UNIVERSITY OF APPLIED SCIENCES

Timestamping over

from Siemens S7

Joakim Wargh

Bachelor’s thesis

Electrical Engineering

Vaasa 2013

MODBUS TCP

BACHELOR’S THESIS

Author: Joakim Wargh

Degree programme: Electrical Engineering, Vaasa
Specialization: Automation Technology
Supervisor: Dag Bjorklund

Title: Timestamping over MODBUS TCP from Siemens S7

15.05.2013 32 pages 4 appendices

Abstract

This Bachelor's thesis work was done for ABB Power Generation Systems in
Vaasa. | have been given the task of researching the possibilities of sending
timestamp information to external systems from the PLC. Timestamping involves
storing time information about when certain events have occurred. The aim of my
thesis is to get a complete system that is able to create and store time
information for certain events in milliseconds since 1/1/1970. In order to get an
accurate representation of the time a 48 bits resolution is used. Communication
over MODBUS TCP/IP requires the data that is sent to be stored in bytes or word
format. The results of this thesis work are a working program for sending
timestamps over MODBUS TCP and a manual on how to use and set up a working
MODBUS TCP connection.

Language: English

Key words: timestamping, Modbus tcp/ip,

EXAMENSARBETE

Forfattare: Joakim Wargh
Utbildningsprogram och ort: Elektroteknik, Vasa
Fordjupning: Automationsteknik
Handledare: Dag Bjorklund

Titel: Timestamping over MODBUS TCP from Siemens S7

15.05.2013 32 sidor 4 bilagor

Abstrakt

Detta examensrbete gjordes at ABB Power Generation Systems i Vasa. Jag hade
fatt till uppgift att forska om mdjligheterna om att sdnda timestamping
information till externa system fran PLC. Timestamping innebar att man lagrar
tidsinformation nar vissa handelser har intraffat. Syftet med detta lardomsprov ar
att fa ett fardigt system som ska kunna skapa och lagra tidsinformation for vissa
héndelser i millisekunder sedan 1.1.1970. Overféringen med modbus tcp/ip
kraver att data som skickas ska vara i byte eller word-format och darfér anvands
48 bits upploésning pa tidsinformationen som skickas. Detta lardomsprov
resulterade i ett fungerande funktionsblock som skapar tidsdata och skickar
dessa over MODBUS TCP samt en manual 6ver hur man anvander detta

funktionsblock och hur man 6ppnar en fungerande kommunikation.

Sprak: Engelska

Nyckelord: timestamping, Modbus tcp/ip

Table of contents

I INErOQUCTION .ottt ettt ettt et e sab e e bt e eateebeesaneens 1
| N I 1 o0 OSSPSR 1

2 A B B ettt st ettt 2
2.1 ABB FINIand......cooooiiiiii e 2

3 MODBUS ettt a e et h e et b e ettt et e b e et e b e 3
4 MODBUS application JaYercccoviieiiiieeiiieeiieeeiee ettt e s 5
4.1 MODBUS data modelcoooiiiiiiiiiie e 6
4.2 MODBUS FUunction CodeS.......c..ceeiueiriiiiiienieeiienie ettt sttt 8

5 MODBUS TCP/IP ..ttt ettt ettt e be e st e e ens 13
5.1 Messaging OVer TCP/IP........oooiiiiiiie ettt s ees 13
S5.1.1 MBAP REAET ... e 14
5.1.2 MODBUS reqUeSt MESSAZE ...cuvvveeeerieiieeeaiiiieeeniiieeeesirteeesnrreeessssreeeessneeeesnns 15
5.1.3 MODBUS reSpONSE MESSAZE.eeeerrurreeeaurrreeeriirreeeesurteesanseeeessansreesssssseeesnnns 15

5.2 TCP connection Mana@emMeENt.........c..eeevieervreerureesieesieeesseeesseeesseeesseessssessssneenns 15

6 Siemens ST PrOZIAMIMING.......ccueeerveeerrreeerreeerreeaereesseeesseeessseeessseeessseeessseessssesssssessnses 17
6.1 TEC O1131-3 ettt ettt sttt ens 17
6.2 SCL PrOZIrammMINGccccuvieiiieerieeeiieeeiieeesereeassreessseeesseeesseesssseessssessssseesssseesssees 18
6.3 FBD Programming..........cccceccueeeriuieeiireeiieeeireessireesieeesseeesseeessseessssesssssessssseesnsees 19

7 Programming of the function blOCK..........cccoeeviiieiiiiiiiiiee e 20
7.1 Implementation SPECIfICAtIONeeeiuiieeiiieeiiieeiee et 20
7.2 TIMESTAMPING ..eeevieeeirieeeiiieesieeesieeesteeesteeestreesereesseeesssaeessseeessseeessseesssseessseesnsees 20
721 UNIX HINE ottt ettt et st e b e ite et e saneens 21

7.3 Conversion between Date and Time to UNIX timeccceeveeiiiiiiiniiiniinnicnenn, 21
7.3.1 Conversion t0 UNIX M.coruieriiirieiieeniie ettt ettt sttt 22
7.3.2 Converting Unix time to array 0f DYLeSceevuvieriiiieriiieeiiie e 25

7.4 MODBUS TCP/IP COMMUINICALION .vtvteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenaeaeeeeeeeneeennnas 26

7.4.1 Setting up a MODBUS TCP CONNECHIONcccvvieeiiieeiieeeiieeivee e evee e
7.4.2 Read datacocueiiiiiiiiiieie e
8 RESUILS ..ttt st ettt et en
O DISCUSSION ...ttt ettt ettt et ettt et e e ht e et e e it e e bt e s et e e bt e sabeeabe e e st e et e e sab e e bt e enbeeaees
TO RETETEINCES ..ttt et st ettt et e st e bt e st eeees

APPENDICES

ABBREVIATIONS

ADU - Application Data Unit

HMI - Human Machine Interface

I/O - Input/Output

IP - Internet Protocol

MAC - Media Access Control

MB - MODBUS Protocol

MBAP - MODBUS Application Protocol
PDU - Protocol Data Unit

PLC - Programmable Logic Controller
TCP - Transmission Control Protocol

OSI - Open Systems Interconnection

Foreword

I would like to thank my supervisors, Mr. Dag Bjorklund at Novia University of Applied
Sciences and Mr. Tomas Hultholm at ABB, for all the support and guidance they have
offered me throughout this project.

1 Introduction

This Bachelor’s thesis is made for ABB Oy Power Generation in Vaasa. This thesis work
is a tool for ABB to send timestamp data to external systems and will be used in future

projects.

