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ABSTRACT
This study focuses on advancing the inversion of aerosol data measured by a cascade
impactor. Our aim is to find and validate a comprehensive and robust mathematical
model for reconstructing a particle mass distribution. In this paper, we propose a
fixed-point iteration as a method for inverting cascade impactor measurements with
a relatively simple measurement hardware, which is not optimized for handling ad-
vanced linear algebraic operations such as large matrices. We validate this iteration
numerically against an iterative L1 norm regularized iterative alternating sequential
inversion algorithm. In the numerical experiments, we investigate and compare a
point-wise (matrix-free) and integrated kernel-based approach in inverting five dif-
ferent aerosol mass concentration distributions based on simulated measurements
and sensitivity kernel functions.

KEYWORDS
Aerosols, Cascade Impactor, Electrical Low Pressure Impactor (ELPI),
Field-Programmable Gate Array (FPGA), Inverse Problems, Fixed-Point
Iteration, L1-Regularization.

1. Introduction

This article focuses on the mathematical modelling and inversion of cascade impactor
aerosol measurements. An aerosol is a finely divided mixture consisting of gaseous
media and mixed liquid or solid particles. Aerosol particles are formed when liquids
or solids are fined or when the gas forms particles, e.g. in burning processes. Aerosols
include, for example, smoke, clouds and street dust. Today, aerosol research is an
important part and growing of research on air pollution, public health, nanotechnology,
medicine, atmospheric, radiological health and respiratory toxicology [1, 2].

Our example of the cascade impactors is the Electrical Low Pressure Impactor
(ELPI) measuring device [3–7] which can be applied in the direct measurement of
aerosol particle mass distributions, e.g., in the analysis of particulate emissions [8,9]. In
ELPI, the number of particles collected by each stage can be detected by an electrom-
eter measuring electrical currents arising from the deposition of electrically charged
particles and constituting the measurement data. Another measuring principle is gravi-
metric, in which the impactor plates are removed and the weight of collected particle
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mass are measured to get particle mass concentration distribution [1]. Reconstruct-
ing the eventual particle mass distribution based on the data is an ill-posed and ill-
conditioned inverse problem [10] in which a small amount of noise in the measurements
can result in a significant errors in the reconstructed mass distribution. Consequently,
inverting a given set of measurements necessitates a priori information about the
problem and regularization techniques to solve it.

Various measurement hardware solutions have typically an embedded system which
utilizes the field-programmable gate array (FPGA) technology for its basic functions.
The embedded FPGA platform has some computing capability which is needed for
processing the data flow and can be used also to solve the present inverse problem. It
is, however, not optimized for handling advanced linear algebraic operations such as
large matrices [11–13] and, therefore, the inversion algorithm must be specifically de-
signed for the hardware. The present fixed-point inversion method allows for a simple
point-wise matrix-free implementation and is, therefore, attractive from the hardware
point of view. Moreover, using the kernel functions as a basis for the inversion, one
can find an inverse estimate via a computationally inexpensive integrated matrix for-
mulation in which the matrix size is determined by the number of kernel functions. In
the numerical experiments, we investigate and compare the point-wise and integrated
approach, corresponding to characteristic set-identifier and smooth basis functions, re-
spectively, in inverting seven different particle mass distributions based on simulated
measurements and kernels.

The aim of this study is to find and validate a comprehensive and robust mathe-
matical model for reconstructing the aerosol particle concentration distribution based
on cascade impactor measurements. In particular, we will investigate a fixed-point
iteration [14] which can be applied to invert the measurement data effectively with
the cascade impactor measuring device. Earlier works motivating the current iterative
inversion approach include, e.g., [15–18]. Here our approach is more mathematical;
we justify the convergence of the proposed method based on the theory of fixed-point
iterations, and evaluate the performance this iteration numerically against an itera-
tive L1-regularized inversion algorithm. The fixed-point method regularizes the inverse
problem by approaching the final estimate gradually to suppress any unwanted fluc-
tuations in the final reconstruction. In L1-regularization, the L1 norm is utilized as
a penalty function based on the a priori assumption that the actual distribution is
well-localized, i.e., with comparably few non-zero entries. L1-regularization can be
considered advantageous in reconstructing peaked distributions as it is known to yield
a more focused outcome than the classical and widely-applied Tikhonov regularization
technique (L2-regularized inversion) [10].

