

Bachelor's thesis (UAS)

Information Technology

Networking

2013

Ranjam Alee

READING DATA FROM A
DIGITAL MULTIMETER USING A

RASPBERRY PI

BACHELOR´S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Degree programme | Information technology

December 2013| 36

Instructor : Patric Granholm

Ranjam Alee

READING DATA FROM A DIGITAL
MULTIMETER USING A RASPBERRY

PI
The primary objective of this thesis was to read the data signal from a digital

multimeter on a Raspberry Pi. This thesis aims to analyze how a

communication process takes place between two devices.

This thesis was conducted using a Raspberry Pi and a Fluke digital multimeter.

The digital multimeter was connected with the Raspberry Pi using an USB-

Serial cable that comes with the multimeter. To access the data from the

multimeter, the Python programming language was used. The data obtained

using the Python program in a digital method was also tested with an analog

method simultaneously. One of the goals of this thesis was also to understand

the communication protocol that is used by the two devices for talking to each

other.

On the basis of the tests and the results obtained, it was concluded that the

data thus received using the python program was genuine. Therefore, reading

data from the digital multimeter in Raspberry Pi was successfully carried out.

KEYWORDS:

(Raspberry-Pi, digital multimeter, Python)

FOREWORD

I would like to thank and express my sincere gratitude to my supervisor, Mr.

Patric Granholm for supporting me with everything throughout this thesis. His

advice, guidance and motivation have been really helpful to me.

I thank and offer my hearti ly appreciation to my teacher and language instructor

Mrs. Poppy Skarli for her guidance and support throughout my studies.

In addition, I also want to thank all my teachers (Balsam, Hazem al-Bermanei,

Osseo and Visa Slotted) whose knowledge and advice have been a great help

for me during my studies.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 5

1 INTRODUCTION 7

2 RASPBERRY PI 8

2.1 History of Raspberry Pi 8

2.2 Hardware and Specification 9

3 FLUKE DIGITAL MULTIMETER 11

4 DATA COMMUNICATION 12

4.1 Synchronous Data Transmission 14

4.2 Asynchronous Data Transmission 14

4.3 Serial Ports 17

4.3.1 TTY driver 18

5 METHODOLOGY 20

5.1 Setting up Raspberry Pi 20

5.2 USB-Serial Interface 21

5.3 Connecting Digital multimeter to Raspberry Pi 23

5.4 Programming 26

5.4.1 Pyserial 27

5.4.2 Program Overview 28

6 TESTING AND RESULTS 29

7 CONCLUSION 32

7.1 Future Work 32

REFERENCES 33

APPENDIX

PICTURES

Picture 1. A Raspberry Pi 8

Picture 2. A digital multimeter 12

Picture 3. The multimeter and Raspberry Pi's connection 23

Picture 4. Testing 30

FIGURES

Figure 1. Raspberry Pi‟s hardware 9

Figure 2. Types of communication channels 13

Figure 3. Data flow of synchronous transmission 14

Figure 4. UART 15

Figure 5. Asynchronous frame 16

Figure 6. TTY driver 19

Figure 7. lsusb screenshot 21

Figure 8. Data flow 24

Figure 9. lsmode screenshot 24

Figure 10. Dmesg screenshot 25

Figure 11. ls /dev screenshot 26

Figure 12. Program flowchart 28

Figure 13. Logged data 32

TABLES

Table 1. Raspberry Pi‟s specifications 10

LIST OF ABBREVIATIONS (OR) SYMBOLS

Raspberry Pi Raspberry Pi

DMM Digital Multimeter

RCA Radio Cooperation of America

SD Secure Digital

SDIO Secure Digital Input Output

MMC Multimedia Card

GPIO General Purpose Input Output

HDMI High Definition Multimedia Interface

USB Universal Serial Bus

CPU Central Processing Unit

GPU Graphics Processing Unit

SoC System on Chip

SDRAM Synchronous Dynamic Random Access Memory

UART Universal Asynchronous Receiver and Transmitter

I2C Inter-Integrated Circuit

SPI Serial Peripheral Interface

NTSC National Television System Committee

PAL Phase Alternating Line

DC Direct Current

Pty Pseudo teletypewriter

EEPROM Electrically Erasable Programmable Read Only Memory

I/O Input Output

MCU Microcontroller Unit

FPGA Field-Programmable Gate Array

VCP Virtual Com Port

LED Light Emitting Diode

BSD Berkeley Software Distribution

POSIX Portable Operating System Interface

API Application Programming Interface

CR/LF Carriage return/ Line feed

1 INTRODUCTION

In today‟s world, where computers are becoming more powerful and advanced,

a Raspberry Pi looks like a tiny open circuit board. Since its introduction in the