1.1 Target

With an increasing number of different control systems working together in different
processes it becomes more and more important to be able to compare alarm and event lists
during fault searching. To be able to understand the reason for a fault it is very helpful to
know the exact order in which events have occurred. The purpose of this thesis work is to
investigate the possibility to send timestamp over MODBUS TCP/IP together with

alarms/events to an external system.
This Bachelor’s thesis will consist of the following steps:

- Investigation of the possibility to send timestamp over MODBUS TCP/IP to
external systems

- Programming of a Function Block (FB) for Siemens S7 PLC that can be used to
send timestamp over MODBUS TCP/IP to external systems

- Testing of the new Function Block

- Documentation and description of the new Function Block

2 ABB

By the merger of ASEA (Allmédnna Svenska Elektriska Aktiebolaget) and BBC (Brown,
Boveri & Cie) in 1988 a new company was founded, ABB (Asea Brown Boveri). ABB is
one of the largest engineering companies specialized on power generation and power

transportation with approximately 145 000 employees in over 100 countries. /1/

2.1 ABB Finland

ABB employs about 7000 employees in Finland with the largest activities in Pitdjanéaki in
Helsinki and Stromberg Park in Vaasa. The unit in Vaasa, to which this thesis work was

made, manufactures control systems solutions for hydro, diesel and gas power plants. /2/

3 MODBUS

MODBUS has been the industry’s serial communication standard since 1979. MODBUS,
which is placed at level 7 of the OSI model, is an application layer messaging protocol.
MODBUS offers communication between client/server on many different networks or on

many different buses. /9/

T T g S
. EIA/TIA-2320r
Al EIA/TIA-485 Physical layer

ammnie—
- Other
Other

Figure 1 MODBUS communication stack /9/

MODBUS continues to grow and has been implemented to work with Ethernet and
TCP/IP. Because the simplicity of MODBUS it is widely used around the world despite its
old age. MODBUS is able to communicate on various buses or networks. Figure 1 shows
the different physical layers that MODBUS has been implemented to work on. The figure
also shows that all the different physical layers use the same application layer, which

makes MODBUS easy to implement. It is currently implemented using:

e TCP/IP
* Asynchronous serial transmission (EIA-232-E, EIA-422, EIA-485. Fiber, radio,
etc.)

¢ MODBUS plus
/9/

MODBUS

Client
Serial Line
MODBU MODBU
S Client S Client Client
TCP/IP TCP/IP TCPIIP
MODBUS
MODBU MODBU MODBUS MODBUS
Server Server
S Server S Server . . . ;
TCP/IP TCP/IP Serial Line Serial Line
Server TCP/IP
gatewayv

MODBUS Serial

Figure 2 MODBUS communication architecture /8/

Figure 2 illustrates how MODBUS networks can be built using different physical layers,
e.g. Ethernet, rs-232 etc. All MODBUS clients in the figure use the TCP/IP protocol (blue
line), but three of the devices are connected to a MODBUS serial network (pink lines). In
order for a MODBUS TCP/IP device to connect to a MODBUS serial device a gateway

needs to translate the message into the correct format.

4 MODBUS application layer

The MODBUS protocol uses the polling principle, which means that the client asks every
server that he is allowed to connect to if the servers have data to send to the client. When
using the polling principle there will not be any collisions, because the client is the only
device in a MODBUS network to initialize a connection. A MODBUS server cannot
initialize a connection with a MODBUS client. A connection has to be initialized by a
MODBUS client. The MODBUS master is also known as a MODBUS client and the
MODBUS slave is known as a MODBUS server.

A MODBUS client is by definition in the MODBUS/TCP specification a very simple
design. The three tasks a MODBUS client should be able to achieve are:

* To send an encoded request demanded by a user.
* To receive and analyze a response and send confirmation to the user application.
* To resend a package due to time out or send an error message to the user

application.

A MODBUS server works as a service provider for a MODBUS client. The service
provided can be e.g. grant access for a client to read object attributes, but it can also allow
a client to set different settings/attributes in a server device (see figure 1). There are a few
factors that affect how the server needs to be set up, e.g. if the user needs access to some

advanced features in the device or if the user just needs access to the memory in the device.

/8/

The MODBUS data frame is constructed of a Protocol Data Unit (PDU), which is a frame
containing information like function codes and the actual data that the client needs from
the server. The PDU is then included in an Application Data Unit (ADU). There are
numerous function codes that have been predefined, such as the function code 03¢ used

for reading holding registers. Figure 3 shows a PDU frame and an ADU frame. /9/

- >

ADU
Additional address Function code Data Error check

< >

PDU

Figure 3 An example of a general MODBUS frame /9/

When a client initializes connection with a server the client sends a request message, which
includes a function code so that the server knows what to do. The data sent to the server
can contain information like how many bytes of data the slave has to send to the client,

address information, etc.

If the message arrives at its destination without any errors, the server signals to the client
that the transmission was a success (figure 4) by echoing the function code used. However
if an error occurs the server uses an exception code (figure 10) to send to the client, which

matches the error. /8/

Client Server

Initiate request

[Function code| Data Request | \ -
Perform the action

Initiate the response

/ mmm |

Receive the response |

Figure 4 An example of a successful MODBUS transaction /9/

4.1 MODBUS data model

To represent data and addresses MODBUS uses “big-endian”, which means that the most

significant byte is sent first, followed by the less significant bytes.

Ex. 0x9876
The first byte sent is 0x98, followed by 0x76.

There are several ways to access data with MODBUS, bitwise or whole words at a time.
Depending on what function codes you use, the reading or writing can vary from reading a

whole register to reading just a bit.

Figure 8 shows the four tables used to store data in a MODBUS device. Both the input
register and the input discrete register store data provided by the MODBUS device and are

therefore read-only registers. The only difference between the input registers are that the
input discrete register stores the status of one bit (e.g. input from a switch) while the input
register stores 16 bits of data from e.g. an analog signal. A user can both read and write to
the coils register and the holding registers. The coils register is used whenever one needs to
activate a single output (e.g. a relay) and the holding register can be used to store e.g.
16bits of numerical data like the input register. The difference between the input register
and the holding register is that the user can only read data from the input register while
data can be read and written to the holding register. It is possible and very common that all
four tables overlap each other. The figure below illustrates a MODBUS device with
separate data blocks. /9/

Device application memory

MODBUS access

~

—~ Input Discrete

Coils MODBUS Request

A

Input Registers

A\

Holding
/ Registers

A
e

MODBUS SERVER DEVICE

Figure 5 Example of a MODBUS device with four different data blocks /9/

To read and write to these different blocks (figure 8) one needs to use different function
codes for all four blocks (appendix 1). E.g. if one wants to access the input discrete
register, the function code (0x02) is used and if a user wants to write data to the coils

register, the function codes (0x05, 0x0F) could be used. /8/

Device application memory

MODBUS access

Input Discrete

R
J J Coils MODBUS Request

<R— Input Registers

w Holding

Registers

MODBUS SERVER DEVICE

Figure 6 Example of a MODBUS device with one data blocks /9/

When the different tables overlap each other (figure 9), one can use the function read input
register (0x04) to get the statuses for the whole register or one could use the read discrete

input (0x02) to get the status of one bit in the register.

4.2 MODBUS Function Codes

Function codes in MODBUS are divided into three categories; public function codes, user
defined function codes and reserved function codes (appendix 1). Public function codes are
codes that are guaranteed to be unique and the MODBUS organization has to validate all
public function codes. Additional to the validation and the uniqueness the function codes

need to be available to the public.

Any function code in the range 1...255)¢ is a valid function code, but the codes between
12859 and 255 are reserved and used for exception responses. In cases where multiple
actions are required a sub-function can be added to a function code. The function code

requires a byte (8 bits) of memory in the PDU.

User defined codes are functions that anyone can implement with MODBUS, although
these function codes are not supported in the MODBUS specification. User defined

function codes are assigned two ranges, 65 to 72 and 100 to 110.

