

Ogtay Ahmadli

AI Facial Recognition System

Metropolia University of Applied Sciences

Bachelor of Engineering

Degree Programme in Electronics

Bachelor’s Thesis

29 January 2022

Abstract

Author: Ogtay Ahmadli

Title: AI Facial Recognition System

Number of Pages: 43 pages + 1 appendix

Date: 29 January 2022

Degree: Bachelor of Engineering

Degree Programme: Degree programme in Electronics

Professional Major: Electronics

Supervisor: Matti Fischer, Principal Lecturer

Nowadays, facial recognition is one of the widely used categories of biometric security
that distinguish itself by its security and speed from other categories such as fingerprint
recognition and eye retina or iris recognition. This technology is mainly used in
electronics devices, airport control, banking, health care, marketing, and advertising.
This thesis project aimed to build a facial recognition system that could recognize
people through the camera and unlock the door locks. Recognized results were sent to
the database and could be analyzed by users after the successful login.

The project consists of building a facial recognition, electronics operation, and
webpage design for the database. Firstly, machine learning and deep learning
algorithms were used to recognize faces. In the second step, AI data is transmitted to
the electronics components and sensors to make a smart lock system. Finally, the last
step was to design a user interface that requires a login and displays the attendance
list according to the database.

The prototype could successfully recognize human faces and activate the electronics
components. It has fast performance and could log information about recognized
humans in the Google database.

With further advancements, the prototype would implement more extensive algorithms
to distinguish the pictures and real faces through a camera. These algorithms would
make the prototype faster, secure, and suitable for commercial purposes.

Keywords: Facial Recognition, Artificial Intelligence, Machine

Learning, Deep Learning, Neural networks, Computer Vision

Contents

List of Abbreviations

1 Introduction 1

2 Artificial Intelligence 2

2.1 Machine Learning 3

2.1.1 Supervised Learning 3

2.1.2 Unsupervised learning 7

2.1.3 Reinforcement Learning 8

2.2 Deep Learning 8

2.2.1 Artificial Neural Networks 10

2.2.2 Convolutional Neural Networks 10

 2.2.2.1 Convolutional Layer 12

 2.2.2.2 Pooling Layer 14

 2.2.2.3 Fully Connected Layers 16

 2.2.2.4 CNN in Overall 17

 2.2.2.5 Training the CNN 17

 2.2.2.6 Activation Functions 18

2.2.3 Recurrent Neural Networks 19

2.3 Computer Vision 20

3 Facial Recognition 20

3.1 Face Detection 20

3.2 Face Encoding 23

3.3 Face Classification 24

3.4 Face Recognition in Overall 24

4 Implementation 25

4.1 Tools and Technologies 25

4.1.1 Python 25

4.1.2 OpenCV 25

4.1.3 TensorFlow 26

4.1.4 Openface 26

4.1.5 Firebase 26

4.1.6 HTML/CSS/JS 26

4.1.7 Jetson Nano 27

4.1.8 Arduino 27

4.2 Practical Work and Analysis 28

4.2.1 Hardware 28

4.2.2 Software 31

 4.2.2.1 Implementation of the HOG method 31

 4.2.2.2 Implementation of the Face Encodings 33

 4.2.2.3 Implementation of the Face Classification 33

 4.2.2.4 Database 36

 4.2.2.5 Transmitter Function 37

 4.2.2.6 Serial Communication 39

 4.2.2.7 Receiver Function 41

4.2.3 User Interface 42

5 Conclusion 43

References 44

Appendices

Appendix 1: The encodings of an image in the dataset

Appendix 2: The Circuit diagram of the project

List of Abbreviations

AI: Artificial Intelligence

ML: Machine Learning

DL: Deep Learning

CNN: Convolutional Neural Networks

ANN: Artificial Neural Networks

RNN: Recurrent Neural Networks

2D: 2-dimensional

3D: 3-dimensional

HOG: Histogram of the gradients

SVM: Support Vector Machines

CV: Computer Vision

LED: Light Emitting Diode

OLED: Organic Light Emitting Diode

1

1 Introduction

Facial recognition is an immensely powerful technology that recognizes human faces

through the camera based on facial features. Nowadays, this technology exists in

electronic devices, industries, airports that perform facial recognition instantly without

human intervention. Facial recognition distinguishes itself by its preciseness in terms of

data collection and verification. It is also more suitable for identification uses, as other

biometric security categories are unique to each person.

The goal of the thesis project was to build a facial recognition system that could

recognize people through the camera and unlock the door locks. The prototype would

be fixed to the doors and use the camera to operate the whole circuitry. The results

would be logged in the google database and analyzed by users after the successful

login.

The implementation of the project was accomplished in three steps. Initially, the facial

recognition system was built using machine learning and deep learning algorithms. In

the second step, the data from the facial recognition system were transmitted to the

electronics circuitry to make a smart lock system. Finally, the last step was to design a

user interface for the google database that displays the attendance list.