computer field, Raspberry Pi is gradually becoming popular among the

students. The Raspberry Pi was developed with an intention that every student

can have their own affordable computer. It connects into a TV and a keyboard,

and thus a cheap computer is ready. This cheap tiny computer has the ability to

perform many tasks such as word processing, playing games, programming

and so on. There are many projects that can be performed using this single

board computer.

This thesis shows one of the experiments that can be carried out using a

Raspberry Pi and a digital multimeter. Although this kind of experiments have

been carried out on Linux and Windows systems, this thesis provides more

information on what goes behind the communication between the two electronic

instruments. A digital multimeter was chosen for this thesis because it is one of

the commonly found useful testing devices in laboratories. The thesis focuses

on how the test readings from the digital multimeter can be read via Raspberry

Pi and possibly be logged in some text files . This thesis includes some

information about a Raspberry Pi, Fluke multimeter along with the RS-232

communication protocol. This thesis does not include information on how to

write a device driver.

This thesis study starts with some introduction of Raspberry Pi and fluke digital

multimeter. It also focuses on what is a serial communication protocol. Further,

it deals with development of program, testing of the program and finally the

conclusion of the thesis.

2 RASPBERRY PI

A Raspberry Pi is a small, credit-card sized micro computer developed by

Raspberry Pi Foundation, UK. This single boarded computer was developed

with aim of teaching the basics of computer science and programming to school

students all around the world. Although a microcontroller, like Arduino, is trendy

for prototyping projects, a Raspberry Pi is quite different from the popular

microcontroller. Actually, it is more like a computer than an Arduino.

 Picture 1. A Raspberry Pi

2.1 History of Raspberry Pi

The history of development of Raspberry Pi dates back to 2006. Realizing the

decline of interests in computer sciences, some scientists (Eben Upton, Jack

Lang and Alan Mycroft) from the Computer Laboratory in University of

Cambridge decided to develop something cheap and small which would help

students gain computer ski lls. Although many prototypes of their concept of

small and cheap computers were designed from 2006 to 2008, it was only in

2012 when they finally created a credit card-sized, low-priced, tiny computer

called Raspberry Pi. (Raspberry Pi Foundation 2013)

2.2 Hardware and specifications

Raspberry Pi is found in two versions. Model A and Model B. Although Model A

is cheaper than Model B, there are some other differences in these two versions

of Raspberry Pi. Model A has a 256MB memory, comes with a single USB port

and does not have any Ethernet port whereas model B has a 512MB memory, 2

USB ports, and an Ethernet port as well.

Figure1. Raspberry Pi‟s hardware (Raspberry Pi 2013)

A Raspberry Pi consists of many important hardware parts with some useful

functions. The main part of a Raspberry Pi is its Processor. Every Raspberry Pi

has a Broadcom BCM2835 chip which embodies an ARM1176JZF-S CPU core.

The chip has a clock speed of 700MHz and it is a 32-bit System. A Raspberry

Pi has a SD card slot for a SD card which acts as the storage media for it.

Everything including the operating system and other fi les are stored in the SD

card. The HDMI port is used as audio and video output. A HDMI to DVI (Digital

Visual Interface) converter can be used to convert the HDMI signals to DVI

which is normally used by monitors. The Raspberry Pi has the Status LED

which provides the visual information. For instance, the first green light (marked

as ACT on Raspberry Pi board) indicates that the SD card is accessed, the

second green LED (marked as FDX) indicates the full duplex network and the

third green LED (marked as LNK) indicates the link activity. Similarly, the red

light (marked as PWR) announces the power of 3.3v and the yellow LED

(marked as 100) hints the 100Mbps network connection. The 5v DC through a

micro USB powers up the Raspberry Pi. This device also has a RCA composite

video connector for video output as well as a 3.5mm stereo jack for audio

output. The Raspberry Pi has 26 GPIO pins which help to connect to low level

peripherals and expansion boards. (Richardson & Wallace 2012)