The reserved function codes are used by companies and for legacy reasons not available

for public use. /9/

127
PUBLIC function codes

110

100 User Defined Function codes|

PUBLIC function codes
User Defined Function codes|

72
65

PUBLIC function codes

Figure 7 MODBUS function codes /9/

Below will follow an example of how a MODBUS PDU message is assembled when using

the function code (0x01 read coils):

The read coil function is used to read coil statuses from a remote device. The request
message sent to the server is assembled in the following way; the first byte is the function
code, which in this case is 016, and the following two bytes are the starting address
pointing to the first coil and the last four bytes sent in the request message represent the

quantity of coils.

10

The response message is built in the same way as the request message. The first byte is the
function code (in this case 0x01), the next bytes show us how many bytes to expect in the
message and last but not least the statuses of the coils are sent. Figure 8 shows us the
different tables presented in the previous sub-chapter. As shown in figure 8 the coils table

can be both written to and read from.

Discretes Input Single bit Read-Only This type of data can be provided by an /O system.

Coils Single bit Read-Write ;P;Zr;yrg? of data can be alterable by an application
i { i 1

Input Registers 16-bit word Read-Only This type of data can be provided by an I/O system

Holding Registers 16-bit word Read-Write ;’::;Zr;yrge of data can be alterable by an application

Figure 8 The four main tables in the MODBUS data model /9/

11

CLD]

MB Server receives mb_req_pdu

NC
Funclion code
supported
YES
ExceptionCode = 01 ¢
NO

0x0001 < Quantity of Outputs < 0x07D0 >

YES
ExceptionCode =03
NO Starting Address == OK
AND
Starting Address + Quantity of Outputs == OK
v YES
ExceptionCode = 02
Reques! Processing

NO
ReadDiscreteOutputs == OK >
YES
ExceptionCode = 04
MB Server Sends mb_rsp
A 4 A 4 A 4
MB Server Sends mb_exception_rsp I

Figure 9 Read coil state diagram, MODBUS client /9/

Figure 9 shows a Read coil function (0x01). The server receives a request message from a
MODBUS client. The server checks if the server supports the function code sent in the
message. If the starting address is not a valid address in the server, the server sends an
exception code. However, if the request passes every check that the server performs, a
response message is sent to the client. The response message includes the function code

sent by the client, in this example (0x01), followed by the requested statuses of the coils.

12

Exception | MODBUS name | Comments
Code
01 lllegal Function | The function code is unknown by the server
Code
02 lllegal Data | Dependant on the request
Address

03 lllegal Data Value Dependant on the request

04 Server Failure The server failed during the execution

05 Acknowledge The server accepted the service invocation but the
service requires a relatively long time to execute. The
server therefore returns only an acknowledgement of the
service invocation receipt.

06 Server Busy The server was unable to accept the MB Request PDU.
The client application has the responsibility of deciding if
and when to re-send the request.

0A Gateway problem Gateway paths not available.

0B Gateway problem The targeted device failed to respond. The gateway

enerates this exception

Figure 10 MODBUS exception codes /10/

If an error occurs in the communication between the server and client, or if errors occur

when the server tries to execute the function code sent from the client, an exception code is

sent to the client to inform about the error. Figure 10 shows the exception codes and in

what type of situation the exception codes are used.

13

5 MODBUS TCP/IP

This chapter will explain which parameters and implementation are needed to send

messages over MODBUS TCP/IP compared to “regular” MODBUS.

To get a clear view of how the communication between MODBUS devices works, a good
knowledge of the TCP/IP protocol is necessary, as well as the knowledge of how to
implement the MODBUS TCP/IP.

5.1 Messaging over TCP/IP

If the message sent over MODBUS TCP/IP is compared with MODBUS over serial line
(see figure 1), the part that differs from “regular” MODBUS is the MBPA Header.

Application Data Unet (ADU)

A
' N\
Funciion . Traditional
CONSTRUCTION OF A 5| Code Dats | ChSSEUM | prodbus Serial Frame
MODBUS TCP DATA PACKET Y Y
Function Dats Function Code & Data
Code Ara Not Modified

\/

Modbus Application Protocol (MBAP) Header _
- anal Protocol Dats Unit (PDU)
(7 Bytas)
Transaction | Protocol Length Unit 12 Function Dats Modbus Frame With
Identifier Identifier Flold - Code TCP/IP Transmission
(7 Bytes) (2 Bytes) (2 Bytes) {1 Byta) (1 Bywe) Vanes
- vy

Modbus TCP/IP ADU
(This Information is embedded Into the data portion of the TCP frame)

Figure 11 MODBUS data package over TCP/IP /6/

A unit identifier is used to reach the right device when sending messages over serial
“traditional” MODBUS. For the receiver to know when and if the message was correctly
received a byte count byte is added to this header. If the function code has a specified

length the function code alone suffices. /9/

14

Additional length information is required if the message is split into several packets, and is

also carried in the MBAP header. /9/

5.1.1 MBAP header

The following subchapter describes the usage of the MBAP header (figure 11) used in
TCP/IP messaging over MODBUS. The MBAP header is 7 bytes long in a MODBUS TCP

message.

* Transaction identifier
The transaction identifier is used to identify future responses with this request.
There are a few possibilities to implement this transaction identifier. One way is to

use a counter that increases by one every time a request is sent.

* Unit identifier
The unit identifier is only used to locate a MODBUS device on a serial-line, which
is connected to a TCP/IP network through a gateway. The IP-address is used to
locate the gateway and the unit identifier is used by the gateway to locate the right
MODBUS device on the serial-line network.

However, the unit identifier is useless if you use only a TCP/IP network where the

IP-address is used to locate the correct MODBUS device.

* Length field

The length field is used to indicate how many bytes there are in the message.

e Protocol identifier

The protocol identifier should always be (0x0000) in MODBUS transactions. /6/

15

5.1.2 MODBUS request message

When you have sent the request and receive a response there are several aspects you have
to take into consideration. As an example, if the response is missing a transaction identifier

the response must be discarded.

If the transaction identifier points to a request sent earlier, you need to process the response

message to know what type of confirmation to send to the user application. /8/

5.1.3 MODBUS response message

When the MODBUS server has finished processing the request it is time to start building
the response message. There are two ways to respond to a request, either with the function

code that was used in the request or with an exception function code.

A positive confirmation is sent to the user application if the function code in the response
is the same as the request function code, and if the response has the correct format. A
positive confirmation is also sent if the function code in the response is a MODBUS

exception code.

A negative confirmation is sent to the user application if the function code received is

different than the function code in the request message or if the format is incorrect.

The response PDU is constructed in the same way as the request: a unit identifier, length of

the package, a protocol identifier (0x0000 for MODBUS) and a transaction identifier. /8/

5.2 TCP connection management

To successfully send and receive messages over TCP/IP a TCP connection must be
established between a client and a server. The listening port number 502 is reserved for
MODBUS TCP communication and must always be available for listening purposes.
However, it is not mandatory to use port number 502 for listening. A user can specify other
ports to be used for listening, but port 502 must be and remain reserved for MODBUS TCP
(figure 12).

16

Device@ 1P1 Device@ |1P2
Client Client
Ports Connection (@ IP1 n, Ports

@IP2 502)

Server Server
Port Port

Figure 12 MODBUS TCP connection establishment /8/

There are two ways in which to manage a MODBUS TCP connection. One can let the user
application module manage all connections, which is done for all connections that are set
up between a server and a client. The other way is to let an automatic TCP connection
manager be taken into use. A function has to be created, which closes the oldest unused

connection in case the number of connections exceeds a maximum limit.
A connection is opened when a server receives the first message/package from a client.