This paper is structured as follows. Section 2 introduces a mathematical forward
(data prediction) model for the cascade impactor, the iterative fixed-point and L1
norm regularized inversion routines as well as the numerical experiments. The results
and discussion are presented in the following Sections 3 and 4, respectively, and finally,
Section 5 summarizes the findings and concludes the study. The convergence of the
investigated methods has been reasoned in the Appendix.
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2. Materials and methods

2.1. Inverse problem

In this paper, we investigate reconstructing a one-dimensional particle mass distribu-
tion that is a function g(s) of the logarithmic particle mass s ∈ [s1, s2] ⊂ R. The data
given consist of a set of particle masses y = (y1, y2, . . . , ym) measured by the cascade
impactor. The masses and the aerosol distribution are related through the formula

yi =

∫ s2

s1

g(s)fi(s) ds (1)

with f1, f2, . . . , fm denoting smooth non-negative kernel functions defined on the real
line R. These functions represent the cascade impactor’s stages, describing its sensitiv-
ity to detect particles of a given mass. The kernels are assumed to be linearly indepen-
dent, i.e., the noiseless data corresponding to an identically zero aerosol distribution
is assumed to vanish. Additionally, the partition of unity condition

∑m
i=1 fi(s) = 1

is satisfied for all s ∈ [s1, s2], following from the requirement that the total particle
mass captured by the cascade impactor is detected by a serially coupled set of stages.
That is, the particle mass detected by the i-th sensor of the cascade impactor can be
obtained by integrating the particle mass distribution g(s) multiplied by the kernel
function fi(s) over the interval [s1, s2]. We choose micrometer (µm) as the unit of
exp(s). The unit of g(s) is set to be micro gram per cubic meter (µg/m3).

The concentration distribution, that is, the unknown parameter of the inverse
problem, is reconstructed as a superposition of linearly independent basis functions
ϕ1, ϕ2, . . . , ϕn defined in R, i.e.,

g(s) =

n∑
j=1

xjϕj(s), for all s ∈ [s1, s2], (2)

where
∫ s2
s1
ϕj(s) ds = 1 for j = 1, 2, . . . , n and x = (x1, x2, . . . , xn) is an unknown

n-component vector with xi ≥ 0 for each j = 1, 2, . . . , n. The number of the basis
functions n is assumed to be greater than equal to that of the kernel functions m.
Substituting the discretized g(s) into equation (1) results in the formula

yi =

∫ s2

s1

fi(s)

n∑
j=1

xjϕj ds =

n∑
j=1

xj

∫ s2

s1

fi(s)ϕj ds, (3)

which can be written in the following matrix form y = Ax, where A = (f1, f2, . . . , fm)T

with (fi)j =
∫ s2
s1
fi(s)ϕj(s) ds. The measurements are assumed to contain additive

measurement noise n, independent of the concentration x, which leads to the following
linear model:

y = Ax + n. (4)

Determining an estimate for the unknown coefficient vector x with non-negative en-
tries given the data y is an ill-conditioned inverse problem, since x is sensitive to small
deviations of n. Therefore, the applied inversion procedure needs to involve regulariza-
tion, e.g., an iterative solver, which prevents amplification of the noise effects. In this
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study, we explore two iterative regularization approaches: a fixed-point and L1 norm
regularized algorithm. The vector n is assumed to contain zero-mean Gaussian white
(uncorrelated) noise corresponding to errors in both measurements and modelling,
e.g., in the kernel functions; see, e.g., [19].

2.2. Fixed-point iteration

To recostruct the distribution g(s), we use the following fixed-point method [14]:

gk+1(s) =

n∑
i=1

yifi(s)gk(s)∫ s2
s1
fi(ζ)gk(ζ) dζ

. (5)

As a simple iterative algorithm which converges to a fixed-point

g∗(s) =

n∑
i=1

yifi(s)g∗(s)∫ s2
s1
fi(ζ)g∗(ζ) dζ

(6)

with a relatively low number of steps, this is a fast and computationally inexpensive
approach to the inversion and is particularly suitable for an environment with lim-
ited computation resources such as the measurement device itself. Substituting the
approximation (2) into the formula (5) can be written in the discretized form

B xk+1 =

n∑
i=1

y(i)

f (i)xk

C(i)xk (7)

and further as

xk+1 = G(xk) = Gkxk =

n∑
i=1

y(i)

fTi xk

Fixk, (8)

where the matrices are of the form Fi = B−1Ci, for i = 1, 2, . . . , n and can be pre-
computed. The entries of B−1 and Ci are given by B`,j =

∫ s2
s1
ϕ`(s)ϕj(s) ds, (Ci)`,j =∫ s2

s1
fi(s)ϕ`(s)ϕj(s) ds, and Gk =

∑n
i=1

y(i)

fTi xk
Fi. The fixed-point x∗ is an eigenvector of

the matrix sum

G∗ =

n∑
i=1

y(i)

fTi x∗
Fi (9)

corresponding to the eigenvalue one, that is, it satisfies the condition

(I−G∗)x∗ = 0. (10)

