

Roman Chlada

Software Test Automation:
Safety System of a High Speed Train

Metropolia University of Applied Sciences

Bachelor of Engineering

Degree Program of Electronics

Bachelor’s Thesis

29. January 2022

 Abstract

Author
Title

Number of Pages
Date

Roman Chlada
Software Test Automation:
Safety System of a High Speed Train

46 pages
29. January 2022

Degree Bachelor of Engineering

Degree Program Electronics

Professional Major Electronics

Instructors

Iiro Koskinen, Software Engineer
Janne Mäntykoski, Senior Lecturer

The purpose of this project was automating the testing of the software of an embedded
system designed for the safety control of a high speed train. In safety systems, 100% of the
customer requirements must be implemented and tested.

Tools for manual testing were already existing. The Robot Framework was given as the
platform to run the tests. The tasks were to adapt the Robot Framework to make testing
possible and efficient, to implement tests for hundreds of customer requirements and to
solve challenges, which occurred during the process.

At the end of this project, over 1000 test cases are running during more than 12 hours every
night. Only minor details might need to be fixed in the software and the testing.

Keywords Embedded Systems, Software Testing, Test Automation

Contents

List of Abbreviations

1 Introduction 1

2 Safety Systems in Trains 1

2.1 Safety Systems and Safety Software Development 1

2.2 Safe Train Control and Management Systems 3

2.3 Communication 4

2.3.1 Multifunction Vehicle Bus, MVB 5

2.3.2 Wire Train Bus, WTB 5

2.3.3 Safe Data Transmission Version 2, SDTv2 6

2.4 Units 7

2.4.1 Safe Vehicle Control Unit, VCU_S 7

2.4.2 Safe Remote Input/Output Module, RIOM_S 7

2.4.3 Redundancy 8

2.5 Modules 8

2.5.1 Central Processing Unit 8

2.5.2 MVB/WTB Module 9

2.5.3 Input/Output Modules 9

3 Examples for STCMS Architectures and Test Systems 9

3.1 STCMS in a Variable Consist Train 10

First Locomotive 12

Coaches 12

Second Locomotive 12

3.2 STCMS in a Fixed Consist Train 12

First Locomotive: 15

Coaches 15

Second Locomotive 15

4 System Under Test 15

4.1 Software: Safety Applications 15

4.2 Examples of Safety Functions 16

4.2.1 Safety Functions Depending on Digital Inputs Only 16

4.2.2 Safety Functions Using Analog Inputs 16

5 Existing Tools for Manual Testing 17

5.1 Testing Scope and Testing Method 17

5.2 Reading the Bus and Writing to the Bus: Tools and GUIs 17

5.3 Simulating Inputs 19

6 Establishing Test Automation 20

6.1 The Robot Framework 20

6.2 Replacing the GUIs with TestingCLI 23

6.3 Network Controlled Input Simulators 24

6.3.1 DIO Simulator 25

6.3.2 PTI Simulator 25

6.3.3 HSA Simulator 25

6.4 Data Flow in the Test System 26

6.5 Automating the Test Procedures – Writing the Scripts 28

6.6 Selected Challenges and Their Solutions 30

6.6.1 Accept Failures 30

6.6.2 The Opened Test Tool 31

6.6.3 Acceleration RMS 35

6.6.4 TestStatus 38

7 Conclusion 43

References 45

List of Abbreviations

Bogie Wheelset of the locomotive

CLI Command Line Interface

DAC Digital to Analog Converter

GUI Graphical User Interfaces

GW Gateway

HAT Hardware Attached on Top (of the Raspberry Pi)

HSA High Speed Analog Input Module

ICD Interface Control Document

LED Light Emitting Diode

MIO Modular Input/Output module

MIO_S MIO with Safety Integrity Level 2

MIO_Sp Primary MIO_S

MIO_Ss Secondary MIO_S

MVB Multifunction Vehicle Bus

PCB Printed Circuit Board

PTI Pt100/Pt1000 Temperature Sensor Input Module

RIOM Remote IO Module

RIOM_S RIOM with Safety Integrity Level 2

RIOM_Sp Primary RIOM_S

RIOM_Ss Secondary RIOM_S

RPI Raspberry Pi

SDTv2 Safe Data Transmission, version 2

SSH Secure Shell

SMI Safety Message Identifier

SPI Serial Peripheral Interface

STCMS Safe Train Control and Management System

SUT System under Test

TCN Train Communication Network

TCMS Train Control and Management System

TRDP Train Real Time Data Protocol

VCU Vehicle Control Unit

VCU_S VCU with Safety Integrity Level 2

VCU_Sp Primary VCU_S

VCU_Ss Secondary VCU_S

WTB Wire Train Bus

Definitions

Safety/safe: In this paper the term safety/safe is used to denote the safety of the func-

tionality. The safety of the functioning is ensured by enhancing reliability

and reducing the failure rate.

Security/secure: Unlike safety, the term security/secure refers in this paper entirely to the

accessibility of a system. The access of a secure system is made as difficult

as possible for unauthorized people.

 1

1 Introduction

Establishing test automation requires not only a notable amount of expertise, but also a

rare resource in modern industry: time. This increases the temptation to postpone build-

ing up test automation and to continue manual testing – despite of its known disad-

vantages.

Manual testing is error prone and finally more time consuming than automated testing.

Manual testing can be started easily, while it might take weeks or months until the first

automated test is running. But once automated testing is established, the test runs much

faster than manual testing can ever be performed.

This paper shows the establishing of test automation for an embedded system monitor-

ing safety relevant data in a train. The following chapter, chapter 2, provides a generic

overview over safety systems in trains, starting with the definition of safety systems, then

showing the hardware used typically and its functionality. In chapter 3 two examples for

the architecture of safety systems in trains are presented.

The project of test automation is described in chapters 4, 5 and 6. Chapter 4 describes

the system under test. In chapter 5, the tools are introduced that were designed earlier

for manual testing. Chapter 6 shows the process of establishing automated testing.

2 Safety Systems in Trains

2.1 Safety Systems and Safety Software Development

Safety Systems are used in different industries like car industry, aviation, or space in-

dustries. Also in trains safety systems are needed. Different contexts require different

levels of safety. Those levels are defined by standards, they are called: Safety Integrity

Levels (SIL). No system can work without failures, but failures can be systematically

reduced. The more is at stake the less failures can be accepted. The four Safety Integrity

Levels are distinguished by the expectable failure rate – as can be seen in table 1. In

train industry SIL-2 is widely used.

 2

Table 1. SIL table: Probability of failures per hour and risk reduction factor [1].

SIL Probability of dangerous failure per hour Risk Reduction Factor

1 10-5 - 10-6 100.000 - 1.000.000

2 10-6 - 10-7 1.000.000 - 10.000.000

3 10-7 - 10-8 10.000.000 - 100.000.000

4 10-8 - 10-9 100.000.000 - 1.000.000.000

The train industry specific standard EN 50128 [2] describes the software development.

It uses the V-model to describe the development process – see figure 1. The ‘V’ starts

with an overview over the needed features. It continues with breaking down all that is

required to increasingly detailed levels, until implementation is possible. The writing of

the source code is at the corner of the ‘V’. After that the system is built up, tested, and

validated. Practically, no software development ever worked by following the ‘V’ only

once. Customer requirements might cover only parts of the entire system in the begin-

ning, they are clarified or even changed later. Testing reveals bugs and maybe also flaws

in the software design. Therefore, at least the steps from the Software Component De-

sign Phase to the Software Integration Phase are iterated over and over again; often

even the Software Requirement Phase has to be re-opened. For integration testing, that

means, that it is repeated many times. This is, where test automation helps tremen-

dously.

 3

Figure 1. Illustrative Development Lifecycle – V-model [2, 23].