Raspberry Pi’s specifications

Table1. Raspberry Pi‟s specifications (Raspberry Pi Model A & Model B

Comparison 2013)

Technical Features Model A Model B

SoC (System on Chip) Broadcom BCM2835

CPU 700 MHz Low power ARM1176JZ-F

GPU Dual Core VideoCore IV multimedia Co-processor

Memory 256MB SDRAM 512MB SDRAM

USB 2.0 1 2

Video Out Composite RCA(PAL and NTSC), HDMI

Audio Out 3.5mm jack, HDMI

Storage SD/MMC/SDIO card slot

Network No port RJ45 Ethernet

Peripheral Connectors 8xGPIO, UART, I2C bus, SPI bus

Power Source 5Volt DC via MicroUSB or GIOP headers

The Raspberry Pi used for this thesis study uses Raspbian Wheezy as an

operating system. Raspbian is a Debian based free OS (operating system) for

Raspberry Pi.

3 FLUKE DIGITAL MULTIMETER

The digital multimeter used for this thesis was Fluke 189 true RMS. There is a

difference between a true RMS multimeters and non-true RMS or averaging

multimeters. A non-true RMS multimeter measures the average amount of

current or voltage whereas a true RMS multimeters uses root mean square to

accurately measure AC voltage or current. This Fluke 189 true RMS multimeter

possesses built-in data logging capabilities. This special multimeter can monitor

temperature also along with many other electrical functions like measuring

voltage, continuity, capacitance, resistances, etc. It is one of the most accurate

and dependabale digital multimeter. It comes with a USB interface which is a

kind of RS-232C interface that can be connected to a PC for data acquisition.

Picture2. A digital multimeter

4 DATA COMMUNICATION

The process of transferring data or information between two devices connected

with a communicating media is called data communication. A communicating

media is a pathway or a channel over which the data or information is

transmitted or received. This media can be a physical wire, radio signals or

lasers. Basically, there are two kinds of channels for communication. The

simplest communication channel is one way channel, also, known as simplex.

In this type of communication channel, data or signals are transmitted only in

one direction. For example, a TV station or a radio station is a kind of simplex

channel. The other type of communication channel is a two-way communication

channel. Further, it has got two forms, namely, full-duplex and half duplex. Full

duplex is a form of two way communication where data are transmitted

simultaneously in both directions, for instance, mobile phones, landline phones,

etc. Whereas, in half duplex, data can be transmitted in both directions but not

at the same time, for example, a walkie-talkie.

 Figure 2. Types of communication channel

In the computer world, data communication mainly takes place in two ways:

- Parallel communication: It is one of the ways of communication

where large blocks of data are transmitted at a time.

- Serial Communication: It is the way of communication where

data are transmitted a bit at a time.

There are two modes of serial data transmission:

- Synchronous data transmission, and

- Asynchronous data transmission

4.1 Synchronous data transmission

Synchronous data transmission is the continuous and steady transfer of data.

This mode of transmission uses clock signals to synchronize the data transfer.

Since the synchronous mode is steady or consistent, it is used for transferring

long streams of data. Like asynchronous, this mode does not use any start bit

or stop bits which make it faster in data transfer. Due to the higher probability of

clocks being out of sync, this might result in more data loss or errors. (pSeries

and AIX Information Center 2013)

 Figure 3. Data flow of synchronous transmission

When the receiver receives the syn characters, it becomes ready to

synchronize with the transmitter. As the synchronization between transmitter

and receiver take place, now the synchronous data transmission process

begins.

4.2 Asynchronous data transmission

The main part of any electronic device is its processor. A processor has a chip

called UART (Universal Asynchronous Receiver and Transmitter) in it. This

microchip or UART is responsible for controlling serial communication between

a computer and serial devices. Basically, this UART prepares the computer with

talking environment to its connected serial devices. UART converts received

data bytes from a computer or a device and sends out bit streams for

transmission. These bit streams are some sets of 0s and 1s. This process of

sending a bit of data at a time is called serial communication. Unlike parallel

ports, serial ports use a single physical cable for the data transmission.

