

Jukka Kokko

SOFTWARE BUILD AND RELEASE MANAGEMENT FOR A WIRELESS

PRODUCT WITH OPEN SOURCE TOOLS

SOFTWARE BUILD AND RELEASE MANAGEMENT FOR A WIRELESS

PRODUCT WITH OPEN SOURCE TOOLS

Jukka Kokko
Master’s thesis
Autumn 2013
Degree Programme in Information Technology
Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology

Author: Jukka Kokko
Title of thesis: Software Build and Release Management for a Wireless Product with Open
Source Tools
Supervisor: Markku Rahikainen
Term and year when the thesis was submitted: Autumn 2013 Number of pages: 43

The object of this research was to test and select the best open source tools and processes for a
project working with a complex wireless device, from a build and release management point of
view. Some of the investigations were started on 2005; most of the work has been done during
the year 2013 for Elektrobit Wireless Oy.

The work consisted of studying and testing out multiple different open source tools used on build
and release management process. The studied tools were Git, SVN and Mercurial as software
configuration management systems, Bitbake, Yocto, Apache ANT and Apache Maven as build
frameworks, Gerrit and Review Board as code review systems and CruiseControl and Jenkins as
build automation systems. Also hardware selection, test automation, error and feature
management related tools, delivery methods and effects of the project’s development model were
considered.

The result was a bit mixed as the best combination of tools depends on the project, but for
example a project that uses agile methods and does software for a wireless embedded Linux
device should use Git as a software configuration management system, Yocto as a build
framework, Gerrit as a code review system and Jenkins as a build automation system. This kind
of selection was considered to be the best option even if most of the studied applications would
have been adequate to use.

Keywords:

Build management, software configuration management, build framework, code review

4

CONTENTS

CONTENTS ... 4

TERMS AND ABBREVIATIONS ... 5

PREFACE .. 7

1 INTRODUCTION ... 8

2 BUILD AND RELEASE MANAGEMENT .. 9

3 HARDWARE SELECTION .. 10

3.1 COMPILATION HARDWARE SELECTION .. 10

3.2 SUPPORT SYSTEM HARDWARE SELECTION ... 11

4 CONFIGURATION MANAGEMENT TOOL SELECTION ... 13

4.1 INTRODUCTION AND REQUIREMENTS .. 13

4.2 GIT ... 14

4.3 SVN ... 17

4.4 MERCURIAL.. 19

5 BUILD FRAMEWORK SELECTION ... 21

5.1 INTRODUCTION AND REQUIREMENTS .. 21

5.2 BITBAKE .. 22

5.3 YOCTO .. 25

5.4 APACHE ANT ... 26

5.5 APACHE MAVEN ... 28

6 CODE REVIEW SYSTEM SELECTION .. 31

6.1 GERRIT ... 31

6.2 REVIEW BOARD .. 32

7 SELECTION OF THE SUPPORTING TOOLS .. 34

7.1 INTRODUCTION AND REQUIREMENTS .. 34

7.2 BUILD AUTOMATION .. 34

7.3 TEST AUTOMATION ... 34

7.4 ERROR AND FEATURE MANAGEMENT RELATED TOOLS .. 35

7.5 DELIVERY METHODS ... 35

8 CONCLUSIONS .. 37

REFERENCES .. 39

APPENDICES.. 42

5

TERMS AND ABBREVIATIONS

Build Framework A set of tools that handles compilation from downloading code to
generating an end package for a large amount of code.

GSM Global System for Mobile Communications. A standard set to describe
protocols for digital cellular networks.

Handheld A small wireless telephone using GSM network, also called as a cellular
phone.

Base station Part of a GSM network, communicates with handhelds.

Development
effort

The estimated effort that the project will require.

PC Personal Computer. A general-purpose computer that can be used to write
programs.

CI Continuous Integration. A development model where all changes are
merged together several times a day.

RAM Random Access Memory. Memory that can be both red and written.

Codebase The source code for software system and/or application.

RISC Reduced instruction set computing. A processor design strategy that relies
on simple instruction sets.

ARM An architecture that describes a family of RISC-based computer
processors.

SAS Serial Attached Small Computer System Interface. A point-to-point serial
protocol for data transfer.

Rpm Rotations per minute. The speed of a rotating disk.

PCIE Peripheral Component Interconnect Express. A high-speed serial computer
expansion bus standard.

Bit A basic unit of information in computing.

Hertz A basic unit of frequency.

SPARC Scalable Processor Architecture. A RISC-based commercial processor
family.

C# An object-oriented programming language mostly used for Windows
specific programs.

SCM Software Configuration Management. A system that handles all changes
done to the source code in a controlled way.

HTTP Hypertext Transfer Protocol. An application protocol commonly used with
Internet.

SSH Secure Shell. A cryptographic network protocol, used to connect two
locations securely over the existing connections.

FSFS File System atop the File System. A file system with version control, the
current default storage system for SVN.

FOSS Free and Open Source Software. Software that can be classified as free
and open source.

IP Internet Protocol. A communications protocol used in the Internet.

6

LDAP Lightweight Directory Access Protocol. An access protocol for accessing
and maintaining distributed directory information services over an IP
network.

OpenID Open standard Identification system. An authorization system developed to
work with co-operating web sites

REST API Representational State Transfer Application Protocol Interface. An interface
to programmatically communicate via HTTP.

SQL Structured Query Language. A special language for managing relational
database’s data.

NIS Network Information Service. A server based authentication system.

TTCN Testing and Test Control Notation. A programming language used for
testing communication protocols.

7

PREFACE

This thesis work was carried out as part of developing a complex wireless device as a build

specialist at Elektrobit Wireless Oy. Some parts of the work were also carried out after office

hours. The thesis documentation was created after office hours during the year 2013.

I would like to thank Timo Torvikoski for enabling the thesis work on behalf of Elektrobit Wireless

Oy, Markku Rahikainen for acting as a supervising teacher and Kaija Posio for acting as a

language instructor. I would also like to thank my colleagues for the information given during

thesis work and especially Vesa Vuohtoniemi for acting as a thesis supervisor.

Oulu, Finland, October 2013

Jukka Kokko

8

1 INTRODUCTION

The aim of the thesis work was to present tools and processes used on software build and

release management for a project working with a wireless product (handheld, base station, etc.)

by using open source tools and selecting the best combination of them. The client currently has

multiple different setups, and the aim of the thesis work was to investigate and possibly improve

the client’s current build and release practices.

The research question for this thesis work was which combination of the available open source

tools and processes would the best for build and release management on a project working with a

complex wireless device? The outcome of this research was fit for few of the current projects, but

some projects with different specification might be better off with a different combination. Also, the

client’s clients and collaborators might dictate what tools to use at certain phases of the

development.

