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used in explaining the various principles of how a MIMO channel could be modelled. 
Graphs were also presented to give a pictorial image of the various MIMO channel charac-
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The project intended to make the operation of MIMO clear with the help of mathematics 
and simulations. This is because the operation of MIMO is almost impossible to under-
stand without comprehensive mathematics and simulations. Hence mathematical exam-
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ing of how a MIMO channel works. 
 
The results showed that theoretically the MIMO channel technology has the ability to in-
crease the capacity of a wireless communication link. It also showed the effects of anten-
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to deliver the required capacity. The results also showed that, in order to model a MIMO 
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the modelled channel.  
 
The project is useful since it gives any reader the basic idea of how a MIMO communica-
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Abbreviations 

h ,  Element (i,j)  of channel matrix H 

 Signal transmitted from antenna i  

 Signal received from antenna j 

 Signal power (S/N) 

AWGN Additive White Gaussian Noise 

BER Bit Error Rate 

dB Decibel 

det(H) Determinant of matrix H 

GSM Global System for Mobile communications 

H Channel matrix (N x M)  

H-1 Inverse of matrix H  

hn(t) Transmitting channel characteristic in time domain 

HT Transpose of matrix H 
IM M x M identity matrix 

LOS Line Of Sight 

M Number of receiving antennas 

MIMO Multiple Input Multiple Output 

N Number of transmitting antennas 

NLOS Non Line Of Sight 

OFDM Orthogonal Frequency Division Multiplexing 

QAM Quadrature Amplitude Modulation 

QoS Quality of Service 

Rj(t) j-th element of receive antenna as a function of time 

RX Receiver 

S Source symbols 

S/N Signal to Noise ratio 

SISO  Single Input Single Output 

Ti(t) i-th element of transmit antenna as a function of time 

TX Transmitter 

Ux Orthonormal basis (K x K) of transmission channel 

Wc Transfer channel matrix (N x M) 

WLAN Wireless Local Area Network 

Wx Transmitted signals, columns of X, expressed by projections onto or-

thonormal axes of Ux (K x N)  
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Wx
+ Pseudo inverse of Wx  

Wy Received signals, columns of Y, expressed by projections onto orthonor-

mal axes of Ux (K x M)  

X Transmitted signal or baseband signals from multiple antennas 

Y Received signal from multiple antennas  
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1 Introduction 

 

The demand of high bit rate has increased in recent wireless communication networks. 

Theories by various engineers have proven that the Multiple Input Multiple Output 

(MIMO) technology has the ability to improve the problem of traffic capacity in the wire-

less networks. MIMO systems can be defined as the use of multiple antennas at both 

the transmitting and receiving ends of a wireless communication network. The systems 

take advantage of multipath transmission paths. 

 

Although various efforts have been made by engineers to improve the data rate, the 

capacity is never enough for users. Users of mobile wireless devices like to be able to 

use their devices in streaming live programs, playing more online games and streaming 

an online movie which involves a high data rates. Telecommunication companies and 

Internet Service Providers (ISPs) as example in Africa find it difficult to provide high 

data rate Internet services to their network users, especially mobile users, due to envi-

ronmental factors. The only option to most of these companies is to provide Internet 

with a high data rate wirelessly. With the limited bandwidth in space, MIMO technology 

will be of great benefit to these companies in providing high data rate Internet services 

to their customers.  

 

Currently cellular systems, such as the third generation (3G) cellular system, satellite 

communication systems and video broadcasting systems have experienced a great 

increase in capacity in the implementation of MIMO channel technology. Access point 

devices such as wireless local area networks (WLAN) routers have also experienced a 

great change in transmission techniques, with a few using MIMO technology. The main 

goal of this project is to explain and illustrate the operation of MIMO channel technolo-

gy.    
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2 Background of Multiple Input Multiple Output 

2.1 Introduction 
 

The multiple input multiple output channel technology is aimed to increase the capacity 

in the wireless communication network. With the invention of MIMO, the technology 

seems to gain popularity as it is being implemented in the current commercial wireless 

products and networks such as broadband wireless access systems, wireless local 

area networks (WLAN), 3G networks, etc. [1] Figure 1 shows a line of sight (LOS) an-

tenna setup of a MIMO system. 

 

 
                   Figure 1. A generalized MIMO wireless communication system. 

 

The main idea behind MIMO is that, the sampled signals in spatial domain at both the 

transmitter and receiver end are combined so that they form effective multiple parallel 

spatial data streams which increase the data rate. The occurrence of diversity also im-

proves the quality that is the bit-error rate (BER) of the communication. [2] 

 

2.2 Single Input Single Output versus MIMO channel capacity 
In communication systems, input discrete source symbols are mapped into a sequence 

of channel symbols which are then transmitted through the wireless channel. The 

transmission of channel symbols through the wireless channel is by nature random and 

random noise is added to the channel symbols. The measure of how much information 
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that can be transmitted and received with minimum probability of error is called the 

channel capacity. [3]   

 

A Single Input Single Output system involves the use of one antenna both at the 

transmitter and receiver end. To a telecommunications engineer, there exit a limit at 

which reliable transmission of information is not possible for a given transmission 

bandwidth and power. These limits where discovered by Claude Shannon in 1948 

when he established the principles of information and communication theory on his 

various publications. Shannon also established the conditions that enable the trans-

mission of information over a noisy channel at a given rate, for a given power of the 

signal and noise. [4] 

 

These limiting factors are the finite bandwidth and the S/N of the channel. This is be-

cause for a communication channel to accommodate the signal spectrum, enough 

transmission bandwidth is needed otherwise there will be distortion. ”The higher data 

rate is to be transmitted, the shorter digital pulses must be used and the shorter digital 

pulses are used for transmission, the wider bandwidth is required”. [5] 

 

For a deterministic channel with a bandwidth (B) with additive noise, Shannon proved 

that information with a rate of r bits per second (bps) can be transmitted with a small 

error probability provided that the bit rate is less than the capacity of the channel r < C . 

The Shannon formulae that can be applied to determine the maximum capacity C of 

the channel is of the form  

 C = Blog [1 + ] [(bits s)/H ]                         (2.2.1) 

where S/N, the signal-to-noise ratio and B the bandwidth of the transmission channel. 

[4] 

 

Equation (2.2.1) informs us of how power and bandwidth are related. Assuming we 

have a channel with additive noise N and that we have some freedom of choosing the 

average transmission power S, to set up a reliable transmission link to send r bits per 

second. From the Shannon theorem, the data rate r cannot exceed capacity C, r < C as 

in equation (2.2.1), but we still have one degree of freedom in the choice of bandwidth 

B and power S. It can be realized that, for a given signal-to-noise ratio S/N, if we wish 

to double C, we have to double the bandwidth B. On the other hand, if we double C, for 

a given B we have to evaluate the S/N. [4] 
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The main importance of MIMO channel technique is to improve the capacity of the 

channel and therefore it is important to compare the capacity of a SISO system to 

MIMO system. In SISO a system, the Shannon formula in equation (2.2.1) can be ap-

plied to determine the capacity of the system. However, for a precise comparison, it is 

important that the MIMO system is transmitting with a power the same as that of a SI-

SO system. Therefore if the power radiated by a SISO system is Ps (SNR), then the 

power radiated from each antenna of a MIMO system with NTX transmit antennas must 

be Ps/N. [4] 

 

Hence, for a MIMO system with NTX and MRX antennas using diversity at transmitter 

and receiver end, the capacity of the system can be determined by the formula 

 C = Blog2[det(IM+  H )] bps                                                   [4] (2.2.2) 

Where (*) means transpose-conjugate of H and H is the M x N channel matrix. IM indi-

cates the identity matrix of dimension N x M, in this case M = N =2 or more. [1] Howev-

er, since signals transmitted over MIMO channel have to be linearly independent and 

orthogonal, interference averages to zero. Hence from equation (2.2.2) it can be seen 

that if the signal power Ps and the noise level N are the same then the more multiple 

antennas are used at the receiver, the more power is collected increasing the channel 

capacity and bandwidth.[10]  

Example 2.1 
Suppose that the spectrum of a SISO communication channel is 1MHz 

and the signal-to-noise ratio is 24dB. Using Shannon formula in equation 

(2.2.1)  

 C = Blog [1 + ] [(bits s)/H ] 

where C is the capacity, B the bandwidth of the channel and  the sig-

nal-to-noise ratio.  

By definition 

 = 10 log ( ). 

Therefore 

 24= 10 log ( )  

 2.4 = log ( ).  

Applying the inverse function for the log function, the exponential function 

base 10 to both sides is expressed as 

 S/N = 10 .  = 251. 

Hence the capacity is calculated as 
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 C = 1MHzlog (1 + 251) = 10 log (252)  

                   We now use the change of base formula to log to base 2 as 

  log ( ) = ( )
( )

   

  C = 10 . ( )
( )

   =10 x 7.977  8Mbps 

 

However, if we increase the number of antennas at both transmits and receive end of 

the SISO system to 2 and apply the MIMO channel capacity formula in equation (2.2.2) 

to the 2x2 MIMO system, with the same channel bandwidth of 1MHz and signals-to-

noise ratio of 24dB.  

Example 2.2 
Having a channel matrix  

H = 1 0
0 1  and its conjugate transpose as H* = 1 0

0 1  

Then the capacity of the 2 x 2 MIMO channel is calculated using 

 C = Blog2[det(IM+  H )] bps                 

Where IM is a 2 x 2 identity matrix and = ( ) signal-to-noise ratio, 

the capacity is calculated as 

  C =10  log2
1 0
0 1 + 251 1 0

0 1 × 1 0
0 1   

        C =10  log2
1 0
0 1 + 251 1 0

0 1              

 C =10  log2
1 0
0 1 + 251 0

0 251  

 C =10  log2
252 0

0 252    

 C =10  log2[252(252) 0] = 10  log2 63504 

Applying the change of base formula, 

  C = 10 . ( )
( )

   =10 x 15.955  16Mbps  

Comparing the capacities of example (2.1) and (2.2) has proven that the capacity of the 

SISO channel can be doubled or increased by a factor of 2 if the number of antennas 

at both transmitter and receiver end of the SISO channel are increased to 2. 
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3 Representation of MIMO channel 

3.1 A 2 x 2 MIMO channel model 
The first channel model to be considered in this project will be a 2 x 2 MIMO system 

that is a system with 2 transmits (TX) and 2 receive (RX) antennas where different in-

dependent data streams are transmitted from multiple antennas to multiple receive 

antennas. This channel model will be extended to a 3 x 3 MIMO system and even more 

to illustrate the channel characteristics in relation to the increase in the number of an-

tennas. The signals considered in the MIMO systems of this project are baseband sig-

nals ignoring modulation processes and concentrating on the up and down frequency 

conversion. Therefore the signals on the i-th transmit antenna will be denoted x  while 

the received signal on the j-th receive antenna denoted as y . [9] Figure 2 shows the 

antenna set-up and the various unknown channel coefficients. 

 
 

      Figure 2. Channel characteristic of a 2 x 2 MIMO wireless communication system. 

 

Since the coefficient of the unknown in the channel matrix Wc and the number of 

transmitted signal X is equal to the number of received signal Y, the equation can be 

solved if the channel Wc is inversed which in this case a 2 x 2 matrix inversion. 

 

3.2 Operational principles of a MIMO system 
 

To derive the channel characteristics, MIMO system transmits specified and known 

training signals regularly from all transmitters of the system and these transmitted sig-

nals are received at the receiver. Based on the received signals, the receiver calculates 
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the characteristics of all channel paths from each transmitted antenna to each receiving 

antenna. In order to prove that MIMO work, the transmitted signal X has to be solved 

from the group of equations in equation (3.2.1) below. We also assume that the system 

is noise free and line of sight (LOS). Reference to figure 3 below, if the transmitted sig-

nal is represented to be X and the received signal Y. If the channel characteristics ma-

trix is Wc, we may write 

Y=X Wc                                                                    (3.2.1)                                                

If the channel matrix has N rows as many as there are transmitting antennas with index 

i. Then transmitted signal vector is written as 

 X = [x1, x2,…xN]    (3.2.2) 

Also if the channel matrix has M columns, as there are receiving antennas with index j. 

Then the received signal vector is 

 Y = [y1, y2,…yM]       (3.2.3) 

These vectors are extended later to matrixes by inserting K samples into each column. 

The channel matrix contains path characteristics ,  as 

 Wc = 

h , h ,
h , h ,

h ,
h ,

h , h , h ,

    

Example 3.1 explains how independent transmitted signals can be transmitted from 

multiple transmitting antennas to multiple receiving antennas when channel character-

istics are known. We should be able to calculate for transmitted signals if the received 

signal and the channel matrix are known. 

Example 3.1  
Let us take a MIMO system with M = N = 2 as in figure 3. We need to 

solve the transmitted signal when the received signals and channel are 

known. The channel matrix is an N (rows) by M (columns) matrix and the 

first index in each matrix element stands for row (transmitting antenna) 

and the second for column (receiving antenna).  

Now if X = (x1, x2), Y = (y1, y2) and Wc = 
h , h ,
h , h ,
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   Figure 3. A 2 x 2 MIMO system with channel characteristics. 

Figure 3 illustrate a 2 x 2 MIMO system showing the transmitted signals, the channel 

characteristics and the received signals. 

Given Y = X Wc then 

 (y1, y2) = (x1, x2) x 
h , h ,
h , h ,

                     (3.2.4) 

The solution of X can deduce from equation (3.2.4) as 

 y1 = x1h1,1 + x2h2,1   (3.2.5) 

 y2 = x1h1,2 + x2h2,2   (3.2.6) 

This implies that from equation (3.2.5)  

 x2 = ,

,
                                                        (3.2.7)

 Substituting equation (3.2.7) into equation (3.2.6), we have 

 2 = h , + ,

,
h ,  

  y2 = h , + ,

,
h , = ,

,
+ h ,

, ,

,
  

    

     

     (3.2.8) 2,21,11, 22, 1

2,211, 22
1 hhhh

hy hy
x

 

 
 

2,21,11, 22,1

1,2

1, 2

12,21,22
1 h hhh

h 

h
y hhy

x
 

1,2

2,21, 11,22, 1

1,2

12, 21,22

1,2

2,21, 1
2, 1

1
1,2

2, 2
2

1

h
hh h h 

h
yh h y

h
hh 

h 

y 
h
h

y
x  
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Applying the same process, from equation (3.2.5) the second transmitted 

signal can be calculated as 

     

    

   

    

    

     
Hence the solution for the transmitted signal X from equation (3.2.4) is 

given in a vector form as 

 X = , ,

, , , ,
, , ,

, , , ,
                           (3.2.9) 

   

We can see from example 3.1 that the transmitted signal X can be determined if the 

channel characteristics Wc and the received signal Y are known. We can also solve for 

the transmitted signal X using matrix representation if the channel matrix Wc is in-

versed and the received signal Y also known. The next example explains how the 

transmitted signals X can be determined if the channel matrix Wc is inversed and the 

received signal Y is known. 