This paper provides the required knowledge to build a facial recognition system and the

necessary mathematical formulas of the algorithms used in the project. After the

theory, the practical work is explained where those algorithms were implemented into

practice, which was the major stage of the project to recognize faces and control the

whole electronics circuitry.

2

2 Artificial Intelligence

Artificial Intelligence, also identified as AI, is a branch of computer science that

empowers machines to learn from experience and perform specific tasks intelligently

like a human brain without any interference [1]. AI challenges problems of modern life

and tries to solve them using intelligent algorithms. It contains many theories, methods,

technologies, and the following significant subfields as shown in figure 1. [2.]

Figure 1. Major subfields of AI [3]

As Figure 1 shows, the significant subfields of AI are machine learning, deep learning,

and computer vision which were used in the project for different purposes.

Artificial intelligence divides into two categories: strong AI and weak AI. Weak AI is a

narrow application, and it is suitable for specific tasks, for instance, virtual assistants.

On the other hand, strong AI is a broader application and has human-level intelligence.

It is mainly used in advanced robotics and automation. [4.]

3

2.1 Machine Learning

Machine learning is a subfield of AI that can automatically learn through experience

and data. It has algorithms that run on data to create mathematical models to make

predictions or decisions. There are three primary machine learning methods:

supervised, unsupervised, and reinforcement learning. [5.]

2.1.1 Supervised Learning

Supervised learning is one of the three primary methods of machine learning. It uses

various algorithms that train using datasets to classify data or predict outputs, as

illustrated in figure 2. [6.]

Figure 2. Visual Illustration of working principle of supervised learning algorithms [6]

The supervised learning algorithms begin the operation by feeding the data and

adjusting the weights until the model fits appropriately. This process is used to ensure

that the model prevents overfitting and underfitting. Over time, the algorithms learn to

approximate the connection between the input data and labels. Once the algorithms are

fully trained, they can observe the new objects and predict proper labels. [6.]

Supervised learning can be divided into regression and classification. Regression is

used to understand the connection between dependent and independent variables.

The popular regression algorithms include linear regression, logistical regression, and

polynomial regression. [7.]

https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/analytics/learn/linear-regression
https://www.ibm.com/analytics/learn/logistic-regression

4

Classification uses an algorithm to assign test data into classes or groups. It identifies

particular entities contained by the dataset and attempts to label those entities. The

most familiar classification algorithms are support vector machines, decision trees, k-

nearest neighbor, naïve bayes, and random forest. Support vector machine is one of

the widely used algorithms that give a high test accuracy. Therefore, this was decided

to be used in the project and is described in detail below. [7.]

Support Vector Machine

A support vector machine or SVM is a classification algorithm. The primary function of

SVM is to find a hyperplane where the distance between two classes of data points is

at its maximum. This hyperplane is the decision boundary, splitting the classes of data

points on each side of the plane as shown in figure 3. [7.]

Figure 3. Hyperplanes in 2D and 3D space [8]

The dimension of the hyperplane depends on the space dimension. If the space is two-

dimensional, then the hyperplane is simply a straight line. If it is three-dimensional, then

the hyperplane becomes a two-dimensional plane.[8.]

There are a lot of possible hyperplanes that can be found in a plane, as shown in figure

4. In order to find the optimal hyperplane, among others, mathematical computation of

the margin is needed, which is described below.

5

Figure 4. Illustration of optimal hyperplane [8]

The notation shown in equation (1) is used to define the hyperplane:

 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 (1)

In the equation, w and b are the weight vector and the bias, respectively [9].

The optimal hyperplane can be represented in an infinite number by scaling of the

weight and the bias, known as the canonical hyperplane:

 |𝑤𝑇𝑥 + 𝑏| = 1 (2)

Where 𝑥 is data points closer to the hyperplane called support vectors that are used to

increase the margin and help to build a classifier. [9.]

The next step is to compute the distance between point 𝑥 and the hyperplane by using

the rule of geometry:

 𝑑 =
|𝑤𝑇𝑥+𝑏|

‖𝑤‖
 (3)

According to the canonical hyperplane, the numerator in equation (2) is equal to one.

Therefore the distance to the support vectors is

 𝑑𝑠𝑣 =
|𝑤𝑇𝑥+𝑏|

‖𝑤‖
=

1

‖𝑤‖
 (4)

6

The margin is twice the distance between points and the hyperplane:

 𝑀 = 2 ∗ 𝑑𝑠𝑣 =
2

‖𝑤‖
 (5)

The last step is to maximize the margin, which is equivalent to minimizing a function

𝐿(𝑤) subject to some constraints. Those constraints model the requirement for the

hyperplane to classify all the data points 𝑥𝑖 correctly. Formally,

 min
𝑤,𝑤0

𝐿(𝑤) =
‖𝑤‖2

2
 (6)

In order to find the perpendicular distance between two data points, x and z, the

following formula is used.

 √∑ (𝑥𝑖 − 𝑧𝑖)2𝑃
𝑖=1 =

|𝜇(𝑧)|

‖𝑤‖2
 (7)

Equation (7) is the Euclidean distance formula and it is used to calculate the distance

between two data points and implemented in face recognition, which is described in

further sections. [10.]