 Figure 4.UART

The asynchronous transmission mode is the process of data transfer where

transmission is not synchronized by clock signals. Unlike synchronous

transmission, asynchronous is rather periodical. In other words, the data are not

transmitted continously. The data frames are bounded by a start bit and stop

bits. Although RS232 ports are considered as asynchronous, they still possess

an external clock and they are not used so often.

 Figure 5. Asynchronous frame

There are a number of parameters that should be preagreed upon between the

communicating devices in order to establish a good communication. These

include:

 Baud rate

The baud rate is symbols per second. Therefore, it is also known as symbol

rate. The symbol rate can also be described as the number of times a signal

changes its states. The Baud rate can be as low as 110 baud to as high as

921600. For example: 2400, 4800, 9600, 19200, etc are some of the standard

baud rates.

 Data bits

Data bits are the number of bits sent in a single frame. Data bits could range

from 5 bits to 8 or 9 bits. The old system used 5 or 6 data bits. However, most

of the applications today use 8 data bits. Data bits follow the start bit.

 Parity

The parity bit is the extra bit that is added after the data bits for error checking.

It is a simple bit that informs the receiver that it has received the accurate bit of

data. For a RS-232, it can be considered as an optional parameter. Parity can

be even, odd, or none.

 Stop bit

The stop bit can be a bit or 2-bit long. Infact, it can be understood as a stop

period. The stop bit or bits indicate the end of the data bits. Start bits and stop

bits are used in asynchronous communication as timers.

To establish a communication between two devices, the number of data bits,

parity check (odd, even or none), baud rate and stop bits should be agreed prior

to communication. Otherwise, the signals might become corrupt or no

communication takes place. (Bies 2013)

 Flow control

As the name suggests, it is used to control the flow of data. When two devices

are communicating with each other, the data processing of one device might be

less compared to the other. So, to establish a handshaking environment, data

flow controls are used. Flowcontrol is of two types:

 Hardware flowcontrol

o RTS/CTS (request to send/clear to send) hardware

o DTR/DSR (data terminal ready/data set ready)

 Software flowcontrol

o XON/XOFF

4.3 Serial ports

Serial ports are the physical interfaces used in computers to transmit and

receive data stream, one bit at a time. In earlier computers, serial ports were the

important external connectors to other peripherals. Although serial ports are

becoming less common in today‟s computer, they need serial ports for USB

converters to connect to RS-232 devices. Any application cannot talk directly to

USB-Serial cable. There has to be some kind of device driver (either provided

by the operating system or installed by the user) for the communication.

A device driver has a special part in a Linux kernel. These drivers enable a

certain hardware piece to talk or to react to applications. Each device driver

varies from another as they have to perform tasks according to the type of

device/hardware they are dealing with.

4.3.1 TTY drivers

TTY is an acronym for older teletypewriter. Today TTY is also associated with

any serial port kind of device. Serial ports, USB to serial converters, are some

of the TTY devices. In Linux, the TTY driver core lies just below char (short form

for character) drivers level. The TTY driver core controls the data flow and data

format across TTY devices. The TTY line discipline drivers in the driver help to

control data flow.

Figure 6.TTY driver

When the TTY core receives data from the user space, it sends data to the TTY

line discipline. The line discipline driver then sends the data to TTY driver where

data conversion takes place. The data are converted to the particular format

that is understood by the TTY device. In a similar manner, the data from the

TTY device is transferred to the TTY driver and to the line discipline and

eventually reaches to user. The TTY driver can sometimes talk to TTY core

straightaway and vice versa. However, the TTY driver does not have any power

to talk to the line discipline directly. The TTY line discipline does the formatting

of the information from the TTY devices or from the user space in a certain

format, whereas the TTY driver converts the information to a certain format for

hardware or TTY devices and receives information from the TTY devices. TTY

drivers are of 3 types. They are serial port, PTY and console. (Corbet, Rubini &

Kroah-Hartman 2005)

5 METHODOLOGY

5.1 Setting up a Raspberry Pi

Requirements:

1. An empty SD card (minimum size of 4Gb)

2. A HDMI to DVI converter to connect Raspberry Pi to a Monitor

3. An USB Keyboard

4. A micro USB power adapter

5. An USB mouse(optional)

Preparing SD card to write the OS for the Raspberry Pi:

1. Download recommended OS(Raspbian).

2. Unzip the downloaded file / extract it. A file with .img extension

can be seen.