Example 3.2  
Reference to equation (3.2.1) and equation (3.2.4), if the groups of equa-

tions are given as   

Y = X Wc, (y1, y2) = (x1, x2) x 
h , h ,
h , h ,

  

Then the transmitted signal X can be solve if we invert the channel matrix 

and multiply it with the received signal Y.  

2, 11, 21,12, 2

2, 111,12
2 h h h h 

h yh y
x

 

 
 

2,11, 21, 12, 2

1, 1

1,1

12, 11,12
2 h h h h 

h 

h 
yh h y 

x
 

1,1

2,11, 21, 12,2

1,1

12,11, 12

1, 1

2, 11, 2
2,2

1
1,1

2, 1
2

2

h 
h h h h 

h 
y h h y

h 
h h 

h 

y
h 

h 
y 

x  
 

 
 

2
1, 1

2, 11, 2
2, 21

1, 1

2,1
2,222

1, 1

2, 11, 2
1

1, 1

2, 1
2 x

h 

h h 
h y

h 

h 
h xx

h 

h h 
y

h 

h 
y  

 
 

 
 
 
 

 
    

2, 221, 211
1,1

2,1
2 h xh x y

h 

h 
y   

1, 1

1,221
1 h 

h x y
x

 
 



14 

 

  X = Wc
-1 Y                    (3.2.10) 

The inverse of the channel matrix Wc
-1 can be determined by first finding 

the adjoint of the channel matrix and then dividing it with its determinant. 

Mathematically, the inverse of the channel matrix can be represented as 

  Wc
-1 = ( )

( )
                            (3.2.11 

Where adj(Wc) is the adjoint of the channel matrix that is formed by taking 

the transpose of the cofactor matrix of Wc. Since this is a 2 x 2 matrix, the 

cofactor of the channel matrix is calculated as 

Cofactor matrix of Wc = 
h , h ,
h , h ,

 

The adjoint of the channel matrix Wc is also obtained as 

 adj(Wc) = 
h , h ,
h , h ,

 

The determinant of the channel matrix Wc is also deduced from the ex-

pression 

 det(Wc) = h1,1h2,2 – h2,1h1,2 

Hence the inverse of the channel matrix Wc is expressed as  

 Wc
-1 = 

, , , ,

h , h ,
h , h ,

  

From equation (3.2.10) the transmitted signals can be determined as 

 [x1, x2] = 
, , , ,

h , h ,
h , h ,

[y1, y2] 

 x1 = , ,

, , , ,
  

  x2 = , ,

, , , ,
 

 

The transmitted signals are now represented in a vector form as 

 X = , ,

, , , ,
, , ,

, , , ,
                           (3.1.12) 

  

Hence it is possible to solve the transmitted signals with group of equations (3.2.4) and 

also with the help of the matrix representation (equation 3.2.10). Therefore it can be 

proven that the transmitted signals can be determined if the channel matrix and re-

ceived signals are known. This explains that MIMO works, but to illustrate its practical 

operation the analyses have to continue. The next chapter explains in details the prin-

ciples or steps required to present this project with practical examples. It should be 

noted that the analyses of this are based on discrete MIMO system. 
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4 Channel estimation procedure 

4.1 Channel characteristics estimation 
 

In order to estimate the channel characteristics, we expand each transmitted and re-

ceived signals in time and write into signal matrix columns K discrete samples in time. 

The signals matrixes get K rows and as many columns as we have antennas, N or M. 

In general a MIMO system involves multiple antennas at the transmitting end and mul-

tiple receivers at the receiving end. Figure 4 show a general representation of a 3 x 3 

general MIMO system. 

 
        Figure 4. General 3 x 3 MIMO system with unknown channel characteristics.  

 

In order to determine the characteristic of the channel, both the transmitted signal X 

and the received signal Y have to be known.  If the transmitted and received signals 

are of the form 

 X = [x1, x2, ... xN] = 
x , x ,

x , x ,
                  (4.1.1) 

 Y = [y1, y2, ... yM] = 
y , y ,

y , y ,
                                      (4.1.2) 

If the channel transfer matrix Wc can be determine, then it means the transmitted sig-

nals can also be determine because the received signal Y is known. We may write the 

expression between these vector signals as  
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Y = X Wc                                                       (4.1.3) 

In order to determine the transmitted signals, the channel transfer matrix, Wc
-1 have to 

be inverted and then multiplied with the received signal matrix Y. 

X = Y Wc
-1      

The channel transfer matrix that we have to solve with the help of known training signal 

X and the received signal Y has the form  

 WK = 
w , w ,

w , w ,
                                                                    (4.1.4) 

The channel transfer matrix is calculated periodically with the help of the known training 

signals and remains constant over information transmission time. It is then recalculated 

when new information is being transmitted. The channel characteristics in equation 

(4.1.4) are defined for each signal path at discrete time instants 1,2,...K. However, we 

need to derive Wc and this can be derived with the help of the transmitted signals X 

and the corresponding known received signals Y measured at the receiver. Equation 

(4.1.4) expresses the channel matrix Wc which do not need to be a square matrix. Be-

cause, for example if we have a 4x4 MIMO system with 100 samples, we do not need 

to have a 100x100 channel matrix. However, 5 samples can be transmitted from the 

four (4) antennas at a time. The next section explains the procedures required in order 

to estimate the channel transfer matrix c. 

 

4.2 Channel identification algorithm 
 

To model the transfer channel a common space matrix (orthonormal basis matrix Ux) is 

first generated and then used to map both the transmitted and received signals that 

vary in space (multiple antennas) and in time (samples in time). This common or-

thonormal basis matrix is obtained by decomposing either the transmitted signal X or 

the received signal Y. Hence, MIMO channel problem can be solved using four step 

approach under a condition where there is no noise (N = 0) and if the transmitted sig-

nals are orthogonal. These steps are summarized as follows: 

(1) Finding an orthonormal basis Ux of the transmitted signal matrix X us-

ing the Gram-Schmidt procedure. [9, 166] 

(2) In the K-dimensional signal vector space spanned by Ux, we express 

the N column vectors of the transmitted signal X by the projection on-

to the orthogonal axes of Ux. [9, 166] 

       Wx = Ux X                                        (4.2.1)   
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(3) In the K-dimensional signal vector space spanned by Ux, we express 

the M column vectors of the received signal matrix Y by their projec-

tion onto the orthogonal axes of Ux. [9, 166]  

      Wy = Ux Y                                             (4.2.2) 

(4)  Calculate the inverse or the pseudo inverse of the Fourier coefficients 

of the transmitted signal Wx and find an estimate of channel transfer 

matrix c. [9, 166]  

c = Wx
-1 Wy or c = Wx

+ Wy    

 

Figure 5 shows the various steps required to model the transfer channel c. 

 

 
      Figure 5. Transfer channel estimation processes. 

 

Reference to figure 5, it can deduce that the first principle is to map both the transmit-

ted and the received signals with a common space matrix, the orthonormal basis vec-

tor. The second process in figure 5 is to determine the Fourier coefficients of both the 

transmitted and the received signals. The final process is to model the transfer channel 

with the help of the Fourier confidents obtained.  It is important to explain in details the 

four listed steps for clear understanding. The next section explains these four princi-

ples.  
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4.2.1 Orthonormal basis Ux estimation 
 

To be able to estimate the transfer channel matrix c, a common space matrix is re-

quired to map both the transmitted signal X and the received signal Y together. The 

orthonormal base matrix Ux serves as the common space matrix needed to map the 

transmitted signal X to the received signal Y. It is important to know that, the orthonor-

mal basis needed for the mapping can be derived either using the transmitted signal X 

or the received signal Y.  Hence, the orthonormal basis Ux of the transmitted signal X is 

calculated by taking the matrix Ux obtained from the decomposition of transmitted sig-

nal X.  

 

In linear algebra, a matrix such as the transmitted signal X can be decomposition into 

the product X= Ux R where Ux is an orthogonal matrix in this case the orthonormal ba-

sis and R an upper triangular matrix. It should be noted that, the format of the matrix X 

is K-by-N while the size of the orthonormal base matrix Ux is always K-by-K. [9,166] 

Gram-Schmidt procedure is one way to decompose a column rank matrix and this pro-

cedure will be used in this project. There are also other methods of decomposing a 

matrix such as QR-decomposition, LU decomposition, Cholesky decomposition, etc. 

See appendix 1 for Gram-Schmidt process.   

 

4.2.2 Fourier coefficients of transmitted signal Wx 
 

After determining the orthonormal basis Ux, we have to map the known transmitted 

signal X to the orthonormal space matrix Ux and this is done by calculating the general-

ized Fourier coefficients of the transmitted signal Wx. The mapping of the transmitted 

signal X with respect to the orthonormal basis Ux is expressed 

 Wx = Ux X                                                       (4.2.1) 

The generalized Fourier coefficients are coefficients of any orthogonal set of functions 

over which signals are split up. Therefore the generalized Fourier coefficients of the 

transmitted signal Wx tell us how much each column (signal) of the transmitted signal X 

contains each orthogonal column component in the orthonormal base matrix Ux. In this 

case we are splitting the transmitted signal with the help of the orthonormal basis Ux. It 

should be noted that the multiplication of Ux Ux
T = I where I is a K-by-K identity matrix 

and size of Wx is K-by-N. [9,166]  
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4.2.3 Fourier coefficients of training (received) signal Wy 
 

The received signal Y is also mapped to the orthonormal space matrix Ux by multiply-

ing the received signal Y with the orthonormal base matrix Ux. This means that we 

have to split the received signal Y with the help of the orthonormal basis Ux. Hence, the 

calculation the Fourier coefficients of the received signal as  

 Wy = Ux Y                                    (4.2.2) 

Where the size of Wy is K-by-M.  

 

4.2.4 Transfer channel matrix estimation c 
 

Finally, we derive the most favorable estimate of the channel transfer matrix from the 

expression c = Wx
-1 Wy. If the Fourier coefficient of the transmitted signal Wx is not a 

square matrix then we use the expression c = Wx
+ Wy where Wx

+ the pseudo inverse 

of Wx. [9,166] .This follows from the formula 

 Y = X c  

 c = X-1 Y =Wx
-1 Ux Y =Wx

-1 Ux Ux
-1Wy = Wx

-1 Wy                  (4.2.3) 

From equation (4.2.3), again it can be seen that to estimate the channel transfer matrix 

c, the inverse of the generalized Fourier coefficients of the transmitted signal Wx is 

needed since it is a square matrix. However, in the case where Wx is not a square ma-

trix, the pseudo inverse of Wx is calculated. [9,166]  

 

The orthonormal basis Ux plays an important role in determining the channel character-

istics and therefore it is important to develop an algorithm to generate Ux.  Not only to 

generate the orthonormal basis matrix but to illustrate the entire matrixes required to 

estimate the transfer channel. Hence, Microsoft Excel® is used to develop an algorithm 

for Gram-Schmidt procedure to generate Ux, the Fourier coefficients of both transmitted 

and received signals as well as the transfer channel. This algorithm can be accessed 

from a compact disk (CD) attached to this project. The next chapter explains with an 

example how to determine the orthonormal basis Ux using Gram-Schmidt procedure by 

decomposing the transmitted signal X and applying this procedure to two different sce-

narios. First the calculation of the orthonormal basis Ux in the case where the transmit-

ted signal X is a square matrix and in the second case where the transmitted signals X 

is not a square matrix.        
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5 Orthonormal space concept 

5.1 Orthonormal basis of transmitted signal 
 

Orthonormal basis is a coordination system where we can present as many dimensions 

as is the maximum number of antennas of the transmitted and received signals. The 

main reason why we need the orthonormal base is to have a common coordinated sys-

tem in order to combine the transmitted signal X and the received signal Y. The num-

ber of dimension of the orthonormal base matrix depends on the maximum number of 

antennas at both the transmitted and the receiver end of the MIMO system.  It does not 

actually matter what kind of signal (X or Y) used in generating the orthonormal space 

but it is most convenient to use the transmitted training signal X which is defined to 

contain linearly independent column signals.  

 

Suppose K = 3 time samples per transmitted signal X and per received signal Y re-

spectively of a 3 x 3 channel transmission system were observed. Figure 6 shows a 

Line of Sight (LOS) MIMO system made up of three transmitters and three receivers. 

  

 
      Figure 6. A 3 x 3 MIMO wireless communication system.  

  

In figure 6, N = 3 transmitted signals and M = 3 received signals, the format of the un-

known channel transfer matrix c would be 3 x 3. Assume that all signals are real val-

ued and the transmitted signals and received signals are observed as signal matrices. 

Then we need the orthonormal basis matrix Ux to solve for an estimated channel trans-

fer matrix c. It is easier to calculate the orthonormal base matrix Ux of a square ma-
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trix; therefore in the next section we estimate the channel model by calculating first the 

orthonormal basis matrix Ux of a simple 2 x 2 MIMO system and then proceed to a 

more complex 3 x 3 MIMO system.  

 

5.2 Orthonormal basis Ux and transfer channel c estimation 

5.2.1 A 2x2 MIMO system orthonormal base and channel estimation 
 

This section explains how to calculate the orthonormal basis Ux of a 2 x 2 MIMO sys-

tem with the help of the transmitted signal X. To demonstrate the steps in subchapter 

4.2, we will have a numerical example to explain how to generate the orthonormal ba-

sis Ux of a full rank square matrix using linearly independent transmitted signals in X. 

The Gram-Schmidt procedure will be used in the decomposition of the transmitted sig-

nal X. See appendix 1 for Gram-Schmidt procedure. The equation to decomposed in 

our calculation is of the form 

X = Ux R;    R = Ux
-1 X.                                                     (5.2.1) 

In equation (5.2.1) the transmitted signal X is divided into two components, Ux the or-

thonormal basis and R the upper triangular matrixes. The upper triangular matrix R is 

calculated by first finding the inverse of the orthonormal basis matrix Ux and multiplying 

it with the transmitted signal X. However, the upper triangular matrix R will is not need-

ed in our analysis. The next very simple example explains how Gram Schmidt proce-

dure can be applied to generate orthonormal base Ux of the transmitted signal X.  