9

2 BUILD AND RELEASE MANAGEMENT

Build and release management is part of a software development effort. Build management

includes compiling and packaging the software (14, p. 2); release management includes creating

and delivering software releases. These two terms are often described separately, but in practice

the same people handle both roles in parallel.

Build management is responsible for setting up, maintaining and developing the build framework.

The build framework usually includes used tools for version control, code compilation and

packaging but may also include the used hardware setup. Build management may also be

responsible for setting up the code branches of version control when needed, and also

maintaining the sidetracks of the development. Depending on the build manager’s proficiency,

usually both build framework and software debugging responsibilities are included in this role.

Release management is responsible for creating a distributable package and its release notes,

and delivering them as a software release. The used tools on this stage are usually determined

by the release recipient. The distributable package usually consists of the end product binaries

that often require a special signing process, but may also include some debugging related files

and the source code. The release note describes what is in the delivery, how to use it, what to

take into account, etc. The release manager also needs to communicate with the project client

along with the project management in order to know what to deliver, when to deliver and why

something is not working or is behind the schedule.

10

3 HARDWARE SELECTION

3.1 Compilation Hardware Selection

When a build management related computing work is done - code compilation, target creation,

etc. - it takes up a lot of resources. Therefore, the used PC hardware should be selected to be as

powerful as the budget constraints allow. Also, the multiple parallel compilation requirements

need to be taken into account, especially when the selected implementation process is

Continuous Integration or similar.

A complex wireless device codebase size may differ from 0.1 to 30 gigabytes. This and the build

time requirements effect on how much resources per build is needed. Also, the used operating

system and used compilation tools have an effect. Table 1 shows some results of empirical

testing; for example if the codebase size is 5 gigabytes, the target platform is ARM based, the

computer operating system is Linux and build time requirement is one hour, the hardware

resource requirement is about 8x3.4GHz cores, 8GB of RAM and 100GB of disk space. The

exact requirement differs from project to project; for example if the project uses a lot of pre-

compiled binaries, then the hardware resources can be a lot less. Also, some projects require a

lot of disk space activity; in such case even the 15 000rpm SAS disks might be a bottleneck and

faster options should be evaluated, such as PCIE RAM disks.

TABLE 1. Estimated codebase size effect on hardware requirements; build time 1 hour, ARM,

Linux.

 5GB codebase 15GB codebase 30GB codebase

Processor 8 Core 3.4GHz 32 Core 3.4GHz 96 Core 3.4GHz

RAM 8GB 24GB 64GB

Disk Space 100GB 200GB 350GB

With modern build tools several builds can be done simultaneously on the same computer without

a significant build time penalty. For example a project with a 5GB codebase can run 2 builds at

the same time with the 5GB codebase setup from Table 1, and 6 builds at the same time with the

15GB codebase setup from Table 1.

11

Also the computer’s operating system has an effect on the selected hardware. For example, if

Solaris is selected to be the operating system due to availability or due to a large amount of

processor cores needed, then SPARC architecture should be considered as an option.

The operating system selection is usually dictated by user preferences but the operating system

has also an effect on the used tools; for example most ARM compilers work directly on Linux and

via an emulator such as Cygwin on Windows. This has some effect on the build time. Also, some

programming languages, such as C#, have good development and compilation tools only for a

certain operating system. Some of the code that is included in the project may not be compatible

with the 64-bit architecture, therefore also multiple different operating system versions may be

needed.

When requirements and development branches change during the product development effort,

more compilation capable hardware is usually needed. If the codebase size and the build time

requirements allow, a bunch of virtual servers hosted on a rack servers (or in cloud) eases and

speeds up adding and removing hardware resources to the project.

The recommendations for the build hardware for ARM based complex wireless device project are:

• Use any powerful enough hardware that you have lying around.

• Use virtual servers to balance load if possible.

• If there is enough proficiency in the project team, select Linux as the operating system.

3.2 Support System Hardware Selection

Build and release management usually also requires a separate hardware for certain supporting

systems such as build automation, version control, error management or code review systems.

Hardware requirements for these differ depending on the selected application for each use. Also,

the operating system selection should be done according to each system’s requirements.

For example, build automation can be done on a compilation system hardware, but if multiple

compilations are needed, then separate build automation hardware is also needed. This

hardware can be a virtual machine but it requires relatively more memory and disk space.

12

As software configuration management systems are based on databases, therefore they require

a lot of memory and disk space but usually only an average processing power. However, the

amount of users served simultaneously might require also a lot of processing, therefore on large

projects the SCM servers should be dedicated servers.

Error management systems are also based on databases thus they have similar hardware

requirements as version control systems. The amount of data is usually a bit less than on SCM

system but the usage level might be a lot higher, therefore a dedicated server is also

recommended. Error management is usually a separate team so this hardware requirement might

come from them, but the build and release team works closely with them.

The hardware requirements of a Code review system vary a lot depending on the used

applications. If the used application is light, a simple virtual machine with few processor cores and

few megabytes of memory will suffice. If the code review application is complex and heavily

automated such as Gerrit, it should be installed on a dedicated server.

13

4 CONFIGURATION MANAGEMENT TOOL SELECTION

4.1 Introduction and Requirements

SCM or software configuration management is a system that handles all changes done to the

source code in a controlled way (25, p. 1). An SCM system can also be used for collaborating

development from multiple sites. A software project can be done without a software configuration

management but it will benefit even a one-man project. Any software project that has a number of

developers definitely needs some kind of version control and change distribution system, so

software configuration management is a must.

Wireless device software projects usually are large or very large-scale projects employing

hundreds or even thousands of people all over the world. Also, the used software development

model is usually waterfall, iterative, agile or any mix of these. These attributes mandate some

requirements for the used SCM system. It needs to be scalable enough, fairly easy to use and to

support a replication between different local systems. It also needs to be reliable and traceable

and communicate with other systems. One of the SCM system’s most important features in

development effort is branching; in almost any project at some point the development work needs

to be continued towards future versions while finalizing one delivery. Also, as all open source

projects, it needs an active community to support in problem cases and an adequate license to be

used in a commercial software development.

The needed scalability of the SCM system depends on the size of the codebase on the project.

Most modern SCM systems can handle fairly large projects with standard server hardware; only

the largest projects may need to rely on large solutions containing dedicated servers and

specialized software such as IBM Rational Clearcase (18). One way to ensure that SCM system’s

scalability is sufficient for the project is to divide the project into subprojects that will have their

own SCM instances.