7

2.1.2 Unsupervised learning

Unsupervised learning is pretty much the opposite of supervised learning. It uses

algorithms to analyze unlabeled raw data, understand the properties, and learn to

group them without human intervention, as illustrated in figure 5. [11.]

Figure 5. Visual Illustration of working principle of unsupervised learning algorithm [6]

Unsupervised learning algorithms have three main tasks, including clustering,

association, and dimensional reduction [11].

Clustering

Clustering is one of the main unsupervised learning tasks. Its algorithms classify a set

of unlabeled data so that data in the same cluster are more similar to each other than

other clusters. [11.]

Association

An association rule is a widely-used method that explores the dataset and acquires the

connections between variables in a dataset. This method is commonly used for market

basket analysis, facilitating companies to understand the relationship between

products. [11.]

Dimensionality Reduction

Dimensionality reduction is a technique applied when the dataset or dimensions in a

given dataset are too large. It reduces input data to a feasible size, besides maintaining

the integrity of the dataset. [11.]

8

2.1.3 Reinforcement Learning

Reinforcement learning is a machine learning model that uses intelligent algorithms.

Those algorithms are not trained using data as in supervised learning. Instead, they

learn from mistakes and experiences, as shown in the picture below. [5.]

Figure 6. Visual Illustration of working principle of reinforcement learning [6]

The model gives faulty results in the beginning. Despite this, as long as the feedback is

provided to the algorithm, it selects correct feedback over incorrect ones and improves

itself for the subsequent trial. Over time, the algorithm learns and makes fewer

mistakes than it used to. [6.]

2.2 Deep Learning

Deep learning, also called deep neural networks, is a subfield of machine learning,

which is essentially a neural network with more than two layers. It is worth saying that

the “deep” in deep learning refers to the depth of layers in a neural network. The

function of deep learning is to learn from large amounts of data and perform like a

human brain. [12.]

Deep learning algorithms process unstructured data, like text and images, and

automate feature extraction. For instance, the algorithm processes a set of photos of

different animals to categorize by a cat, dog, etc. They can determine which features

are most significant to distinguish each animal from another, like ears, nose, etc. [12.]

https://www.ibm.com/cloud/learn/machine-learning

9

Neural networks are at the heart of deep learning algorithms. Their name and structure

are inspired by the biological neuron. Neuron in neural networks is a mathematical

operation and imitates the functioning of a biological neuron, as schematized in figure

7. [13.]

Figure 7. Scheme of the working process of a single neuron [14]

As Figure 7 illustrates, the input feeds into the neuron and produces the output. On the

other hand, several input neurons are used to solve complicated problems, as shown in

figure 8.

Figure 8. Scheme of the working process of several input neurons [14]

Here, each neuron is divided into two blocks:

• Computation of z using the inputs 𝑥𝑖:

 𝑧 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖 (8)

• Computation of a, which is equal to y at the output layer, using z:

 𝑎 = 𝜓(𝑧) (9)

Each neuron multiplies its weights 𝑤𝑖 to inputs 𝑥𝑖, adds the bias 𝑏 and passes the sum

through the activation function 𝜓. [14.]

https://www.ibm.com/cloud/learn/deep-learning

10

Neural networks have three main types: artificial neural networks, convolutional neural

networks, and recurrent neural networks [14]. CNN is one of the widely used neural

networks in face recognition, which is a topic of this thesis. Therefore, this was decided

to be used during the project and described in detail below.

2.2.1 Artificial Neural Networks

Artificial Neural networks consist of three main layers of interconnected nodes, each

building upon the previous layer to optimize the prediction or categorization. Those are

input, hidden, and output layers, as shown in figure 9. [13.]

Figure 9. The architecture of neural networks [14]

The architecture of the artificial neural networks starts with the input layer, which

ingests the data for processing, and gives the material to hidden layers to do all the

mathematical computations. Finally, the output layer produces the result for given

inputs. [15.]

2.2.2 Convolutional Neural Networks

CNN is a type of neural network that is very effective in image recognition and

classification. They use a mathematical operation on two functions that produce a third

function, called convolution, as shown in figure 10. [16.]

Figure 10. Process of a computing convolution function [17]

11

CNN starts the operation by converting the inputted image into pixels, and forwards it to

filter processing. The filters used in image processing are vertical-edge and horizontal-

edge filters. The combination of those filters gets the edges of an object in an image.

[16.] The vertical edge filter, VEF, is defined as follows:

 𝑉𝐸𝐹 = [
1 0 −1
1 0 −1
1 0 −1

] = 𝐻𝐸𝐹𝑇 (10)

This filter slides over the input image to extract the vertical edges, which is the sum of

the elementwise product in each block, as shown in figure 11. [16.]

Figure 11. The feature map after filtering the image [16]

The elementwise multiplication is performed starting from the first 3x3 block, slides the

block until it covers all possible blocks, and outputs the edges of the image, also called

feature map. The parameter s in this figure is the stride parameter in the convolutional

product. A large stride produces a smaller feature map and vice versa. [16.]