Due to the condition
∑n

i=1 fi = 1, it holds that
∑n

i=1 Ci = B implying

n∑
i=1

B−1Ci =

n∑
i=1

Fi = I. (11)
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Thus, Equation (10) is satisfied, if

fTi x∗ = yi, for i = 1, 2, . . . , n, (12)

that is, if Ax∗ = y. Consequently, an estimate of this fixed-point can be used as
the reconstruction of the particle concentration distribution g(s). The convergence of
the iteration (8 ) can be guaranteed, if the initial guess x0 is chosen appropriately
which is shown in Appendix A. As the initial guess we use x0 =

∑n
i=1 yifi which

is based on the assumption that the kernel functions are close-to-orthogonal, i.e.,∫ s2
s1
f`(s)fj(s) ds ≈ δ`,j with δ`,j = 1 for ` = j and δ`,j = 0, otherwise; with perfectly

orthogonal kernels the initial guess coincides with the fixed-point. Further, when the
basis functions are orthogonal (e.g., point-wise) or close-to-orthogonal (e.g., kernels),
Gk will be diagonal or close-to-diagonal, and xk+1 will be non-negative provided that
xk is.

2.3. Iterative L1 norm regularization

As a reference approach, we use an iterative L1-regularization technique, which esti-
mates the minimizer of the objective function in the following manner:

x‡ = arg min
x

Ψ(x) with Ψ(x) = ‖Ax− y‖22 + α‖x‖1. (13)

The L1 norm ‖x‖1 regularization function has been chosen as it tends to produce well-
focused distributions and as the shape of the distribution g(s) is likely to be peaked.
The estimate of x‡ is produced via the following gradient-based iterative regularization
procedure [10,20,21]:

x`+1 = (ATA +
1

4
α2Γ`)

−1ATy, Γ` = diag(|x`|+ ε)−1, Γ0 = I, (14)

where α is the main regularization parameter and the role of the secondary param-
eter is to prevent division of one by a tiny number, i.e., that Γ` does not become
ill-conditioned, if the entries of x` tend to zero. This iteration can be interpreted as
a gradient-based optimization method which alternates between two conditional opti-
mization steps when seeking the minimum as shown in Appendix B. In inverse prob-
lems research this iteration is known as the iterative alternating sequential (IAS) opti-
mization method and it is known to usually converge within a comparably low number
of iteration steps, e.g., five [22–25]. Furthermore, the reconstruction obtained can be
also associated with a maximum a posteriori estimate for a conditionally Gaussian
hierarchical Bayesian model [26]. The theory of Bayesian analysis applied to aerosol
measurements can be found, e.g., in [27, 28] and its application for ELPI has been
presented in [17]. The suitability of L1-regularized estimates for finding a sparse re-
construction, e.g., a concentration distribution corresponding to only a few kernels,
has been presented, e.g., in [29].

2.4. Function bases for hardware-level implementation

We investigate the effect of two different function bases in approaching the inverse
problem. The first one is formed by the smooth kernel functions, i.e., fj = χj ,
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Figure 1. 1st and 2nd from left: The difference between the kernel and characteristic basis in representing
a function defined on a one-dimensional sub-interval of the real line R (gray). The smooth kernel functions

(left) overlap and sum to one at each point of definition. The characteristic functions (right), in contrast, do not

overlap. 3rd and 4th from left: When approximating a given (dashed) function, a superposition of the kernel
functions (left) leads to a smooth (solid) curve and the charateristic functions (right) to a staircase-like (solid)

contour. As we use a finer sub-division, i.e., shorter sub-intervals, a continuous curve can be approximated also
in the latter case.

j = 1, 2, . . . , n, and the second one by the characteristic set-indicator basis functions
(indicator functions) of the interval [s1, s2], that is, ϕj = χj , i = 1, 2, . . . ,m. The
main difference between these two bases is that in the first one the basis functions
overlap and the number of degrees of freedom is the same in both the measurement
and reconstruction process (m = n), whereas in the second one there is no overlap and
the reconstruction process involves more degrees of freedom (m >> n). Namely, as
depicted in Figure 1, approximating a continuous function with a piece-wise constant
set of functions requires, generally, a denser set of sub-intervals compared to a smooth
approximation which is obtained with the kernel functions. Figure 1 also visualizes
the difference between the kernel and characteristic basis in representing a function
defined on a one-dimensional sub-interval of the real line R.

For the second basis, the matrix Fi is diagonal, meaning that it allows for a ma-
trix free implementation of the fixed-point iteration (8). This is an important point
regarding inversion of the data using the measurement equipment, that is, a field pro-
grammable gate array (FPGA) in which evaluating a matrix-vector product requires
a case-specific design [11–13].

2.5. Numerical experiments

Figure 2. The sensitivity kernels used in the numerical experiments correspond to an actual set measured
for an ELPI instrument matching with those of [16]. On the left, the sensitivity profiles of the f̃1, f̃2, . . . , f̃n
have been normalized to one. The kernels on the right are obtained as f = f̃i(s)/

∑n
i=1 f̃i(s). That is, they

satisfy the condition
∑n

i=1 f̃i = 1 for all s ∈ [s1, s2] which follows from that the total particle mass is captured
by the cascade impactor due to a serial coupling of its stages and which is essential for the convergence of the
proposed fixed-point iteration. Near the end points of the investigated interval the overlap between the kernels

is weak or absent. This affects the shape of the extreme kernels, when their sum is set to one (right).