An authentication of the IP addresses can be implemented in the access control module to

prevent unauthorized IP addresses to connect to the device.

The access control module’s function is to check every new connection to a list of IP
addresses. If the IP address matches an IP address on this list, the connection is authorized
and if not the connection is rejected. The user has to provide the IP address list to this

module. /8/

17

6 Siemens S7 programming

This thesis work is planned to work with Siemens S7 300 and 400 series. Thus, the work
and the program have to be programmed in a way that works with both series. This was not
a problem because both series use the same programming languages. Both SCL

programming and FBD programming have been used in this thesis work.

6.1 1IEC 61131-3

The IEC 61131 is an open standard for programmable logic controllers, it consist of 8
parts. The IEC 61131 standard deals with e.g. testing of a PLC, communication standards
and programming languages. [IEC 61131-3 is the third part of this standard and this part
deals with the programming languages used by a PLC.

The IEC 61131-3 defines 5 programming language standards. Two of the programming

languages are text-based languages and the rest are graphical programming languages. /5/
These programming languages are:

* QGraphical
o LD (Ladder diagram)
o FBD (Function block diagram)
o SFC (Sequential function chart)
* Text-based
o ST (Structured text)

o IL (Instruction list)

18

6.2 SCL programming

SCL (Structured Control Language) is a high-level programming language used to
program various blocks with Siemens logic controllers, and is defined as a ST (Structured
text) language. The SCL language meets the requirements set for the ST language in the
61131-3 standard. The SCL language is similar to PASCAL. SCL programming with
SIMATIC S7 is made very easy and, because the SCL language supports many block
concepts it is easy to create different and very complex functions with STEP 7 and SLC.

The SCL programming environment consists of three parts; an editor, a batch compiler and
a debugger. The syntax that the editor uses is based on PASCAL, which has some
similarities with C, and is therefore a very easy and powerful programming language. The
batch compiler generating a MC7 (machine code) from the code created in SCL is
executable in most STEP 7 300/400 PLC:s (newer than 314). The third and last part of the

SCL language is a debugger used for error searching in real-time.

One of the features that make programming easy with SCL is premade templates, e.g. an
[F-statement that only has to be filled in. Siemens has a lot of preprogrammed functions
that are ready to use, e.g. conversation functions and system functions like the
READ_CLK function, which reads the PLC system clock and saves the data in a DT
variable (DateAndTime). The READ CLK function has been used in this thesis work. /12/

6.3 FBD programming

19

The FBD language is a graphical programming language. The basic idea with FBD

programming is drag and drop, e.g. a function or an operation (+

list and dragged to the interface.

/) 1s selected from a

................

Network 1i: Title:

A

calcualte the state according to the button, conditions and old v._|
if the condition i= false the button state is reset.

Fcz

. —dEN
#button ——button
#condition—condition

#0ld_butto
n —_fjaval

#CHMD ——OUut ENO}-

Network 2 : Title:

Comment :
#0PC_butto
n
& f
#condition ={)
[« |
Press F1 for help. Offine [Insest | 4

Figure 13 Picture of FBD interface and function blocks /10/

FBD offers a very simple way to connect multiple blocks. Even if the program is large and

complex it is very easy to read and understand the program due to the simple and clear

interface SIMATIC offers.

20

7 Programming of the function block

Two programming languages were chosen to implement the timestamping over MODBUS.
The first language was SCL because it is an easy and powerful way to do the conversation
from date and time to unix time. The second language was FBD and it was chosen because
it offers a simple way to connect multiple function and function blocks. The SCL
programming language has only been used in the conversation block and FBD in the rest

of the program.

7.1 Implementation specification

The task of this thesis work was to program a function block in S7 that converts and sends
timestamped data to a remote MODBUS device. The following steps are needed to
implement the sending of timestamps over MODBUS TCP: a conversion from the Siemens

DT variable to an array of bytes and setting up a connection to a remote MODBUS device.

The remote client, which is the overlying system, will read the timestamps from a
MODBUS server using the function code read holding registers (0x03). The timestamps
will be saved in the client’s holding register together with the statuses of the timestamped

data.

The timestamps will be in milliseconds to get an accurate representation on when an event

has occurred.

7.2 Timestamping

This thesis work uses an existing block to create the actual timestamps. However, the
timestamps are saved in a DT (Date and Time) variable. The block used is called a
DEAMON (Appendix 2). This block has 32 inputs and whenever one of these inputs
changes the DEAMON will timestamp that input. The timestamps are stored in an array of
DT:s. The DEAMON gets the actual time and date data from the TS DEALER, which

reads the system clock.

21

7.2.1 UNIX time

In Unix time the definition of time is seconds since 1.1.1970 (UTC). Leap seconds are not
accounted for. Unix time defines that one day is exactly 86400 seconds long. E.g. 1000
days after Unix epoch (1970-1-1T00:00:00Z ISO 8601) is represented as 86400000.

The format DI (double integer) uses 32 bits to store its data. This is sufficient to store Unix
time in seconds, but at 03:14:07 UTC 2038-01-19 the DI format will overflow (called 2038
problem). /14/

There is no way to store integers larger than 2°? (approx. 4,3 mill) with SIMATIC, which
will be a problem when one wants to use milliseconds since Unix epoch. The amount of

bits needed to store Unix time in milliseconds is a minimum of 41 bits.

The timestamp will be stored in 6 bytes, which offer 48 bits of storage. This is sufficient
for a very long time (approximately 8930 years). One byte is able to store 8 bits.

7.3 Conversion between Date and Time to UNIX time

The DT format is saved in 8 bytes in Step7. The first byte represents the current year (the
two last numbers), the second byte represents month and the third byte represents day.
(example: 13-03-04). The following 3 bytes represent hours, minutes and seconds. The two

last bytes represent milliseconds and weekday (0 = Sunday...7 = Saturday).

However, the DT format is not supported by MODBUS, which is why the DT format
needs to be converted. After some discussion and thinking about different formats and
which format is most suitable for transporting timestamp information over MODBUS, it
was decided that the format used in this thesis should be millisecond since 1.1.1970. This
format is already in use by the corporation Wirtsild and was therefore considered as the

best solution.

22

7.3.1 Conversion to Unix time

Because Step 7 stores the DT format as 8 bytes it is necessary to convert DT to double
integers (32 bits), before any calculations are done. The conversion to integers is done to
make the different calculations easier. If one uses an array format to store the DT one can

separate the individual bytes.

The variables DaT and DateAndTime contain exactly the same data, the difference is
that the DaT variable points to the same memory address. Because the DaT variable is an
array of 8 bytes one can access the individual bytes in the DateAndTime variable. The
Temp Year variable stores the last two numbers of the current year e.g. 2013 is stored as

13. The conversion between bytes and integer cannot be done directly, it needs to be

converted first to the word format before it can be converted to an integer.