Example 5.2.1 

            Suppose the transmitted signal X to be decomposed is  

  X = 1
1 0 , x1 = 1

1  and x2 = 1
0  

Then the first column vector signal of the orthonormal base Ux is obtained 

by normalizing the first column vector signal x1 of the transmitted signal X. 

  u1 = 1
1   e1 =  

The second column vector signal e2 of the orthonormal base Ux is  ob-

tained by subtracting from the second column vector x2 its component on 

the first dimension which is a projection of x2 in direction e1. The projection 

of x2 is calculated by the expression 

         u2 = x2 – (e1
T  x2) e1 
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  u2 = 1
0  = 1

0  +  =    

The vector u2 is normalized by dividing its column vector values by its 

length which gives e2. The length of u2 is given as 

      |u2| = ² + ²  =  

The second column vector of the orthonormal base is 

   e2 =     =  

    Hence the orthonormal base Ux of the transmitted signal X is 

 Ux =                                                           (5.2.2) 

These column vector signals of the orthonormal base Ux can be represented in figure 7 

below. 

 
                     Figure 7. Vector representation of orthonormal base Ux. 

 

Figure 7 shows the various independent transmitted vector signals and the orthonormal 

base Ux column vectors obtained in equation (5.2.2). 

 

To get a clear understanding of how the orthonormal base Ux is used in estimating the 

transfer channel c , simple examples explaining the general procedures listed in sec-

tion 4.2 and the role of the orthonormal base Ux in the estimation of the transfer chan-

nel c are illustrated. This example involves a MIMO system with two antennas at both 

transmits and received end of the system in two different scenarios. In both scenarios, 

the transmitted signals X are the same but different received signals.   
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Example 5.2.2 
Suppose we have K = 2 time samples per transmitted and the received 

signals respectively in the system. If we assume that both the transmitted 

and the received signals in this scenarios are real valued observed as 

matrices 

  X = 1 0
0 1  and Y = 1 0

0 1                    (5.2.3) 

As listed in chapter 4.2, we first have to calculate the orthonormal base Ux 

with the help of the transmitted signal X which will be used as a common 

signal space matrix to map the transmitted and the received signals to-

gether. The orthonormal base Ux is obtained using the Gram-Schmidt 

procedure. The first column of the orthonormal base Ux is obtained by 

normalizing the first column signal of the transmitted signal X. 

  u1 =
1
0   e1 = 1

0  

The second column vector signal u2 of the orthonormal base Ux is ob-

tained by subtracting from the second column vector x2 its component on 

the first dimension which is a projection of x2 in direction e1. The projection 

of x2 is calculated by the expression 

  u2 = x2 – (e1
T  x2) e1 

           u2 = 0
1

(1 0) 0
1 × 1

0 =  
0
1  

Hence e2 is obtained by normalizing u2 by diving its vector values with it 

length. The length of u2 is given as 

  |u2| = (0)² + (1)²  = 1  

The second column vector signal of the orthonormal base is 

  e2 =  0
1  

The two dimensional orthonormal base Ux becomes  

  Ux = 1 0
0 1                                         (5.2.4) 

 

The next step is to map the transmitted signal X and the received signal Y to the or-

thonormal base vector Ux obtained in equation (5.2.4). This is done by calculating their 

generalized Fourier coefficients respectively.  
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Example 5.2.3 
The generalized Fourier coefficients of the transmitted signal X is calcu-

lated from the expression 

  Wx = Ux X    

Wx = 1 0
0 1 × 1 0

0 1  = 1 0
0 1                      (5.2.5)  

Also the generalized Fourier coefficients of the received signals Y is cal-

culated as 

  Wy = Ux Y    

  Wy = 1 0
0 1 × 1 0

0 1  = 1 0
0 1   (5.2.6) 

 The final step is to estimate the transfer channel using the expression 

  c = Wx
-1 Wy 

This means that before the channel can be estimated, the generalized 

Fourier coefficients of the transmitted signal Wx have to be inverted and 

then multiplied with the generalized Fourier coefficients of the received 

signal Wy. The inverse of the generalized Fourier coefficients of the 

transmitted signal Wx which is a 2 x 2 matrix is calculated as 

  Wx = 1 0
0 1  

  Wx
-1 = b

c a    

  Wx
-1 = × 1 0

0 1 = 1 0
0 1                  (5.2.7) 

 The transfer channel is estimated as 

  c = 1 0
0 1 × 1 0

0 1   

  c = 1 0
0 1 =

w , w ,
w , w ,

                                   (5.2.8) 

 

Figure 8 illustrates this simple example (5.2.3) showing how the transmitted signals are 

transformed by the channel to the receiver in the 2 x 2 MIMO system.  
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                   Figure 8. Example of a simple 2 x 2 MIMO system.  

 

The graphs of all the steps (orthonormal base Ux, Fourier coefficients of transmitted 

signal Wx, Fourier coefficients of received signal Wy and the estimated transfer channel 

c) involved in the estimation of the transfer channel are shown in the 2 x 2 algorithm 

Microsoft Excel algorithm attached to this project.  

 

In the second scenario, we will estimate the transfer channel in a case where the in-

formation transmitted is different from what was received. Not only will this enable to 

observe the characteristics of the transfer channel but helps us to estimate the real 

information transmitted. 

Example 5.2.4 
If the transmitted signal X and the received signal Y observed are 

X = 1 0
0 1 , Y = 1 1

0 1                      (5.2.9) 

As in example 5.2.2, we first have to find the orthonormal base Ux matrix, 

which will be used as a common space matrix to map the transmitted sig-

nal X and the received signal Y. However, since the transmitted signal X 

in this example is the same as the transmitted signal in example 5.2.2, 

the same orthonormal base matrix Ux ( equation (5.2.4)) will be generat-

ed. 

  Ux = 1 0
0 1  

The next step is to calculate the generalized Fourier coefficients of both 

the transmitted signal X and the received signal Y respectively. Therefore 
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generalized Fourier coefficients of the transmitted signal X is calculated 

as 

Wx = Ux X    

  Wx = 1 0
0 1 × 1 0

0 1  = 1 0
0 1  

The generalized Fourier coefficients of the received signal Y is also calcu-

lated as 

  Wy = Ux Y    

  Wy = 1 0
0 1 × 1 1

0 1  = 1 1
0 1                    (5.2.10) 

The final step is to estimate the transfer channel by first finding the in-

verse of the Fourier coefficients of the transmitted signal Wx
-1 and then 

multiplying it with the Fourier coefficients of the received signal Wy in the 

expression 

  c = Wx
-1 Wy  

However, the generalized Fourier coefficient of the transmitted signal is 

the same as in equation (5.2.5) and therefore its inverse will produce the 

same results as in equation (5.2.7). Hence the inverse of the generalized 

Fourier coefficient of the transmitted signal is 

  Wx
-1 = × 1 0

0 1    

  Wx
-1 = 1 0

0 1  

 The transfer channel is then estimated by the expression 

  c = Wx
-1 Wy 

   c = 1 0
0 1 × 1 1

0 1   

  c = 1 1
0 1                       (5.2.11) 

 

Figure 9 shows how the transmitted signals of example 5.2.4 were transformed by the 

estimated transfer channel. 
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                 Figure 9. Example of 2 x 2 MIMO system. 

 

The graphs of the various processes (orthonormal base Ux, Fourier coefficient of 

transmitted signal X, Fourier coefficient of received signal X and the estimated transfer 

channel c) involved in the estimation of the transfer channel in equation (5.2.11) will 

be produced if the received signals in the 2 x 2 algorithm is changed to that in equation 

(5.2.9). The next important step is also to estimate the received signal with help of the 

estimated channel c. The next section explains how to estimate the received signal 

when the transmitted signal and the transfer channel are known. 

 

5.2.2 Received signal  when transmitted signal and channel are known 
 

The transmitted known training signals are used in modelling the transfer channel c 

as shown in examples (5.2.3) and (5.2.4). Therefore it is important to estimate the 

channel output if the transmitted signals are transmitted. The next example derives the 

received signal  in two different scenarios. In both scenarios, the transmitted signals 

are the same but different transfer channels. This will help us estimate the received 

signals produced by the different transfer channels. 

Example 5.2.5 
This example estimates the received signal  with the help of the trans-

mitted signal X and the estimated transfer channel c derived in equa-

tions (5.2.3) and (5.2.8) respectively.  

  X = 1 0
0 1 , c = 1 0

0 1   

From equation (5.2.12) the received signal is estimated as 
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  = X c                    (5.2.12) 

   = 1 0
0 1  × 1 0

0 1 = 1 0
0 1                    (5.2.13) 

In example (5.2.4) a different transfer channel c (equation 5.2.11) was 

estimated. The channel output  using the transfer channel in example 

(5.2.4) is calculated as 

  X = 1 0
0 1  and c = 1 1

0 1     

Then the received signals are estimated using the same expression in 

equation (5.2.12) as 

   = 1 0
0 1  × 1 1

0 1 = 1 1
0 1                   (5.2.14) 

 

Hence from the results in equations 5.2.13 and 5.2.14 it can be concluded that during 

transmission, the condition or the characteristics of the channel  has effect on the sys-

tems output or the signals received. Different channel characteristic produces different 

received signals.  

 

5.2.3 Transmitted signal X̂  estimation knowing received signal and channel charac-
teristics 

 

In the next example, the unknown transmitted signals are estimated with help of the 

known received signals and the estimated channel. 

Example 5.2.6   
In equation 5.2.13 we estimate the transfer channel output (received sig-

nal) over the transfer channel in equation (5.2.8). Next is to estimate what 

was sent over the channel. This is estimated by the expression 

  X = c
-1                    (5.2.15)

   = 1 0
0 1 ,  c = 1 0

0 1                     

According to equation (5.2.15) to estimate the transmitted signal, the 

channel matrix has to be inverted and then multiplied by the information 

measured at the receiver. The estimated channel is a 2 x 2 matrix and its 

inverse is calculated as 

  c
-1 = 1 0

0 1 =  

  c
-1=    
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  c
-1= × 1 0

0 1 = 1 0
0 1   

Hence the transmitted signal is estimated as 

  X = 1 0
0 1  × 1 0

0 1  =  1 0
0 1                   (5.2.16) 

 

Using the transfer channel in equation (5.2.11) and the received signal in 

equation (5.2.14), the transmitted signal is estimated as 

  X =   c
-1  

   = 1 1
0 1 , c = 1 1

0 1    

The transfer channel matrix has to be inverted and then multiplied by the 

estimated received signal. The inverse of the transfer channel is calculat-

ed as 

  c
-1 = 1 1

0 1  

  c
-1=    

  c
-1= × 1

0 1 = 1
0 1  

  Hence the transmitted signal is estimated as  

  X = 1 1
0 1  × 1

0 1  =  1 0
0 1                          (5.2.17) 

 

Comparing the estimated transmitted signals obtained in equation (5.2.16) and equa-

tion (5.2.17) to the transmitted signals in equation (5.2.9), it is seen that the receiver 

was able to estimate the exact information that was transmitted over the different 

channel models. It should be noted that the receiver was able to estimate the transmit-

ted signals base on the information it receives and the pre-calculated channel model. 

We now extend this process to a more complex 3 x 3 MIMO system in the next section.  

 

5.3 Orthonormal basis Ux of transmitted signal (square case) 
 

To further understand the operational principles of MIMO channel, we extend the same 

principles listed in subchapter 4.2 to a case of a 3 x 3 MIMO system where there are 

three antennas at both transmit and receive ends. Assuming three column transmitted 

signals and three column received signals each are observe over K uniformly spaced 

discrete time instances as 
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 X =
2 2

3 1 2
7 4 3

, Y = 
1 4 2

1 1
2 7 3

                       (5.3.1) 

The channel can be estimated by first calculating the common signal space matrix (or-

thonormal base matrix). In the next example, the orthonormal base of the transmitted 

signal X is calculated using Gram-Schmidt procedure.  

Example 5.3.1 
Suppose we have K = 3 time samples per the transmitted and the re-

ceived signals respectively of a 3 x 3 channel transmission system. If we 

assume that all the signals are real valued and that the system transmit-

ted and received signals are observed as matrices [9,167] 

X =
2 2

3 1 2
7 4 3

, Y = 
1 4 2

1 1
2 7 3

                            (5.3.2) 

The Gram-Schmidt QR-decomposition is applied to determine the or-

thonormal basis matrix Ux of the transmitted signal X. The first column of 

the transmitted signal X is normalized to a unit vector to obtain the first or-

thonormal space Ux dimension. This gives 

  X =
2 2

3 1 2
7 4 3

, x1 =
1
3
7

, x2 =
2

1
4

, x3 = 
2
2
3

   

  u1 =
1
3
7

, e1 = 
1
3
7

=
59 59

3 59 59
7 59 59

 = 
0.1302
0.3906
0.9113

 

 where the length of u1 is 

  |u1| = (1)² + (3)² + (7)²  = 59   

Hence the first column of the orthonormal base Ux will be equal to e1.  

 

The second column unit vector for the second dimension of orthonormal 

base Ux is produced from the next column of the transmitted signal X. For 

this we subtract from the second column vector x2 its component on the 

first dimension. This component is a projection of x2 in direction e1 and this 

can be shown in equation (1.1.3) in appendix 1. The projection of x2 which 

produce vector u2 is given by the expression  

  u2 = x2 – (e1
T x2) e1 

 u2 = 
2

1
4

( 59 59 3 59 59 7 59 59)
2

1
4

×
59 59

3 59 59
7 59 59
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   u2 = 
2

1
4

59 59
3 59 59
7 59 59

=
2

1
4

29 59
87 59

203 59
 

  u2 = 
147 59
28 59

33 59
     

Then vector u2 is normalized by dividing its column vector values by its 

length which gives e2. The length of u2 is given as 

  |u2| = ( 147 59)² + ( 28 59)² + (33 59)² = 2.5973 

  u2 =
147 59
28 59

33 59
, e2 = .

147 59
28 59

33 59
=

0.9593
0.1827

0.2153
      

 

Finally, the third column e3 is deduced from the third column of the trans-

mitted signal X when we subtract its projections to the first and second 

dimensions and normalize it. Vector u3 is calculated from the expression 

  u3 = x3 – (e1
T x3)e1 – (e2

T x3)e2 

u3 = 
2
2
3

( 59 59 3 59 59 7 59 59)
2
2
3

×
59 59

3 59 59
7 59 59

 

 ( 0.9593 0.1827 0.2153)
2
2
3

×
0.9593
0.1827

0.2153
  

  u3 = 
2
2
3

29 59
87 59

203 59

1.5714
0.2993
0.3527

=
0.0629

0.2261
0.0880

  

The vector u3 is normalized by first finding its absolute value or length to 

obtain the third column vector of the orthonormal basis. 

  |u3| = ( 0.0629)² + (0.2261)² + ( 0.0880)² = 0.2506 

  e3 = 
.