2.2 Safe Train Control and Management Systems

A Safe Train Control and Management System (STCMS) can be designed in many ways,

depending on the needs of the customer and the type of the train: A high speed train

travelling with more than 300 km/h will need more safety related monitoring than a metro

train that reaches at maximum 80 km/h.

STCMS controls so-called safety functions. The standard EN-50128 defines a safety

function as “a function that implements a part or whole of a safety requirement” [2, 13].

A safety requirement is the necessity to mitigate a certain safety hazard that cannot be

tolerated. All means to provide this mitigation can be understood as one safety function.

For example, one of the best known safety functions in trains is the passenger alarm.

The safety requirement is that passengers must have the possibility to stop the train. It

 4

is necessary to mitigate the following safety hazard: An event happening in the passen-

ger area might require the stopping of the train, but it cannot be noticed by the train driver

or train personnel.

The safety function implementing this requirement is the passenger alarm handle in

every passenger cabin and everything that connects this handle and the brakes of the

train. Among those things connecting the passenger alarm handle and the brakes is

STCMS. It reads as a digital input the state of the passenger alarm handle and sets the

outputs activating the brake if the safety function is not overridden.

Examples of safety functions used in this project can be found in chapter 4.2. The hard-

ware used typically for performing different safety functions is described in the following

chapters: 2.3, 2.4 and 2.5

2.3 Communication

Aside of train specific protocols that are used on commonly used busses (e.g. TRDP on

ethernet), there are two types of busses, which are designed and certified especially for

trains. They are the Multifunctional Vehicle Bus (MVB) and the Wire Train Bus (WTB).

MVB and WTB together are one valid way to form the so-called Train Communication

Network (TCN), where WTB has the role of the train backbone and MVB works as consist

network [3, 19-20] as shown in figure 2.

Figure 2. TCN according to the standard EN 61375 [3, 13].

 5

2.3.1 Multifunction Vehicle Bus, MVB

Figure 3. MVB configuration according to the standard EN 61375 [4, 51 (Sic: The last letter of
the word ‘terminator’ on the right side of the picture is cut like that in the standard)].

To ensure reliability, the MVB uses four wires: a redundant pair of two wires, used to

transmit a differential signal. The bus is very robust. It is connected as a chain with ter-

minations at both ends of the chain – as shown in figure 3.

The MVB needs one bus master, all other devices must be configured as slaves. Both

master and slaves, can transmit and receive frames. Data is sent from the source and

read at the sink. The master is needed to hold all ports used in the bus. Typically the

ports used for sourcing and sinking the messages are configured statically, the configu-

ration is read at startup and no port can be added or removed during run time.

With the static configuration, the MVB is used for a group of devices, that is not changed

during run time. Usually, this is the devices inside of one vehicle of the train, a locomo-

tive, or a coach.

A bridge (BG) is used to connect two separate chains of MVB. As one MVB can have

only one master, the master is also a vulnerability of the bus, because the whole bus will

be stop functioning when the master is lost. For this reason it is better to separate long

chains to several parts, where each part has its own master.

2.3.2 Wire Train Bus, WTB

The WTB contains like the MVB four wires – a redundant pair of two wires used to trans-

mit a differential signal. Also WTB is connected as a chain. The same cables can be

used for MVB and for WTB connections. It is specified by the standard EN 61375-2-1 “a

serial data communication bus designed primarily, but not exclusively, for

 6

interconnecting consists which are frequently coupled and uncoupled, as is the case of

international UIC trains” [5, 13].

The configuration differs completely to MVB. WTB is designed to establish and recognize

new nodes during run time. This makes it useful for the communication between the

locomotive and a variable number of coaches or several train units, that is: one or two

locomotives and coaches. Whenever a coach is connected to the train, the new node is

found, and the communication is established. WTB does not use terminations, because

nodes can be added or removed at any time.

A gateway (GW) combines MVB and WTB by translating the MVB messages to WTB

and vice versa (see figure 4).

Figure 4. TCN realization with WTB and MVB.

2.3.3 Safe Data Transmission Version 2, SDTv2

SDTv2 is the certified protocol to be used for communication of safety systems in trains.

It “provides a safe communication path between a source of safety related (vital) data

(SDSRC) and one or several sinks of those data (SDSINK)” [6, 162]. SDTv2 is described

in detail in the standard EN 61375, part 2-3, Annex B [6, 162-184]. It defines the footer

of the message, comprising a version number, a life sign and the checksum created over

the message content (including the life sign) and the so-called Safety Message Identifier

(SMI). The SMI is unique for every communication channel of the bus. By recalculating

the checksum, the sink device can validate the message content and the source of the

message. To transmit a valid message, the source device needs to use the correct port

and must create the checksum over the correct SMI.

SDTv2 defines the handling of communication loss. An old message whose life sign is

not changed anymore can be used for a configurable amount of bus cycles (typically

eight cycles). When the message is updated again and life sign is changing, a certain

 7

amount of fresh frames must be received (typically 1000 frames) before the message is

accepted and the information may be used.

2.4 Units

Electronic units used in trains normally come in racks with several slots, where different

modules can be inserted. The modules in one rack communicate via busses in the back-

plane of the rack. For safety systems so called double racks are used. In a double rack

two electrically separated devices can be placed. Each of them has an independent

power supply. A redundant pair of units can be in the same rack.

2.4.1 Safe Vehicle Control Unit, VCU_S

The VCU_S (see figure 5) is the center and the head of the STCMS. [7; 8.] With its digital

inputs and outputs it is connected directly to the driver’s desk and to the Brake Control

Unit (BCU). VCU_S reads driver’s inputs such as traction handle positions and overrides

and controls the warning lamps in driver’s desk. It can request an emergency brake from

the BCU. VCU_S is located in the locomotive.

Figure 5. Example for a redundant pair of VCU_S with the modules (left to right): Central pro-
cessing unit, MVB, three modules for PT sensor reading, Power supply [7].

2.4.2 Safe Remote Input/Output Module, RIOM_S

RIOM_S [9] – or Remote Input/Output Unit, as it called by some vendors [10] – is a unit

located for functional reasons in a different place than VCU_S. It can be located in a

 8

locomotive or in a coach. It might be necessary to be close to sensors to avoid signal

deterioration or to be in coaches to monitor locally safety related functions such as door

control. RIOM_S reads analog signals from sensors and local digital inputs. It processes

the readings and reports them to VCU_S, where the decisions are made about protective

actions like a brake activation.

2.4.3 Redundancy

A way to reduce the failure rate of a system is redundancy. Redundancy means, that two

identical units perform the same tasks simultaneously. VCU_S reads both units of a re-

dundant pair. In normal operation the message of the primary unit is considered, and the

data of the secondary unit is discarded. In case of a failure of the primary unit, VCU_S

can instantly start using the messages from the values coming from the secondary unit.

For this purpose two separate chains of MVB are needed. VCU_S reads both busses,

all other devices are connected only to one of them, to the primary or the secondary bus.

At a time, only one VCU_S writes to both busses. The other one runs all functions without

writing anything to the bus and monitors the functioning of the primary unit. Whenever a

failure is noticed, the primary unit is silenced, and the secondary unit takes over. The

type of redundancy of VCU_S is called dynamic redundancy (see figure 6).

Figure 6. Scheme of Redundancy.

2.5 Modules

2.5.1 Central Processing Unit

In this module an operating system can be expected. For this purpose, a version of em-

bedded Linux can be used. It collects the data from the other modules and reads their

 9

diagnostics. It takes care of all network levels higher than the physical level. The incom-

ing frames are checked for their SDTv2 compliance, and the frames are prepared to be

transmitted on the bus. The incoming messages are parsed, and the information is used

to make decisions. An example for this type of unit can be found at EKE-Electronics [11].