SCM needs to be fairly easy to use especially for the parts that an average developer is doing;

getting other people’s changes and implementing their own changes. This is because an SCM

system should help producing the working software, not making developers’ lives harder. Some

parts can be harder to do but it still needs to be possible; few people can obtain a SCM specialist

role.

14

Replication support between separate systems may be needed if the project teams are located

globally and communication between the developers and a single server is not fast enough for

daily work. The project setup dictates if the replication support needs to be real-time (or as close

to it as possible) but small delays in updates are often tolerated.

Reliability and traceability requirement means that all changes that SCM handles needs to be

kept intact, including the information who has done and what. Any unexpectedly lost change

might cause critical problems to the whole project, not to mention the developers loosing trust to

the system. Some SCM systems allow deleting or modifying existing changes. This feature

should be used only when it is absolutely necessary as the result may be similar to an

unexpectedly lost change.

Communication with other systems is important as the developers benefit from a single tool

usage. For example Eclipse (7) can be configured to use SCM systems instead of only a local

work area. Also, build automation requires an SCM system that can communicate both ways. For

example a submitted change in SCM may be used to automatically start a build.

4.2 Git

Git is a distributed SCM system and one of the most popular open source version control

systems, designed for speed, robustness and a large amount of data. It is fairly complex and very

flexible but normal development work is easy to do. One of the major differences to many other

SCM systems is that each checkout from master codebase is its own repository. This way each

user has their own copy of the codebase. Getting the changes back to the master codebase

requires taking other people’s changes into account, and the development work can be done

even without a continuous Internet connection. A local copy of the codebase also makes it easier

to implement different code branches at will as well as merging branches back together (9).

Git scalability is quite good. It cannot use multiple hardware servers per project which limits the

codebase size per project, but it can handle multiple different projects at once. The codebase size

limit is quite large - for example the linux-kernel project uses a single Git repository - thus

designing appropriate size subprojects should not be too hard. Handling different projects as one

is usually done with the help of a separate program such as the Repo tool by Google (19).

15

Ease of use was not the focus when designing Git, thus mastering it may take months to study.

However, enough knowledge of the Git usage in a developer role can be obtained in an hour or

so by training, especially if the developer is familiar with some other SCM system. All that is

needed is a basic knowledge on how the Git works and on 7 commands presented in Figure 1.

Git is a command line application but it also has a number of user-friendly interface applications

to help developers using it - for both Linux and Windows.

Replication or synching between different locations is possible with Git using only a few

commands. Basically it requires mirroring a local copy of one of the remote locations, fetching

another locations’ mirror metadata to same copy and pushing mirrored changes back to all

projects that need to be synced. In most cases project requires a short custom script that is run

either periodically or when a change is detected on any of the locations.

Reliability and traceability are quite good with Git, but it does have few possibilities to change

one’s submitted changes and forcing software branches to different positions, so that some

submitted changes are deleted. Both of these require using a specific flag on correct command

and the effects are noted on log, so this issue can be tackled with training and communication.

Also big binary files can cause problems. Changes lost for some other reason were not seen

during the project.

git clone git://git.openembedded.org/oecore

git pull

… do changes …

Git add –u

Git commit –m”test changes”

Git fetch –all

Git rebase origin/master

Git push origin HEAD:refs/heads/sandbox/mynewbranch

FIGURE 1. Git usage example.

16

Git has a good support with multiple different tools, and the existence of a command line interface

and a native support for protocols such as HTTP and SSH enables an easy integration with

almost any related software. For example a code review, build automation and test automation

can be triggered with a submitted change into the Git repository. Many widely used open source

tools such as Jenkins and Eclipse support Git directly.

Codebase branching is extremely easy with Git. Any change can be submitted to its own branch

at any point of development, and merging the branches back together is also quite easy. Only the

different binary files and code changes in same lines need human interaction with default

settings, and the merging behavior is easy to change to favor either one of the branches being

merged. Example of branching and merging is shown in Figure 2, and Figure 3 shows the same

thing graphically.

Git has an active community and its original developer, Linux Torvalds, continues to support it.

The community makes not only error corrections but also implements new features such as better

subproject handling. Also, the licensing, GNU General Public License version 2, allows almost

any kind of project to use Git.

git checkout –b testbranch HEAD^^

… do changes …

git add –u

git commit –m”test”

git fetch –all

git merge origin/master-next

FIGURE 3. Git branching and merging graphically.

FIGURE 2. Git branching and merging.

17

4.3 SVN

SVN or Apache Subversion is a centralized client/server SCM system designed to be reliable and

simple to use (22). SVN has been in development since 2000, and it currently does yearly

releases containing some new features and a bunch of error fixes thus it is in quite mature stage.

SVN scalability is adequate in many cases. SVN itself does not support scalability as it does not

have the concept of a project; instead SVN uses a set storage subsystem for data; current default

is FSFS that keeps the data in the operating system’s file system (22). Scalability can be

achieved by using operating system’s scalability or by using webserver’s load balance.

SVN has been designed to be simple and easy to use. All client sessions contain links to a server

content, and if a modified file type is detected to be unmergeable, it is locked on the server

preventing other people to do modifications while it is being checked out by someone. Most files

can be modified simultaneously and merged automatically. For most people SVN usage consists

of checking out files, doing modifications and checking them in again as demonstrated in Figure

4. Also branching is made easy. SVN also has multiple user-friendly interface applications

available, some of them even integrate to the operating system’s file manager interface.

The replication of a SVN repository can be done in few ways; the simplest way but not the

recommended one being the operating system’s copy command thanks to the SVN’s file system

usage. The recommended way is to use an svnsync application that will create a slave repository

from the master. If multiple master repositories or continuous synchronization is needed, then 3rd

party applications need to be used.

svn co https://svn.myproject.com/repos/test/trunk/ test-trunk

cd test-trunk

echo "test" > test.txt

svn add test.txt

svn commit --username your-name --password your-password \

 --message "Trying out svn"

FIGURE 4. SVN command line usage example.

18

SVN is reliable in most cases and has a good traceability. Most fatal problems usually relate to

the used repository storage system; for example Berkeley DB can be sensitive to interruptions

(22). Problems were not seen during the time of usage.

SVN is widely supported by multiple different tools. The existence of a command line interface

and the native support for protocols such as HTTP enables easy integration with almost any

related software. For example a code review, build automation and test automation can be

triggered with a checked in change into the SVN repository. Many widely used open source tools

such as Jenkins and Eclipse support SVN directly.

Branching on SVN requires copying one branch under a different directory as shown in Figure 5.

This setup requires a quite good understanding what changes will be done in both branches

during the separation, as merging the branches back together may be quite hard. Syncing other

branches’ changes to the development branch from time to time helps the issue.