0.0629
0.2261
0.0880

=
0.2510

0.9022
0.3512

  

Hence, since Ux = (e1 e2 e3), the orthonormal basis for the transmitted sig-

nal X is presented as  

  Ux =
0.1302 0.9593 0.2510
0.3906 0.1827 0.9022
0.9113 0.2153 0.3512

                             (5.3.3) 

 

Figure 10 shows the graph of the respective independent column vectors (e1 e2 e3) of 

the orthonormal basis Ux calculated in equation (5.3.3). 
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 Figure 10. Column vectors of orthonormal base (Ux).  

   

Column vectors in equation (5.3.3) and figure 10 are orthogonal in space and therefore 

do not interfere with each other. The column signals of the transmitted training signal X 

of which the orthonormal basis matrix Ux is generated must be linearly independent 

signals transmitted regularly from the transmitter to the receiver.  

 

Based on the Gram Schmidt process, the orthonormal basis Ux matrix is an orthogonal 

matrix. The column signals of the orthonormal base Ux in equation (5.3.3) are orthogo-

nal and the inner product of any pair of the column vectors result zero. The column 

vectors are orthonormal and the norm of every column vector signal result value 

1( ei =1). To prove that the column signals of the orthonormal base Ux are orthogonal, 

the inner product of theses column signals is calculated in the next example.  

Example 5.3.2 
In example 5.3.1, we performed the Gram Schmidt process of the trans-

mitted signal X to obtain the orthonormal basis matrix Ux. To prove that its 

column vector signals are orthogonal, we calculate the inner product of 

any pair of the column vector signals and the result must give a value ze-

ro.  

  e1 =
0.1302
0.3906
0.9113

, e2 =
0.9593
0.1827

0.2153
, e3 = 

0.2510
0.9022
0.3512

 

Taking vectors e1 and e2, we find the inner product between these two 

column signals as  
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 e1  e2 = (0.1302× 0.9593) + (0.3906× 0.1827) + (0.9113×0.2153) 

 e1  e2 = 0.00006 0 

           Also the inner product between signals e1 and e3, we have 

 e1  e3 = (0.1302× 0.2510) + (0.3906×0.9022) + (0.9113× 0.3512) 

 e1  e3 = 0.00032 0 

            The inner product between the signals e2 and e3 is also calculated as 

 e2  e3 = ( 0.9593× 0.2523) + ( 0.1827×0.9026) + (0.2153× 0.3512) 

 e2  e3 = 0.0021 0 

 

The results obtained from the inner product calculations prove that the column signals 

of the orthonormal base Ux are really orthogonal. It should be noted that the results 

obtained in example (5.3.2) are not exactly zero due to the rounding of values in calcu-

lating the orthonormal basis matrix. In the next example, we test whether the column 

signals of the orthonormal base matrix Ux obtained in example 5.3.1 are normalized by 

calculating the norm of each column signal, which should give a value 1. 

Example 5.3.3    
The norm of any column vector is calculated by summing all the squares 

of each vector value and finding the square root of the result. Hence the 

norm of the column vector signals of the orthonormal base is obtained as 

Ux = 
0.1302 0.9593 0.2510
0.3906 0.1827 0.9022
0.9113 0.2153 0.3512

 

e1  = (0.1302)² + (0.3906)² + (0.9113)² = 0.9999 1 

e2  = ( 0.9593)² + ( 0.1827)² + (0.2153)² = 0.9999 1 

e3  = ( 0.2510)² + (0.9022)² + ( 0.3512)² = 1   

 

The results obtained in example (5.3.2) and (5.3.3) shows that the column vectors of 

the orthonormal base matrix Ux obtained in example (5.3.1) are normal. The number of 

transmitters of a transmission system may be less than the number of receivers. The 

next section explains how the orthonormal basis matrix Ux of such system can be gen-

erated.   

 

5.4 Orthonormal basis Ux of transmitted signal (non square case) 
 

Although the previous analysis involves a full rank transmitted signal X and receive 

signal Y, it may not reflect practical situation because the number of transmitters may 
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not be equal to the number of receivers. The decomposition of a non square transmit-

ted signal X is calculated in the next example. 

Example 5.4.1  
If we observe K = 3 time samples per transmitted signal X and received 

signal Y respectively and the system now have N = 2 transmitted signals 

and M = 3 received signals. [9,167]. 

Suppose the transmitted signal X and received Y signal are given as  

  X =
2

3 1
7 4

, Y = 
1 4 2

1 1
2 7 3

                    (5.4.1) 

Referring to the Gram-Schmidt process as in appendix 1, the new or-

thonormal basis for the non square transmitted matrix X will produce the 

same size (3 x 3) orthonormal basis matrix Ux and a 2 x 3 transfer chan-

nel Wc. Hence the orthonormal basis of the transmitted signal X is calcu-

lated again using Gram-Schmidt procedure. Similar to example 5.3.1, the 

first column of the transmitted signal X is normalized to a unit vector to 

obtain the first dimension of the orthonormal base matrix. 

u1 =
1
3
7

, e1 = 
1
3
7

=
59 59

3 59 59
7 59 59

    

 e1 = 
0.1302
0.3906
0.9113

   

where 

  |u1| = (1)² + (3)² + (7)²  = 59. 

The first column of Ux will be equal to e1.  

The second column unit vector for the second dimension of our or-

thonormal base is produced from the next column of the transmitted sig-

nal X. We subtract from the second column vector x2 its component on 

the first dimension. That is a projection of x2 in direction e1 as  shown in  

equation (1.1.3) in appendix 1. The vector u2 that is orthogonal to e1 is 

calculated from the equation 

  u2 = x2 – (e1
T x2) e1 

u2 = 
2

1
4

( 59 59 3 59 59 7 59 59)
2

1
4

×
59 59

3 59 59
7 59 59
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  u2 = 
2

1
4

59 59
3 59 59
7 59 59

=
2

1
4

29 59
87 59

203 59
=

147 59
28 59

33 59
 

u2 = 
147 59
28 59

33 59
 

Vector u2 is then normalized by dividing column vector values by its length 

which gives e2. The length of u2 is given as 

  |u2| = ( 147 59)² + ( 28 59)² + (33 59)² = 2.5973 

  u2 =
147 59
28 59

33 59
,e2 = 

.

147 59
28 59

33 59
=

0.9593
0.1827

0.2153
      

  Ux =
0.1302 0.9593
0.3906 0.1827
0.9113 0.2153

                                           (5.4.2) 

Now we get two column orthonormal base vectors that are enough for a two dimen-

sional signal space needed for two transmitted signals. However, since we have 2 

transmitted column signals and 3 receiver column signals, we need a 3 dimensional 

common space matrix (3 dimensional orthonormal basis Ux) to map both transmitted 

signals and the received signals. The number of dimensions of the orthonormal basis 

matrix Ux depends on the maximum number of transmitters and receivers in the MIMO 

system. Therefore we need to add a third column signals which is linearly independent 

from the first and second column of the transmitted signal X to generate the three di-

mensional orthonormal basis matrix Ux. In the next example, we generate the third col-

umn signals of the orthonormal basis matrix Ux by adding an additional linearly inde-

pendent identity column signal. 

Example 5.4.2 

A randomly selected linearly independent third column signal is added to 

the transmitted signal. Hence the transmitted signals X to be decompose 

is of the form  

X=
2 0

3 1 0
7 4 1

, x1=
1
3
7

, x2=
2

1
4

, x3=
0
0
1

                 (5.4.3) 

However, since the orthonormal base column of the first and second col-

umn signals of the transmitted signal X were generated in example 

(5.4.1), what is left now is to generate the third column signal e3 of the or-

thonormal base. The third column signal e3 of the orthonormal basis is 

calculated using the third column signal of the transmitted signals X when 
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we subtract its projections to the first and second dimension and then 

normalize. The result vector u3 is calculated by the expression 

  u3 = x3 – (e1
T x3)e1 – (e2

T x3)e2  

  e1 =
59 59

3 59 59
7 59 59

, e2 =
0.9593
0.1827

0.2153
 

u3 = 
0
0
1

( 59 59 3 59 59 7 59 59)
0
0
1

×
59 59

3 59 59
7 59 59

 

 ( 0.9593 0.1827 0.2153)
0
0
1

×
0.9593
0.1827

0.2153
  

 u3 = 
0
0
1

7 59
21 59
49 59

0.2065
0.0393

0.0464
=

0.0879
0.3166

0.1231
 

The vector u3 is normalized by first finding its absolute value or length of 

  |u3| = (0.0879)² + ( 0.3166)² + (0.1231)² = 0.3509  

  e3 = 
.

0.0879
0.3166

0.1231
=

0.2505
0.9023

0.3508
 

             Since Ux = (e1 e2 e3), the orthogonal basis matrix is given as  

  Ux=
0.1302 0.9593 0.2505
0.3906 0.1827 0.9023
0.9113 0.2153 0.3508

                            (5.4.4) 

 

Comparing equation (5.4.4) to that in equation (5.3.3) of example (5.3.1), the or-

thonormal base is the same even though they are generated with the help of different 

transmitted signal matrix. It should be noted that in vector representation, the signs of 

the column vector signals values do not play any important role. Figure 11 shows the 

column vectors of the orthonormal base in equation (5.4.4). 
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  Figure 11. Column vectors of orthonormal base Ux (non square case). 

 

Comparing the functions graphs of the orthonormal basis Ux in figure 10 and 11, it can 

be seen that the first and second column functions are exactly the same. However, 

their third column functions are the same but in opposite direction. This is because the 

third column signals of the transmitted signals are different in sign. The upper triangular 

matrix R to equation (5.4.4) can found in appendix 4. 

 

To further analyze the characteristics of the orthonormal basis matrix Ux, we modify the 

third identity column vector signals of the transmitted signals X in order to observe the 

orthonormal base matrix Ux characteristics. In the next example, we calculate only the 

third column vector of the orthonormal basis Ux matrix using the same procedure in 

example (5.4.2) since the first and second column signals of the transmitted signal X is 

the same as in equation (5.4.1). However, since the first and second column signals of 

the transmitted signals X is same as equation (5.4.1), their column vector values of the 

orthonormal basis will be the same as in equation (5.4.2) and therefore there is no 

need to calculate the column vectors e1 and e2 again only e3 have to be calculated.  

Example 5.4.3  

The modified transmitted signals X is of the form 

  X=
2 1

3 1 0
7 4 0

                                                            (5.4.5)  

Also 

e1 =
59 59

3 59 59
7 59 59

, e2 =
0.9593
0.1827

0.2153
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The third column signal e3 of the orthonormal base is calculated using the 

third column of the transmitted signals X when we subtract its projections 

to the first and second dimension and then normalized. Vector u3 is calcu-

lated from the expression 

u3 = x3 – (e1
T x3)e1 – (e2

T x3)e2  

u3 = 
1
0
0

( 59 59 3 59 59 7 59 59)
1
0
0

×
59 59

3 59 59
7 59 59

 

 ( 0.9593 0.1827 0.2153)
1
0
0

×
0.9593
0.1827

0.2153
  

 u3 = 
1
0
0

1 59
3 59
7 59

0.9203
0.1753
0.2065

=
0.0628
0.2261

0.0879
 

The vector u3 is normalized by first finding its absolute value or length of 

u3. 

  |u3| = (0.0628)² + ( 0.2261)² + (0.0879)² = 0.2506 

  e3 = 
.

0.0628
0.2261

0.0879
=

0.2506
0.9022

0.3508
 

             Since Ux = (e1 e2 e3), the orthogonal basis matrix is given as  

  Ux=
0.1302 0.9593 0.2506
0.3906 0.1827 0.9022
0.9113 0.2153 0.3508

                      (5.4.6) 

 

We have calculated the orthonormal basis matrix Ux which gives the same column vec-

tor signals as in equation (5.3.3) and equation (5.4.4). This indicates that the last col-

umn vectors of the training signal X in examples example (5.4.2) and (5.4.3) can be 

different. Figure 12 shows the column vectors of the orthonormal basis Ux in equation 

(5.4.6). 
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 Figure 12. Orthonormal basis column functions Ux 

 

Comparing figure 12 to figure 11, it can be seen that both figures are the same. In 

MIMO systems, to determine channel characteristics the transmitted signals have to be 

linearly independent. The characteristics of the orthonormal base signals in the case 

where the transmitted signals are dependent. The next example calculates the or-

thonormal base using linearly dependent transmitted signal. 

Example 5.4.4 
In this example, we calculate the orthonormal base matrix Ux in the case 

where column signals of the transmitted signal X are dependent say 

  X =
4

4 1 2
16 4 8

, x1 =
8

4
16

, x2 =
2

1
4

, x3 =
4

2
8

 (5.4.7) 

To show that the transmitted signals are linearly dependent, we calculate 

such that 

 ax1 + bx2 + cx3  0, if a, b and c are not all zero. 

With the vectors x1, x2 and x3  

 a
8

4
16

+ b
2

1
4

+c
4

2
8

 = 
0
0
0

 

If a = 1, b = 0 and c = 2 then  

  1
8

4
16

+ 0
2

1
4

2
4

2
8

 = 
0
0
0

 

Hence the training signal X in equation (5.4.7) is dependent. 
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Now that we have proofed that the column signals of the transmitted sig-

nal in equation (5.4.7) linearly dependent, we proceed to calculate the or-

thonormal base vectors. The first column of the transmitted signal X is 

normalized to a unit vector to obtain the first orthonormal space Ux di-

mension. This give  

u1 =
8

4
16

, e1 = 
.