To investigate the performance of the proposed fixed-point iteration and to compare
it to the outcome of the IAS algorithm, we use seven different simulated gravimetric
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impactor measurements of particle mass concentration distributions, i.e., the detected
mass (micrograms) per volume (cubic centimeter), as a function of the particle size
(micrometer). Of these, distributions 1st – 6th are unimodal and 7th multimodal. The
investigated size range varies from s1 = 0.003 to s2 = 10 micrometers. This interval
was covered with twelve sensitivity kernel functions, which correspond to the kernels
of Dekati Classic ELPI and coincide with those used in [16]. As shown in Figure 2,
the kernels for the inverse computation were obtained from the separate normalized
sensitivity profiles f̃1, f̃2, . . . , f̃n of the cascade impactor’s stages as given by

fi(s) =
fi(s)∑n
i=1 fi(s)

, for i = 1, 2, . . . , n, (15)

following from the assumption that the total detected mass is captured by the serially
coupled impactor in which the particles not captured by the i-th stage are passed to
the (i+ 1)-th one.

The particle size distributions are log-normal. It is assumed that the density of
matter is constant and that the particles are spherical, meaning that the eventual
mass concentration follows from the particle mass density ρ multiplied by the volume
of a sphere V = πs3/6 with the diameter s, that is,

g(t) =
4s3ρ

3σ
√

2π
exp

(
−1

2

(
ln(s)− ln(s0))

σ

)2
)
. (16)

Here σ = 1.23 defines the width of the distribution, s0 the aerosol particle mean
diameter which is given the values 0.008, 0.02, 0.1, 0.8, 3, and 9 corresponding to the
1th to 6th unimodal distribution, respectively, and ρ = 5.11E04 µg/m3. The 7th
distribution was obtained as a superpositon of 1th to 6th with the relative weights 0, 1,
0.003, 0.001, 0.0001, and, 0, respectively. The spherical approximation for the particle
shape is adopted here for its simplicity, while in reality the shape is not necessarily
such. The mass distribution of particles with different but uniform shape, e.g., if they
are cylindrical, can be obtained by multiplying the current one by constant.

The numerical inversion computations were performed by dividing the interval
[s1, s2] into 500 point-wise basis functions (set-indicators of equi-length sub-intervals)
which were used in evaluating all the integrals as described in Section 2.4. The data
were simulated in a lattice with three times this size in order to avoid inverse crime,
i.e., an overly good fit between the reconstruction and actual distribution [30]. The
number of iteration steps was set to be 10 for both the fixed-point and IAS method.

Table 1. The relative level of zero-mean Gaussian white noise in the numerical experiments measured via
standard deviation (STD) vs. noiseless data amplitude and expected noise vs. noiseless data L2 norm.

Distribution Type Relative to Noise level (%)
1–7 all amplitude 1.0 1.5 2.0 2.5 3.0
1 unimodal L2 norm 3.5 5.2 6.9 8.7 10.4
2 unimodal L2 norm 2.6 3.9 5.2 6.5 7.7
3 unimodal L2 norm 2.8 4.2 5.6 7.0 8.4
4 unimodal L2 norm 2.5 3.8 5.0 6.7 7.5
5 unimodal L2 norm 3.0 4.5 6.0 7.6 9.1
6 unimodal L2 norm 3.5 5.2 6.9 8.7 10.4
7 multimodal L2 norm 2.1 3.1 4.2 5.2 6.2

The performance of the fixed-point and IAS iteration were evaluated in three dif-
ferent inversion tests. In the first one (I), in order to evaluate the overall accuracy of
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the inverse approaches, a constant noise standard deviation (STD), 1.5 % of the max-
imum entry in the noiseless simulated data vector, was used and the reconstructions
obtained were analyzed visually as distributions. In the second one (II), to find the
robustness of the inversion, a sample of reconstructions was generated for 100 different
noise realizations and the noise STDs of 1.0, 1.5, 2.0, 2.5, and 3.0 % with respect to
the noiseless data amplitude. The corresponding relative noise levels with respect to
the L2 norm of the noiseless data are included in Table 1.

Based on these noise levels, the L1-regularization parameter of the IAS method was
chosen to be α = 2.0E-04. With this choice, the value of the penalty function α‖x‖1 in
(13) for a normalized distribution ‖x‖1 = 1 will be approximately the expected noise
fluctuation of ‖Ax − y‖22, when the standard deviation of the noise in relation to its
L2 norm is 1.4 %. Consequently, the discrepancy of the regularization will be close to
that of the noise without exceeding it, the relative difference to the lowest noise level
2.1 % in L2 norm (Table 1) being approximately 50 %.