2.5.2 MVB/WTB Module

The bus modules take care of the physical layer of the network communication. They

provide received frames to the application at the central processing unit and transmit the

frames coming from there to the bus. LEDs on the outside panel of the module inform

about the correct traffic on the bus or eventually about failure. Diagnostics about the bus

and the module itself are supplied. [12; 13.]

2.5.3 Input/Output Modules

Digital Input/Output modules are widely used to read digital inputs and to write digital

outputs. [14.]

Special modules are used to read PT sensors, temperature sensors made from platinum.

Due to the naturally quite linear increase of the resistivity of platinum, PT sensors are

known to be very exact. Most common are two types of platinum temperature sensors:

PT100 and PT1000, where the number indicates the resistance of the sensor at 0 ºC in

Ohm. [15.]

Other analog input modules are used for other sensors, providing current or voltage de-

fined signals. Various sensors can be read by these modules, such as pressure or ac-

celeration sensors. [16.]

Especially for the use in SIL-2 systems, it is important, that diagnostics about each input

and output channel and about the state of the module are supplied.

3 Examples for STCMS Architectures and Test Systems

There is two different train types: trains with a variable consist and trains with a fixed

consist. Variable consist trains comprise as many coaches as necessary for a certain

 10

route; coaches can be added or removed whenever needed. A fixed consist is defined

at production. The number of coaches cannot be changed later.

A test system for a certain STCMS needs to contain a representative amount of devices.

There must be at least one example of each safety unit used in the train. Additional

devices that are not under test themselves might be needed for instance for the commu-

nication between the safety units. Furthermore, testing units monitor the communication

and simulate units that are not available in the test system.

3.1 STCMS in a Variable Consist Train

TCN was designed to handle variable consists. Figure 7 shows a train with the TCN

architecture as described by the standard [3, 13]: WTB goes throughout the whole train,

MVB is used for communication inside of one vehicle. This train has the following units:

Locomotive:

 One redundant pair of VCU_S

 One redundant pair of RIOM_S, locomotive type

 Non-safety units for communication: GW (WTB – MVB)

Coaches:

 One redundant pairs of RIOM_S coach type in every coach

 Non-safety units for communication: GW (WTB – MVB)

 11

Figure 7. STCMS in a variable consist train.

Figure 8 presents a test system suitable for testing the functionality of the STCMS for a

variable consist train.

Figure 8. Test system for STMCS in a variable consist train.

 12

First Locomotive

 One redundant pair of VCU_S: To test the dynamic redundancy of VCU_S at

least one redundant pair is needed

 One redundant pair of RIOM_S, locomotive type: To test the failure one unit of a

redundant pair, at least one pair of RIOM_S is needed.

Additional unit, which is not within the scope of testing: GW

Coaches

 One redundant pair of RIOM_S, coach type: To test the failure one unit of a re-

dundant pair, at least one pair of RIOM_S is needed

Additional unit, which is not within the scope of testing: GW

Additional units, which are not within the scope of testing: two bridges (combining

the separate MVB in the locomotives with the MVB of the coaches)

Second Locomotive

 One piece of VCU_S: The locomotive to locomotive communication must be

tested.

Additional unit, which is not within the scope of testing: GW

3.2 STCMS in a Fixed Consist Train

WTB is an open bus. It collects data form and about all active nodes. The amount of

active nodes can change any time, without disturbing the functionality of the bus. This is

not needed in a fixed consist. Fixed consist trains can be designed using MVB only.

MVB depends entirely on one and only one bus master device. This is one of the various

reasons, why it is advisable to split the MVB chain into several parts with a master device

 13

in each part. In case of a failure of one bus master, the functionality of the other part is

not interrupted.

Two separate MVB chains can be connected by a so-called MVB bridge (BG). An MVB

bridge is a device to two MVB chains, copying data frames from one MVB chain to an-

other.

Figure 9 shows a fixed consist train with two locomotives and a certain number of

coaches between the two locomotives. There is two separate MVB chains: one for each

locomotive and one for all coaches. They are connected by two MVB bridges.

This train has the following units:

Locomotive:

 One redundant pair of VCU_S

 One redundant pair of RIOM_S, locomotive type

Coaches:

 One redundant pairs of RIOM_S coach type in every coach

 Non-safety units for communication: BG (MVB locomotive to MVB coaches)

 14

Figure 9. STCMS in a fixed consist train.

The test system for a fixed consist train is demonstrated in figure 10.

Figure 10. Test system for STMCS in a fixed consist train.

 15

First Locomotive:

 One redundant pair of VCU_S

 One redundant pair of RIOM_S, locomotive type

Coaches

 One redundant pair of RIOM_S, coach type

Additional units, which are not within the scope of testing: two bridges (combining

the separate MVB in the locomotives with the MVB of the coaches)

Second Locomotive

 One piece of VCU_S

4 System Under Test

4.1 Software: Safety Applications

The software under test comprises three different applications, run on the three different

units that STCMS consists of. They collect digital and analog inputs, they communicate

via WTB and MVB. The application of VCU_S sets the most crucial digital outputs of the

train functionality, such as:

 warning lights in the driver’s desk

 activation of the motors

 activation of the emergency brake

 enabling the doors

 16

4.2 Examples of Safety Functions

4.2.1 Safety Functions Depending on Digital Inputs Only

Following safety functions depend only on digital inputs:

 Passenger Alarm: Whenever a passenger alarm is triggered, STCMS needs to

stop the train. However, stopping the train is more urgent, when the train is in a

station or leaving a station, because there is a high probability, that the passenger

alarm was activated due to a door problem: somebody might be stuck in the door

for instance. The driver has a pushbutton to delay the braking due to a passenger

alarm for a brief time (< 1min). STCMS has to make sure, that this delay happens

only, when the train is outside of a station. [18.]

 Parking Brake Applied in Motion: If the parking brake is active or activated, when

the train is moving, STCMS must stop the train. [18.]

 Fire Alarm in Locomotives: If a fire is detected in any locomotive of the train, a

warning lamp is lit in the driver’s desk. [18.]

4.2.2 Safety Functions Using Analog Inputs

Following safety functions use digital inputs and analog signals coming from various sen-

sors.

 Rolling Temperature Monitoring: The temperatures of the bearings of the wheel-

sets are monitored. In case of overheating three alarm levels are activated. When

the third level is reached, STCMS must stop the train. [18.]

 Rolling Stability Monitoring: The accelerations of lateral vibrations of the wheel-

sets are monitored. If these accelerations come close to 1g (9.81 m/s2), the dan-

ger of derailment of the train becomes too big. Therefore, the train needs to be

stopped before it gets that far. STCMS raises a speed limit when a certain thresh-

old of acceleration values is surpassed. After another limit value is reached,

STCMS must stop the train. [18.]

 17

5 Existing Tools for Manual Testing

5.1 Testing Scope and Testing Method

The certification process of safety systems demands that 100 % of the customer require-

ments are implemented and tested. All test cases need to be specified in documents, all

specified tests must be run, and all of them have to pass. This is the final scope of testing

after the implementation is fully developed.

The customer requirements of the high speed train project are extremely detailed. Every

data set transmitted or received by any safety unit is defined bit per bit. Additional to the

communication between the safety units there is an exuberant amount of signals sent

from the safety units to other non-safety units, which are feeding information to the

driver’s display and collecting diagnostics data for the maintenance personnel. All these

data are sent to the MVB.

Monitoring the MVB communication of the system provides therefore a detailed

knowledge about the processes going on in the system. A software bug, that never be-

comes visible in any MVB message is highly unlikely.