When VEF is used, the pixels on the edges are less used than those in the middle. It

means that the data from the edges are ignored. In order to solve this problem, padding

can be added around the image to consider the edge pixels, as shown in figure 12. [16.]

12

Figure 12. The output, after adding padding around the image [16]

The padding parameter p in figure 12 is the number of elements added to the four sides

of an image [16].

Once the stride and the padding are defined, here comes to construct a CNN, layer per

layer. CNN consists of three layers: convolution, pooling, and fully-connected layers.

[16.]

2.2.2.1 Convolutional Layer

As mentioned above, CNN derives its name from the convolutional operator. The

primary goal of the convolutional layer is to extract features from the input image, which

can be mathematically represented as a tensor with the following dimensions:

 dim(𝑖𝑚𝑎𝑔𝑒) = (𝑛𝐻 , 𝑛𝑊, 𝑛𝐶) (11)

Here 𝑛𝐻 is the height, 𝑛𝑊 is the width and 𝑛𝐶 is the number of channels, which are the

depth of the matrices involved in the convolution. They are used to refer to a specific

component of an image. If the image is grayscale, it has only one channel and has

pixel values in the range of 0 to 255. On the other hand, if the image is RGB, the

number of channels equals three. In this case, the filter can be represented with the

following dimensions:

 dim(𝑓𝑖𝑙𝑡𝑒𝑟) = (𝑓, 𝑓, 𝑛𝐶) (12)

As described above, the convolutional product between an image and filter is a two-

dimensional matrix. In the convolutional layer, each element is the sum of the

elementwise multiplication of the filter, which is a cube, as illustrated in figure 13. [16.]

https://en.wikipedia.org/wiki/Channel_(digital_image)

13

Figure 13. Illustration of a convolutional product on a volume [16]

The filter has the odd dimension 𝑓 to center each pixel and the same number of

channels as the input image [16].

In order to solve complex tasks, the convolutional product is applied using multiple filters

and followed by an activation function 𝜓. The mathematical formula of the convolutional

layer at the 𝑙𝑡ℎ layer is

 𝑐𝑜𝑛𝑣(𝑎[𝑙−1], 𝐾𝑛)
𝑥,𝑦

= 𝜓[𝑙] (∑ ∑ ∑ 𝐾𝑖,𝑗,𝑘
(𝑛)

𝑎𝑥+𝑖−1,𝑦+𝑗−1,𝑘
[𝑙−1]

+ 𝑏𝑛
[𝑙]𝑛𝐶

[𝑙−1]

𝑘=1

𝑛𝑊
[𝑙−1]

𝑗=1

𝑛𝐻
[𝑙−1]

𝑖=1) (13)

 dim (𝑐𝑜𝑛𝑣(𝑎[𝑙−1], 𝐾(𝑛))) = (𝑛𝐻
[𝑙]

, 𝑛𝑊
[𝑙]

) (14)

Here, 𝑎[𝑙−1] is the input image with the dimensions (𝑛𝐻
[𝑙−1]

, 𝑛𝑊
[𝑙−1]

, 𝑛𝐶
[𝑙−1]

), and 𝑛𝐶
[𝑙]

 is the

number of filters where each filter 𝐾(𝑛) has the dimension of (𝑓[𝑙], 𝑓[𝑙], 𝑛𝐶
[𝑙−1]

). The bias

of the 𝑛𝑡ℎ convolution is 𝑏𝑛
[𝑙]

 and the activation function indicates as 𝜓[𝑙]. Finally,

according to equation (22), the output from the convolutional layer can be written as

𝑎[𝑙] = [𝜓[𝑙] (𝑐𝑜𝑛𝑣(𝑎[𝑙−1], 𝐾(1))) , 𝜓[𝑙] (𝑐𝑜𝑛𝑣(𝑎[𝑙−1], 𝐾(2))) , … , 𝜓[𝑙](𝑐𝑜𝑛𝑣(𝑎[𝑙−1], 𝐾
(𝑛𝐶

[𝑙]
)
))] (15)

 dim(𝑎[𝑙]) = (𝑛𝐻
[𝑙]

, 𝑛𝑊
[𝑙]

, 𝑛𝐶
[𝑙]

) (16)

with

14

 𝑛𝐻/𝑊
[𝑙]

= ⌊
𝑛𝐻/𝑊

[𝑙−1]
+2𝑝[𝑙]−𝑓[𝑙]

𝑠[𝑙] + 1⌋ (17)

According to these equations, the convolutional layer with multiple filters can be

summarized in figure 14. [16.]

Figure 14. Illustration of the convolutional layer with multiple filters [16]

In figure 14, 𝑝[𝑙] and 𝑠[𝑙] are the padding and stride parameters, respectively, and the

learned parameters from these convolutional layers are filters and the bias [16].