SVN has a relatively active community that also meets face-to-face yearly, usually during the

Hackathon event. The community does not only error corrections but also implements new

features such as merging improvements. Also, the licensing, Apache License, allows almost any

kind of project to use SVN.

svn copy trunk branches/test-branch

svn commit –m”Creating new branch”

[save the commit id, say r123]

.. modify test-branch …

svn up

svn merge ^/trunk –r123:HEAD

FIGURE 5. SVN branching and merging.

19

4.4 Mercurial

Mercurial is a distributed SCM system designed to be easy to use and robust, have a high

performance and be able to handle large amounts of data (16). It has been developed since

2005, it is quite mature and has a large amount of projects using it, such as Mozilla. Mercurial is

quite easy to use, especially for users that have been using SVN, but not as flexible as Git.

Mercurial is mostly done with Python so it is quite easily portable between operating systems. On

Windows machine the Mercurial is one of the fastest SCM systems, and on Linux there is only a

small difference between the Git and Mercurial performance.

Mercurial scalability is quite good. It cannot use multiple hardware servers per project which limits

the codebase size per project, but it can handle multiple different projects at once. The codebase

size limit is quite large: All files, metadata etc. should fit in RAM for efficiency thus designing

appropriate size subprojects should not be too hard.

Ease of use was one of the main focus areas when developing Mercurial. Few hours of training is

enough to work fluently with it, especially if the developer is familiar with some other SCM

system. All that is needed is a basic knowledge on how the Mercurial works and on 4 commands

presented in Figure 6. Mercurial is a command line application but it also has a number of user-

friendly interface applications to help developers using it - for both Linux and Windows.

The replication or synching between different locations is possible with Mercurial by using only a

few commands. Basically it requires a local copy of one of the locations and pushing mirrored

changes back to all projects that need to be synced. In most cases a project requires a short

custom script that is run either periodically or when a change is detected at any of the locations.

hg clone https://svn.myproject.com/repos/test/trunk/ test-trunk

cd test-trunk

echo "test" > test.txt

hg commit

FIGURE 6. Mercurial usage example.

20

Reliability and traceability are good with Mercurial, but it has a possibility to change once

submitted changes. This requires using a specific flag in a correct command and the effects are

noted on log so this issue can be tackled with training and communication. The changes lost for

some other reason were not seen during the usage.

Mercurial has a good support with multiple different tools, and the existence of a command line

interface and support for protocols such as HTTP enables easy integration with almost any

related software. For example build automation can be triggered with a submitted change into the

Mercurial repository. Many widely used open source tools such as Jenkins and Eclipse support

Mercurial.

Branching is supported on Mercurial but it might require creating a new repository. This may be

an issue in some cases as merging is possible only within a single repository. Handling different

projects as one is not recommended but possible with a Subrepository feature, which would also

allow other SCM systems’ projects to be used. Branching and merging is demonstrated in Figure

7.

Mercurial has an active community. The community does not only error corrections but also

implements new features, and new releases come about every month. Also, the licensing, GNU

General Public License version 2+, allows almost any kind of project to use Mercurial.

hg branch testbranch

hg ci -m "start testbranch"

echo "test2" >> test.txt

hg commit

cd ../test-2

hg pull ../test-trunk

hg merge

hg commit

FIGURE 7. Mercurial branching and merging.

21

5 BUILD FRAMEWORK SELECTION

5.1 Introduction and Requirements

Build framework is responsible for compiling the software (14, p.3). The build framework should

also produce needed target packages. Other requirements for the framework include

configurability, speed, robustness, repeatability and communication with other systems. Also, as

all open source projects, it needs an active community to support in problem cases and an

adequate license to be used in commercial software development. If the software effort uses

open source software components, the build framework also needs to be able to support a FOSS

process - at least by collecting the license info from the open source modules.

Compilation requirements depend on the software, but in projects for wireless devices the

software environment typically includes multiple different programming languages; for example

Android software may contain both Java and C code (1). The build framework needs to be flexible

enough to support different programming languages in different software modules.

Target packages are generally images when working for a wireless device but they might also be

update packages or installable files. Depending on the project, target packages might consist of

one or many different configurations. If there are multiple target packages, a good build

framework should be able to provide all needed configurations, either by a build time variation or

by a package generation time variation. This also requires a source code support for multiple

different configurations.

Build framework configurability is essential in complex software projects as different modules of

code might vary a lot at different development stages. A good framework can be configured

relatively easily according to different requirements, for both a source code compilation and a

target package generation. For example, adding a temporary compilation flag to one software

module should be a simple and fast task to do. Also adding or removing software modules should

not be a hard task.

22

The speed of the framework is essential in many different ways. If the target generation is fast,

the developers have more time to focus on the development instead of waiting for a testable

package to generate. Also, the compilation time both per a software module and per a whole

codebase helps focusing to the development as target packages for larger scale tests are

available sooner and test results might be available during the same day instead of days later.

The most commonly used feature to speed up build framework is using concurrency, but also the

build framework itself needs to be lightweight enough not to take up too much processing time.

The robustness of the build framework is an important feature. The larger the codebase grows,

the longer it will take to compile and the longer the time penalty is when the compilation fails due

to build a framework issue. Even with fast computers and a fast build framework the wireless

device projects’ build time is typically from one to many hours, so any random error might cause

even a day’s delay in development or in client delivery. Many build framework speedup methods

such as parallelization or skipping some sanity tests generally decrease robustness.

Repeatability is closely related to robustness and means that any build done can be repeated

with the same results (not including timestamps, etc.). For example build framework changes,

knowledge transfer situations or some legal issues might require creating the build again.

Communication with other systems is important as the build framework is usually part of a larger

process. Build framework usually gets its source code from the configuration management, and

the resulting target package needs to be published to test automation, directory share, etc. Also,

the initiation of the build might come from an automation system which needs an input from the

build framework also during the build.

5.2 Bitbake

Bitbake is a build framework done with Python and designed for an OpenEmbedded project and

is currently maintained by a Yocto project, but it can be used in any other software project, too

(3). Bitbake can use Git as a default source file location but can also use any SCM system that

has a command-line interface, or even packed files on a hard drive. It also describes the

dependencies between software modules thus it is possible to compile any software module with

its specific dependencies. Bitbake also includes an emulator for testing purposes.

23

Target package generation is flexible during build time - each recipe’s installation part dictates

what to take to the target package - but after the build, selecting only certain files to the target

package is not possible. This means that target package variation can only be done by separate

builds or external tools.