5.2 Reading the Bus and Writing to the Bus: Tools and GUIs

Before the high speed train project, the tools used to monitor the bus traffic at MVB were

only command line interfaces. Writing a command and a configured port number of a

certain data set to the Linux shell would print the content of the dataset in hexadecimal

values to the screen. The MVB traffic of this project consists of 234 configured data sets

with up to 200 mostly one bit signals. It is difficult enough and certainly error prone to

monitor the changes of single bits from hexadecimal values. With these vast amounts of

signals it was not promising to test even the simplest safety function with the existing

CLIs.

Before test automation was started, tools for manual testing were created. Those tools

do not belong to the scope of the here described test automation project, but a certain

understanding of them is vital for describing the test automation process.

 18

A simple application was created running on hardware similar to VCU_S that would pro-

vide the data sets at all configured ports to an ethernet multicast group. The ethernet

data could be easily read by a PC application that also provided the graphical user inter-

face to present all data from the MVB in human readable form.

In this GUI (see figure 11) the data sets were not named with their port number but with

the names of the sourcing and the sinking device (e.g. VCU_S To RIOM_S). All signals

already had human readable names defined by the customer in the so-called interface

control document (ICD). These names are displayed together with their values in primary

and secondary MVB. The system from the hardware connected to and reading the MVB

up to the GUI was called Monitoring Tool.

Figure 11. Example of a data set displayed in the Monitoring Tool.

As the test system does not comprise all units used in a train, at least the data sets of

the non-existing units should exist in the bus. The Commissioning Tool was created to

provide the simulated units, especially the coaches 3 to 12 where no hardware exists in

the test system. In the GUI (see figure 12) the user can set the values and send the data

sets to an ethernet multicast group. On another hardware similar to VCU_S an applica-

tion reads from the multicast group and transmits the data to the MVB.

 19

Figure 12. Example of a data set displayed in the Commissioning Tool.

5.3 Simulating Inputs

Digital inputs are simulated with simple switches collected to switchboxes, where each

switch connects the digital input pin either to the specified voltage or to ground. LEDs

integrated in the switchbox show the states of the digital outputs.

Simulating analog inputs is a bit more challenging. A temperature sensor changes its

resistance with the temperature therefore it can be simulated with a potentiometer. In-

creasing the resistance will be read by the Pt100/Pt1000 Temperature Sensor Input mod-

ule (PTI) as increase of the temperature. One major problem of this temperature sensor

simulation is the accuracy. As long as only one threshold is monitored, it might be not

too difficult to find a position of the potentiometer below and another above this threshold.

 20

With different alarm levels and several thresholds it becomes much more difficult to find

reliably the different positions below, above and in between those thresholds.

Testing became practically impossible due to another functionality. By nature tempera-

tures do not change quickly. This fact is frequently used for evaluation of temperature

sensors. A so-called gradient error is raised, whenever the measured temperature is

changing too quickly. When the gradient error is raised, the temperature sensor is dis-

carded due to this failure. Manually testing a software evaluating the sensor constantly

for a correct temperature gradient means to turn the potentiometer evenly and slowly.

With some practice even that might be possible for one simulated sensor. But there are

numerous sensors used, that should change their value equally. If one sensor behaves

notably differently than the others, this is regarded to be again another error and a failure

of the sensor. Manual testing was not possible and new solutions had to be found.

In other projects inputs to the High Speed Analog module (HSA) – an EKE product read-

ing current and voltage signals – are simulated with function generators. The function

generators used do not provide more than two outputs. The high speed train project

requires three different signals, which are fed to all together 14 input pins of six HSA

modules. Such a solution would be quite costly using the same function generators. Oth-

erwise, reach for finding more suitable products would have been necessary. The deci-

sion was made to develop a special tool for simulating the inputs to the HSA module.

6 Establishing Test Automation

6.1 The Robot Framework

The Robot Framework is a generic open source framework used for test automation. It

was originally designed at Nokia Networks and open sourced in 2008. [19.]

The framework is coded with Python. It offers some default libraries and can be extended

by project specific Python libraries. The tests are run by scripts with the file extension

*.robot, which call functions defined in the included libraries. The functions are called

keywords. The Robot Framework reacts to Python exceptions [20]: The test passes,

when during its execution no Python exception is raised; if any exception – built in or

customer exception – is raised, the test is regarded failed.

 21

In the Robot scripts blanks are allowed within a keyword. To make the ending of one and

the beginning of another keyword clear the separator ’|’ can be used. Following Python

syntax, the indentation is decisive. If the separator ’|’ is used, the indentation is written

like that: ’| |’ – followed by the keyword. Comments are started with ‘#’.

The Robot script requires the sections mentioned in listing 1:

| *** Settings *** |
| *** Test Cases *** |

Listing 1. Headers for settings and test case sections.

In the ‘Settings’ section the used Python libraries, the test suite setup and teardown are

defined. Each test case in the ‘Test cases’ section starts with a title. These titles are

treated as keywords themselves, therefore all test case titles must be unique in a script.

After the title, the keywords are following, that define the test and the expected result. All

lines belonging to one test case must be indented.

Optionally, there can be at least two more sections as shown in listing 2:

| *** Variables *** |
| *** Keywords *** |

Listing 2. Headers for variables and keywords sections.

The section ’Variables’ offers room to define variables used in this test suite. The key-

words used in the tests can be defined either in a library that was mentioned in the ’Set-

tings’ section or in the special ’Keywords’ section. The keywords defined in the ’Key-

words’ section are higher level functions using functions from the libraries.

A test suite defined in a Robot script is started with a command line in a command prompt

window at the PC where the Robot Framework and its libraries are installed. It is started

with the command ‘robot’.

This command requires at least one argument, which is the name of the Robot script file

or a folder, where at least one Robot script file is located. In case a folder name is used

as argument, all Robot scripts located in the folder will be executed. The command line

can be extended by a vast variety of options. For instance:

 22

 values can be passed to variables defined in the script: -v <varia-

ble_name>:<value>

 a single test case of the script can be run: -t <test_case_title>

 especially tagged test cases can be excluded from being run by adding: --exclude

<tag_name>

From the test case titles defined in the script and the test results, the Robot Framework

creates test reports that will be stored after running the test suite in the same directory

where the Robot Framework was started with the Robot command. A part of a test report

is shown in figure 13.

Additional information can be gathered on three levels: the default ‘LOG’ level, the ‘DE-

BUG’ level with more information and the ‘TRACE’ level including all available infor-

mation. All levels include time information with the resolution of single milliseconds. The

additional levels can be activated for a test suite by adding the argument “-L DEBUG” or

“-L TRACE” to the command line starting the test script.

 23

Figure 13. Upper part of a test report: All 1334 tests cases are passed; running them took almost
13 hours - this is done usually during the night, in this case 19:00 in the evening to
almost 8:00 in the morning.

6.2 Replacing the GUIs with TestingCLI

For manual testing graphical user interfaces are invincibly more practical than command

line interfaces. For test automation it is the other way round: It is a lot easier to enter

lines to a CLI than to address fields of a GUI. Therefore the existing tools – the PC

 24

applications controlling Monitoring and Commissioning Tool – were combined to one

command line interface, called: TestingCLI.

TestingCLI is able to connect to a certain part of the test system (first or second locomo-

tive, coaches), it can create and read MVB messages. For establishing the connection

and for signal setting it returns ‘Success’ or ‘Error’. If a signal is read, TestingCLI returns

the read values of MVB1 and MVB2 or ‘Error’. Logs are gathered that contain additional

information about the errors.

6.3 Network Controlled Input Simulators

TestingCLI made it possible to automate reading MVB and creating messages to the

bus. But it did not solve the question, how to automate digital and analog inputs. Special

devices were needed, that would be connected to the PC running the Robot Framework,

receiving commands from there and providing inputs to the test system.

The Raspberry Pi 3 provided the needed features: enough memory and processing

power to run an application controlling the needed channels and producing different

types of signals and an ethernet socket to connect the device to the private network.