DateAndTime :DT;
DaT AT DateAndTime :ARRAY[O0..7] OF BYTE;

Temp Year[A]:=INT_TO DINT (BCD TO INT (WORD TO BCD(BYTE TO WORD
(DaT([0]))) 7

The rest of the bytes in DateAndTime are converted the same way as the

Temp Year[] variable.
Year := 1972;

WHILE Year < (2000 + Temp Year[A]) DO

IF (((Year MOD 4) = 0) AND NOT ((Year MOD 100) = 0)) OR
((Year MOD 400) = 0) THEN
LeapYear := LeapYear + 1;
END IF;
Year := Year + 4;

END WHILE;

It is important to take leap years into account. The code above will calculate the amount of
leap years since 1970. If leap years were not considered in the Unix time conversion, the
end result of the conversion would be missing 11 days or 950 400 seconds (in 2013). The
leap year calculations are easily done by using the modulo function. If the result of MOD 4
is zero and MOD 100 is not zero, the Year ™ year is a leap year or, if the result of MOD
400 is zero, the Year ™ year is also a leap year and the variable LeapYear will be

incremented by one. The variable Year will start at 1972 and will loop until Year is

23

greater than the current year. This leap year calculation will result in an integer that holds

the amount of leap years since 1970 and it will be used in the Unix time calculations.

The code below calculates the Unix time. Depending on if the current year is a leap year or
not, there are two ways of calculating the Unix time. The first if-statement checks if the
current year is a leap year and the second if-statement checks if the current month is March
to December. TempH and TempL, which are integers and are able to store 32 bits of data,
are temporary variables used to store the Unix time. TempH stores the amount of seconds
from 1.1.1970 until today. The TempL variable stores the amount of milliseconds from

midnight of the current day.

IF (((Year MOD 4) = 0) AND NOT ((Year MOD 100) = 0)) OR
((Year MOD 400) = 0) THEN
IF (Temp Month[A] > 2) THEN
TempH := (((((Temp Year[A]+2000)-1970) *365)

tLeapYear)+ ((367*Temp Month[A]-362)/12
+Temp Day[A] - 2))*86400;

ELSE
TempH := (((((Temp Year[A]+2000)-1970) *365)
tLeapYear)+ ((367*Temp Month[A]-362)/12
+Temp Day[A])) *86400;
END IF;
ELSE
IF (Temp Month[A] > 2) THEN
TempH := (((((Temp Year[A]+2000)-1970) *365)
tLeapYear)+ ((367*Temp Month[A]-362)/12
+Temp Day[A] - 3))*86400;
ELSE
TempH := (((((Temp Year[A]+2000)-1970) *365)
tLeapYear)+ ((367*Temp Month[A]-362)/12
+Temp Day[A])) *86400;
END IF;
END IF;
TempL := ((((Temp hour[A]*3600)-(GMT*3600))

+((Temp Minute[A])*60)+ (Temp Second[A]*1000)
+Temp MSecond[A]; /3/

The following step shows how the Unix Time is calculated and it makes the code easier to

understand and easier to read.
The amount of days since 1970 is always calculated in the following way:

Take the current year and add 2000 to it, subtract 1970 from the result to get the amount of
completed years between 1970 and the current year. This is then multiplied by 365 to get

24

the amount of days. It should be noted that this will result in an answer that is missing the
amount of leap years. The 1leapyear variable, which contains the amount of leap years,

is added to the results and is then saved in the TempH variable.
Calculating the amount of days since the beginning of the current year:

The following formula is used to calculate the amount of days since the beginning of the

current year.

Start with 367 multiplied by the current month, subtract 362 from the result of the
multiplication. Then divide the result with 12 and add the current date. If the current year is
a leap year and if the current month is larger than 2 one will need to subtract two days from
the result, one day to compensate for the leap year and one day to exclude the current day.
The current day is excluded from the result because it is not a completed day and it would

therefore contribute to make the Unix time show the wrong time.
To clarify this an example is given below, let us say that the date is 18 April 2013.
2013 is not a leap year.

367 -4 — 362

18 — 2 = 108,16
12 *

Because the result is saved in TempH, which is an integer, the decimal part will be left out.
Calculation of seconds since 1.1.1970:

The TempH variable now contains the amount of days between 1.1.1970 and the current
day. It is easiest to convert the days into seconds by multiplying the TempH variable by

86400, which is the amount of seconds in one day.
Calculating the amount of milliseconds between midnight and now:

The variable TempL will be used to store the Time part of DateAndTime variable. It is
very easy to calculate the amount of milliseconds since midnight. One needs to multiply
the Temp Hour variable by 3 600 000, the Temp Minute variable by 60 000, the
Temp Second variable by 1000 and last but not least add the Temp MSecond variable.

Because the Unix time 1s UTC +0 one will need to subtract the amount of hours that a

country is ahead or after the UTC +0 (Finland i1s UTC+2).

25

7.3.2 Converting Unix time to array of bytes
Now we have two variables that together contain the Unix Time.

This code below will take the Unix time calculated in chapter 7.3.1 and convert it to an

array of 6 bytes. This is achieved by right shifting the data different amount of times.
The SHR function is used to right shift any word or byte N bits.

An example is given below of how to make the SHR function understandable, data =

0x1234 and N = 8.
SHR(IN:= 0x1234, N:=8) would result in 0x0012.

The value of N decides how many steps the data will be shifted. An N value of 8 will shift
the data a whole byte to the right and an N value of 16 will shift the data two bytes to the
right.

Byte [A+0] : =DWORD_TO_BYTE (SHR (IN: =DINT_TO_DWORD (DWORD_TO_DINT
(SHR (IN:=DINT_ TO DWORD (TempH),N:=16))*1000,N:=24)) ;

Byte[A+1] :=DWORD TO BYTE (SHR (IN:=DINT TO DWORD (DWORD TO DINT
(SHR (IN:=DINT_ TO DWORD (TempH),N:=16))*1000,N:=16)) ;

Byte [A+2] :=DWORD_TO_ BYTE (SHR (IN:=DINT TO DWORD (TempH
*1000+TempL) ,N:=24));

Byte [A+3] :=DWORD_TO_ BYTE (SHR (IN:=DINT TO DWORD (TempH
*1000+TempL) ,N:=16)) ;

Byte [A+4] :=DWORD_TO_ BYTE (SHR (IN:=DINT TO_ DWORD (TempH
*1000+TempL) ,N:=8)) ;

Byte[A+5] :=DWORD_TO BYTE (DINT TO DWORD (TempH*1000+TempL)) ;

A DWORD in Step 7 can only store 32 bits of data, so therefore the two most significant
bytes must be shifted two times in order to get access to all data. The variable TempH
variable needs to be multiplied by 1000 to convert from seconds to milliseconds. After one
has multiplied TempH with 1000 one can add the TempL variable, as shown in the code

above.

This thesis uses an existing function that creates timestamp information and saves this
information in an array of DT. The (DT — Unix time) converting block then converts the

array of DT timestamps and saves the information in an array of bytes.

26

7.4 MODBUS TCP/IP communication

The remote MODBUS client tries to connect to a Siemens S7 PLC, which acts like a
server. The MODBUS server holds all timestamp data and the statuses of the timestamped
bits. The PLC (server) has an IP address that the MODBUS client connects to. The
MODBUS client sends a request message to the MODBUS server asking for the
timestamped bits. The MODBUS server’s task is to collect the timestamp data and send it

to the remote client.