8
4

16
=  

0.4364
0.2182
0.8729

 

 Where the length of u1 is 

  |u1| = ( 8)² + (4)² + (16)²  = 4 21 = 18.3303  

The second column unit vector for the second dimension of orthonormal 

base Ux is produced from the next column of the transmitted signal X. For 

this we subtract from the second column vector x2 its component on the 

first dimension. This component is a projection of x2 in direction e1 and this 

can be shown in equation (1.1.3) in appendix 2. The projection of x2 which 

produce vector u2 is given by the expression 

  u2 = x2 – (e1
T x2) e1 

 u2 = 
2

1
4

( 0.4364 0.2182 0.8729)
2

1
4

×
0.4364

0.2182
0.8729

   

  u2 = 
2

1
4

4.5826
0.4364

0.2182
0.8729

=
2

1
4

1.9998
0.9999
4.0001

=
0.0002

0.0001
0.0001

 

 u2 =
0.0002

0.0001
0.0001

0
0
0

,    e2 = 
0
0
0

 

 

The third column e3 is deduced from the third column of the transmitted 

signal X when we subtract its projections to the first and second dimen-

sions and normalize it. Vector u3 is calculated from the expression 

  u3 = x3 – (e1
T x3)e1 – (e2

T x3)e2 

u3 = 
4

2
8

( 0.4364 0.2182 0.8729)
4

2
8

×
0.4364

0.2182
0.8729

 

 (0 0 0)
4

2
8

×
0.9593
0.1827

0.2153
  

 u3 = 
4

2
8

3.9997
1.9998
8.0003

0
0
0

=
0.0003

0.0002
0.0003

 
0
0
0
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 e2 = 
0
0
0

   

Since Ux = (e1 e2 e3), the orthogonal basis for is given as  

  Ux =
0.4364 0 0

0.2182 0 0
0.8729 0 0

                                              (5.4.11)      

 

We draw the graph of the orthogonal base matrix obtained in equation (5.4.11) in order 

to see it characteristics. Figure 13 shows the graph the various column vectors of the 

orthonormal base Ux (equation 5.4.11). 

 

 
    Figure 13. Column vectors of the orthonormal base Ux. 

 

Referring to figure 13, it can be seen that if the column signals of the transmitted signal 

X are dependent, the result of its orthonormal base produces only one dimensional 

space vector. This proves that we cannot model MIMO channel if the transmitted sig-

nals are dependent.  

 

The next chapter explains how to determine the generalized Fourier coefficients of the 

transmitted signal X and received signal Y with the help of the orthonormal space ma-

trix. The generalized Fourier coefficients which are coefficients of any orthogonal set of 

functions are needed to split both the transmitted signal X and received signal Y to 

help model the channel matrix.  
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6 Generalized Fourier coefficients of X and Y 

6.1 Generalized Fourier coefficients estimation (square case) 
 

Generalized Fourier coefficients mean coefficients of any orthogonal set of functions 

over which a signal is split up. Those functions are for example column vectors of the 

orthonormal bases Ux matrices in equation (5.3.3) and equation (5.4.6). The general-

ized Fourier coefficients of the transmitted signal Wx tell how much each column signal 

of the transmitted signal X contains each orthogonal column components in the or-

thonormal base Ux. 

Example 6.1 
The transmitted signal X can be written as a linear combination of the mu-

tually orthogonal column vectors uk, K=1,2,3, of the orthonormal basis 

Ux.[9,167-168] Therefore the generalized Fourier coefficients of the 

transmitted signals X in equation (5.3.2) with respect to the orthonormal 

basis Ux in equation (5.3.3) is calculated from the expression 

  Wx = Ux X 

Ux =
0.1302 0.9593 0.2510
0.3906 0.1827 0.9022
0.9113 0.2153 0.3512

, X =
2 2

3 1 2
7 4 3

       

Wx=Ux X=
0.1302 0.9593 0.2510
0.3906 0.1827 0.9022
0.9113 0.2153 0.3512

2 2
3 1 2
7 4 3

               (6.1.1) 

The generalized Fourier coefficient of X (equation 6.1.1) is calculated by 

taking the first sample of each orthonormal base column vectors and mul-

tiply them to each column samples of transmitted signal X. For example, 

to calculate the sample value of - 4.5047 in equation (6.1.2), we take 

samples of each column vector of the orthonormal base Ux (0.1302 – 

0.9593 -0.2510) and multiply it to the column signal
1
3
7

 of the transmitted 

signal X. The same samples are multiplied to the second and third col-

umn signals of the transmitted signal X to obtain the values – 2.2237 and 

– 2.4112 of Wx. This process is applied to all the samples in Ux and the 

column signals of X to determine all the values of Wx. The values of Wx is 

given as  

  Wx=
4.5047 2.2237 2.4112

6.1579 2.6449 3.1224
0.9012 3.0121 1.1996

                         (6.1.2) 
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Figure 14 shows the graph of the column vector signals of the Fourier coefficients of 

the transmitted signal Wx obtained in equation 6.2.1.  

 

 
Figure 14. Function graph of Wx column vector signals (square case). 

 

The column functions w1, w2 and w3 in figure 14 indicate the coefficients of the orthog-

onal sets of the orthonormal base Ux vectors in figure 10 over which the transmitted 

signals in equation 5.3.2 are split up.  

 

The generalized Fourier coefficients of the received signal Y with respect to the or-

thonormal base Ux are also needed to calculate channel matrix. These coefficients are 

determined by the projections of the column vectors of the received signal Y onto the 

orthonormal basis Ux. In the next example, the generalized Fourier coefficients of the 

received signal Y are calculated. 

Example 6.2 
The Fourier coefficients of the received signal Y with respect to the or-

thonormal basis Ux in equation 5.2.2 is also calculated as  

  Wy = Ux Y 

Ux =
0.1302 0.9593 0.2510
0.3906 0.1827 0.9022
0.9113 0.2153 0.3512

, Y =
1 4 2

1 1
2 7 3

        

Wy = Ux Y = 
0.1302 0.9593 0.2510
0.3906 0.1827 0.9022
0.9113 0.2153 0.3512

1 4 2
1 1

2 7 3
         (6.1.3) 

From equation 6.1.3 we calculate the values of Wy using the same pro-

cess applied to obtain equation 6.1.2. First we take samples of each or-

thonormal base Ux column vectors and multiply them with each column 
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signal of the received signals. For example, to calculate the sample value 

of – 8.0462, we take samples of each column vector of Ux example 

(0.1302 – 0.9593 0.2510) and multiply it with the column signal
1
8
2

. 

These same samples are multiplied to the second and third column sig-

nals of the transmitted signal X to obtain the values – 0.2769 and 0.0541 

of Wy. This process is applied to all the samples in Ux and the column sig-

nals of Y to determine all the values of Wy. The values of Wy is then given 

as 

  Wy=
8.0462 0.2769 0.0541

0.7334 8.0605 2.1081
1.9313 0.9715 3.0915

                         (6.1.4) 

Figure 15 shows the graphical characteristics of the generalized Fourier coefficients of 

the received signal Wy. 

 

 
Figure 15. Function graph of Wy column vectors (square case). 

 

The column functions w1, w2 and w3 of Wy in figure 15 represent the first, second and 

third column vectors respectively. The next section explains how the generalized Fou-

rier coefficients of the transmitted signal X and received signal Y is obtained in the 

case where the transmitted signal X is a non square matrix. 

 

6.2 Generalized Fourier coefficients estimation (non square case) 
 

This subchapter is to determine the generalized Fourier coefficients of both the trans-

mitted and received vector signals using the orthonormal basis Ux calculated in equa-
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tion (5.4.4). This is to help determine the behaviour of the transfer channel matrix. Ex-

ample 6.3 explains how to find the generalized Fourier coefficients of both the transmit-

ted signal X and the received signal Y. 

Example 6.3 
The generalized Fourier coefficients of the transmitted signal X (equation 

(5.4.1)) with respect to the orthonormal basis Ux obtained in equation 

(5.4.4) is calculated as 

  Ux =
0.1302 0.9593 0.2505
0.3906 0.1827 0.9023
0.9113 0.2153 0.3508

,  

X =
2

3 1
7 4

  and Y = 
1 4 2

1 1
2 7 3

 

 then 

  Wx = Ux X = 
0.1302 0.9593 0.2505
0.3906 0.1827 0.9023
0.9113 0.2153 0.3508

×
2

3 1
7 4

  

The values in Wx are calculated by taking samples of each orthonormal 

basis Ux column vectors and multiplying them with each transmitted col-

umn signals. For example we obtain the signal value – 0.9942 in Wx by 

taking sample values of each orthonormal basis Ux column vectors 

(0.1303 – 0.9593 0.2525) and multiplying them with the column signals of 

the transmitted signal 
1
3
7

. The same samples are multiplied to the sec-

ond column signals of the transmitted signal X to obtain the next value – 

0.2177 in Wx. The process is applied to the all the column sample values 

of Ux and column signals of X to obtain the generalized Fourier coefficient 

values of Wx.  

  Wx = 
0.9942 0.2177
6.4736 4.5731

4.0128 0.2041
                             (6.2.1) 

We obtain the values in Wy in equation (6.2.2) similar to the process in 

obtaining the values in equation (6.2.1) by multiplying samples of each 

column vectors of Ux with each column signals of the received signal Y. 

The generalized Fourier coefficient of the received signal Y is obtained 

from the expression 

   Wy = Ux Y 

  Wy= 
0.1302 0.9593 0.2505
0.3906 0.1827 0.9023
0.9113 0.2153 0.3508

×
1 4 2

1 1
2 7 3
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  Wy=
7.0432 3.2336 1.4504
2.8756 4.5710 3.3054

3.3353 5.8855 0.9855
                          (6.2.2) 

 

Hence we are able to determine the generalized coefficients of both the transmitted 

and received signals. The next important part of this project is the estimation or the 

modelling of the transfer channel c. Estimating the transfer channel will help us de-

termine how the transmitted signals are transformed to produce an output signal (re-

ceived signal). In the next chapter the transfer channel is estimated in two scenarios. In 

the first scenario, the transfer channel is estimated with the help of the Fourier coeffi-

cients obtained in the case where all matrixes are square and the second scenario 

where the Fourier coefficients matrix is a non-square matrix. These Fourier coefficients 

are the generalized Fourier coefficients obtained in sections (6.1) and (6.2) respective-

ly.   

 

7 Transfer channel estimation c 

7.1 Channel estimation (square case) 
 

In the previous chapters (Chapter 5 and 6), we have successfully calculated the or-

thonormal basis Ux matrix by the decomposition of the transmitted signal X in the case 

where the transmitted signals is a square matrix and also in the case where it is not a 

square  matrix. After obtaining the orthonormal basis matrix, we proceeded to obtain 

the generalized Fourier coefficients of both the transmitted signal and the received sig-

nal in both cases (square and non square) using the orthonormal basis Ux matrixes. In 

this chapter, we estimate the transfer channel matrix c (square case) with the help of 

the generalized Fourier coefficients estimated in subchapter 6.1. The channel is esti-

mated by the expression   

 Wy = c Wx                               

c = Wx
-1 Wy                                                         [9,166]      (7.1.1) 

where Wx
-1, is the inverse of generalized Fourier coefficients of Wx and Wy the Fourier 

coefficients of the received signal Y.  

 

However, since Wx is a square matrix, its inverse Wx
-1 is calculated by applying the 

normal matrix inverse calculation process. The process of how to calculate the inverse 
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of a 3 x 3 matrix can be found in appendix 2. Example 7.1 explains how the channel 

matrix is estimated. 

Example 7.1 
To estimate the channel transfer matrix c, the inverse of the generalized 

Fourier coefficient of the transmitted signal Wx have to be calculated and 

then multiply with the generalized Fourier coefficient of the received sig-

nal Wy as expressed in equation (7.1.1). Therefore the inverse of Wx in 

equation (6.1.2) is calculated by 

Wx=
4.5047 2.2237 2.4112

6.1579 2.6449 3.1224
0.9012 3.0121 1.1996

                        (7.1.2)  

First the minors of Wx is calculated by going through each element of the 

matrix (Wx) and replacing each element by the determinant of the 2 x 2 

matrix that result from deleting the elements row and column. Example 

we obtain the minor value 12.5778 by replacing the value – 4.5138 in 

equation (7.1.2) by the 2 x 2 determinant 2.6449 3.1224
3.0121 1.1996  which gives 

the minor value 12.5778 deleting the value - 4.5138 row and column. This 

process is performed on each value in equation (7.1.2) to obtain the mi-

nors of Wx as   

 Minors of Wx are 
12.5778 10.2009 16.1646

9.9303 7.5768 11.5646
0.5659 0.7825 1.7788

                         (7.1.3) 

The cofactors of Wx are then determined by changing the signs of the mi-

nors. The minors are changed by applying the following 

signs
+

+
. 

 Cofactors of Wx are 
12.5778 10.2009 16.1646
9.9303 7.5768 11.5646
0.5659 0.7825 1.7788

                 (7.1.4) 

 

The next step is to calculate the determinant of Wx by the sum of an ele-

ment-by-element multiplication of Wx with the cofactors matrix. This gives 

the same value whichever row or column is used. Using the first row of 

equation (7.1.2) and the first row of the its cofactors, we obtain the deter-

minant of Wx as  

 det(Wx)= 4.5047 (12.5778)– ( 2.2237x10.2009) + ( 2.4112x 16.1646) 

 det(Wx) = 5.0006  
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Next is to determine the adjoint matrix of Wx by finding the transpose of 

the cofactors of Wx. This means that to get the adjoint of Wx we change 

each row of the cofactors to become a column  

   Adj(Wx) = 
12.5778 9.9303 0.5659

10.2009 7.5768 0.7825
16.1646 11.5646 1.7788

 

 

Finally the inverse of Wx is found by dividing each value of the adjoint ma-

trix by the determinant. Therefore, we obtain the inverse of Wx as 

  Wx
-1 = 

.

12.5778 9.9303 0.5659
10.2009 7.5768 0.7825
16.1646 11.5646 1.7788

                            

  Wx
-1 = 

2.5153 1.9858 0.1132
2.0399 1.5152 0.1565
3.2325 2.3126 0.3557

                       (7.1.5)               

The channel matrix is estimated by multiplying the inverse of the Fourier 

coefficients of the transmitted signal Wx
-1 and generalized Fourier coeffi-

cients of the received signal Wy obtained in equation (6.1.4). 

   c = Wx
-1 Wy  

c = 
2.5153 1.9858 0.1132

2.0399 1.5152 0.1565
3.2325 2.3126 0.3557

×
8.0462 0.2769 0.0541

0.7334 8.0605 2.1081
1.9313 0.9715 3.0915

 

 

Hence, to obtain an estimate of the transfer channel matrix c, we take 

samples of each column signals of Wx
-1 obtained in equation (7.1.5) and 

multiply them with each column signals of the generalized Fourier coeffi-

cients of the received signal Wy to obtain each transfer channel values. 