2.2.2.2 Pooling Layer

CNN uses the pooling layer to reduce the training time and the dimensionality of each

feature map by applying it to each channel. However, it still maintains the useful

information in the image. There are two often-used pooling types: max and average

pooling. Max pooling returns the largest element from the feature map. On the other

hand, average pooling takes the average of all elements, as illustrated in figure 15,

when the stride parameter is equal to two. [16.]

15

Figure 15. An illustration of average pooling [16]

The formula of the pooling layer at the 𝑙𝑡ℎ layer is

 𝑝𝑜𝑜𝑙(𝑎[𝑙−1])𝑥,𝑦,𝑧 = 𝜙[𝑙]((𝑎𝑥+𝑖−1,𝑦+𝑗−1,𝑧
[𝑙−1]

)
𝑖,𝑗∈[1,2,…,𝑓

[𝑙]
]
2) (18)

Here, 𝑎[𝑙−1] is the input image to the pooling layer, which passes through a pooling

function 𝜙[𝑙] to the output 𝑎[𝑙] as shown in figure 16. [16.]

Figure 16. Illustration of the pooling layer [16]

This layer only produces the compressed version of images using the pooling function,

and it has no learned parameters [16].

16

2.2.2.3 Fully Connected Layers

The fully connected layers are the main layers of the CNN, which connects every

neuron in one layer to every neuron in the other layer. The primary purpose of these

layers is to use convolutional and pooling layers and produce the desired output. They

are the layers where the actual neural network starts and takes in a vector 𝑎[𝑙−1] and

returns a vector 𝑎[𝑙]. The formula of the fully connected layer on the 𝑗𝑡ℎ node of the 𝑖𝑡ℎ

layer is

 𝑧𝑗
[𝑖]

= ∑ 𝑤𝑗,𝑙
[𝑖]

𝑎𝑙
[𝑖−1]

+ 𝑏𝑗
[𝑖]𝑛𝑖−1

𝑙=1 (19)

 𝑎𝑗
[𝑖]

= 𝜓[𝑖](𝑧𝑗
[𝑖]

) (20)

Here, 𝑤𝑗,𝑙
[𝑖]

 is the weight, 𝑏𝑗
[𝑖]

 is the bias, and 𝑎[𝑖−1] is the output of the pooling layer with

the dimensions (𝑛𝐻
[𝑖−1]

, 𝑛𝑊
[𝑖−1]

, 𝑛𝐶
[𝑖−1]

). [16.]

The fully connected layers can be summarized in the illustration in figure 17.

Figure 17. Illustration of the fully connected layer [16]

As can be seen here, the input is flattened to a one-dimensional vector, allowing the

fully connected layers to start the operation. The formula of flattening can be expressed

as

 𝑛𝑖−1 = 𝑛𝐻
[𝑖−1]

× 𝑛𝑊
[𝑖−1]

× 𝑛𝐶
[𝑖−1]

 (21)

This vector feeds into the fully connected layer and generates the output. The learned

parameters from this layer are the weights and the bias. [16.]

17

2.2.2.4 CNN in Overall

Overall, the convolutional neural network is a sequence of all layers and is illustrated in

figure 18.

Figure 18. Illustration of the CNN [16]

Initially, CNN extracts features from the input image by performing the convolutional and

the pooling layers. These features fed to fully connected layers to produce the output.

The output can be the label or other features of the inputted image, like 128

measurements described in further sections.

2.2.2.5 Training the CNN

Data preprocessing

Data preprocessing is the step to transform the data so that the computer can easily

read it. It is applied to increase the number of images in a given dataset. There are

many techniques used in data preprocessing, such as cropping, rotation, flipping, etc.

These techniques enable better learning due to the large size of the training set and

allow the algorithm to learn from different conditions.

Before the CNN is trained, the dataset splits into training and test set. The training set

is used to train the algorithm and consists of 80% of the dataset. On the other hand,

the test set is used to check the algorithm's precision. [14.]

18

Learning algorithms

Learning algorithms aim to find the best parameters that give the best prediction. For

this, the loss function 𝐽 is defined to measure the distance between the real and the

predicted values. The loss function has two steps: forward propagation and backward

propagation. [14.]

Forward propagation is basically fully connected layers where the layers receive the

input data, processes the information, and generates the predicted output value of 𝑥𝑖

through the neural network 𝑦̂𝑖
𝛳 with some errors. In this case, the loss function 𝐽 is

evaluated as

 𝐽(𝛳) =
1

𝑚
∑ ℒ(𝑚

𝑖=1 𝑦̂𝑖
𝛳 , 𝑦𝑖) (22)

Here, 𝑚 is the size of the training set, 𝛳 is the model parameters, ℒ is the cost function

and 𝑦𝑖 is the real values for all 𝑖 = (1,2, … , 𝑁). 𝑁 is the iteration of the same process,

called epoch number. [14.]

Backward propagation is the method to train neural networks. This method calculates

the gradients of ℒ for all the network parameters and adjusts those parameters based

on the error rate obtained in the previous epoch.

The convolutional neural network is fully trained when the parameters are adjusted, and

the training of CNN gives the minimum loss, which makes the model fast and reliable..