The user needs to give the PLC, the MODBUS server, an id in order for the remote
MODBUS client to be able to locate the MODBUS server. The user also needs to specify

the address that the timestamped data are stored at.
The following blocks are used to open a TCP connection with a remote client:
e MBTCP SERVER

This block allows the client to connect to the MODBUS server. In order to be able
to open the connection it needs to use the block listed below. The blocks are a part

of the MBTCP SERVER block.
e TSEND
This block is used to send data to a MODBUS device

e TRCV
This block is used when receiving data from another MODBUS device.

o CONSUL
Assigns a remote port number to the MORDBUS server and allows the
MODBUS client to connect to the MODBUS server

o TCON
This block is used to open a connection with a remote device.

o TDISCON

This block is used to shut down an active connection.

27

7.4.1 Setting up a MODBUS TCP connection

CONSUL
TDISCON

oc
LLJ
=
oc
LLJ
N
al
O
|_
o
=

The MBTCP SERVER takes the ID and the start address the user has specified and if the
remote MODBUS client wants to connect to the server, the MBTCP SERVER opens the

connection.
The CONSUL block assigns a remote port number to the server, by default 502.

In addition to these settings there are many different settings one can apply to the TCON
block. One can choose if the TCP protocol or ISO on TCP etc. is used. One needs to
specify an interface through which the S7 can communicate with a remote device. The

length of the parameters for the local and remote endpoints have to be specified.

28

7.4.2 Read data

When the CONSUL block has finished opening the connection with a remote client device
the client is able to start reading data. The MODBUS client sends a request to the
MODBUS server using the function code (0x03) to read the holding registers. The
MODBUS server stores the timestamped data in the holding registers.

When the request has been processed and verified the MBTCP SERVER uses the TSEND
block to send the data to the remote MODBUS client. The MODBUS server then sends

back the response message.

If the request sent to the remote device fails due to some error in the connection, the

MBTCP SERVER will receive an exception code and notify the error to the user.

To validate the message sent from the remote device one can compare the transaction
identifier sent in the request message and the transaction identifier in the received message,

and if they do not match the message is discarded.

29

8 Results

The first task [was given was to research if it is even possible to send timestamp data over
MODBUS TCP. After some research I came to the conclusion that it is possible to send
timestamp data. The only modification to the timestamp data before it could be sent was

that it had to be converted into an array of bytes.

The biggest task was to figure out how to convert the timestamps into an array of bytes.
After some experimenting and testing a working program was created and the task of
setting up a connection between two devices remained. This part of my thesis work was
relatively painless because of the premade blocks that are used for MODBUS TCP
messaging at ABB.

The results of this thesis work are a working program for sending timestamp data from a
Siemens S7-300/400 and a manual for how to set up a working connection between a

remote device and how to use the function block that I created.

There is a possibility to expand this program to use the function code (0x65). Wirtsild uses
the function code to read timestamps from a device. In order to get this function code to
work one will need to modify the MBTCP SERVER block to support this function code.
Today the MBTCP SERVER block supports these function codes: 0x03, 0x04, 0x06 and
0x10.

30

9 Discussion

In the beginning a great amount of time was spent familiarizing myself with SCL
programming, as | had never used this programming language before. Even if [was new to
the programming language it did not take long before I saw some similarities with C
programming. Because | was familiar with C programming the main issue was to get an

understanding of how the syntax of SCL programming is.

After I got familiarized with SCL programming I needed to get an understanding of how I
wanted the program to work. After some trial and error I got a clear picture of how the
program should work and I started to create the program. The program had to be remade a
couple of times because of some minor bugs and faults. Finally I got a working program

and was able to start testing it.

During this thesis work I got a better understanding of how programming with S7 works

and my programming skills increased a lot.

31

10 References

/1/

12/

/3/

4/

/5/

/6/

/7]

ABB
http://www.abb.com
(Read 17.3.2013)

ABB Finland
http://www.abb.fi/
(Read 17.3.2013)

Calculating day of year
http://www.dispersiondesign.com/articles/time/calculating_day of year

(Read 20.3.2013)

Internet protocol suite
http://en.wikipedia.org/wiki/Internet protocol suite

(Read 26.2.2013)

IEC61131-3

http://en.wikipedia.org/wiki/IEC 61131-3

(Read 29.4.2013)

Introduction to MODBUS TCP/IP (2005)

http://www.dee.hcmut.edu.vn/vn/ptn/sch/download/Network Architecture/intro_m
odbusTCP.pdf

(Read 20.3.2013)

MODBUS
http://en.wikipedia.org/wiki/Modbus
(Read 25.2.2013)

/8/

/9/

/10/

1/

/12/

/13/

/14/

32

MODBUS TCP/IP (2006)
http://modbus.org/docs/Modbus Messaging Implementation Guide V1 _0b.pdf
(Downloaded 2.2.2013)

MODBUS protocol specification (2012)
http://modbus.org/docs/Modbus _Application Protocol V1 1b3.pdf
(Downloaded 2.2.2013)

Picture of FBD interface and function blocks
http://en-dep.web.cern.ch/en-dep/Groups/ICE/Services/PLC/Images/userpro.gif
(Downloaded 4.3.2013)

SIEMENS FBD programming manual (2010)

http://cache.automation.siemens.com/dnl/jg/jgONDM40OQAA 45522487 HB/s7fu
p_ b.pdf

(Downloaded 4.3.2013)

SIEMENS SCL programming manual (2005)

http://cache.automation.siemens.com/dnl/zMxOTcwMwAA 5581793 HB/SCL e.
pdf

(Downloaded 26.2.2013)

Timestamp over MODBUS TCP/IP (2007)
ABB Internal document

(Read 1.2.2013)

UNIX time
http://en.wikipedia.org/wiki/Unix_time

(Read 4.3.2013)

APPENDIX 1

Function Codes

code Sub |(hex)
code
Physical Discrete |Read Discrete Inputs 02 02
Inputs
. Read Coils 01 01
acemss | Mo ' [Write Single Coil 05 05
Physical coils |Write Multiple Coils 15 OF
Data Physical Input |Read Input Register 04 04
Access Registers
Read Holding Registers 03 03
;:c:i;: Internal Registers Write Sing-le RegisFer 06 06
Or Write Multiple Registers 16 10
Physical Output |Read/Write Multiple Registers 23 17 |
Registers Mask Write Register 22 16
Read FIFO queue 24 18
Read File record 20 14
File record access Write File record 21 15
Read Exception status 07 07 |
Diagnostic 08 |00-18,20| 08
Diagnostics Get Com event counter 11 OB
Get Com Event Log 12 (1o
Report Server |ID 17 1
Read device Identification 43 14 2B |
Other Encapsulated Interface 43 13,14 | 2B
Transport
CANopen General Reference 43 13 2B

SIMATIC Base 03/15/2013 04:21:07 PM
v5 0 5\CFCO_1\CPU 315-2 PN/DP\...\FB38 - <offline>

APPENDIX 2 (1/3)

Network: 1

MB/TCP communication to external system, control block
and communication block

#DEAMON1
#DEAMON1

—EN

liz
e" —INIT

M1.6
M: 1600
ms period
"CLOCKCYCL
E 1600" —PULSE

7 —BRST_LMT
—EVTO
—EVT1
—EVT2
—EVT3
—EVT4
—EVT5
—EVT6
—EVT7
—EVT8
—EVT9
—EVT10
—EVT11
—EVT12
—EVT13
—EVT14
—EVT15
—EVT16
—EVT17
—EVT18
—EVT19
—EVT20
—EVT21
—EVT22
—EVT23
—EVT24