3. Download Win32DiskImager (or any software‟s like this) from

http://sourceforge.net/projects/win32diskimager/.

4. Unzip/extract the file.

5. Insert the SD card into PC and Run the Win32diskimager

software. Select the extracted .img image file and the drive

where the image has to be written. Then click Write button.

First time booting of Raspberry Pi

1. After the SD card is ready, insert it into Raspberry Pi, connect a

moniter and an usb keyboard. Now, plug the power adapter.

The LEDs start flashing. The Raspberry Pi starts to boot for the

first time and eventually, a Raspi-config window pops up.

http://sourceforge.net/projects/win32diskimager/

2. Change the required settings like expand_rootfs,

configure_keyboard, change_pass, etc.

3. After all the configuration made, finally select „Finish‟ to reboot

the Raspberry Pi.

4. After the reboot, Raspberry Pi promts to a raspberrypi login:

5. Enter the default login „pi‟ and the default password „raspberry‟

and press enter.

6. Finally, type startx to start the Raspbian desktop.

(Raspberry Pi 2013)

5.2 USB-Serial interface

When the digital multimeter is connected to the Raspberry Pi, the kernel detects

the type of the USB used by the multimeter. The connection between the

Raspberry Pi and the multimeter is done with a USB-Serial interface. This

interface has an integrated chip which converts the USB codes or signals to

serial or RS-232 data.

 Figure 7.lsusb screenshot

After plugging the USB cable to Raspberry Pi, the ‟lsusb‟ command shows the

connector is a FT232 USB-Serial (UART) interface. The FT232 USB-Serial

(UART) IC interface possesses some features as described by FTDI Company.

(Future Technology Devices International Limited 2010)

 Single chip USB to asynchronous serial data transfer interface.

 Whole USB protocol handled on the chip. USB specific firmware

programming not needed.

 Fully integrated 1024 bit EEPROM storing device descriptors and CBUS

I/O configuration.

 Fully integrated USB termination resistors.

 Fully integrated clock generation with no external crystal required plus

optional clock output selection enabling a glue-less interface to external

MCU or FPGA.

 Transfer rates of data ranging from 300 baud to 3 Mbaud (RS232,

RS422, and RS485) at TTL levels.

 128 byte receive buffer and 256 byte transmit buffer utilizing buffer

smoothing technology to allow for high data throughput.

 FTDI‟s royalty-free Virtual Com Port (VCP) and Direct (D2XX) drivers

eliminate the requirement for USB driver development in most cases.

 Unique USB FTDIChip-ID™ feature.

 CBUS I/O pins can be configured.

 Transmit and receive LED drive signals.

 UART interface support for 7 or 8 data bits, 1 or 2 stop bits and odd /

even / mark / space / no parity

 FIFO receive and transmit buffers for high data throughput.

 Device supplied pre-programmed with unique USB serial number.

 Integrated +3.3V level converter for USB I/O.

5.3 Connecting the digital multimeter to the Raspberry Pi

 Picture3. The multimeter and Raspberry Pi‟s connection

For a successful communication between any two devices, there has to be a

medium that helps in a good communication. A Fluke digital multimeter comes

with a USB-Serial interface as data transmission medium. Therefore, the

communication process between a Raspberry Pi and the multimeter takes place

using the USB-Serial interface. The communication between these two devices

does not occur just by connecting them together. There has to be something

that performs the intermediary job. Pyserial is a module for Python, which helps

to interface between the user and the driver. For the communication to occur, a

user has to send a command requesting the data from the digital multimeter. In

response to this request, the multimeter sends the information that it possesses

to the user. Actually, Pyserial sits between the user space and the USB to

UART driver and helps to access the serial port. The picture3 below shows how

the data flow between these devices takes place.