Thanks to its recipes, Bitbake is well configurable. Minimal recipe is presented in Figure 8.

Another way to configure software is Bitbake configuration files that can define functions,

variables, etc. common for the build environment. Bitbake has a lot of ready-made functions and

more can be defined. Also, the component specific recipes can temporarily overwrite any

functions affecting that module’s handling. Configuring included packages can be done for

example by defining a main recipe and setting all wanted packages as its dependencies.

DESCRIPTION = "test recipe"

 HOMEPAGE = ""

 LICENSE = "GPLv2"

 DEPENDS = "anotherTest"

BRANCH="master"

SRCREV="HEAD"

SRC_URI = "git://git@myurl.com/projects/test.git;protocol=ssh;branch=${BRANCH}”

 S = "${WORKDIR}/test-v${PV}"

 do_configure () {

 ./configure --prefix=${prefix} --without-snapshot

 }

 do_compile () {

 make

 }

 do_install () {

 DESTDIR=${D} oe_runmake install

}

FIGURE 8. Minimal Bitbake recipe.

24

Speed of the Bitbake framework is good; parsing the recipes takes a while - about 2 minutes with

1600 recipes - but after that the software modules can be built in parallel. Another speedup option

is to compile only the changed and depended modules, but Bitbake relies on the recipe version

number with this, therefore all changes should increment also the related recipe’s version. This

feature is called a shared state cache. While building, Bitbake uses about 950 MB of memory for

a 120 MB codebase when compiling with 4 cores. The processor load from the framework is

minimal.

Both robustness and repeatability are at a good level. During the testing the amount of randomly

failed builds was under 1 ‰ of total builds, and all the failed cases were due to undocumented

software dependencies that came visible with enough parallelization. All the builds repeated

produced an expected result, except the ones that failed because of a software dependency

error.

Most communications with other systems require a command-line interface or a special function

for Bitbake recipes. Bitbake comes with an integrated Git support but it is restricted to

downloading the source code. Bitbake itself is a command line tool which enables it to

communicate with related external tools such as a code review and a build automation.

Bitbake does not have an active community as such but it has some support via Yocto and

OpenEmbedded projects. Also, the licensing, GNU General Public License (GPL) and MIT/X

Consortium License, allows any kind of project to use Bitbake. Alternatively, Bitbake has a built-in

support for collecting software components’ license files and making a summary of them.

Bitbake has some problems, and most of them are caused by users. Recipes’ flexibility may

cause problems when working with a large project as it enables abusing many kinds of hacks,

patches, etc. Bitbake’s features include selecting a certain - or the newest - version of each

software module automatically, which can sometimes cause issues. Also, the dependency

handling relies on recipe versions; if a module is updated but its version is not and the module is

not cleaned before a dependent module compilation, the changed module will not be compiled.

25

5.3 Yocto

Yocto provides an infrastructure and tools for Linux distributions for any hardware architecture,

but it can also be used in other software projects, too (27). Yocto can use Git as a default source

file location but it can also use any SCM system that has a command-line interface, or even

packed files on a hard drive. It also describes the dependencies between software modules

therefore it is possible to compile any software module with its specific dependencies.

Yocto uses Poky as a development and build system. Poky uses Bitbake as the build framework,

thus most of its results are similar to Bitbake. Yocto has one major difference compared to

Bitbake alone: Whereas Bitbake is a build framework, Yocto provides a full system, including a

basic functionality for an end product, for developing a Linux based system. Also, the

documentation has been vastly improved.

Target package generation is flexible during the build time - each recipe’s installation part dictates

what to take to the target package - but after the build, selecting only certain files to the target

package is not possible. This means that target package variation can only be done by separate

builds or external tools.

Yocto uses recipes due to its Bitbake usage and is therefore well configurable. A minimal recipe

is presented in Figure 8. Yocto project has a lot of ready-made functions and more can be

defined. Also, the component specific recipes can temporarily overwrite any functions affecting

that module’s handling. Configuring included packages can be done for example by defining a

main recipe and setting all wanted packages as its dependencies.

The speed of the framework is good; parsing the recipes takes a while - about 2 minutes with

1600 recipes - but after that the software modules can be built parallel. Another speedup option is

to compile only the changed and depended modules with a shared state cache, but Yocto, as well

as Bitbake, relies on the recipe version number in this, thus all changes also should increment the

related recipe’s version. While building, Bitbake uses about 950 MB of memory for a 120 MB

codebase when compiling with 4 cores. The processor load from the framework is minimal.

Both robustness and repeatability are at a good level, and no build errors were seen during the

testing. All builds repeated produced an expected result.

26

Most communications with other systems require a command-line interface or a special function

for the recipes. Yocto comes with an integrated Git support but it is restricted to downloading a

source code. Yocto itself is a collection of command line tools and libraries which enables it to

communicate with related external tools such as a code review and a build automation.

Yocto has an active community and it is working closely with OpenEmbedded and Poky projects.

Also the licensing, which depends on which tools from the infrastructure are used, allows any kind

of project to use Yocto. Alternatively, Yocto has a built-in support for collecting software

components’ license files via Bitbake and making a summary of them.

5.4 Apache ANT

Apache ANT is a very flexible build automation system written with Java and based on xml files. It

is originally designed for Apache Tomcat project, but it has been a standalone build automation

tool since 2000 (2).

Apache ANT is providing a framework based on xml files that control each software modules’

compilation and installation. Also JUnit testing (11) is easy therefore ANT is a good choice for a

test-driven development. ANT supports any compilation tools, but unfortunately it does not have a

dependency handling therefore it is not good for large projects as such unless the compilation

tools can handle the dependencies. However, ANT has several extensions that support

dependency handling, such as Apache Ivy.

Target package generation is flexible during the build time as a user can set on xml files what to

take to the target package. After the build, selecting only certain files to the target package is also

possible, but it requires well designed structures.

ANT is quite well configurable as it is based on xml files. It does not have any coding conventions

or restrictions to the project layout; however, the xml specification needs to be followed. The user

can also define extension modules called antlibs on xml files. An example of the ANT’s build.xml

is presented in Figure 9.

27

The speed of the ANT framework is relatively good; parsing the xml files will not take long but

parallel compilation requires separate code modules due to lack of proper dependency handling.

While building, Java uses quite a lot of memory, and in large projects the Java virtual machine

may need more memory allocation than it has by default. The processor load from framework is

minimal.

Both robustness and repeatability are at a good level. During the testing no build errors due to the

build framework were seen - except some misconfigurations by users. Also, all the reproduced

builds produced similar results.

Most communications with other systems require a command-line interface. ANT itself is a

command line tool which enables it to communicate with related external tools such as a code

review and a build automation. Many development tools such as Eclipse and Jenkins support

ANT directly.