Example to obtain the channel value – 19.0008 in equation (7.1.6), we 

take sample values of each column signals obtained in equation (7.1.5), 

that is values (2.5153 1.9858 – 0.1132) and multiply it with the column 

signal of the generalized Fourier coefficients of the received signal 
8.0462

0.7334
1.9313

. The same samples are multiplied to the second and third 

column signals of Wy to obtain the values 15.2000 and 4.4001 in equa-

tion (7.1.6). The process is applied to the all the column sample values of 

Wx
-1 and column signals of Wy to estimate the channel transfer matrix as     

 c=
19.0008 15.2000 4.4001

14.9999 11.8005 2.6000
25.0002 17.4001 5.8000

19 15.2 4.4
15 11.8 2.6
25 17.4 5.8

    (7.1.6)                       
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Figure 16 illustrates the characteristics of the transfer channel coefficients from the 

transmitter to the receiver. 

 
                      Figure 16. Estimated transfer channel c characteristics. 

 

In figure 16, the number 19 for example indicate the channel coefficient from TX1 to 

RX1. Also the number 15.2 indicate the channel coefficient from TX1 to RX2, 4.4 the 

channel coefficient from TX1 to RX3.  

 

7.2 Transfer channel estimation (non square case) 
 

The number of receivers may be different from the number of transmitters, M  N and 

therefore it is also important to determine the characteristics. That is if we observe K = 

3 time samples per X and per Y respectively and M=2 and N=3 The calculation of the 

transfer channel matrix c follows the same steps as in example (7.1) by first calculat-

ing inverse of the generalized Fourier coefficient of transmitted signal X and the multi-

ply it with the generalized Fourier coefficient of the received signal Y. However, the 

generalized Fourier coefficients of the transmitted signal Wx in this case is not a square 

matrix and therefore the Moore-Penrose pseudo inverse of the transmitted signal Wx 

have to be calculated. Referring to equation (7.1.1) the channel transfer matrix can be 

estimated using the expression 

 c = Wx
+ Wy   

where Wx
+ is the pseudo inverse of Wx and Wy the Fourier coefficients of the received 

signal Y. Mathematically, the Moore-Penrose pseudo-inverse of Wx can be calculated 

by expression 
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 Wx = 
( ) , M <

( ) , M >
                         [9,165] (7.2.1) 

where Wx
T is the transpose of Fourier coefficients of transmitted signal, M is number of 

transmit rows and N the number of receive columns. The next example estimates the 

transfer channel. 

Example 7.2  
In equation (7.2.1) the Moore-Penrose pseudo-inverse expresses two 

conditions on how the inverse the Fourier coefficients of the transmitted 

signals Wx can be calculated. The first condition satisfies this example 

(where N=3 and M=2) and therefore it will be used to calculate the pseu-

do inverse of Wx calculated in equation (6.2.1). The Moore-Penrose 

pseudo-inverse of the Fourier coefficients of the transmitted signal is cal-

culated as   

  Wx = 
0.9942 0.2177
6.4736 4.5731

4.0128 0.2041
 

Using the first condition in equation 7.2.1 

  (Wx
T  Wx)-1  Wx

T, M < N  

First  the  inverse  of  (Wx
T Wx)-1 is calculated and multiplied by the trans-

pose Wx
T .  

 Wx
T Wx = 0.9942 6.4736 4.0128

0.2177 4.5731 0.2041 ×
0.9942 0.2177
6.4736 4.5731

4.0128 0.2041
 

  Wx
T Wx = 58.9985 29.0018

29.0018 21.0023                                      (7.2.2) 

Since equation (7.2.2) is a 2 x 2 matrix, its inverse is calculated as the 2 x 

2 inverse calculations in example (5.2.2) (equation (5.2.7)).  

 (Wx
T Wx)-1 = 21.0023 29.0018

29.0018 58.9985 × 
( . )( . ) ( . )( . )

 

  (Wx
T Wx)-1 = 0.0528 0.0729

0.0729 0.1482  

 (Wx
T Wx)-1  Wx

T= 0.0528 0.0729
0.0729 0.1482 × 0.9942 6.4736 4.0128

0.2177 4.5731 0.2041  

The Pseudo inverse of the Fourier coefficients of the transmitted signal is 

obtained as  

 Wx
+ = (Wx

T  Wx)-1  Wx
T = 0.0366 0.0084 0.2267

0.0402 0.2058 0.3228             (7.2.3) 

 

Finally, the channel matrix is estimated by taking samples of each column 

signals of the pseudo inverse Wx
+ obtained in equation (7.2.3) and multi-
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ply them with each column signals of the generalized Fourier coefficients 

of the received signal Wy obtained in equation (6.2.2). For a example to 

obtain the channel transfer matrix value 1.0380 in equation 7.2.4 below, 

we take sample values of each column signals of the pseudo inverse of 

the transmitted signal Wx, example (-0.0366 -0.0084 0.2267) and multiply 

it with the column signal of the generalized Fourier coefficients of the re-

ceived signal 
7.0432
2.8756

3.3353
. The same samples are multiplied to the sec-

ond and third column signals of Wy to obtain the values 1.2543 and 

0.2487 in equation (7.2.4). The process is applied to the next column 

sample values of the pseudo inverse of the transmitted signal Wx
+ and 

column signals of Wy. Hence the transfer channel matrix is estimated by 

the expression 

c = Wx
+ Wy 

                Wy=
7.0432 3.2336 1.4504
2.8756 4.5710 3.3054

3.3353 5.8855 0.9855
, Wx

+= 0.0366 0.0084 0.2267
0.0402 0.2058 0.3228  

 c = 0.0366 0.0084 0.2267
0.0402 0.2058 0.3228 ×

7.0432 3.2336 1.4504
2.8756 4.5710 3.3054

3.3353 5.8855 0.9855
 

  c = 1.0380 1.2543 0.2487
0.7737 0.8291 1.0567                           (7.2.4) 

 

Hence equation (7.2.4) indicates the channel coefficients of the 2 x 3 MIMO channel 

system. Estimating the received signals is also an important aspect of this project. This 

is to prove whether the modelled channels were able to produce accurate outputs or 

not. The next chapter estimates the received signals with the help of the pre calculated 

channels. 

 

8 Received signal estimation , channel c, transmitted signal X known 

8.1 Received signal (square case) 
 

The transmission channel is pre-modelled or calculated before information is transmit-

ted over the channel. Information transmitted is then measured at the receiver. The 

received signal is given as  

 = X c                                                                            (8.1.1) 
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Example 8.1 
In equation (5.3.1) and equation (7.1.6), the transmitted signals and 

channel matrix are  

  X =
2 2

3 1 2
7 4 3

, c = 
19.0008 15.2000 4.4001

14.9999 11.8005 2.6000
25.0002 17.4001 5.8000

 

From equation (8.1.1), the received signal is given by taking first of all 

transmitted column signals and multiplying them with each column of the 

estimated transfer channel c. For example to obtain the received signal 

value 1 in equation (8.1.2), we take sample values of all column signals of 

the transmitted signal X at the first time instance, example (1 -2 2) and 

multiply it with the column signal of the transfer channel, example 
19.0008

14.9999
25.0002

. The same samples are multiplied to the second and third 

column signals of c to obtain the sample values 4 and 2 in equation 

(8.1.2). The process is applied to the second and third column sample 

values of the transmitted signal X and the column signals of the transfer 

channel c. The received signal is estimated as 

 = X c 

   = 
2 2

3 1 2
7 4 3

×
19.0008 15.2000 4.4001

14.9999 11.8005 2.6000
25.0002 17.4001 5.8000

 

    = 
0.9998 4.0008 1.9999
7.9979 1.0007 0.9997
1.9946 6.9977 3.0007

 
1 4 2

1 1
2 7 3

                 

       =  
1 4 2

1 1
2 7 3

                                             (8.1.2)  

 

From the results obtained in equation (8.1.2) have shown that the channel modelled in 

equation (7.1.6) have produced a received signal identical to the received signal in 

equation (5.3.1). Figure 17 shows how the estimated transfer channel c transforms all 

the training signals to produce an output receive signals in equation (8.1.2). 

 

  X =
2 2

3 1 2
7 4 3

, c =
19 15.2 4.4

15 11.8 2.6
25 17.4 5.8

,   
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                   Figure 17. Channel coefficients.    

 

In figure 17, three baseband signals x1, x2 and x3 are transmitted from the three trans-

mitters. These signals are then transformed by the channel coefficients or characteris-

tics and received at the receiver as y1, y2 and y3. The received signals are derived from 

the expressions 

 =
y , y , y ,
y , y , y ,
y , y , y ,

, y1 =
y ,
y ,
y ,

, y2 =
y ,
y ,
y ,

, y3 = 
y ,
y ,
y ,

  

 y1 = 19x1 + 15x2 + 25x3                                                         (8.1.3) 

 y2 = 15.2x1 + 11.8x2 + 17.4x3                     (8.1.4) 

 y3 = 4.4x1 + 2.6x2 + 5.8x3                      (8.1.5) 

Equations (8.1.3), (8.1.4) and (8.1.5) show that the first received signal y1 is produced 

when each column signal of the transmitted signal X are weighted by the channel coef-

ficients.   

Example 8.2 
In equation (8.1.3) the first column signal of the transmitted signal is 

weighted by the channel coefficients as 

  wx11 = 19x1 = 19
1
3
7

 = 
19
57

133
         (8.1.6) 

  wx21 = 15x2 = 15
2

1
4

 = 
30

15
60

                                   (8.1.7) 

  wx31 = 25x3 = 25
2
2
3

 = 
50
50
75

                           (8.1.8) 
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 y1 = 
19
57

133
+

30
15
60

+
50
50
75

 = 
1
8
2

   (8.1.9) 

These weighted signals are then put together by the first receiving antenna RX1 to pro-

duce the first received signal y1. Figure 18 shows the behaviour of each column trans-

mitted signal weighted by the channel coefficients.  

 

 
  Figure 18. Weighted transmitted column signal X received by RX1.   

 

Referring to figure 18, all the weighted column signals of the transmitted signal X are 

put together to produce one received signal. Figure 19 show the graph of the first re-

ceived signal.   

 

 
 Figure 19. Function graph of first estimated received signal y1. 
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The second receiving antenna RX2 estimated the second received signal y2 similar to 

how the first received signal was estimated but in this case with different channel coef-

ficients.  

Example 8.3 
The second received signal was estimate from the expression  

  y2 = 15.2x1 + 11.8x2 + 17.4x3   

  wx12 = 15.2x1 = 15.2
1
3
7

 = 
15.2
45.6

106.4
                          (8.1.10) 

  w22 = 11.8x2 = 11.8
2

1
4

 = 
23.6
11.8
47.2

                     (8.1.11) 

  w32 = 17.4x3 = 17.4
2
2
3

 = 
34.8
34.8
52.2

                       (8.1.12) 

  y2 = 
15.2
45.6

106.4
+

23.6
11.8
47.2

+
34.8
34.8
52.2

 = 
4
1

7
                  (8.1.13) 

 

Figure 20 also shows the behaviour of each column signal of the transmitted signals 

when transformed by the channel coefficients in equation (8.1.10), (8.1.11) and (8.1.12) 

respectively.  

. 

 
   Figure 20. Weighted transmitted signals characteristics known at RX2.     

 

The weighted signals in figure 20 are added to produce the second received signal y2 

as in equation (8.1.4). Figure 21 illustrate the graph of the second received signal ob-
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tained after each column signal of the transmitted signal X is weighted by the different 

channel coefficients. 

 

 
     Figure 21. Function graph of second estimated received signal y2.   

 

Figure 21 also shows the graph of the second received signal y2 when all the weighted 

transmitted signals are added together as in equation (8.1.13). 

 

Finally, the third receiver RX3 estimates the third column signal y3 in the same way as 

the first and second received signals but also with different channel coefficients.  

Example 8.4 

Each transmitted column signal characteristics is calculated as 

  y3 = 4.4x1 + 2.6x2 + 5.8x3    

  wx13 = 4.4
1
3
7

 = 
4.4

13.2
30.8

                                          (8.1.14) 

  wx23 = 2.6
2

1
4

 = 
5.2

2.6
10.4

                                          (8.1.15) 

  wx33 = 5.8
2
2
3

 = 
11.6
11.6
17.4

                        (8.1.16) 

  y3 = 
4.4

13.2
30.8

+
5.2

2.6
10.4

+
11.6
11.6
17.4

 = 
2
1
3

                      (8.1.17) 

 

Figure 22 illustrates the characteristics of each column signal of the transmitted signal 

expressed in equation (8.1.14), (8.1.14) and (8.1.14) respectively.  
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Figure 22. Weighted transmitted signals characteristics known at RX3.        

 

The weighted transmitted signals in figure 22 are added together to produce the third 

received signal y3 as in equation (8.1.5). Figure 23 illustrates the received signal y3 at 

RX3.  

 

 
    Figure 23. Function graph of third estimated received signal y3.  

 

The column signals estimated in figure 19, 21 and 23 respectively by the receiving an-

tennas are then processed together by the receiving terminal to produce one received 

signal  as 

  =  
1 4 2

1 1
2 7 3

 = [y1 y2 y3]   
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Figure 24 shows the estimated received signal  received at the receiver end of the 

MIMO system in figure 17. 

 
   Figure 24. Function graph of estimated received signal . 

 

Another important aspect of this project is to estimate the receive signal in the case 

where the transmission channel is non square. The next section estimates the received 

signal using the channel modelled from the 2x3 MIMO system. 

 

8.2 Received signal (non square case) 
 

This subchapter explains how to estimate the receive signals using the modelled chan-

nel calculated in equation (7.2.1). In subchapter (7.2), the transfer channel modelled in 

the 2 x 3 MIMO system was  

 c = 1.0380 1.2543 0.2487
0.7737 0.8291 1.0567   

if the information transmitted (equation (5.4.2)) over the channel is 

 X =
2

3 1
7 4

.  

Then the received signal in this case can be calculated by taking sample values of 

each column signals of the transmitted signal X and multiplying them with the column 

signals of the transfer channel at different time instances. The received signal can be 

estimated from the expression  

  = X c 

  = 
2

3 1
7 4

1.0380 1.2543 0.2487
0.7737 0.8291 1.0567   
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  = 
2.5854 2.9125 2.3621
2.3403 2.9338 0.3106
4.1712 5.4637 2.4859

 
2.6 2.9 2.4
2.3 2.9 0.3
4.2 5.5 2.5

                 (8.2.1) 

 

Figure 25 shows the various transmitted signals transmitted from the two transmitting 

antennas and also the channel coefficients. 