 Figure 8. Data flow

The Raspbian kernel provides the device driving part automatically. This can be

examined by listing the modules loaded by the kernel. As the screenshot

indicates, the ftdi_sio and usbserial module are already being loaded by the

kernel.

 Figure 9.lsmod screenshot

 Figure 10.dmesg screenshot

The command ”dmesg” enables a user to observe various kernel messages.

The figure above states that usbcore has registered an interface driver called

ftdi_sio. The kernel has detected a FT232RL which is a USB to serial UART

interface. Apart from this, the screenshot also informs that the USB serial

device was recognized and is now attached to a device named ”ttyUSB0”.

This ”ttyUSB0” can now be used as a normal serial port. The ”ttyUSB0” device

name can be found in the ”/dev” directory.

 Figure 11.ls /dev screenshot

5.4 Python Programming Language

The Python programming language was adopted to write a program for this

thesis study. Although the program could be written in other programming

languages such as C or C++, Python was chosen for this thesis as it is easy to

write and read. Also, the program written in Python can be executed instantly

without compiling the program.

Python is an open source high level programming language. It is created for the

ease of programmers so that they can depict their programming image in simple

and minimum words. Since the Python programming language does not need to

be compiled before running it as is done in C, C++ or Java, it is also called the

interpreted language. In other words, a script or any program written in Python

can be run directly. Python also saves time for the programmers as data types

do not have to be defined like in other programming languages. (Hughes 2013)

The operating system of Raspberry Pi, Raspbian already contains the Python

as its default programming language and IDLE 3. IDLE is a Raspberry Pi‟s

version of IDE (integrated development environment).

More information can be found from the official website of Python, http.

5.4.1 Pyserial

This module encapsulates the access for the serial port. It provides backend for

Python running on Windows, Linux, BSD (possibly any POSIX compliant

system), Jython and IronPython (.NET and Mono). The module named “serial”

automatically selects the appropriate backend (Liechti 2013).

Some of the Pyserial‟s features are:

 The Pyserial files are written in absolute Python language.

 Pyserial supports different values for serial port parameters (stop bits,

byte size, parity and flow controls).

 Python properties provide access to the serial port settings.

 Python‟s input/output library can be adapted with Pyserial.

5.4.2 Program Overview

Flowchart

 Figure 12. Program Flowchart

The figure above shows a very basic flowchart for a simple Python script for

reading data from a multimeter. As mentioned earlier, the digital multimeter and

the Raspberry Pi should have the same parameters setting. Therefore, the baud

rate used for port ‟/dev/ttyUSB0‟ is 9600 bits per second, the byte size is 8 bits,

the parity is none and the stop bit is one. The data can be received from digital

multimeter only when it is triggered with a query command.

6 TESTING AND RESULTS

When the Python script was executed, the multimeter would send some value

to the Raspberry Pi. The data received from the multimeter had to be tested if

the value was genuine. Therefore, the digital data from the multimeter was

tested along with an analog device also.

The testing was held taking some ice in a glass. A thermometer (alcohol) and

the thermocouple of the multimeter were dipped into the ice. After the

temperature readings in both instruments (thermometer and digital multimeter)

were around 0 degree Celsius, the Python script was executed. As the Python

program is running and logging data, some boiling water was poured in the

glass. Due to the high temperature, the readings in both instrument started

rising. Since the alcohol thermometer is an analog device, the alcohol level

rises slowly in comparison to the digital multimeter.

The testing could be done with other measurements like resistance, voltage,

and other functions of the multimeter.

Picture 4. Test setup

Analyzing the readings from both the thermometer and the logged data from the

multimeter, the highest temperature of the water was found to be around 78.6

degrees Celsius.

 Figure 13.Logged data

7 CONCLUSION

The primary goal of this thesis study was to read data from a digital multimeter

in a Raspberry Pi. To achieve this goal, a Python script was written. The script

was executed and data was accessed from the multimeter and logged in a file.

The digital data received using the program was also tested along with an

analog device. The data from both the device was found to be nearly similar

which proves that the correct data was read from the multimeter.

In conclusion, it can be stated that the data from the digital multimeter was

successfully read in a Raspberry Pi and the goal was achieved. As mentioned

in the introduction, this kind of project has been done in Windows and Linux, yet

there can be some more improvements made in this kind of project in the future

which are described in the next section.