<?xml version="1.0"?>

<project name="Example" default="all">

 <path id="classpath.test">

 <pathelement location="/Projects/Java/Lib/junit.jar" />

 </path>

 <target name="compile" description="compile the example to class files">

 <mkdir dir="classes"/>

 <javac srcdir="." destdir="classes"/>

 </target>

<target name="test" depends="compile ">

 <junit>

 <classpath refid="classpath.test" />

 <test name="Test" />

 </junit>

 </target>

 <target name="all" depends="test" />

</project>

FIGURE 9. Apache ANT example build.xml.

28

Apache ANT has an active community. The community does not only error corrections but also

implements new features, and new releases come few times a year. Also, the licensing, Apache

Software License, allows any kind of project to use ANT. Collecting software components’ license

info is not directly supported by ANT but there are few Antlibs that can collect them, at least for

Java projects.

5.5 Apache Maven

Apache Maven is a derivative of Apache ANT, and introduces some coding conventions, a file

structure dependency and new features such as a dependency handling and an experimental

parallel build support (15). It also provides an ability to download dependent modules and plugins

over the network. Maven is one of the most used build frameworks for Java projects but it can

also support other compilers.

Apache Maven is providing a framework based on xml files that control each software modules’

compilation and installation. Modules are separated by a directory structure by default, and

modules can include other modules. Also, JUnit testing is as easy as with ANT. Maven supports

any compilation tool and has a quite good dependency handling thus it is sufficient for large

projects. Maven also supports plugins.

Target package generation is flexible during the build time; a user can set on xml files what to

take to the target package. After the build, selecting only certain files to the target package is also

possible, but it requires well designed structures.

Maven is quite well configurable as it is based on xml files. It has stricter coding conventions and

restrictions to project layout than ANT, but most of them are making configurations easier to use.

The user can also use plugins written with Java with xml files. An example of the Maven’s

pom.xml is presented in Figure 10.

The speed of the Maven framework is relatively good; parsing the xml files will not take long. As

the parallel build support is experimental, it can only be used with caution; if no issues are seen,

parallelization should be used to improve the build time. While building, Java uses quite a lot of

memory, and in large projects the Java virtual machine may need more memory allocation than it

has by default. The processor load from the framework is minimal.

29

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent> <groupId>fi.jkokko.maven.example</groupId>

 <artifactId>parent</artifactId> <version>0.1-SNAPSHOT</version>

</parent>

 <artifactId>example-parent</artifactId> <packaging>pom</packaging>

<name>Example Project</name>

 <modules>

 <module>example1</module>

 <module>example2</module>

 </modules>

 <build>

 <pluginManagement>

 <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-compiler-plugin</artifactId> <configuration>

<source>1.5</source> <target>1.5</target> </configuration> </plugin>

</plugins>

 </pluginManagement>

 </build>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

</project>

FIGURE 10. Maven example pom.xml.

30

Both robustness and repeatability are at a good level. During the testing no build errors due to the

build framework were seen - except some misconfigurations by users. Also, all reproduced builds

produced similar results. Most problems seen were because of failed external downloads; Maven

seems to be a bit unstable with an encrypted tunneled proxy connection.

Most communications with other systems require a command-line interface. Maven itself is a

command line tool which enables it to communicate with related external tools such as a code

review and a build automation. Many development tools such as Eclipse and Jenkins support

Maven directly.

Apache Maven has an active community under Apache Software Foundation. The community

does not only error corrections but also implements new features, and new releases come few

times a year. Also the licensing, Apache Software License, allows any kind of project to use

Maven. Additionally, Maven has plugins for collecting software components’ license info.

31

6 CODE REVIEW SYSTEM SELECTION

Code review systems try to increase the code quality by forcing every change to be reviewed by

someone, be that a fellow developer or an automated test environment. The best result is usually

achieved if the code review systems integrate with the software configuration management and

build automation system along with the human reviewer.

A good code review system initiates when a change is done to the software configuration

management, runs compilation, static analysis, light test automation and if possible unit testing.

After machine testing has been done, the system should also notify a human reviewer to review

the change. Also, as all open source projects, it needs an active community to support in problem

cases and an adequate license to be used in commercial software development.

As software changes coming to a code review are not necessarily final and may even contain

confidential information by mistake, it is good if the code review system separates commits under

review from the codebase. Also, in commercial usage the access control mechanism needs to be

adequate so that users on remote sites can work together without traveling to a review meeting.

6.1 Gerrit

Gerrit is an easy to use Java EE servlet based code review system designed to work with Git (8).

Gerrit keeps commits in its own SQL database while waiting for a review, and pushes the

commits to a codebase only after the review has been successfully approved. As a web based

system, it also enables code reviewing by someone located on the other side of the world, so

multisite projects benefit from this.

Gerrit has a multi-layer access control model, meaning that each project can have both common

settings and project’s separate settings on what certain people or groups can do; also people can

be part of different access groups. Access control can also be separated by what kind of commits

can be done by certain users, what types of approvals can users give, etc. Gerrit also supports

LDAP, OpenID and SSH so it can be arranged as a secure system even via public Internet.

Gerrit works well with Jenkins via plugin therefore build and test automation for each commit can

be arranged via Jenkins. Also, REST API is supported but all features are not yet implemented to

that.

32

Submitting a commit for the review requires only a push to Gerrit instead of a master repository,

presented in Figure 11. The manual code review with commenting can be done with only few

clicks, and the change is shown as a difference compared to the original code. Also, abandoning,

submitting and rebasing the commit can be done easily, directly from the web user interface.

Also, searching commits is possible but limited to the project, branch and hash code. Notifying

the related parties can be done via e-mail.

Gerrit has a quite active community that makes quite a few releases per year, containing both

new features and error corrections. Also the licensing, Apache License 2.0, allows almost any

kind of project to use Gerrit.

6.2 Review Board

Review Board is a feature-packed code review system written with Python and a Django

framework (20). It keeps the changes in its own SQL database, but does not submit those into the

version control like Gerrit. Review Board supports multiple SCM systems including Git, SVN and

Mercurial, and it can even work with Github and similar services. One of the features is that

Review Board can use cloud services such as Amazon S3 for storing the data. As a web based

system, it also enables code reviewing by someone located on the other side of the world,

therefore multisite projects benefit from this.

