,0	19,8	7,9
10,5	15,2	5,3
15,0	5,7	2,2
19,5	7,1	3,5
24,0	9,1	4,9
28,5	18,4	7,3

Keskiarvo: 9,6 lx

Mittaajat: T&J Holmbäck / J.Ström
Laskennalliset arvot energiansäästöstä ovat seuraavasti:

- Vanhojen valaisimien energiankulutus oli n. 323 400 kWh / vuosi.
- Uusien, vaihdettujen valaisinten energiankulutus on n. 185 900 kWh / vuosi.
- Säästö energiankulutukseen on n. 137 500 kWh / vuosi.

Riittääkö tämä tieto?

terveisin

Harri Heino
Sähköteknikko I Eltkniker

Vaasan kaupunki I Vasa stad
Kuntateknikka I Kommuneteknik
Kirkkouluistikko 26A I Kyrkosplanaden 26A
PL / PB2, 65101 Vaasa - Vasa
+358(0)40-5863001
www.vaasa.fi

Lähettäjä: Johan Ström [mailto:johan.strom@ymail.com]
Lähetetty: 2. toukokuuta 2013 19:14
Vastaanottaja: Heino Harri
Aihe: Katuvalaistussaneeraus 2012

Haluaisin tietää minun lopputyöstäni sellainen kysymys että:

Kuinka paljon sähköenergia (kWh) säästätte Vaasan, Palosaaren, katuaaonajen vaihtamiseen. Löytyisikö sellaisia tietoja?

Onko mahdollista saada tietoja mahdollisimman pian?

Kiittäen etukäteen.

Terveisin

Johan Ström
Rak.ins.op.