7.1 Future Work

The following improvements can be implemented to improve this project.

 The GUI version of this project can be developed with more user

friendly functions.

 The data logged could be portrayed in graphs and chart which could

provide easy display of the logged data.

REFERENCES

Bies, L. 2013. RS232 Specifications and standard. Available at

http://www.lammertbies.nl/comm/info/RS-232_specs.html. [Accessed 23 August

2013]

Corbet, J., Rubini, A. & Kroah-Hartman, G. 2005. Linux Device Drivers., 3rd

edition. Available also at http://lwn.net/Kernel/LDD3/. [Accessed 13 August
2013]

FTDI - Wikipedia, the free encyclopedia 2013. Available at

http://en.wikipedia.org/wiki/FTDI. [Accessed 24 September 2013]

Future Technology Devices International Limited 2010.Available from

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf .

[Accessed 25 October 2013]

Future Technology Devices International Ltd, 2012. Available at

http://www.ftdichip.com/Products/ICs/FT232R.htm. [Accessed 24 September

2013]

Huges, J M. 2010. Real World Instrumentation with Python. 1st ed. United

States of America: O‟Reilly Media

Liechti, C. 2013. Welcome to pySerial‟s documentation. Available from

http://pyserial.sourceforge.net/. [Accessed 2 September 2013]

pSeries and AIX Information Center 2013. Available at

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.

aix.commadmn/doc/commadmndita/asynch_params_startbits.htm. [Accessed

24th August 2013]

Python (programming language) – Wikipedia, the free encyclopedia 2013.

Available at http://en.wikipedia.org/wiki/Python_(programming_language).

[Accessed 20 October 2013]

Raspberry Pi Model A & Model B Comparison 2013. Available at

http://downloads.element14.com/raspberryPi1.html. [Accessed 20 August 2013]

http://www.lammertbies.nl/comm/info/RS-232_specs.html
http://lwn.net/Kernel/LDD3/
http://en.wikipedia.org/wiki/FTDI
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
http://www.ftdichip.com/Products/ICs/FT232R.htm
http://pyserial.sourceforge.net/
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.commadmn/doc/commadmndita/asynch_params_startbits.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.commadmn/doc/commadmndita/asynch_params_startbits.htm
http://en.wikipedia.org/wiki/Python_(programming_language)
http://downloads.element14.com/raspberryPi1.html

Richardson, M. & Wallace, S. 2012. Getting Started with Raspberry Pi. 1st ed.

United States: Maker Media Inc.

The Raspberry Pi Foundation 2013. Available at http://www.raspberrypi.org/wp-

content/uploads/2012/04/quick-start-guide-v2_1.pdf [Accessed 16 October

2013]

The Raspberry Pi Foundation, UK 2013. Available at

http://www.raspberrypi.org/about [Accessed 10 July 2013]

http://www.raspberrypi.org/wp-content/uploads/2012/04/quick-start-guide-v2_1.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/04/quick-start-guide-v2_1.pdf
http://www.raspberrypi.org/about

APPENDIX

Raspbian download:

http://www.raspberrypi.org/downloads

Pyserial download:

https://pypi.python.org/pypi/pyserial

Python Script:

import serial

import time

from time import gmtime, strftime

import struct

#serial port settings

dmm = serial.Serial(

port='/dev/ttyUSB0',

baudrate=9600,

bytesize=8,

parity=serial.PARITY_NONE,

stopbits=serial.STOPBITS_ONE,

)

#handling exceptions

try:

dmm.open()

except Exception, e:

http://www.raspberrypi.org/downloads
https://pypi.python.org/pypi/pyserial

print "problem faced while openning the port : " +str(e)

exit()

print "Fluke 189 Digital Multimeter"

print "---"

dmm.isOpen()

file = open("/home/pi/Ramzan_project/py_Serial/dmmLogFile.txt", "a")

while True:

dmm.write('QM\r')

dmm.flushInput()

data = dmm.read(14)

if data == '':

dmm.close()

else:

print data

time.sleep(1)

 print >>file,data,' -> ',strftime("%d %b %Y,%H:%M:%S")

file.flush()

file.close()