We analyze the results via box-plots showing the following relative L1 norm ‖ · ‖1
and, as a complementary measure, the infinity norm ‖ · ‖inf difference between the
original distribution g and its reconstruction g∗:

‖g − g∗‖1
‖g‖1

=

∫
|g(s)− g∗(s)| ds∫
|g(s)| ds

(17)

‖g − g∗‖inf

‖g‖inf
=

maxs∈[s1,s2] |g(s)− g∗(s)|
maxs∈[s1,s2] |g(s)|

. (18)

L1 and infinity norm can be interpreted as the two extreme cases of Lp norm, as
‖ · ‖p ≤ ‖ · ‖q, if 1 ≤ q ≤ p ≤ ∞. The L1 norm represents the sum of the absolute
differences over all entries in the reconstructed distribution, while the infinity norm
corresponds to the point-wise maximum absolute error. As a complementary test, a
synthetic multimodal distribution was reconstructed and analyzed via the approach
of (I) and (II) to validate the results obtained with the unimodal distributions.

3. Results

The principal results of the numerical experiments (I) and (II) can be found included
in Figures 3, 4, respectively. Table 2 shows the total floating point operations (FLOP)
and peak memory consumption corresponding to each inversion method. The comple-
mentary results have been included in Figures C1 and C2 in Appendix C. The Matlab
(The Mathworks Inc.) code applied to obtain the results is openly available1.

Table 2. The total floating point operations (FLOP) and peak memory consumption corresponding to each

inversion method, when the number of points in the final one-dimensional point lattice of the reconstruction
is 25, 50, 100, and 500.

Pointwise Kernel
Fixed-point L1-regularized Fixed-point L1-regularized

points kFLOP Mem. (kB) kFLOP Mem. (kB) kFLOP Mem. (kB) kFLOP Mem. (kB)
25 4.19 3.95 15.3 9.36 2.80 3.95 4.68 5.10
50 7.79 7.75 52.8 28.6 3.40 7.75 5.28 8.90
100 15.0 15.4 195 97.0 3.23 15.4 6.48 16.5
500 72.6 76.2 4580 2080 16.1 76.2 14.1 77.3

1https://github.com/sampsapursiainen/cascadeimpactorinversion
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Figure 3. The results of the numerical experiment (I) obtained with a constant 1.5 % noise level w.r.t. the
data amplitude for a sample 100 of reconstructions corresponding to different noise vector realizations. The

solid gray line depicts the original aerosol distribution which is approximated by the sub-interval- and kernel-

based (pnt and ker) reconstructions obtained with the fixed-point (F-P) iteration and IAS L1-regularization
(L1) method. The effect of noise is cleary visible as secondary peaks next to the primary peak. For each

reconstruction type, the area visualized shows the interdecile range, i.e., the interval between 10 and 90 %

quantile.
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Figure 4. The relative L1 norm difference (17) between the original disribution and its reconstruction ob-
tained in the numerical experiment (II) obtained with the variable 1.0 – 3.0 % noise level w.r.t. the data

amplitude. At each level, a sample of 100 reconstructions corresponding to different noise vector realizations

was generated for altogether four cases using the fixed-point (FP) iteration and IAS L1-regularization (L1)
method and the sub-interval- and kernel-based (pnt and ker) approaches. In each box-plot, the thicker part of

the box-plot shows the interquartile range (25 to 75 % quantile) and the upper and lower whisker show the
interdecile range (10 to 90 % quantile), respectively, containing the outliers of the sample obtained.
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In (I), we analyzed the interdecile range, i.e., the interval between 10 and 90 % quan-
tile, of the reconstructed distributions for each simulated aerosol particle concentration
distribution (Figure 3). The point-wise basis functions provided more consistent recon-
struction quality compared to the kernel basis. The point-wise reconstructions found a
more refined peak for the distributions 1, 2, 3, and 6 in which the maximum is located
near or at an end point of the interval, whereas the kernel-based estimates seem more
regular and less peaked. This can be interpreted to follow from the span of the kernel
basis, which towards the end points becomes limited due to a decreasing number of
overlapping kernels. For distribution 1, the overlap is absent at the peak (Figure 2)
and, consequently, none of the distributions decay to zero. In addition there are ar-
tifacts or side peaks which occur at the locations, where one or more of the kernels
vanish. These are somewhat pronounced in the point-wise case as compared to the
kernel based reconstructions. For the distributions 4 and 5, the point and kernel basis
resulted in a similar performance.