Moreover, Raspberry Pi offers the option to connect a special PCB on top of the general

purpose IO pins. This special board is called HAT – Hardware Attached to Top. There is

boxes available, that can house a RPI with the HAT.

It seemed reasonable to design small boards:

 one that would be able to feed digital inputs at the specified voltage and also to

read the outputs of the DIO modules,

 another one that provides adjustable resistances to simulate a PT100/PT1000

sensor,

 finally a board with DACs to create designed voltage or current signals.

Applications run on the RPI should control the HATs and take care of the communication

with the Robot Framework.

 25

6.3.1 DIO Simulator

The simplest task was the DIO simulator. Regulators needed to boost 5 V delivered from

RPI to 24 V for the inputs of the DIO module. The outputs of the DIO module needed to

be stepped down to 5 V, which are readable for the RPI. The applications takes care of

the setting and the reading and the network communication with the Robot Framework.

6.3.2 PTI Simulator

The PTI simulator was developed in another thesis project at Metropolia by Oleg

Languev. [21.] It was a crucial part for test automation.

There are digital potentiometers available that provide the needed resolution. Calibration

was needed to guarantee the defined accuracy of +/- 1° C. This accuracy was regarded

to be good enough for testing purposes. The calibration process changes the resistance

of the digital potentiometer gradually, crosschecks the resistance with the read temper-

ature value at the PTI module, and saves the state of the potentiometer for each temper-

ature to make in available for reproducing it.

The PTI simulator does not need to evaluate the PTI module and its firmware. They are

generic and they were tested and certified earlier. It is therefore allowed to calibrate the

simulator with the PTI module, and an external calibration tool is not needed.

6.3.3 HSA Simulator

As mentioned in 4.4 the high speed train project requires three different analog inputs to

the HSA module. All of them are defined by the current. There are two types of acceler-

ation sensors, one providing a rectified signal, the other a swinging signal with an offset

of 12 mA (the middle of the used range of HSA, 4 – 20 mA), both band pass filtered

before being fed to HSA with cutoff frequencies of 3 Hz and 9 Hz and with a center

frequency of 6 Hz. The third signal comes from a pressure sensor. [18, #1634.]

Although the lateral accelerations of the axles of a train most definitely do not produce

such ideal wave forms, the two acceleration sensor signals can be simulated as sinusoi-

dal signals. In the MVB messages the RMS of these signals is sent. From sinusoidal

wave forms it is easy to find the RMS value by multiplying the amplitude with the square

 26

root of two. The applications of the two types of RIOM_S calculate the RMS value from

the acceleration sensor inputs. To monitor the correct calculation, it is feasible use a

wave form whose RMS value is not too difficult to find.

The HSA module has an input resistance of 120 Ω, therefore current inputs between 0

and 24 mA can be simulated by voltage controlled signals between 0 and 1200 mV. The

DAC MCP4822 is controlled via SPI. It has two output channels that are chosen by the

most significant bit of a 16 bit value. The 12 least significant bits define the output voltage

between 0 and 4095 mV, so every bit resembles 1 mV, which makes it fairly easy to

manage. This DAC was chosen for the RPI HAT.

The application was designed using the C programming language. To ensure the real

time functioning of the application, it seemed reasonable to fork the application process

to a parent and a child process. RPI 3 has four cores. If ever the operating system allows

it, it can run two processes truly in parallel. The parent process reads UDP messages or

optionally a small command line interface and prepares the signal by calculating 1000

values for each output channel, which are saved to shared memory. The child process

updates every millisecond the output value of all channels by sending them via SPI to

the DACs. To avoid publishing values while they are written, two sets of values are used

at shared memory. One is reserved for the child process. The other one is used by the

parent process for writing. Whenever the parent process finishes writing, it commands

the child process to switch the sets and take the new values into use.

6.4 Data Flow in the Test System

The data flow in the test system is described in the following figure 14.

 27

Figure 14. Data flow in the test system.

Input to the test system:

 On the PC, the Robot Framework runs the client application TestingCLI and feeds

to TestingCLI the names of the signals, which need to be sent or read, according

to the Robot script.

 TestingCLI addresses the Commissioning Tool and the input simulators via ether-

net and provides the information of the signals needed for the test to them.

 The Commissioning Tool creates messages to the MVB and simulates to VCU_S

the units, which are not available in the test system, and controls their messages

to VCU_S.

 The input simulators deliver the needed digital and analog inputs to the modules

of the units.

 28

Output from the test system:

 The DIO simulator reads the digital outputs from the DIO module and reports their

values to TestingCLI via ethernet.

 The Monitoring Tool reads all messages available on the MVB.

 TestingCLI polls via ethernet from the Monitoring Tool the signals needed for

testing and reports their values to the Robot Framework

 The Robot Framework compares the received values with the expected values

from the script and creates the test report.

6.5 Automating the Test Procedures – Writing the Scripts

As mentioned above in 4.1, the certification process demands that integration tests cover

100% of the requirements. These tests need to be designed, documented, and reviewed.

To achieve the certificate all these tests naturally need to pass.

Before the automation, the test procedures were defined at least at a draft level. They

were initially designed for manual testing and also tried out as far as possible manually.

When the test automation was built up to a certain level, the writing of the test scripts

was started. It was in the beginning mostly a translation of the test specifications to Robot

and json files readable for the Robot Framework. The integration test specifications were

done individually for each safety function. The first ones that could be automated were

the safety functions depending on digital inputs only. Some of them are quite simple –

like the Parking Brake Applied in Motion, the Fire Alarm, or the Brake Pipe Monitoring.

They were quite naturally the ones to start with.

The structure of these test procedures is simple and does not require much of the logic

offered by the Robot Framework: one signal or a group of signals is set and immediately

or after the ending of a timer a group of signals is checked.

One test case or test step in the Robot script typically looks like shown in listing 3 (lines

staring with ‘#’ are comments explaining the code line by line):

 29

Title of the test case or test step.
| TST-J068-0000700 Step 6 - Set traction handle to MINIMUM |

A json file is defined, that contains the signals, which need to be set.
| | Run Keyword And Continue On Failure | Run Opened Test Tool V2 | ${PH1} |
| | ... | 0700_06_set.json | confPath=${CONFP_TR07} | accFailures=${true} |

Wait. In this case just as long all signals are set and read (max. 1 s).
| | Sleep | ${set_wait} |

A json file is defined, that contains the signals
that need to be checked and their expected values.
| | Run Keyword And Continue On Failure | Run Opened Test Tool V2 | ${PH1} |
| | ... | 0700_06_check.json | confPath=${CONFP_TR07} | accFailures=${true} |

Listing 3. Typical test case in a Robot script.

Note: ’| ... |’ indicates the continuation of the line above (the indentation ’| |’ needs to be

repeated).

A vital role in testing has the validation of timers. Many events will not trigger a reaction

immediately, when they emerge, but only when the new state perseveres for a certain

time period. For instance, it is not the single spike of a temperature higher than a thresh-

old that is regarded to be an overheating, but it is a measured temperature that is higher

than the threshold for several seconds. Likewise, an alarm will be deactivated only, when

the measured value is lower that the alarm threshold for another defined time interval.

For testing that means, that two checks will be needed to evaluate the correct implemen-

tation of the timers after an event triggering a reaction of the system has been created.

The first check before the end of the timer verifies that the event was noticed and there

is no reaction yet, the second check after the end of the timer makes sure, that the correct

reaction to the event is set.

The variables need to be defined: The timer tDEACT_Instab [s] for the deactivation of an

alarm was defined by the customer, another timer ‘delay’ is defined for the testing pur-

pose to define how long before and after the expiration of the customer timer the checks

are done – as can be seen in listing 4:

 30

| ${tDEACT_Instab} | 20 |
| ${delay} | 3 |

Listing 4. Variable definitions: timers.