 

 
                 Figure 25. A 2 x 3 channel transformation of X 

 

From figure 25 it can be seen that the channel model does not produce the expected 

received signals. The estimated received signals in equation (8.2.1) and the received 

signals in equation (5.3.1) are not the same 

 Y = 
1 4 2

1 1
2 7 3

 and  = 
2.6 2.9 2.4
2.3 2.9 0.3
4.2 5.5 2.5

   

Since we do not have the exact channel transfer matrix c, the estimation quality can 

only be determined indirectly by finding the error norm (Frobenius norm) of the receive 

signal” [9,170]. The Frobenius norm is used to measure RMS (root-mean-square) gain 

of a matrix and its average response along given mutually orthogonal directions in 

space. The Frobenius norm can be calculated from the expression 

 = ( | | )                                     [9,168] 

where xi stands for the i-th column of Y –  and p = 1,2,… in this case p = 2. 

First the difference between the two vectors Y and  is calculated as 

 Y - =
1 4 2

1 1
2 7 3

2.5854 2.9125 2.3621
2.3403 2.9338 0.3106
4.1712 5.4637 2.4859

 



60 

 

 Y –  = 
1.5854 1.0875 0.3621

5.6597 3.9338 1.3106
2.1712 1.5363 0.5141

 

The length of the column signals are also calculated as 

 | | = ( 1.5854)² + (5.6597)² + ( 2.1712)² = 6.2658 

 | | = (1.0875)² + ( 3.9338)² + (1.5363)² = 4.3609 

 | | = ( 0.3621)² + (1.3106)² + ( 0.5141)² = 1.4536 

Hence the absolute error norm is calculated as 

 = (6.2658)² + (4.3609)² + (1.4536)²  = 7.7711 

The norm value explains the error between the received signal Y and the estimated 

received signal . This error can be corrected if one antenna at the receiver end of 

wireless link is left unused. This will change the system to a 2 x 2 MIMO system pro-

ducing a 2 x 2 channel.  

 

9 Estimation of transmitted signals 

9.1 Transmitted signal estimation (square case) 
 

Other important part in this project is the estimation of the transmitted signals over the 

channels that was modelled based on the known signals (known X and Y). Once the 

receiver has some knowledge about the transmission channel, it can estimate unknown 

signals that have been transmitted. Therefore, there is the need to include an additional 

step to estimate the transmitted signals. The transmitted signal is estimated from the 

expression  

 Y = c   

   = Y c
-1                                                                  (9.1.1) 

where c, the estimated transfer channel matrix obtained in equation (7.1.6) and Y the 

received signal. According to equation (9.1.1), the transmitted signal can be estimated 

by first finding the inverse of the estimated transfer channel matrix c
-1 and then multi-

plying it with the received signal Y. The general process to determine the inverse of the 

transfer channel matrix c
-1 is shown in appendix 2. The estimated transmitted signal  

is calculated in example 9.1. 
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Example 9.1 
If the received signal (equation (5.3.1)) and the estimated channel matrix 

(equation (7.1.6)) are  

  Y =
1 4 2

1 1
2 7 3

, c = 
19.0008 15.2000 4.4001

14.9999 11.8005 2.6000
25.0002 17.4001 5.8000

  

Then from equation (9.1.1) the inverse of the channel transfer matrix c 

is needed to estimate the transmitted signals. The inverse of channel 

transfer matrix c is calculated by first finding the minors of c by going 

through each element of the matrix and replacing each element by the 

determinant of the 2 x 2 matrix that result from deleting the elements row 

and column. Example the minor value –23.2026 is obtained by replacing 

the value – 19.0008 in c by the 2 x 2 determinant 11.8005 2.6000
17.4001 5.8000  

which gives the minor value –23.2026 deleting the value 19.0008 row 

and column. The process is performed on each value in c to obtain its 

minors as  

Minor of c are 
23.2026 21.9989 34.0106

11.5978 0.2013 49.3872
12.4034 16.5990 3.7795

   

 

To obtain the cofactors of c, the signs of the minors are changed by ap-

plying the following: 
+

+
 and this results  

Cofactors of c are 
23.2026 21.9989 34.0106
11.5978 0.2013 49.3872
12.4034 16.5990 3.7795

 

 

The determinant of c can be determined by the sum of an element-by-

element multiplication of c with the cofactors matrix. This gives the 

same value whichever row or column is used. Hence using the first row of 

c and the first row of the its cofactors, we obtain the determinant of c 

as  

 det( c) = 19.0008( 23.2026) 15.2000(21.9989)+( 4.4001)34.0106 

 det( c) = 43.1623 

 

The adjoint matrix is the transpose of the cofactors of c. This means 

that to get the adjoint of c we change each row of the cofactors to be-

come column.   
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Adjoint of c are 
23.2026 11.5978 12.4034
21.9989 0.2013 16.5990

34.0106 49.3872 3.7795
 

Hence the inverse of c by dividing each value of the adjoint matrix by 

the determinant. Therefore, the inverse of c is calculated as 

  c
-1 = 

.

23.2026 11.5978 12.4034
21.9989 0.2013 16.5990

34.0106 49.3872 3.7795
 

  c
-1 = 

0.5376 0.2687 0.2874
0.5097 0.0047 0.3846
0.7880 1.1442 0.0876

                          (9.1.2) 

 

The transmitted signals are estimated by taking samples of each column 

signal of the received signal Y and multiply them with each column sig-

nals of the inverse channel transfer matrix c
-1. For example to obtain the 

transmitted signal sample value 1.0004 in equation (9.1.3) we take sam-

ple values of each column signals of the received signal Y, example (1 4 

2) and multiply it with the column signal of the inverse channel transfer 

matrix 
0.5376
0.5097
0.7880

. The same samples are multiplied with the second and 

third column signals of c
-1 to obtain the values – 2.0009 and 2.001 in 

equation (9.1.3). The process is applied to the all the column samples 

values of Y and column signals of c
-1.   

   =  
1 4 2

1 1
2 7 3

×
0.5376 0.2687 0.2874
0.5097 0.0047 0.3846
0.7880 1.1442 0.0876

     

           The estimate of the transmitted signals is given as  

  =
1.0004 2.0009 2.001
3.0031 1.0007 2.0022
7.0071 4.0029 3.0042

2 2
3 1 2
7 4 3

       (9.1.3) 

 

Comparing the estimated transmitted signal  to the transmitted signal X in equation 

(5.3.1), the two signals are the same and we can say that MIMO works. It should be 

noted that the estimated transmitted signal  is not exact as the transmitted signal X 

due to the approximation of decimal values in the calculation process.   
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9.2 Transmitted signal estimation (non square case) 
 

In this section we estimate the transmitted signals using the non square channel mod-

el. Reference to equation (9.1.1), an estimate of the transmitted signal can be calculat-

ed using the expression  

 

   = Y c
+                                                        (9.2.1) 

Where c
+, the Pseudo inverse of the transfer channel and Y the received signal.  

If the received signal and the estimated channel are 

 Y =
1 4 2

1 1
2 7 3

, c = 1.0380 1.2543 0.2487
0.7737 0.8291 1.0567  

This means the pseudo inverse of the transfer channel is required to estimate the 

transmitted signal. The pseudo inverse of the estimated channel transfer matrix is cal-

culated using the second condition in equation (7.2.1) since the number of rows and 

columns of c satisfies the condition, M > N, that is of receivers are higher than the 

number of transmitters. 

 Wc
+ = Wc

T  (Wc  Wc
T)-1, M > N 

Therefore  

 Wc Wc
T = 1.0380 1.2543 0.2487

0.7737 0.8291 1.0567 ×
1.0380 0.7737
1.2543 0.8291
0.2487 1.0567

 

 Wc Wc
T = 2.7126 2.1058

2.1058 2.4026                      (9.2.2) 

Since equation (9.2.2) is a 2 x 2 matrix, its inverse can be calculated as 

 (Wc Wc
T)-1 = 2.4026 2.1058

2.1058 2.7126 × 
( . )( . ) ( . )( . )

 

 (Wc Wc
T)-1 = 

.
2.4026 2.1058
2.1058 2.7126  

 (Wc Wc
T)-1 = 1.1536 1.0111

1.0111 1.3024   

 Wc
T  (Wc Wc

T)-1 = 
1.0380 0.7737
1.2543 0.8291
0.2487 1.0567

× 1.1536 1.0111
1.0111 1.3024  

Hence, the Pseudo inverse of the transfer channel is calculated as  

 Wc
+ = Wc

T  (Wc Wc
T)-1 =

0.4151 0.0419
0.6087 0.1884
0.7815 1.1248

                           (9.2.3) 

Referring to equation (9.2.1), we have to multiply the received signal Y with pseudo 

inverse of the estimated channel transfer matrix Wc
+ to obtain an estimate of the 

transmitted signal . Therefore, the estimated transmitted signal  is calculated as 
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 =  Wc
+ 

  = 
1 4 2

1 1
2 7 3

×
0.4151 0.0419
0.6087 0.1884
0.7815 1.1248

 

    =   
1.2869 1.4541
1.9306 0.9780
7.4356 4.7770

                                                              (9.2.4) 

 

Comparing the estimated transmitted signal  in equation (9.2.4) and the transmitted 

signal X in equation (5.4.1) it can be seen that  very poorly approximate the transmit-

ted signal X. Since we do not have the exact channel transfer matrix Wc, the quality or 

the error of the transmitted signal can only be determined by finding the error norm. 

[9,170]. The error norm is calculated by first finding the difference between the two vec-

tors X and  as 

 X -  = 
1.2869 1.4541
1.9306 0.9780
7.4356 4.7770

= 
0.2869 0.5459

1.0694 1.9780
0.4356 0.7770

 

Since the result will also be a vector, we find the absolute error in  as 

                                                                      [9,168] 

Where p = 1,2,…. In this case, p = 2. Therefore 

 | | = ( 0.2869)² + (1.0694)² + ( 0.4356)² = 1.1898 

 | | = ( 0.5459)² + (1.9780)² + ( 0.7770)² = 2.1941  

The absolute error is calculated as 

 = (1.1898)² + (2.1941)²  = 2.4959  

Hence the absolute error in the estimated transmitted signal  is 2. To prevent this er-

ror, one antenna at the receiver has to be ignored or left unused so as to make the 

MIMO system symmetrical. This means that two antennas at both receiver and transmit 

end of the system will prevent the occurrence of this error. 

  

10 Transfer channel algorithm 

10.1 Introduction 
 

In explaining the principles of how MIMO channel works, we first analyse in the chapter 

5 a very simple 2 x 2 MIMO system which gives a clear understanding of the channel 

operations. We then extend the analysis using examples to a 3 x 3 MIMO system using 
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examples to explain these principles. This section present a graphical output of a 10 x 

10 MIMO system using an algorithm developed using Microsoft Excel® which calculates 

all the various steps required and the channel coefficients. 

  

Although there are many software such as Matlab, C language, C++, etc. that can be 

used to develop this algorithm, they are not easy to use and not easy to acquire. The 

algorithm calculates all the various principles such as the orthonormal base Ux using 

Gram-Schmidt process calculates the generalized Fourier coefficients of both transmit-

ted and received signals and the transfer channel coefficients.  

 

10.2 A 10x10 orthonormal basis Ux estimation 
 

In chapter 5 it was easy to calculate the orthonormal base because it involves 2 x 2 

and 3 x 3 MIMO systems. In this chapter, an algorithm is used to calculate the or-

thonormal base matrix of the transmitted signal X. Therefore if MIMO system have 10 

antennas at both transmit and receive end and K = 10 time samples of the transmitted 

signal X were observed, then a 10 x 10 dimensioned orthonormal base of the transmit-

ted signals Ux will be generated. For example, if we assume that the transmitted signal 

X which contains linearly independent training signals is the input values of the algo-

rithm are 

 

                        (10.2.1) 

 

 

Table 1 shows the column signal values of the generated orthonormal bases Ux. The 

column of the orthonormal base are orthogonal and do not interfere with each other 

vectors. 

2183514291
1342133652
4816553237
2323738364
5152417533
3776512131
1434112532
4152421347
3235123213
2519345221

X
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Table 1. Orthonormal base Ux vectors for 10 dimensional signal space. 

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 

0.0836 -0.2614 0.3593 0.4561 0.2031 0.4125 0.2667 -0.1346 -0.5227 0.1172 

0.2509 -0.1251 0.0753 0.1444 0.0320 -0.4369 0.6212 0.3863 0.0753 -0.4028 

0.5854 -0.1350 -0.1721 -0.4895 -0.3610 0.2090 -0.0317 0.0725 -0.4201 -0.1145 

0.1672 0.1363 0.4803 -0.2753 -0.2250 0.0368 0.3910 -0.5372 0.3617 0.1506 

0.0836 0.2093 -0.0730 0.0690 0.0576 0.7482 0.1012 0.2976 0.4428 -0.2847 

0.2509 0.0632 0.4221 0.3018 -0.4322 -0.0812 -0.3080 0.4654 0.1370 0.3745 

0.3345 0.2725 -0.1094 0.5113 -0.1836 -0.1151 -0.2767 -0.4505 -0.0028 -0.4625 

0.5854 -0.2291 -0.2691 0.0846 0.5004 -0.0659 -0.0652 -0.0960 0.3192 0.3939 

0.1672 0.3245 0.5213 -0.2948 0.5474 -0.0921 -0.3139 0.1188 -0.1430 -0.2584 

0.0836 0.7742 -0.2555 0.0657 0.0534 -0.0375 0.3235 0.0861 -0.2767 0.3621 

 

Figure 26 shows the graph of the column vectors of the orthonormal basis. 

 

 
     Figure 26. Graph of orthonormal base Ux vectors. 

 

Referring to figure 26, if any of the column signals of the transmitted signal is changed; 

the pattern of the orthonormal base vectors (graph) will also change. The receiver per-

forms this calculation (orthonormal basis Ux) and knows the transmitted signal X be-

cause the transmitted signal X is specified initially to be linearly independent. It should 

be noted that if any column signal or signals of the input transmitted training signal X is 

changed, that column signal should be linearly independent to the other column signals 

so that the MIMO channel technique can work. The next section explains the algo-

rithms output of the generalized Fourier coefficients of the transmitted signal X. 
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10.3 Generalized Fourier coefficients of 10x10 transmitted signal 
 

This chapter shows the graph of how the transmitted signal X is split using the common 

space matrix (orthonormal base) generated in table 1 to produce the generalized Fou-

rier coefficients of the transmitted signal Wx. This calculated from the expression  

 Wx = Ux X 

Using the 10 x 10 algorithm, the generalized Fourier coefficients of the transmitted sig-

nal is generated by multiplying the orthonormal base values in table 1 and the transmit-

ted signal X values in equation (10.2.1). Figure 27 show the graph of the generalized 

Fourier coefficients of the transmitted signal Wx.  