The results of (II) presented in Figure 4 suggest that with a noise level below
3.0 % w.r.t. the maximum amplitude of the signal, the relative errors obtained with
the point-wise basis were generally smaller than what was obtained with the kernel
basis. The point-wise basis, however, also corresponds to a larger error spread, i.e., the
interquartile range (25 to 75 % quantile), which also grows faster along with the noise
level. Furthermore, the fixed-point and IAS method perform differently with respect
to increasing noise with the latter one of these being more robust; the outliers in the
relative error for the fixed-point iteration grow notably in the case of the point-wise
basis as the noise increases. The point-wise IAS L1-regularization provided overall the
smallest error level in the numerical experiments.

The complementary results (Figure C1) obtained for the infinity norm show the
maximum point-wise difference between the actual and reconstructed distribution
which was observed to include enhanced outliers compared to the case of the L1
norm. The complementary test with the multimodal distribution (Figure C2) led to
a somewhat improved accuracy and suppressed outliers as compared to the unimodal
case, suggesting that the unimodal results represent the overall performance of the
present methods appropriately.

4. Discussion

This study focused on inverting cascade impactor measurements [1]. We introduced
and analyzed a fixed-point iteration for inverting simulated cascade impactor measure-
ment data for seven different aerosol size distributions using a set of sensitivity kernel
functions corresponding to an ELPI instrument. It was shown that with an appropriate
initial guess and regular enough sensitivity kernel functions, the iteration converges
towards the original distribution. Furthermore, the algorithm can be formulated in a
matrix-free form via a point-wise approach, in which the sub-intervals of the inves-
tigated particle size-range provide the function basis for solving the inverse problem.
The results were compared to the performance of the IAS iteration technique [22–25]
which – as an L1-regularized approach – is advantageous for reconstructing sparse
distributions [29]. These inversion approaches were compared by using the sensitiv-
ity kernels as the inverse function basis. The robustness of the fixed-point and IAS
techniques were analyzed using different noise levels.

Our central finding is that when the relative errors in the measurements are below
3 % of the maximal data entry for the most loaded stages, the fixed-point approach
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has a superior accuracy. For a gravimetric measurement such an uncertainty level
has been achieved, e.g., in with a 300 µg loading and 10 µg resolution [31] which can
generally vary between 0.01 and 10 µg in different measurement equipment [2]. In the
case of a electrometric measurement, the error refers to the current measured by the
cascade impactor, which in the recent study [4] has been estimated to be of the order
1 % for the ELPI+ instrument2 (Dekati Ltd.). The electric currents measured by the
electrometers depend on uncertainties in the particle concentration and flow which,
in [4], are estimated to be 3 % and 1 %, respectively following from the performance
of the particle charger. Assuming that each of these uncertainties are Gaussian, i.e.,
by considering the root of the sum of the squares as the total measure, the eventual
measurement uncertainty will be about 3.3 %.

In this study, the IAS algorithm was found to be more robust with respect to the
noise than the fixed-point iteration. Hence, IAS might be a preferable for applications,
where the noise significantly exceeds the 3.0 % error level w.r.t. the data amplitude.
Our finding is in agreement with the recent study [15], which utilizes an inversion
principle similar to the present fixed-point approach without an accurate mathematical
formulation or proof of its convergence, and suggests that the noise effects will become
visible with measurement errors around 5 % or above. In [15], the inversion errors
were also observed to grow towards the end point of the investigated particle size
range. Based on the present formulation and results, this latter finding is an obvious
consequence of the vanishing kernel function overlap in the vicinity of the end points,
meaning that the partition of unity condition (Section 2.1) is not satisfied; when
the kernel functions do not form a partition of unity, the inversion method does not
converge, and the errors obtained are likely to be large and highly case-specific, i.e.,
difficult to be predicted.

The point-wise reconstruction approach was found to be advantageous with respect
to maintaining the inversion quality in the vicinity of the end points. Consequently,
the point-wise approach can be seen as superior to using the kernel functions as the
function basis for the inverse problem. The errors of the point-wise reconstructions
were observed to occur particularly at the points, where one or more kernel functions
vanish, while the kernel-based reconstructions were observed to be biased by kernel
shape. Generally, the total error of the cascade impactor measurement depends on
both measurement noise and modelling errors of which the latter are affected by factors
such as the variance in particle density and morphology, dirtiness of the impactor, and
humidity, and are reflected in the accuracy of the kernel functions. A total relative
error of 20 % has been estimated for sub-micrometer particulates.

The present zero-mean Gaussian white noise model is well-justified in the current
context of numerical analysis, as it can be interpreted as an approximation of a zero-
mean random error with a given second moment, without specifying whether the error
is due to measurements or modelling, and as uncorrelated errors can be related to
both the amplitude and L2 norm of the noiseless data in a straightforward manner.
Gaussian noise has previously been utilized in the mathematical inversion of aerosol
distributions, e.g., in [19]. However, the Poisson-Gaussian model which is more accu-
rate with respect to the detected particle counts can be considered more advantageous
for a real application [32,33].