Listing 5 shows the use of the timers, comments – starting with ‘#’ – enlighten some

details:

Test step, using the timers:
| TST-J068-0004210 Step 4 - Wait > tDEACT |

Wait until timer is almost finished and check that signals are not changed:
Alarm is not yet deactivated.
	Sleep	${${tDEACT_Instab} - ${delay}}		
	Run Keyword And Continue On Failure	Run Opened Test Tool V2	${PH1}	
	...	Level0_SB1p_check.json	confPath=${CP42}	accFailures=${true}
	Run Keyword And Continue On Failure	Run Opened Test Tool V2	${PH1}	
	...	Level0_B1_VCUS_check.json	confPath=${CP42}	accFailures=${true}

Wait until timer is definitely finished and check that signals are changed:
Alarm is deactivated.
	Sleep	${2 * ${delay}}		
	Run Keyword And Continue On Failure	Run Opened Test Tool V2	${PH1}	
...	NoLevel_check.json	confPath=${CP42}	accFailures=${true}	

Listing 5. Example for timer use with the sleep function.

Reading one signal from the MVB1 and MVB2 takes between 30 and 35 ms. Therefore,

about 30 signals can be read during one second.

Ideally, a test would not check only the signals changing during a procedure, but also

the signals remaining the same. This way unintended side effects would be caught im-

mediately. The system under test uses hundreds of signals, so it is impossible to read

them all before and after the expiration of a timer. Practical choices have to be made and

the side effects need to be caught with smoke tests in the beginning and the end of the

test suite. “Smoke tests are a subset of test cases that cover the most important func-

tionality of a component or system, used to aid assessment of whether main functions of

the software appear to work correctly” [22].

6.6 Selected Challenges and Their Solutions

6.6.1 Accept Failures

By default, the Robot Framework stops a test suite at the first failure. The BuiltIn library

of the Robot Framework offers the keyword shown in listing 6:

 31

| Run Keyword And Continue On Failure |

Listing 6. Keyword used to continue test run after a failure.

This prevents the test from being stopped after a failure. But it enables only, that the

following line of the Robot script is executed. The ‘Test Tool V2’, defined in the project

specific Python library, raises an exception, every time a read value does not meet the

expected value. In one line of the Robot script as many signals can be checked as de-

fined in the json file. Yet only the first exception and therefore only the first failing signal

would be reported.

Especially during software development, it seemed more helpful to collect information

about all failing features than just stopping at the first found failure. The first found failure

might have been known already and of minor importance. This made it advisable to col-

lect a list of failures rather than to stop the test execution with the first failure.

A special flag – accFailures – was created to the ‘Test Tool V2’: If set ‘true’, it makes

sure, a whole json file is executed, collecting all failures, and raising the exception only

in the end of the function – as can be seen in listing 7:

| | Run Keyword And Continue On Failure | Run Opened Test Tool V2 | ${PH1} |
| | ... | 0700_06_check.json | confPath=${CONFP_TR07} | accFailures=${true} |

Listing 7. Robot script line with the accFailures flag (bold print).

6.6.2 The Opened Test Tool

TestingCLI addresses signals within an MVB data set. Those signals are mostly one bit

wide, sometimes 2, 8 or more bits – according to the definition of the ICD. Once a data

set is created by the Commissioning Tool, it is repeated infinitely with out a change.

TestingCLI can set and clear each signal independently. But when an instance of Test-

ingCLI is started, it has no knowledge about the signals, that were set already. Therefore,

all signals, which are not explicitly set, are cleared. During run time, TestingCLI keeps

track of the signals that were set and keeps them at their state, when other signals of the

same data set are changed.

‘Test Tool V2’ starts a new instance of TestingCLI every time it is called. Inevitably, it

clears each time all signals, which are not set by the test data. A simplified example

 32

shows the problem – see figure 15. The signal indicating, if the locomotive is occupied,

that is: if the driver is present and using the locomotive, another signal telling, if the pas-

senger alarm is activated and the signal containing information about the opening of the

doors are in the same data set. When we want to test the passenger alarm activation,

we might inadvertently get the locomotive unoccupied and open the doors, because

those signals are cleared.

Figure 15. Side effects due to new sessions of TestingCLI with each command.

The issue can be fixed in a simple way by setting the signals, which should remain set,

each time any signal in a data set is changed. This is both, tedious and error prone. This

solution requires the tester to keep track manually of signals that were set before, when

ever one signal must change its value – see figure 16.

 33

Figure 16. First fix: Test data contains all signals, which must not be changed.

Moreover, this solution did not use TestingCLI to its full potential. TestingCLI keeps track

of the signals set during one session, so the data sets used can be initialized in the

beginning, then only the signals that are needed for testing are addressed.

The ’Opened Test Tool V2’ made it possible to start an instance of TestingCLI in the

beginning of the test suite at the suite setup and close it at teardown. An initializing json

file takes care once for the signals that need to be set but are not needed for the particular

test. This is shown in figure 17.

 34

Figure 17. Real fix: TestingCLI is started in the beginning of the test suite and initialized.

Together with the ’Opened Test Tool’ multiple sessions were introduced. The train and

therefore also the test system has three separate MVB chains: one for each locomotive

and one for all coaches. An instance of the TestingCLI is able to establish connections

to as many simulators as needed, but it can monitor only one MVB. Therefore, up to

three instances of the TestingCLI are needed to monitor the whole test system. Listing 8

shows how multiple sessions with connections to all needed devices are established and

closed – comments inside the code explain more details:

| *** Settings *** |
Library	Test_Library
Suite Setup	Open Many Test Tools
Suite Teardown	Close Many Test Tools

| *** Variables *** |
Connection to Monitoring/Commissioning Tool, Locomotive 1:
| ${CONN_PH1} | connect 239.0.0.100 50020 239.0.0.100 50030 8 |

Connections to DIO simulators, Locomotive 1:
@{MIOS2}	mioconnect VCU_S_TO_MIO_S2_P 10.0.0.56:50000
...	mioconnect VCU_S_TO_MIO_S2_S 10.0.0.57:50000
...	mioconnect MIO_S2_TO_VCU_S_DS1_P 10.0.0.56:50000
...	mioconnect MIO_S2_TO_VCU_S_DS1_S 10.0.0.57:50000

Connection to Monitoring/Commissioning Tool, Coaches:
| ${CONN_CH} | connect 239.0.0.100 50021 239.0.0.100 50031 8 |

Connection to HSA simulator, Coaches:

 35

| @{SIM} | deviceconnect HSAsim2 10.0.0.4:700 |

Connections to DIO simulator, Coaches:
| ... | deviceconnect DIOsim1 10.0.0.52:50000 |
| ... | deviceconnect DIOsim2 10.0.0.53:50000 |

Connection to Monitoring/Commissioning Tool, Locomotive 2:
| ${CONN_PH2} | connect 239.0.0.100 50022 239.0.0.100 50032 8 |

| *** Keywords *** |

Keyword called at Suite Setup to establish three sessions,
that is three instances of TestingCLI with connections
to the three different MVBs:
| Open Many Test Tools |
| | ${session1}= | Open Test Tool | toolPath=${TOOL_PATH} |
| | ... | initCmd=${CONN_PH1} |

The ‘extraCmds’ accept the list of simulators,
that one instance of TestingCLI should connect to:
| | ... | extraCmds=${MIOS2} |
| | Set Suite Variable | ${PH1} | ${session1} |
| | ${session2}= | Open Test Tool | toolPath=${TOOL_PATH} | initCmd=${CONN_CH}
|
	...	extraCmds=${SIM}	
	Set Suite Variable	${CH}	${session2}
	${session3}=	Open Test Tool	toolPath=${TOOL_PATH}
	...	initCmd=${CONN_PH1}	
	Set Suite Variable	${PH2}	${session3}

#Keyword called at Suite Teardown to close all three instances of TestingCLI:
| Close Many Test Tools |
	Close Test Tool	${PH1}
	Close Test Tool	${CH}
	Close Test Tool	${PH2}

Listing 8. Establishing various connections in multiple sessions of TestingCLI with the Robot
script.