 

 
  Figure 27. Function graph of Fourier coefficients of Transmitted signal Wx. 

 

Figure 27 tells us how much each column (signal) of the transmitted signal X in equa-

tion (10.2.1) contains each orthogonal column component in the orthonormal base ma-

trix Ux. The next section also shows how the generalized Fourier coefficients of the 

received signal Wy are generated using the algorithm. 

 

10.4 Generalized Fourier coefficients of 10 x10 received signal 
 

Similar to subchapter 10.3, this subchapter explains how the received signal Y is split 

with the help of the orthonormal base Ux. The generalized Fourier coefficients of the 

received signal is obtain from the expression 

 Wy = Ux Y  

-10,00

-8,00

-6,00

-4,00

-2,00

0,00

2,00

4,00

6,00

8,00

10,00

1 2 3 4 5 6 7 8 9 10

C
ol

um
n 

si
gn

al
s 

of
 W

x

w1
w2
w3
w4
w5
w6
w7
w8
w9
w10



68 

 

For example if the received signal at the receiver end of the 10x10 MIMO system when 

the transmitted training signal X in equation (10.2.1) is transmitted are 

 

1238163731
1113151652
2224442314

1381332435
2751114223
7727346113
7122615372
2444324839
3332652118
5314831241

Y
 

 

Figure 28 shows the graphical characteristics of the generalized Fourier coefficients of 

received signal Wy. 

 

 
    Figure 28. Function graph of generalized Fourier coefficients of received signal Wy.  

 

Figure 28 also tells us how much each column (signal) of the received signal Y con-

tains each orthogonal column component in the orthonormal base matrix Ux. The next 

section illustrates how the transfer channel matrix c is estimated using the 10x10 

Microsoft excel algorithm.  
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10.5 Transfer channel matrix estimation 
 

After the calculation of Wx and Wy in subchapter 10.3 and 10.4, the next process is to 

estimate the transfer channel c of the 10x10 MIMO system by first inverting the gen-

eralized Fourier coefficients of the transmitted signal and multiplying it with the column 

signals of the received signal. The transfer channel is obtained from the expression 

 c = Wx
-1 Wy   

Figure 29 illustrates the graph of the estimated transfer channel of the 10x10 MIMO 

system.  

 
    Figure 29. Function graph of the estimated transfer channel c. 

 

The transfer channel in figure 29 is modelled with the help of known linearly independ-

ent training signals and the known received signals. If any pair of the transmitted train-

ing signal are dependent, the channel cannot be modelled. These signals are only re-

quired in the channel modelling. However, after the channel modelling dependent sig-

nals can be transmitted over the channel. Moreover, since the capacity of a MIMO sys-

tem increases linearly to the number of antennas, the capacity over the 10x10 MIMO 

system will higher than that of the 3x3 MIMO system.  
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11 Results  
 

In section (4.2) of this project, the various principles of how to achieve the goal of this 

project were presented. It was easy to show how a MIMO channel technology works 

but how it really operates is almost impossible to understand without a discrete ap-

proach. Therefore, the project was analyzed using discrete mathematical expressions 

and the transfer channel modelled from the analysis produced the required output. 

 

Example (5.4.4) in section (5.4) has proved that we cannot model the MIMO channel if 

the known transmitted signals are dependent. This is because dependent signals pro-

duce only one-dimension orthonormal base vector. Hence linearly independent known 

training signals are required to model a MIMO channel to make its operation work. 

However, after the channel modelling unknown signals (dependent or independent 

signals) can be transmitted.     

 

Furthermore, the algorithms which are easy to use were designed using Microsoft Ex-

cel® software to model the transmission channel. It also analyses all the various princi-

ples and shows their graphical characteristics. The results produced from these princi-

ples satisfied the goal of the project set in the introduction. There were situations where 

errors were observed but solutions on how these errors could be eliminated were pro-

vided.    
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12 Applications of MIMO technology      

12.1 3GPP – Long Term Evolution (LTE) 
 

One area that MIMO technology is being applied is Long Term Evolution standard for 

wireless communication. 3GPP stands for 3rd Generation Partnership Project. The 

original scope of the 3GPP was to standardise a 3rd Generation (3G) mobile system 

based on evolved Global Systems for Mobile (GSM) core networks and the radio ac-

cess technologies that they support [11]. The 3GPP LTE is the name for release 8 of 

the 3GPP standard, the evolution of 3GPP Release 99. 3GPP LTE has a MIMO OFD-

MA (Orthogonal Frequency Division Multiple Access) physical layer on the down link 

and it supports various single user and multiple user MIMO modes of operation.[12]. 

 

12.2 MIMO for satellite communication 
 

Satellite communication is one area that MIMO technology is being applied. Satellite 

communication systems are characterized by the strong presence of line of site link 

between the transmitter and the receiver. Two scenarios are considered as MIMO im-

plementation offer potential advantage in satellite communication. The first scenario 

involves the use of both polarization which can result in an increase in capacity by a 

factor of 2 while the second scenario involves the use of a single station on earth and 

more than one satellite, also known as satellite diversity. The main issue in the second 

scenario is that the link will have unequal power since the distance from the single sta-

tion on earth to the various satellites in space can vary significantly which will result in 

imbalance of high power. Meaning that the capacity benefit is no longer a multiplicative 

factor.[11]        

 

12.3 IEEE 802.16e / WiMAX Standard 
 

Another area that MIMO is being applied is in the IEEE 802.16 systems. The IEEE 

802.16e is the mobile extension to IEEE 802.16 for wireless metropolitan area net-

works often known by the WiMAX (Wireless Interoperability for Microwave Access). 

The IEEE 802.16e has several different physical layers and MIMO modes of operation. 

The WiMAX mobile profile 1.0 supports OFDMA and some basic MIMO features.[12]    

 



72 

 

12.4 MIMO in the High frequency (HF) Band 
 

The High Frequency (HF) band has been used for a number of applications including 

defense broadcasting, air traffic control and radio location. The use of HF radio is a 

cost effective way of establishing communication in regions where there is no infra-

structure, for example the ocean where infrastructure is limited. Radio communication 

at HF most often relies on line of sight link between transmitter and the receiver since 

the objects in these environments are too small to act as reflectors. Measurements of 

MIMO HF systems have shown that the main factor limiting the ability to use multiple 

antenna techniques is the high correlation among links. However, using polarization or 

antenna pattern diversity appears to be the way to apply MIMO technology in the HF 

band. [11]     

 

12.5 IEEE 802.11n channel model 
 

The IEEE802.11n channel model was the first MIMO channel model to be accepted. 

This channel model covers many environments and was based on pre-existing single-

input single-output (SISO) channel model developed for single wireless local area net-

work (WLAN). The channel model is then extended to multiple antenna cases. The 

main feature was the concept of the cluster, that is, group of paths that have similar 

angles of arrival/departure as well as delays. This cluster concept was introduced by 

Saleh and Valenzuela in 1987. [11]  

 

Furthermore, there are other areas that MIMO channel techniques have been applied 

such as MIMO for Digital Video Broadcasting (DVB-T2) that replaces the analog 

broadcasting, MIMO in small cellular environments, MIMO for vehicular communication 

for vehicular area networks, IEEE 802.11n, etc.    
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13 Conclusion  
 

The goal of this project was to explain and illustrate the operation of MIMO channel 

technology. To achieve this goal, various principles which are difficult to understand 

were analyzed using a discrete mathematical approach and then extended to analyze 

more complex MIMO configurations. Explaining the principles of this project in the fre-

quency domain could have produced more explanatory graphical figures but it would 

have been more complex to achieve the project goal. Hence, to understand the opera-

tion of MIMO, one needs to study mathematics.  

 

The results from these principles have played a significant role in modelling the MIMO 

channel which is later used to prove that MIMO channel technology works. Currently 

MIMO technology is implemented in cellular networks at base station level, WiMAX, 

satellite communication systems but how can this technology be implemented in mobile 

devices such as smart phones since implementing multiple antennas on smart phone 

has become difficult. How can the MIMO channel technology improve the capacity of a 

wireless communication link if the distance between MIMO antennas are close to each 

other? These were some of the limitations which were beyond the scope of this project 

and are recommended for further study.    
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Appendix 1 

1 (2) 

 

 

Gram-Schmidt process 
 

Matrix X = [x1, x2,…,xM] is full column rank, i.e. all column vectors xi are linearly inde-

pendent. Now we factorize X = QR. First we take the first column of X and normalize it 

to a unit vector for the first dimension of our orthonormal space. This gives the first col-

umn vector e1 of Q. We write  

                          (1.1.1) 

The first column of Q will be equal to e1. 

The second column unit vector for the second dimension of our orthonormal space is 

produced from the next column of X. For this we subtract from the second column vec-

tor x2 its component on the first dimension. This component is a projection of x2 in di-

rection e1 and in general it is given by 

                                                                 (1.1.2) 

Where eT is the transpose of and  stands for dot or inner product (see appendix). 

The second column e2 of Q we get from the second column of X when we subtract its 

projection to the first orthonormal base and then normalize the result. That is: 

                                                               (1.1.3) 

                                                                                    (1.1.4) 

Figure 1.4.1 illustrates this process. As we see the resulting unit vector e2 will clearly be 

orthonormal to the first unit vector e1. 

 

   
Figure 1.4.1. Two dimensional orthogonal signal space.   

We can easily imagine figure 1.4.1 to be extended to third dimension, and its unit vec-

tor is a normal to a plane of e1 and e2. 
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2 (2) 

 

 

The third column we get from the third column of X when we subtract from its pro-

jections to the first and second dimension and normalized it. 

   

We may continue to higher number of dimensions that are beyond our imagination. The 

fourth column we get as: 

    

Etc. up to M 

   

This gives the orthonormal basis Q matrix consisting of column vectors ei and it has the 

same dimensions K-by-M as X.  
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1 (2) 

 

 

Inverse of 3x3 matrixes  
 

A method for finding the inverse of a 3x3 matrix is described as follows:  

Using the matrix as an example to illustrate this method.  

1.  Matrix of Minors 

We go through each element of the matrix and replace it by the determinant of the 2x2 

matrix that result from deleting the elements row and column. 

 

For the example matrix, starting with the element on row 1 column 1: 

 

Gives the first element of the matrix of minors  

For the example matrix, starting with the element on row 1 and column 2: 

 

Gives the first element of the matrix of minors  

In the end, we obtain the following minors:  

2.   Matrix of Cofactors 

In order to determine the matrix of cofactors, the signs of the matrix of minors are 

changed by applying the following: . 

 

For example, the matrix of cofactors is:   

3.  Determinant  

1 2 2
1 0 1
1 2 1

1 2 2
1 0 1
1 2 1

, 0 1
2 1

2
2

1 2 2
1 0 1
1 2 1

, 1 1
1 1

0
2 0

2 0 2
2 1 0

2 1 2

2 0 2
2 1 0
2 1 2
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2 (2) 

 

 

The determinant can be found by the sum of an element-by-element multiplication of 

the original matrix with the cofactors matrix. It gives the same value whichever row or 

column is used. 

For an example, choosing the top row gives determinant of  

Alternatively, choosing the middle column determinant of  

Note that if the determinant is zero then the matrix does not have an inverse. The ma-

trix is said to be singular. 

 

4.  Adjoint 

The adjoint matrix is the transpose of the matrix cofactors. 

For the example, the adjoint matrix is: . 

 

5.  Inverse 

Simply the adjoint matrix multiplied by the reciprocal of the determinant, determines the 

inverse. For the example, the inverse is  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

1 2 2 0 2 2 2

2 0 0 1 2 1 2

2 2 2
0 1 1
2 0 2

1
2

2 2 2
0 1 1
2 0 2

1 1 1
0 0.5 0.5
1 0 1
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Equation 5.3.3 upper triangular calculation  
 

In reference to example 5.3.1, we calculate the values of the upper triangular matrix R 
to equation (5.3.3) by finding the inverse of the orthonormal basis matrix and then mul-

tiply it by the transmitted signal. 

 R = Ux
-1 X  

  

 Minors of  

 Cofactors of  

  

  

  

  

  

  

Hence R is calculated as 

 

3485.02153.09113.0
9026.01827.03906.0
2523.09593.01302.0

xU

3509.02161.09120.0
9022.01845.03886.0
2506.09587.01307.0

Q

3509.02161.09120.0
9022.01845.03886.0

2506.09587.01307.0
Q

)2506.02523.0()9587.09593.0()1307.0(1302.0)(Qdet

9999.0)(Qdet

3509.09022.02506.0
2161.01845.09587.0
9120.03886.01307.0

)(QAdj

)(
)(

Qdet
QAdjQ 1

3509.09022.02506.0
2161.01845.09587.0
9120.03886.01307.0

9999.0
11Q

3510.09023.02506.0
2161.01845.09588.0
9121.03886.01307.0

1Q
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Therefore R can be approximate to 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

347
213
221

3510.09023.02506.0
2161.01845.09588.0
9121.03886.01307.0

R

2504.00005.00007.0
6383.15975.20004.0

7749.37756.36812.7
R

2504.00000.00000.0
6383.15975.20000.0

7749.37756.36812.7
R
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Equation 5.4.4 upper triangular calculation 
 

In reference to example 5.4.2, we calculate the upper triangular matrix R similar as in 

equation (5.4.4) by finding the inverse of the orthonormal basis matrix and then multiply 

it by the transmitted signal. 

 R = Ux
-1 X   

   

Minors of  

 Cofactors of  

Det. of   

  

  

  

  

Therefore  

  

 

3508.02153.09113.0
9023.01827.03906.0

2505.09593.01302.0

xU

3509.02153.09113.0
9022.01826.03905.0
2506.09593.01302.0

Q

3509.02153.09113.0
9022.01826.03905.0

2506.09593.01302.0
Q

)2523.0(2505.0)9593.09593.0()1302.0(1302.0Q

000.1)(Qdet

3509.09022.02506.0
2153.01826.09593.0
9113.03905.01302.0

)(QAdj

)(
)(

Qdet
QAdjQ 1

3509.09022.02506.0
2153.01826.09593.0
9113.03905.01302.0

1Q

147
013
021

3509.09022.02506.0
2153.01826.09593.0
9113.03905.01302.0

R

3509.00000.00000.0
2153.05974.20000.0
9113.07756.36812.7

R
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