When implemented using the point-wise basis, the proposed fixed-point technique
is significantly simpler than the IAS iteration, which is obvious by comparing the
total FLOPs and memory consumption of these two methods. We deem that the most

2https://www.dekati.com/products/elpi/
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significant advantage of the fixed-point method is its matrix-free formulation. The
ability to perform matrix-free computations is essential with respect to instrument-
based inversion of the measurements due to the limited computing capability of the
instrument’s own hardware, e.g., an field programmable gate array (FPGA) board.
FPGAs are based on a block architecture, where larger operations are subdivided in
smaller entities performed by digital signal processor (DSP) blocks [34] utilizing block
random access memory BRAM ranging from 8Kb to 256Kb per block [35], thus limiting
the performance of the linear algebraic operations involving large matrices. In [36],
FPGA-based matrix-vector multiplications with computational have been suggested
to have the peak clock speed of about 24,000 kHz and 680 kHz per DSP block (DSP48E
23x28 multiplier) for matrix dimensions 500-by-500 and 10-by-10, when parallelized
using 500 and 10 blocks, respectively, together with one BRAM block per DSP. As
each simulated DSP block performs 2 FLOP per cycle, the resulting total simulated
performance is about 480 MFLOP/s and 680 MFLOP/s, respectively.

These two cases can be considered as a reference for the point-wise fixed-point and
IAS iteration, respectively. Since the former case is matrix-free, the number of parallel
processes would be determined by the number of kernel functions (here 12), while the
latter case necessitates matrix-vector multiplications for a matrix dimension following
from the number of points in the one-dimensional lattice (here 500). Moreover, as
the matrix-free method can be implemented effectively with only a few blocks, it
can be considered preferable in low-cost and low-power hardware implementation. For
example, Intel Cyclone 10 LP 10CL025, which can be operated with 1.0 and 1.2 V
core voltage, would provide a provide a potential platform for such an implementation
with its 66 DSP blocks and 594 kb (66x9 kB) of BRAM.

The future work might involve investigating efficient hardware-level FPGA imple-
mentations of the present fixed-point approach. A deeper investigation on the effect
of the kernel regularity on the inversion quality might be conducted, as the shape
of the kernels was here reflected in the reconstructions, especially, at the lower end
of the particle size range. Finally, the robustness of the inversion might be improved
via statistical reconstruction approaches, e.g., Markov chain Monte Carlo methodol-
ogy [37], interpreting that the IAS technique follows from the hierarchical Bayesian
model which can be approached via sampling.

5. Conclusion

This study introduced and evaluated mathematically a fixed-point iteration for invert-
ing cascade impactor measurements. The inversion outcome provided by this iteration
was found to be robust with for a noise level below 3.0 % w.r.t. the maximum ampli-
tude which can be achieved in practical applications including both gravimetric and
electrometric measurements. Using a point-wise function basis, the proposed technique
allows a matrix-free implementation which is advantageous with respect to hardware-
level computations performed in an FPGA board. Furthermore, the point-wise basis
was observed to be preferable with respect to maintaining the inversion accuracy in
near the boundary points of the investigated particle size range.
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6. Appendices

Appendix A. Convergence of the fixed-point iteration

This section shows that if the initial guess for (8) is accurate enough, the iteration
will converge to the fixed-point x∗. To prove the convergence, it is sufficient to show
that the Lipsitch condition of order one is satisfied for G, i.e., that G is Lipsitch
continuous [38,39],

‖xk+1 − xk‖ = ‖G(xk)−G(xk−1)‖ ≤ q‖xk − xk−1‖ (A1)

with the Lipschitz constant q < 1 for k ≥ K ≥ 1. Namely, then ‖xk+`+1 − xk+`‖ ≤
q`+1‖xk−xk−1‖ → 0, if `→ T . This condition can hold only if the number of the kernel
functions is equal to or larger than that of the basis functions, i.e., if n ≥ m. Otherwise,
there exist a nonzero x such that fTi x = 0 for some i = 1, 2, . . . , n meaning that the
function G(x) will be singular. When n ≥ m, G(x) is smooth and the center value
theorem implies that the following equation is satisfied for some z = xk+ξ0(xk+1−xk)
with 0 ≤ ξ0 ≤ 1:

G
(
xk+1)−G(xk

)
= G̃′(ξ0), (A2)

where G̃(ξ0) = G
(
xk + ξ(xk+1 − xk)

)
, that is,

G̃(ξ) =

n∑
i=1

yi
(
Fi xk + ξFi (xk+1 − xk)

)
fTi xk + ξ fTi (xk+1−xk)

(A3)

and

G̃′(ξ0) =

n∑
i=1

(
−

fTi (xk+1−xk) yi
(
Fi xk+ξFi (xk+1−xk)

)(
fTi xk + ξ fTi (xk+1 − xk)