2.2.2.6 Activation Functions

Activation functions are an essential part of the neural network. They determine

whether a neuron should be activated. The nonlinear functions typically convert the

output of a given neuron to a value between 0 and 1 or -1 and 1. The most common

activation functions are defined below. [18.]

• ReLU:
 𝜓(𝑥) = 𝑥1𝑥≥0 = max (0, 𝑥) (23)

19

• Sigmoid:

 𝜓(𝑥) =
1

1+𝑒−𝑥 (24)

• Tanh:

 𝜓(𝑥) =
1−𝑒−2𝑥

1+𝑒−2𝑥 (25)

• LeakyReLU:

 𝜓(𝑥) = 𝑥1𝑥≥0 + 𝛼𝑥1𝑥≤0 (26)

2.2.3 Recurrent Neural Networks

The RNN is a type of neural network that applies sequential data and is used for

natural language processing, speech recognition, language translation, etc. RNNs are

derived from feedforward neural networks and can use their memory to take

information from previous inputs to impact the current input and output, as shown in

figure 19. [18.]

Figure 19. Illustration of the rolled and unrolled RNN [ibm]

The rolled RNN represents the total predicted outputs. On the other hand, the unrolled

RNN represents the individual layers of the neural network, and each layer maps to a

single output. [18.]

20

2.3 Computer Vision

Computer vision is a field of AI and works like human vision. It uses deep and machine

learning algorithms described in sections 2.1 and 2.2 to enable computers to observe

and understand images and videos by feeding lots of data. They run data over and

over until they recognize images. [19].

One of the well-known computer vision applications is autonomous vehicles that need

to identify people, cars, and lanes on the road in order to navigate [19].

3 Facial Recognition

Facial recognition is a category of biometric security used to identify people from

images, videos, or real-time. It generally works by comparing a given face image with

others in a database. [20.] This technology is mainly used in marketing, advertising,

healthcare, banking, payment verification, and airports control [21].

Face recognition is executed in three stages: face detection, face encoding, and face

classification [22].

3.1 Face Detection

The operation of face recognition starts by detecting faces which uses the HOG

method to detect the faces in an image. The HOG stands for the histogram of oriented

gradients. It starts the operation by converting an image to black and white. For every

pixel in an image, surrounding pixels are selected to figure out the darkness of that

pixel compared to surrounding pixels. Then the arrow is drawn in the direction of the

darkness, as shown in figure 20. [22.]

Figure 20. The drawn arrow on the pixel [22]

This process repeats for every single pixel in an image. In the end, every pixel replaces

by arrows. These arrows are called gradients, which are obtained by combining

https://www.kaspersky.com/resource-center/definitions/biometrics

21

magnitude and angle from the image. First, gradients 𝐺𝑥 and 𝐺𝑦 are calculated for each

pixel using the following formulas. [23.]

 𝐺𝑥(𝑥, 𝑦) = 𝐻(𝑥 + 1, 𝑦) − 𝐻(𝑥 − 1, 𝑦) (27)

 𝐺𝑦(𝑥, 𝑦) = 𝐻(𝑥, 𝑦 + 1) − 𝐻(𝑥, 𝑦 − 1) (28)

After these calculations, the magnitude and the direction of the gradient are obtained

as

 𝐺(𝑥, 𝑦) = √𝐺𝑥(𝑥, 𝑦)2 + 𝐺𝑦(𝑥, 𝑦)2 (29)

 𝛳(𝑥, 𝑦) = 𝑎𝑟𝑔𝑡𝑎𝑛(
𝐺𝑦(𝑥, 𝑦)

𝐺𝑥(𝑥, 𝑦)
⁄) (30)

The magnitude and the direction are divided into several cells. For each cell, a 9-point

histogram is calculated and each bin produces the intensity of gradient.

Four cells are combined to form a block once the histogram computation is over for all

cells. This combining is done in an overlapping manner, as shown in figure 21. [23.]

Figure 21. The HOG example with overlapping [23]

For all four cells in a block, 9-point histograms of each cell are concatenated to form a

36-point feature vector. Then the normalization is applied to reduce the effect of

changes in the contrast between images of the same face. [23.]

Figure 22 below shows the inputted HOG image extracted from a bunch of other training

faces [22].

22

Figure 22. The HOG face pattern of an input image [22]

In this way, the faces can be easily found in any image. If the image size is 128x64,

then the total HOG feature is

 𝑇𝑓 = 7 ∗ 15 ∗ 36 = 3780 (31)

Here, 36 is the feature vector, 7 and 15 are the blocks in horizontal and vertical

directions, respectively. [23.]

Overall, the HOG method is schematized in figure 23 below.

Figure 23. Scheme of the HOG method [23]

The HOG method goes through 8 steps to collect the feature vectors. Those feature

vectors obtain the HOG feature according to the input image.