Review Board has a multi-layer access control model, meaning that each project can have both

common settings and project’s separate settings on what certain people or groups can do; also

people can be part of different access groups. Access control can also be separated by what kind

of commits can be done by certain users, what types of approvals can users give, etc. Review

Board also supports LDAP, Active directory and NIS and SSH so it can be arranged as a secure

system even via public internet.

git push origin # pushes changes to default remote

git push origin HEAD:refs/heads/sandbox/mynewbranch # pushes changes to

sandbox/mynewbranch, creates it if it doesn’t exist

git push origin HEAD:refs/for/sandbox/mynewbranch # pushes changes to

sandbox/mynewbranch via Gerrit, creates it if it doesn’t exist

FIGURE 11. Git push operations.

33

Thanks to Python and Django, Review Board is extensible with almost any kind of module. Also,

REST API is fully supported. During the usage, an extension enabling automatic change submits

to the SCM system was not found but it would be possible to implement.

Submitting changes can be done either via uploading patches from the user interface or

connecting review tool into a special branch or repository on the SCM system. The manual code

review with commenting can be done quite easily, and even different lines of code can be

commented along with attaching more files such as documentation. The change is shown as a

difference compared to the original code. Also, abandoning and updating the patch can be done

easily, directly from the web user interface, but submitting the approved change to the master

repository requires manual work. Also, searching commits is possible and well supported.

Notifying the related parties can be done via e-mail.

Review Board has a relatively active community that does a few releases per year, containing

both new features and error corrections. Also, the licensing, MIT license, allows almost any kind

of project to use Review Board.

34

7 SELECTION OF THE SUPPORTING TOOLS

7.1 Introduction and Requirements

Build and release management needs a lot of supporting tools for various activities. Most

important ones relate to build automation and code review. Other often used tools are test

automation and error management related tools.

7.2 Build Automation

Build automation is almost always needed in order to support different kinds of builds. Good build

automation system integrates with the SCM system and the build framework as well as with the

error management and test automation. Build automation should also support multiple builds

done in parallel and gather some metrics of the results. Also, easy configuration is useful if the

software project requirements for builds vary a lot. Also, as all open source projects, it needs an

active community to support in problem cases and an adequate license to be used in commercial

software development.

There are two good open source build automation systems available; Jenkins and CruiseControl.

They both manage their main task, which is doing builds automatically, extremely well. They both

are written with Java and both can be set up to do builds periodically, continuously or by detecting

changes on SCM system (12, 6). They both are also quite easy and fast to use, though Jenkins’

web user interface for configuring builds is easier and faster. They both also have free licensing;

Jenkins is licensed under an MIT License and CruiseControl under a BSD-style license. The

biggest difference between these two is that CruiseControl has stopped support in September

2010 whereas Jenkins project releases even several times a week.

7.3 Test Automation

Test automation availability depends on the type of project but it should have at least a two-way

interface to communicate with build automation and code review systems. Test automation

system should report the test results in a both machine and human readable format so that the

results can be used in decision making, and if something fails, the report tells what and why. For

quality purposes, also a code coverage and unit testing should be run. From the build

management point of view the test automation system needs a two-way communication - what to

test and how the test went - and possibly a provided build support.

35

Due to the complex nature of the wireless devices, no open source test framework exists that can

be directly used with it, even though Robot Framework might be possible to expand enough

thanks to its modular structure and free license, Apache License 2.0 (21). For example a

conformance testing with TTCN is not possible with open source tools, commercial ones such as

OpenTTCN (17) need to be used. There are some tools that can be used to help getting better

software, for example Splint (24) is a good choice for unit testing any C++ source code and JUnit

for unit testing Java source code. Coverity (5) is a great tool for static analysis of a C++ source

code but it is free only when used with an open source code.

7.4 Error and Feature Management Related Tools

Error and feature management tools are often used separately and manually, but it is possible to

get for example static analysis tools to report errors automatically. This will improve project

tracking as errors and their corrections are often a major part of the development effort. Manual

usage requires a fast and logical user interface.

There are quite a few possibilities to choose from, but most popular ones that have either a

command line or a web interface for automation purposes are Bugzilla (4), Jira (13) and Trac

(26). Of these three Jira is the most advanced one, supporting multiple types of issues such as

change requests and features, but it is free only for open source projects. Bugzilla and Trac rely

on issues that can have special states such as an enhancement. From the build management

point of view any of these are well usable, therefore the selection needs to be done based on

other requirements.

7.5 Delivery Methods

All software projects focus on delivering a product to a customer. In large projects this usually

requires an appointed release manager that ensures that all needed data is delivered. The

delivery usually consists of the compiled binaries and related documentation, sometimes

including also the source code. Usually there is not a single tool to publish the delivery fully, but

instead multiple tools are required.

In commercial open source projects there are plenty of tools to be used for publishing - for

example Sourceforge is a popular publishing channel for project binaries, source code and

documentation (23). Another popular publishing tool is GitHub but it focuses almost purely on

source code sharing (10).

36

On projects working with complex wireless devices, the open source channels are usually

forbidden, and each delivery has a specific customer. The delivery content usually consists of the

product binaries and a release note document, but it may also contain other data such as usage

instructions and separate test reports. In almost all cases the documents are created with

Microsoft products, even on projects focused on Linux systems.

The delivery transfer needs to be done securely; quite common ways are to use SSH protected

connections to a secure server or to use an internal dedicated tool, but it is not unheard of to do

the delivery via portable media by hand. When the delivery is done internally, also the version

control or even a network share can be used if the network itself is protected.

The software effort’s selected software development model affects a lot to the delivery. Usually, a

waterfall based development model means rare deliveries with a vast documentation whereas an

agile model means frequent deliveries with a lighter documentation, and occasionally with a more

specific documentation.

37

8 CONCLUSIONS

Each complex wireless device project has its specific needs but these guidelines will help

selecting the correct tools. In some areas there is only one good option, in some other areas

almost any of the presented tools is at least sufficient.

Hardware selection for each tool should be done based on the tool requirements and using the

already available hardware when possible. Most of the presented applications and all

recommended ones are designed to work on Linux, so that it should be used as an operating

system if possible.

Both Git and Mercurial are good choices for project’s SCM system - SVN may be a bit lightweight

for a large project. If the selected development model is close to waterfall, Mercurial would be a

better candidate as it is easier to use than Git, but if the project has iterative cycles and branching

is needed then Git is the best selection. If the codebase branching needs are not known at the

startup phase of the project, then Git is the safer option even it requires a bit more training than

Mercurial.

Build framework selection depends on the target device of the project. For most cases, the

Bitbake is the fastest and most flexible build framework of the presented ones. If the target device

is based on embedded Linux, then the Yocto framework is a better choice as it already includes

the basic software and a lot of tools.