)2
+

yi Fi (xk+1 − xk)

fTi xk + ξ fTi (xk+1 − xk)

)
(A4)

=

n∑
i=1

yi(
fTi z

)2 ((fTi z) Fi − Fi z fTi
)
(xk+1 − xk) (A5)

Since yi/(f
T
i z)→ 1 and

∑n
i=1 Fi = I, this tends to

G̃′(ξ0) = (I−
n∑

i=1

1

yi
Fi z fTi +E)(xk+1−xk)

= B−1(B−
n∑

i=1

1

yi
Ci z fTi +BE)(xk+1−xk), (A6)
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where E→ 0 as xk → x∗. Assuming that the basis functions have been scaled so that
‖z‖1 ≤ maxi(yi) ‖fi‖1, it holds that

‖(B−
n∑

i=1

1

yi
Ci z fTi )(xk+1 − xk)‖1 ≤ (1−ν)‖B(xk+1 − xk)‖1. (A7)

Denoting uk = Bxk, one can write

‖uk+2−uk+1‖1 = ‖B(xk+2−xk+1)‖∞≤(1−ν)‖B(xk+1−xk)‖1
= (1−ν)‖uk+1−uk‖1, (A8)

implying that the sequence 〈uk〉∞k=1 converges. Thus, by the invertibility of B so does
also 〈xk〉∞k=1 with x∗ being the limit.

Appendix B. Convergence of the L1 norm regularized iteration

This convergence of the iteration (14) can be justified via alternating conditional
minimization of the function given by

H(x, z) = ‖Ax− y‖22 +
1

4
α2‖diag(z)−1x‖22 +

M∑
j=1

zj

= ‖Ax− y‖22 +
1

4
α2

M∑
j=1

x2
j

zj
+

1

4
α2

M∑
j=1

zj , (B1)

where zj > 0, for i = 1, 2, . . . ,M . Since H(x, z) is a quadratic function with respect
to x, the conditional minimizer x† = arg minxH(x | z) can be obtained through the
formula

x† = (ATA +
1

4
α2Γz)−1ATy, Γz = diag(z)−1 and Γ0 = I (B2)

Furthermore, for the conditional minimizer z† = arg minzH(z | x), the gradient of
H(z | x) is zero with respect to z, that is,

∂H(x, z)

∂zj

∣∣∣
z†

= −1

4
α2

x2
j

(z†j )
2

+ 1 = 0, i.e. z†j = |xj |
1

2
α. (B3)

It follows that the minimum can be sought via the following alternating optimization
steps.

(1) Set z0 = (1, 1, . . . , 1), ` = 1 and repeat the following two steps for a desired total
step count.

(2) Find x` = arg minxH(x, z`−1).
(3) Find z` = arg minzH(x`, z).

If (x`, z`) is a global minimizer of H(x, z), then x` = x‡. Namely, in that case it
holds that (z`)j = |(x`)j |, j = 1, 2, . . . ,M , and one can write Ψ(x) = H(x`, z`) =
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Figure C1. The relative infinity norm difference (18) between the original disribution and its reconstruction

obtained in the numerical experiment (II)) obtained with the variable 1.0 – 3.0 % noise level w.r.t. the data

amplitude. At each level, a sample of 50 reconstructions corresponding to different noise vector realizations
was generated for altogether four cases using the fixed-point (FP) iteration and IAS L1-regularization (L1)

method and the sub-interval- and kernel-based (pnt and ker) approaches. In each box-plot, the thicker part of

the box-plot shows the interquartile range (25 to 75 % quantile) and the upper and lower whisker show the
interdecile range (10 to 90 % quantile), respectively, containing the outliers of the sample obtained.

H(x1, x2, . . . , xM , |xj |, |xj |, . . . , |xM |). Consequently, it follows that:

H(x`, z`) = ‖Ax− y‖22 +
1

4
α2

M∑
j=1

x2
j

zj
+

M∑
j=1

zj

= ‖Ax− y‖22 +
1

4
α2

M∑
j=1

x2
j

|xj |12α
+

M∑
j=1

|xj |
1

2
α

= ‖Ax− y‖22 + α‖x‖1 = Ψ(x). (B4)

Appendix C. Complementary results
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Distribution L1 norm Infinity norm

Figure C2. Complementary results obtained with a synthetic multimodal distribution 7. 1st from left: The

interdecile range (10 to 90 % quantile) obtained for a sample 100 of reconstructions corresponding to different
noise vector realizations (1.5 % noise level w.r.t. the data amplitude). 2nd and 3rd from left: The relative

L1 and infinity norm difference (18) between the original disribution and its reconstruction obtained with the
variable 1.0 – 3.0 % noise w.r.t. the data amplitude, respectively. The bar and whiskers show the interquartile

and interdecile range (25 to 75 % and 10 to 90 % quantile), respectively.

19