23

3.2 Face Encoding

After detecting the person's face, FaceNet is used to extract features from that face. It

is a convolutional neural network published in 2015 by Google researchers Florian

Schroff, Dmitry Kalenichenko, and James Philbin. Generally, the CNN trains to

recognize pictures, objects, and digits. However, FaceNet takes an input image of a

person's face, extracts the feature from convolutional and max-pooling layers as

described in section 2.2.2, and generates a vector of 128 measurements from fully-

connected layers, as shown in figure 24. [24.]

Figure 24. Illustration of the FaceNet (Modified from [24])

These 128 measurements are called embedding, which is a generic representation of a

human face. FaceNet inserts this embedding into the triplet loss function to train the

accuracy of the neural network classifier. The triplet loss function takes three vector

variables as input: an anchor, a positive, and a negative, as shown in figure 25. [25.]

Figure 25. Distances between embeddings of anchor, positive and negative [20]

An anchor is the first known person image, a positive is another image of the same

person, and a negative one is an image of a different person. Neural networks are

24

trained so that the embedding of anchor images should be close to positive embedding

and far away from negative embedding. [25.]

When the embeddings give close measurements, the neural network is trained and can

generate 128 measurements for any face [22].

3.3 Face Classification

The last step is to compare the embedding of the test image with the embedding of the

database image. In this case, the machine learning algorithm SVM can be used to

classify the test image with the closest match. As described in section 2.1.1, equation

(7) is used to find the distance between two data points. The same technique can be

applied to the embeddings of images. If the distance between these embeddings is

small, the faces are from the same person and vice versa. [22.]

3.4 Face Recognition in Overall

Overall, the face recognition system can be summarized in the following figure 26.

Figure 26. Illustration of the face recognition system (Modified from [24])

After FaceNet is trained, the database and the test images pass through the FaceNet,

which generates embeddings. These embeddings feed into the SVM classifier to tell

whether they match or not.

25

4 Implementation

This section of the thesis describes the practical use of the theoretical background, the

necessary materials, tools, technologies, and the detailed workflow of the project.

4.1 Tools and Technologies

4.1.1 Python

Python is an object-oriented, high-level programming language released in 1991. It is

mainly used for web development, artificial intelligence, machine learning,

mathematics, data analysis, etc. Python has a simple syntax, so it is easier to read and

understand. This simplicity makes it quicker to build and improve projects. Python

supports modules and packages, encouraging program modularity and reuse of the

code. [26.]

In this project, Python was used for machine learning, deep learning, mathematics, and

computer vision by taking advantage of various Python libraries such as OpenCV,

TensorFlow, and Openface.

4.1.2 OpenCV

OpenCV is an open-source computer vision and machine learning library. It was

developed to support computer vision applications and accelerate machine perception.

OpenCV runs in various operating systems, namely Windows, Mac, and Linux. It

mainly focuses on video capturing, image processing, and analysis. [27.]

In this thesis work, the OpenCV library was used to read the path, capture the video,

draw the frames, and put the name of the detected face.

26

4.1.3 TensorFlow

TensorFlow is an open-source platform that was developed by Google for machine

learning. It has a complete, flexible ecosystem of tools, libraries, and resources that

allows developers to quickly build ML-powered applications. TensorFlow can be used

for various tasks but focuses on the training of deep neural networks. [28.]

4.1.4 Openface

OpenFace is an open-source library used in computer vision and deep learning. It is

the first library capable of facial landmark detection, pose, eye-gaze estimation, and

real-time performance. It can simply run from a laptop camera or webcam.

Furthermore, OpenFace utilizes FaceNet for facial recognition, which is described in

section 3.2. [29.]

4.1.5 Firebase

Firebase is a Google backend platform that helps to build and run web and mobile

applications. This platform provides tools for analytics, reporting, marketing, fixing app

crashes, cloud messaging, test lab, authentication, as well as a real-time database,

which is used in the project and described in further sections. [30.]

4.1.6 HTML/CSS/JS

HTML, CSS, and JavaScript are the languages to run the web. They all are related but

have specific functions. HTML controls the layout of the content, which provides the

structure for the web page. Then CSS applies to stylize the web page elements, mainly

targets various screen sizes to make web pages responsive. The last step is to use

javascript for adding interactivity to a web page. [31.]

https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks#Training
https://en.wikipedia.org/wiki/Deep_neural_networks

27

4.1.7 Jetson Nano

Jetson Nano is NVIDIA’s small and powerful computer for AI purposes such as deep

learning and computer vision. Figure 27 illustrates the jetson nano board. [32.]

Figure 27. Jetson nano board [32]

Jetson nano board has four USB ports, an HDMI port, two connectors for the CSI

cameras, and 40 GPIO pins expansion header to control electronics components. The

operating voltage for this board is 5 Volts using a barrel jack and a micro-USB port.

The barrel jack delivers 4 Amps, while the micro-USB port has 2.5 Amps. [33.]

Jetson Nano allows running multiple neural networks in parallel for image classification,

segmentation, object detection, speech processing, and face recognition [32].

4.1.8 Arduino

Arduino UNO is a programmable open-source microcontroller board based on the

Atmega328p. The board contains six analog input pins, 14 digital I/O pins, a DC power

jack, USB connector, as shown in figure 28. [34.]