Code review system selection is a bit two-fold; if Git is used as a SCM system then Gerrit is a

better option due to its tight integration with Git, even if the Review Board has a lot of features

that are not included in Git and they would be somewhat beneficial for the project. If any other

SCM system is used, then the Review Board is the only option.

Supporting tools, excluding the build automation tool, are almost completely dictated by project’s

needs unrelated to build and release management: The delivery methods are dictated by the

project customer; error and feature management related tools are dictated by the project’s issue

tracking needs. The build automation should rely on Jenkins as it has an active community.

38

On a complex wireless device project many kinds of different issues needs to be handled,

therefore Jira would be a good candidate but also Bugzilla and Trac are manageable. Test

automation needs are specific to the project but at least unit tests and static analysis should be

run for each programming language used - Splint and Coverity are good choices for the C++

code.

On a project that uses agile methods and develops software for a wireless embedded Linux

device, the tools selection would be simple. Git would be the selection as a SCM system, Yocto

the build framework, Gerrit the code review system and Jenkins the build automation system.

39

REFERENCES

1. Android Developers. Date of retrieval 25.08.2013.

http://developer.android.com

2. Ant. Date of retrieval 05.10.2013.

http://ant.apache.org

3. Bitbake. Date of retrieval 22.09.2013.

http://docs.openembedded.org/bitbake/html

4. Bugzilla. 2013. Date of retrieval 30.10.2013.

http://www.bugzilla.org

5. Coverity. 2013. Date of retrieval 30.10.2013.

http://www.coverity.com

6. CruiseControl. 2013. Date of retrieval 12.10.2013.

http://cruisecontrol.sourceforge.net/index.html

7. Eclipse. 2013. Date of retrieval 25.08.2013.

http://www.eclipse.org

8. Gerrit. 2013. Date of retrieval 12.10.2013.

https://code.google.com/p/gerrit

9. Git. 2013. Date of retrieval 22.09.2013.

http://git-scm.com/about

10. Github. 2013. Date of retrieval 22.09.2013.

https://github.com

11. JUnit. 2013. Date of retrieval 30.10.2013.

http://junit.org

40

12. Jenkins. 2013. Date of retrieval 12.10.2013.

http://jenkins-ci.org

13. Jira. 2013. Date of retrieval 30.10.2013.

https://www.atlassian.com/software/jira

14. Kokko, J.T. 2013. Software Build Management Peculiarities when Working for a Wireless

Device. T863403 Seminar on Wireless Future 3 Cr. Seminar paper in autumn 2013.

Oulu: Oulu University of Applied Sciences, Degree Programme in Information

Technology.

http://www.oamk.fi/~karil/mit_studies/wireless_future_seminar/papers2013/final_paper_k

okko_jukka.doc

15. Maven. 2013. Date of retrieval 05.10.2013.

http://maven.apache.org

16. Mercurial. 2013. Date of retrieval 22.09.2013.

http://mercurial.selenic.com

17. OpenTTCN. 2013. Date of retrieval 30.10.2013.

http://www.openttcn.com

18. Rational Clearcase. 2013. Date of retrieval 25.08.2013.

http://www-03.ibm.com/software/products/us/en/clearcase

19. Repo Tool. 2013. Date of retrieval 22.09.2013.

https://code.google.com/p/git-repo

20. Review Board. 2013. Date of retrieval 12.10.2013.

http://www.reviewboard.org

21. Robot Framework. 2013. Date of retrieval 12.10.2013.

https://code.google.com/p/robotframework

41

22. SVN. 2013. Date of retrieval 22.09.2013.

http://subversion.apache.org

23. Sourceforge. 2013. Date of retrieval 12.10.2013.

http://sourceforge.net

24. Splint. 2013. Date of retrieval 30.10.2013.

http://www.splint.org

25. Tomayko, J.E. 1990. Software Configuration Management. Date of retrieval 25.08.2013.

http://www.sei.cmu.edu/reports/87cm004.pdf

26. Trac. 2013. Date of retrieval 30.10.2013.

http://trac.edgewall.org

27. Yocto. 2013. Date of retrieval 06.10.2013.

https://www.yoctoproject.org

42

APPENDICES

Installing Test Environment APPENDIX 1

Test environment was selected to be Ubuntu Linux 12.04 amd64 as a Virtualbox virtual operating

system, and OpenEmbedded project’s source code as the test source code. Selection was done

like this as both are easily available. This attachment describes how to do the basic install.

Basic install:

Download Ubuntu 12.04 amd64 image or use existing one

Create new VM, use downloaded or existing .vdi

- Set memory usage, processor amounts, etc. according to your hardware - leave at least 2GB of

memory and 1 processor for other usage

 - recommended for Dell latitude E6430: 3 cores, 4GB of memory, 3D acceleration

on, shared clipboard bidirectional, shared folder with name "shared"

Increase disk size (if needed) with VBoxManage and Gparted live cd; recommendation is to have

100GB

- "C:\Program Files\Oracle\VirtualBox\VBoxManage.exe" modifyhd "c:\Users\kokkjuk\VirtualBox

VMs\Ubuntu 12.04.vdi" --resize=102400

- boot virtual machine from gparted live cd (gparted.sourceforge.net/download.php)

 - add .iso to virtual machine

 - change boot order to cd first

- resize partitions

- remove the gparted image from VM configuration or change boot order to HDD first

Create admin account for yourself (if you downloaded default ready-made Ubuntu image,

password is "reverse")

Change keyboard layout to correct one

Install Guest Additions (VM's Devices menu)

Restart machine

If shared clipboard, etc. are enabled but not working, reinstall:

- Cd /opt/VBoxGuestAdditions-4.2.6

- sudo sh ./uninstall.sh

- install Guest Additions (VM's Devices menu)

- restart machine

Set http proxy if needed

43

sudo gedit /etc/apt/sources.list

Uncomment lines:

deb http://archive.canonical.com/ubuntu precise partner

deb-src http://archive.canonical.com/ubuntu precise partner

sudo apt-get update

sudo apt-get upgrade

ssh-keygen -t rsa -C "Jukka.Kokko@company.com"

(Or copy generated ssh keys from elsewhere)

sudo apt-get install cifs-utils

mkdir ~/shared

sudo mount -t vboxsf shared ~/shared

Install needed tools for OpenEmbedded (http://www.openembedded.org):

sudo apt-get install gawk wget git-core diffstat unzip texinfo build-essential chrpath libsdl1.2-dev

xterm

Download and build OpenEmbedded standalone source:

git clone git://git.openembedded.org/openembedded-core oe-core

cd oe-core

git clone git://git.openembedded.org/bitbake bitbake

source ./oe-init-build-env

bitbake core-image-minimal