—EVT25

Page 3 of 9

Joakim Wargh
APPENDIX 2 (1/3)

Joakim Wargh

SIMATIC Base 03/15/2013 04:21:07 PM
v5 0 5\CFCO_1\CPU 315-2 PN/DP\...\FB38 - <offline>
APPENDIX 2 (2/3)
—EVT26 N
—EVT27
—EVT28
—EVT29
—EVT30
—EVT31
P#DB101.DB
X38.0
DT
stamped
by
TS DEALER
"Internal
variables"
.GLBL_ ALARMS | #temp ALM
TIMESTAMP —TOD_TI OUT— #temp ALM
Ml61.1 #BL1
M: Permit BLOAD— #BL1
for
TS NANNY (s #TS1
) to TS— #TS1
write
alarms NEW ALM | #NEW ALM
out, from DW— #NEW_ALM
TS DEALER
"GLBL ACT EVT |
XMSB" —XMSB LIW—
DB300.DBDO ACT EVT |
Configurat HW—
ion word FC135
"TS LMT ACT— "DW_TO_WORDS"
MASTER_ DB301.DBWO
DB" .CONFDW —CONFDW ENO; EN Bits 0-15
#temp ALM "TS_
#temp ALM—IN MODBUS_
DB".
W1l—-w401998
DB301.DBW2
Bits
16-31 W2
"TS
MODBUS_
DB". #DT TO UNIX
W2—WA401999 #DT_TO UNIX
ENO EN
MO.3
M: Bit
used for
initializi
ng, OB100
(Set) and
FB10
(Reset)
"Initializ
e" —INIT
#NEW ALM

#NEW_ALM —NEW_ALM

MO.1
M: This
variable
is always
set to
TRUE
" TRUE" —ALLOW_ALM

#TS1
#TS1 —TSDT_IN

2 —GMT

Byte OH

Byte OL-

ENO—

Page 4 of 9

Joakim Wargh
APPENDIX 2 (2/3)

SIMATIC

SHI 2047\UCP041\CPU 315-2

PN/DP\...\FB38

<offline> 04/03/2013 04:59:16 PM

nrs
MODBUS
DB".

1402000

APPENDIX2 (3/3)

Network: 2

DB355

"Inst DB_
EXT SYST"

FB182

Supports Modbus
functions 3, 4, ©
and 16
"MBTCP_SERVER"

MO.1
M: This
variable
is always
set to
TRUE
" TRUE" —EN

MO.3
M: Bit
used for
initializi
ng, OB100
(Set) and
FB10
(Reset)
"Initializ
e" —INIT

W#16#6 —ID

B#16#1 —UID
T#15S —MONITOR
W#16#12D—DB HOLD

DB_HOLD
W#16#7CE —ADD

W#16#12D —DB_INPUT

DB INPUT

W#16#7CE —ADD

CONN_ON

STAT CONN

STAT R1

STAT S1

STAT FB

ERROR

RUID

RTI

RFUNC

START ADD

LENGTH

RESBYTES

SNDBYTES

ENO

#TCP_OK
— #TCP_OK

#STAT C
— #STAT C

#STAT R1
— #STAT_R1

#STAT S1
— #STAT s1

#STAT FB
— #STAT_FB

#Err e
—#Err_e

#RUID
— #RUID

#RTI
— #RTI

#RFUNC
— #RFUNC

#START ADD
— #START_ADD

#LENGTH
— #LENGTH

#RES
— #RES

#SND
— #SND

Page 7 of 7

Joakim Wargh
APPENDIX2 (3/3)

Joakim Wargh

SIMATIC Base 03/15/2013 04:22:15 PM
v5 0 5\CFCO_1\CPU 315-2 PN/DP\...\DB301l - <offline>

DB301 - <offline> - Declaration view APPENDIX 3
"TS MODBUS DB"
Global data block DB 301
Name: Family:
Author: Version: 0.1
Block version: 2
Time stamp Code: 03/15/2013 01:27:56 PM
Interface: 03/15/2013 12:45:29 PM
Lengths (block/logic/data): 00320 00196 00000
Block: DB301
Address |Name Type Initial value Comment
0.0 STRUCT
+0.0 W401998 | WORD W#164#0 Bits 0-15 Wl
+2.0 W401999 | WORD W#164#0 Bits 16-31 W2
+4.0 W402000 | ARRAY[0..95] | B#16#0 Array containing timestamps for W1
*1.0 BYTE
+100.0 W402001 | ARRAY[0..95] | B#16#0 Array containing timestamps for W2
*1.0 BYTE
=196.0 END_STRUCT

Page 1 of 1

Joakim Wargh
APPENDIX 3

rimL oo

LIVLUDULD Lll—D1lo U

(VRN

Vo/ LU/ L4ULO 14 elUel L

CFCO_1\CPU 315-2 PN/DP\...\DT TO UNIX

O OJO U WNE OWOoJo) Ul WN O QO00~JI-JoYIUWSLWW

NUOPDWNRFROWOWOJOOUPWNRFROWOOJOONUPRWNRPROWOWOOJOOUPWNRFROWO-JOUdWNREFO

FUNCTION BLOCK DT TO UNIX

//**********************//

// Declare block inputs //

**********************//

VAR INPUT
INIT :BOOL; //
NEW ALM :BOOL; //
ALLOW ALM :BOOL; //
TSDT IN :ARRAY [0, . 31] OF pr; //
GMT :INT; //

END VAR

//***********************//

// Declare block outputs //

//***********************//

VAR OUTPUT
Byte OH :ARRAY [0 95] OF pvyTE; /7
Byte OL :ARRAY [(. .95] OF BYTE; //

END VAR

//**************************??

// Declare static variables //

//**************************%%

VAR
DateAndTime :DT; //
DaT AT DateAndTime :ARRAY [, 7] of BYTE; //

, etc...
Temp Year :ARRAY (. .31] OF pINT; //
Temp Month :ARRAY [0, .31] OF DINT; //
Temp Day :ARRAY (. .31] OF pINT; //
Temp Hour :ARRAY (. .31] OF pINT; //
Temp Minute :ARRAY [0, 31] OF pINT; //
Temp Second :ARRAY [.31] OF DINT; //
Temp MSecond :ARRAY [0, . 31] OF pINT; //

END VAR

//*************************************//

// Declare temporary (stack) variables //

*************************************//

VAR TEMP
TempH
TempL

LeapYear

Year
Year temp

A

:

END VAR

LABEL

TS, INITS;
END LABEL

//*******************//

// Start of the code //

//*******************//

BEGIN

IF 1n1T THEN
GOTO INITS;

END IF;
IF arrnow ALM THEN
GOTO Tg;
END IF,
INITS: LeapYear := 0;
Year := 1972;

TempH := 0;

:DINT;
:DINT;

:DINT;

:DINT;
:DINT;

:INT;
:INT;
:INT;

//
//

//

//
//

//
//
//

APPENDIX 4 (1/3)

Initializing

New alarm occured

Allow alarms to be written to DB
Array of input DT

Time zone (+2 in finland)

Variable to contain date and time
Array containing hour, minute, secona

Year (yy)
Month (mm)
Day (dd)
Hour

Minute
Second
Millisecond

Temporary holder for unix time
Temporary holder for unix time

Joakim Wargh
APPENDIX 4 (1/3)

i 1e LIVLUDULD LLIITO LD o U U\ Uo/ 4 V/ &4Vl y L4 edlUedl ! L

CFCO_1\CPU 315-2 PN/DP\...\DT TO UNIX

TempL := 0; APPENDIX 4 (2/3)