6.6.3 Acceleration RMS

In the locomotives the RMS value of the measured acceleration data is calculated over

500 m of movement. There is no sliding window, the value is updated every 500 m. As

figure 18 shows, the maximum travelling distance until the acceleration RMS is fully up-

dated is a bit less than 1 km, whereas the minimum travelling distance for the update is

slightly more than 500 m.

 36

Figure 18. Different Acceleration RMS updates with a new signal.

The discrepancy between two redundant acceleration sensors is evaluated with a de-

fined difference of the RMS value. The discrepancy error is raised, when a discrepancy

between two sensors is noticed over a certain time (10 s). To test the correct functioning

of the discrepancy error:

 it is necessary to create the input, which will be measured as discrepant,

 then to wait that the RMS value is fully updated,

 when the RMS value is fully updated, the timer starts for the raising of the dis-

crepancy error,

 then check before the timer ends, that the discrepancy error is not set,

 and after the timer ends, that the discrepancy error is set.

To perform these two checks – before and after the end of the timer – is it crucial to

know, when the timer starts, that is: when the RMS value is updated. With a speed of

 37

180 km/h, travelling 500 m takes 10 s. Therefore, the full RMS update might take from a

bit more than 10 s up to almost 20 s (see Fig. 14).

The solution is obviously to check repeatedly, if the RMS reached the desired value, and,

when it has reached this value, to start the actual test. A loop stopped under a certain

condition would be a while loop, but the Robot Framework offers only for loops, written

with a syntax similar to Python – as shown in listing 9:

for index in range (max_value):

Listing 9. For loop according to Python programming language.

This makes the script slightly more complicated because a for loop is ended when the

index reaches the defined maximum value. So, another condition must be defined, that

aborts the loop prematurely. But with for loops it is much harder to create accidentally

infinite loops.

Listing 10 shows the use of the for loop in practice; comments inside the code explain

more details:

Test case title:
| TST-J068-0004300 Step 4 - TARp Discrepancy, TARs Zero |

Json file contains commands addressing the simulator
to provide the needed signals:
| | Run Opened Test Tool V2 | ${PH1} | 4300_04_HSA.json |
| | ... | confPath=${CONF_PATH_4300} |

Wait minimum time for RMS update (10 s).
| | Sleep | ${rms_update} |

Start loop to check repeatedly if RMS is updated.
The maximum value for the index (max_for) depends on the waiting time
between the repetitions of the loop (delay_for):
max_for * delay_for = 10 [s]
(After 20 s the RMS value has to be updated.)
| | FOR | ${index} | IN RANGE | ${max_for} |

Assign return value of function ‘Single Signal Check’ to variable RMS
		${RMS} =	Single Signal Check	${PH1}
		...	read RIOM_SB1_TO_VCU_PH_DS2 AccelerationRms	
		...	expected_string=17 [01]	

Check if RMS is updated and ...
| | | Run keyword if | "${RMS}" == "OK" |
... exit loop if RMS is updated or ...
| | | ... | Exit For Loop |

... wait a bit longer.
		...	ELSE	
		...	Sleep	${delay_for}
	END			

 38

Run actual test: Wait until the timer is almost finished
and check if signals are not changed yet.
	Sleep	${${tUNAVAIL_Instab} - ${delay}}		
	Run Keyword And Continue On Failure	Run Opened Test Tool V2		
	...	${PH1}	4300_04a_check.json	confPath=${CONF_PATH_4300}
	...	accFailures=${true}		

Wait until the timer is finished and a bit more
and check if the signals are correctly changed.
	Sleep	${2 * ${delay}}		
	Run Keyword And Continue On Failure	Run Opened Test Tool V2		
	...	${PH1}	4300_04b_check.json	confPath=${CONF_PATH_4300}
	...	accFailures=${true}		

Listing 10. Test step with a loop waiting for the acceleration RMS update.

6.6.4 TestStatus

So far, the described examples used only the Robot scripting language to define the test

performance. The Robot scripting language is a simplified programming language, which

offers principally the possibility to define everything, what can be programmed.

Writing more complex logic with the Robot scripting language ends up with two issues:

 The code gets long and difficult to maintain. There is no IDE, which would support

Robot scripting language, so typos can be found only manually or by running the

script. Bugs are extremely hard to detect.

 Every step defined in the Robot scripting language is also reported in the test

logs. For instance, every repetition of a loop is documented with all steps per-

formed inside the loop. This produces easily enormous amounts of irrelevant data

and makes the test logs hard to read.

These issues can be easily avoided by using Python instead of the Robot scripting lan-

guage. The Robot Framework requires to define the test cases in the Robot script, but

all parts of one test case can be defined in Python libraries. Any test suite can use various

Python libraries.

Defining a special Python library seemed advisable for testing the values of the signal

TestStatus. This signal is used by the application of VCU_S to report the status of brake

tests performed periodically. TestStatus is an eight bit signal with valid values from zero

(default) to ten with the following definitions:

 39

 0: Idle, no test run

 1: preconditions check (e.g.: no speed, no known internal errors of the system)

displayed for 200 ms

 2: test run

displayed for 2 s

 3: test finished

displayed for 200 ms

 4 – 10: test aborted due to different reasons

(e.g.: 4 – train has speed, 8 – internal error)

displayed for 5 s

Figure 19 shows the normal brake test run:

Figure 19. Normal test run.

In figure 20 the test is aborted after checking the preconditions, that is: the precondi-

tions needed to start the brake test were not fulfilled.

 40

Figure 20. Test aborted at preconditions check.

In the case shown on figure 21, the preconditions were violated, after the brake test

was started.

Figure 21. Test aborted during test run.

The various transitions can be tested easily, by running the same brake test over and

over again, validating each time a different transition. The test cases for the values of

TestStatus must raise an exception, when

 41

 the expected value is not found at all,

 the timing of the expected value is not correct (too long, too short),

 the next value, following the expected value, is not correct.

Furthermore it should report

 the values found if the expected value was not found; to keep the list short, re-

peated value can be filtered out (this shows, if the test was not at all run, if it

was aborted or – if it should be aborted – that it was run without being aborted),

 the time when the brake test is initiated, the time when the expected value is

found (this is used to compare the brake test run with the internal logs of the

VCU_S application),

 the measured duration, the expected value is displayed (to adapt the accuracy

of the validation of the timing),

 the next value, following the expected value.

Waiting for a signal can be done in Python much more elegant than in the Robot script-

ing language (compare the for loop in the previous section 5.6.3) – see listing 11:

 start_time = time.time()
 while read_teststatus != teststatus and read_time < MAX_TIME:

read_teststatus = _read_mvb1 (locomotive, READ_TESTSTATUS)
read_time = time.time() - start_time

Listing 11. Loop waiting for a value with additional timeout.

First the start time of the loop is taken. The loop ends, when the expected value is found,

or due to timeout. If the loop ends due to timeout, an exception is raised – as shown in

listing 12:

 if read_time >= MAX_TIME:
 raise TestStatusError ("TestStatus %s not found, found: %s" %
 (teststatus, _find_different (all_read)))

Listing 12. Raising an exception because of timeout.

 42

Listing 13 shows, that if the expected value is found, the time is reported:

 else:
 LogDoc ("%s TestStatus %s found after %.3f s" %
 (time.asctime()[11:19], teststatus, read_time))

Listing 13. Reporting success when value is found.