FOR ¢ .= o TO 371 DO
IF ¢ < 14 THEN
Byte OL[C*6
Byte OL[C*6
Byte OL[C*6
Byte OL[C*6
Byte OL[C*6
Byte OL[C*6]
ELSIF Cc >=16 AND C <
Byte OH[(C-16)*6
Byte OH[(C-16)*6
Byte OH[(C-16)*6
Byte OH[(C-16)*6
[
[

:= B#16#00;

:= B#16#00;

:= B#16#00;

:= B#16#00;

= B#16#00;
B#16#00;

THEN

0] := B#16#00;
1] := B#16#00;
] := B#16#00;
] := B#16#00;
]
]

+ o+ A+ o+ o+
gad wh = o

N

Byte OH[(C-16)*6
Byte OH[(C-16)%6
END IF;
END FOR;
RETURN;

1= B#16#00;
1= B#16#00;

+ o+ W
g w N

7s: IF NEw ALM THEN
FOR p := o TO 371 DO

DateAndTime := TSDT IN[A];

Temp Year[A] := INT TO DINT(BCD TO INT(BYTE TO WORD(DaT[O
Temp Month[A] := INT TO DINT(BCD TO INT(BYTE TO WORD (DaT| ;
Temp Day[A] := INT TO DINT(BCD TO INT(BYTE TO WORD (DaT[Z2]

Temp Hour[A] := INT TO DINT(BCD TO INT(BYTE TO WORD(DaT[3

Temp Minute[A] := INT TO DINT(BCD TO INT(BYTE TO WORD (DaT
Temp Second[A] := INT TO DINT (BCD TO INT(BYTE TO WORD (DaT|
Temp MSecond[A] := INT TO DINT(BCD TO INT (SHL(IN := BYTE T

IN := BYTE TO WORD(DaT[7]),N := 4)));
END FOR;

1))
1)
)))
1))
(4]
]

PO WOJONUPDWNRFROOWOJOOUPRWNROWOJOUTdWNREF O WO

)))i
1))
) r
)))i
41))) 7

51))) i

0 WORD(DaT[61),N := 4) OR SHR(

FOR p := o TO 371 DO
Year temp := Temp Year[B];
Year := 1972;
LeapYear := 0;

//**//

// Calculating amount leap years since 1972 //
//**//
WHILE vear < (2000 + Year temp) DO
IF ((((Year MOD 4) = 0) AND NOT (((Year) MOD 100) = 0)) OR (((Year) MOD 400) = 0)) T

S WNERFP OWOLJoYUd WN

HEN

LeapYear := LeapYear + 1;
END IF,

Year := Year + 4;
END WHILE;

//**//

// Calculating amount of seconds since 1970.1.1 //
//**//
IF ((((2000 + Temp Year[B]) MOD 4) = 0) AND NOT (((2000 + Temp Year[B]) MOD 100) = 0)) C
R (((2000 + Temp Year[B]) MOD 400) = 0) THEN
IF Temp Month[B] > 2 THEN

5 TempH := (((((2000 + Temp Year[B])

th[B] - 362) / 12 + Temp Day[B] - 2))*86400;
6 ELSE

WNHFEOWWJoy Ul

sy

*

1970) * 365) + LeapYear) | ((367 * Temp Mon

1970) * 365) + LeapYear) . ((367 * Temp Mon

~J

TempH := (((((2000 + Temp Year[B])
th[B] - 362) / 12 + Temp Day[B])) *86400;
END IF,
ELSE
IF Temp Month[B] > 2 THEN
TempH := (((((2000 + Temp Year[B])
th[B] - 362) / 12 + Temp Day[B] - 3))*86400;
ELSE
TempH := (((((2000 + Temp Year([B]) - 1970) * 365) + LeapYear) I ((367 x Temp Mon

th[B] - 362) / 12 + Temp Day[B])) *86400;
4 END IF,

= O W

*

1970) * 365) + LeapYear) | ((367 * Temp Mon

w N

Joakim Wargh
APPENDIX 4 (2/3)

i 1e LIVLUDULD LLIITO LD o U U\ Vo/ LU/ 4VUly L4 el1lUel !l LC

CFCO_1\CPU 315-2 PN/DP\...\DT TO UNIX

5 END_IF; APPENDIX 4 (3/3)

6

7 //***//

8 // Calculating amount of days since 1970.1.1 //

9 //***//

0 TempL := ((((Temp Hour[B]) * 3600) - (GMT * 3600)) + ((Temp Minute[B]-1) * 60) + Temp Se
cond[B]) * 1000 + Temp MSecond[B];

1

2 //***//

3 // Converting the unix time to an array of 6 bytes //

4 //***//

5 IF g < 1¢ THEN

6 Byte OL[B*6 + 0] := DWORD TO BYTE (SHR(IN := DINT TO DWORD (DWORD TO DINT (SHR(IN := DI
NT TO DWORD (TempH), N := 16))*1000), N := 24));

7 Byte OL[B*6 + 1] := DWORD TO BYTE (SHR(IN := DINT TO DWORD (DWORD TO DINT (SHR(IN := DI
NT TO DWORD (TempH), N := 16))*1000), N := 16));

8 Byte OL[B*6 + 2] := DWORD TO BYTE (SHR(IN := DINT TO DWORD (TempH*1000 + TempL) ,N :=
24));

9 Byte OL[B*6 + 3] := DWORD TO BYTE (SHR(IN := DINT TO DWORD (TempH*1000 + TempL) ,N :=
16))s

0 Byte OL[B*6 + 4] := DWORD TO BYTE (SHR(IN := DINT TO DWORD (TempH*1000 + TempL) ,N :=
8));

1 Byte OL[B*6 + 5] := DWORD TO BYTE (DINT TO DWORD (TempH*1000 + TempL)) ;

2 ELSIF B >=16 AND B < 32 THEN

3 Byte OH[(B-16)*6 + 0] := DWORD TO BYTE (SHR(IN := DINT TO DWORD(DWORD TO DINT (SHR (IN
:= DINT TO DWORD (TempH), N := 16))*1000), N = 24));

4 Byte OH[(B-16)*6 + 1] := DWORD TO BYTE (SHR(IN := DINT TO DWORD(DWORD TO DINT (SHR (IN
:= DINT TO DWORD (TempH), N := 16))*1000), N := 16));

5 Byte OH[(B-16)*6 + 2] := DWORD TO BYTE (SHR(IN := DINT TO DWORD(TempH*1000 + TempL) ,
N := 24));

6 Byte OH[(B-16)*6 + 3] := DWORD TO BYTE (SHR(IN := DINT TO DWORD (TempH*1000 + TempL) ,
N := 16));

7 Byte OH[(B-16)*6 + 4] := DWORD TO BYTE (SHR(IN := DINT TO DWORD (TempH*1000 + TempL) ,
N := 8));

8 Byte OH[(B-16)*6 + 5] = DWORD TO BYTE (DINT TO DWORD (TempH*1000 + TempL))

9 END IF,;

0 END FOR;

1 ELSE

2 RETURN,;

3 END IF;

4 END FUNCTION BLOCK

Joakim Wargh
APPENDIX 4 (3/3)