Next, the duration is measured, how long the expected value is displayed. Additionally,

it is checked that only the expected value and the value following the expected value are

displayed – as can be seen in listing 14:

 start_time = time.time()
 while read_teststatus != next_teststatus and read_time < MAX_TIME:
 read_teststatus = _read_mvb1 (locomotive, READ_TESTSTATUS)
 if (read_teststatus != teststatus and
 read_teststatus != next_teststatus):
 error_count += 1
 error_teststatus.append (read_teststatus)

 read_time = time.time() - start_time

Listing 14. Loop measuring time.

If an unexpected value is found, an exception is raised. This is shown in listing 15:

 if error_count > 0:
 raise TestStatusError ("Found unexpected Teststatus %d times; found:
 %s" % (error_count, _find_different (error_teststatus)))

Listing 15. Raise of an exception if incorrect value is found.

Note, that the function _find_different () filters out values, which are repeatedly found. If

the test should have been aborted, but was normally run, it will return the list: [0, 1, 2, 3,

0].

An exception is raised also, when the TestStatus value remains unchanged, and the

following value is never reached – see listing 16:

 if read_time >= MAX_TIME:
 raise TestStatusError ("TestStatus %s did not change to %s" %
 (teststatus, next_teststatus))

Listing 16. Raise of an exception due to timeout.

When the following value is reached correctly, it is reported. Finally, the measured time

is evaluated – as listing 17 shows:

 43

 else:
 LogDoc ("%s TestStatus changed from %s to %s after %.3f s" %
 (time.asctime()[11:19], teststatus, next_teststatus, read_time))
 EvalTime (expected_time, read_time)

Listing 17. Reporting success when next value is found.

7 Conclusion

The High Speed Train project was started with manual testing. Manual test tools were

created. At first the test procedures were designed to be performed manually. Only at a

later phase of the project it was decided to introduce test automation. This made testing

much more reliable because repeating manual tests is by nature error prone. And it made

more thorough testing possible because testers were able to concentrate on improving

the tests instead of performing them over and over again. But there is always room for

improvement.

Aside of many details, there are two principal things, that should be improved in a new

test automation project:

 Do not automate manual testing, build test automation: It seemed reasona-

ble for the project not to start over again and use the existing tools. The drawback

was the rather complicated access to the system under test: The Robot Frame-

work controls a PC application; the PC application controls the MVB Tools – only

the MVB Tools are directly connected to the system under test. The additional

PC application is not needed and can be the reason for failures. The Robot

Framework’s access to the system under test should be as direct as possible. An

optimized test system is shown in figure 22.

 44

Figure 22. Test system, optimized for working with the Robot Framework (see also figure 14).

 More Python, less Robot scripting: Python code is a bit more difficult to write

than Robot scripting language, but it is a lot easier to read, review and to main-

tain. All logic should be done in Python, the Robot script should be used only to

define the test procedure. Defining parts of a test case in Python and giving them

speaking names (e.g. OccupyCab, EnableTraction, Speed) makes the Robot

script more readable. Carefully named exceptions can help to answer the most

crucial question, which comes with every failed test: Is the failure on the testing

side or really a failure of the SUT?

Finally, I would like to add, that working with safety systems is fulfilling work. Safety sys-

tems are in use, where human lives are at stake. Everybody working with safety systems

is contributing to avoiding accidents and to make life safer.

 45

References

1 Wikipedia.org [online]. Safety integrity level. (6. June 2021).
URL: https://en.wikipedia.org/wiki/Safety_integrity_level (Accessed 20. October
2021).

2 European Committee for Electrotechnical Standardization. EN 50128:2011. Rail-
way applications - Communication, signalling and processing systems - Software
for railway control and protection systems. Brussels: CENELEC; 2011.

3 European Committee for Electrotechnical Standardization. EN 61375-1:2012.
Electronic railway equipment - Train communication network (TCN) - Part 1: Gen-
eral architecture. Brussels: CENELEC; 2012.

4 European Committee for Electrotechnical Standardization. EN 61375-3-1:2012.
Electronic railway equipment - Train communication network (TCN) - Part 3-1:
Multifunction Vehicle Bus (MVB). Brussels: CENELEC; 2012.

5 European Committee for Electrotechnical Standardization. EN 61375-2-1:2012.
Electronic railway equipment - Train communication network (TCN) - Part 2-1:
Wire Train Bus (WTB). Brussels: CENELEC; 2012.

6 European Committee for Electrotechnical Standardization. EN 61375-2-3:2015.
Electronic railway equipment - Train communication network (TCN) - Part 2-3:
TCN communication profile. Brussels: CENELEC; 2015.

7 EKE-Electronics.com [online]. Vehicle Control Unit (VCU). 19 February 2020.
URL: https://www.eke-electronics.com/vehicle-control-unit-vcu (Accessed 20. Oc-
tober 2021).

8 HASLERRail.com [online]. Vehicle Control Units (VCU). NA.
URL: https://www.haslerrail.com/products-solutions/obe/
control-protection-and-i-o/vehicle-control-units-vcu (Accessed 20. October 2021).

9 EKE-Electronics.com [online]. Remote I/O Module (RIOM). 10. August 2020.
URL: https://www.eke-electronics.com/riom-remote-i-o-module (Accessed 20.
October 2021).

10 HASLERRail.com [online]. Remote I/O Units. NA.
URL: https://www.haslerrail.com/products-solutions/obe/
control-protection-and-i-o/remote-i-o-units (Accessed 20. October 2021).

11 EKE-Electronics.com [online]. Central Processing Unit with Serial Links (CPS,
CPF). 18. May 2020.
URL: https://www.eke-electronics.com/cpu-with-serial-links (Accessed 20. Octo-
ber 2021).

 46

12 EKE-Electronics.com [online]. Multifunction Vehicle Bus Interface Module (MVB).
10. August 2020.
URL: https://www.eke-electronics.com/multifunction-vehicle-bus-mvb (Accessed
20 October 2021).

13 EKE-Electronics.com [online]. Wire Train Bus Interface Module (WTB, WTF). 10.
August 2020.
URL: https://www.eke-electronics.com/wire-train-bus-wtb (Accessed 20. October
2021).

14 EKE-Electronics.com [online]. Digital Input/Output Module (DIO). 20. July 2020.
URL: https://www.eke-electronics.com/digital-input-ouput-module (Accessed 20.
October 2021).

15 EKE-Electronics.com [online]. Pt100/Pt1000 Temperature Sensor Input Modules
(PTI). 11. August 2020.
URL: https://www.eke-electronics.com/pt100-temperature-sensor-module (Ac-
cessed 20. October 2021).

16 EKE-Electronics.com [online]. High Speed Analogue Input Module (HSA). 10. Au-
gust 2020.
URL: https://www.eke-electronics.com/high-speed-analogue-module (Accessed
20. October 2021).

17 Customer Specification. Architecture_TCMS_v15. [Restricted, not open to the
public]. 2021.

18 Customer Specification. SW0261_SW_REQ_Export_BS012. [Restricted, not
open to the public]. 2021.

19 Robotframework.org [online]. Introduction. NA.
URL: https://robotframework.org/#introduction (Accessed 20. October 2021).

20 Python.org [online]. 8. Errors and Exceptions. NA.
URL: https://docs.python.org/3/tutorial/errors.html (Accessed 20. October 2021).

21 Languev, O. Simulator of resistive temperature sensor. BE Thesis. Metropolia
University of Applied Science; 2019.

22 Wikipedia.org [online]. Smoke testing (software). (16. July 2021).
URL: https://en.wikipedia.org/wiki/Smoke_testing_(software) (Accessed 7. No-
vember 2021).