Figure 28. Arduino UNO board [34]

https://www.theengineeringprojects.com/2018/06/introduction-to-arduino-uno.html

28

This board can be integrated into electronic projects to control relays, LEDs, servos,

and motors as an output. The operating voltage is 5 Volts, while the input voltage

ranges between 6 Volts to 20 Volts. [34.]

4.2 Practical Work and Analysis

This section describes the implementation of the algorithms mentioned in sections 2

and 3, the usage of electronic sensors, and the design of the user interface to make a

fully functional facial recognition system.

4.2.1 Hardware

Various components and sensors were used in this project to build the fully functional

facial recognition system. Some of these components and sensors are attached to the

Arduino UNO board and others to the Jetson Nano board, as illustrated in figure 29.

Figure 29. Block diagram of the hardware process

The table 1 below shows the list of all the necessary components, their quantity, and

values.

Table 1. List of Components

Component

Quantity Value

Resistor 2x 330 Ω

Green LED 1x -

Red LED 1x -

Solenoid lock 2x 12 Volts

29

Relay 2x 5 Volts

Buzzer 1x -

Ultrasonic sensor 1x -

OLED display 2x -

Fan 1x 5 Volts

Webcam 1x -

Wi-Fi Dongle 1x -

USB cable 1x -

Raspberry Pi adapter 1x 5V 2.5A

LiPo battery 1x 11.1V 1300mAh

In this project, the ultrasonic sensor was used to measure the distance. When the

distance is less than 30 centimeters, then the buzzer buzzes, and the OLED display

outputs the message “Please, Look at the camera,” as shown in figure 30.

Figure 30. Top view of the project

Resistors were used to limit the current through the green and red LEDs. These LEDs

were connected to the Arduino UNO. The green LED burns when the face is

recognized, and the red LED burns when the access is denied, as shown in figure 31.

30

Figure 31. The action of the green and red LEDs

As figure 31 illustrates, the OLED display outputs messages “Face Recognized,

Welcome!” and “Access Denied” according to the data.

The relays were used to send the power to solenoid locks in figure 32 below, which

lock and unlock the door.

Figure 32. The solenoid locks

These locks work on 9 to 12 Volts. Therefore, an 11.1V Lipo battery was connected to

supply the appropriate amount of voltage to the solenoid locks.

The fan was attached to the Jetson Nano heat sink to cool the processor during the

training process, and the webcam was used to capture the video. The Wi-Fi dongle

was plugged into the USB port of the jetson nano to access the internet since the

Jetson Nano does not have built-in Wi-Fi. The board was powered using the 5V 2.5A

31

Raspberry Pi adapter and shared that power with Arduino using the USB cable. This

USB cable was also used to make a serial communication between these two boards.

4.2.2 Software

In this section, the implementation of face recognition stages, database connection,

user interface, serial communication, and transmitter and receiver codes were carried

out. The block diagram in Figure 33 summarizes all the software stages below to

understand the general idea of the working process of the facial recognition system.

Figure 33. Block diagram of the software process

The dataset image and the real-time face pass through the facial recognition stages.

When the embedding gives the close measurement in the face classification section, it

means that the faces match, and the data is sent to the google database. All these

steps in the block diagram are explained in further sections.

4.2.2.1 Implementation of the HOG method

In this project, AI operates to recognize faces. It starts the process by detecting the

faces using the HOG method described in section 3.1. After inputting the face image,

the HOG function was used to generate a face pattern, as shown in listing 1.

import matplotlib.pyplot as plt

from skimage.feature import hog

from skimage import data, feature, exposure

import cv2

image = cv2.imread('image1.jpg')

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

fd, hog_image = hog(image, orientations = 8, pixels_per_cell =

(16,16),cells_per_block = (1,1), visualize = True, multichannel =

True)

Listing 1. A python code that generates the face pattern using the HOG function [36]

32

Here, the HOG function was applied to 16x16 pixels per cell and 1x1 cells per block

with eight vector orientations. The output from this HOG function can be plotted using

the matplotlib library, as shown in listing 2 below.

fig, (ax1,ax2) = plt.subplots(1,2, figsize = (8,4), sharex = True,

sharey = True)

ax1.axis('off')

ax1.imshow(image, cmap = plt.cm.gray)

ax1.set_title('Input Image')

hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range =

(0,10))

ax2.axis('off')

ax2.imshow(hog_image_rescaled, cmap = plt.cm.gray)

ax2.set_title('Histogram of Oriented Gradients')

plt.show()

Listing 2. A python code that plots the output from the HOG function [36]

The following figure 34 shows the output from the HOG function.

Figure 34. The output of the HOG function

This HOG image was inputted to the function in the face recognition library to detect

the face, as shown in the following python code in listing 3.

import face_recognition

img = “Ogtay_Ahmadli.jpg”

color=(0,0,255)

faceLocationCurrentImage = face_recognition.face_locations(hog_image)

y1,x2,y2,x1 = faceLocationCurrentImage

cv2.rectangle(img,(x1,y1),(x2,y2),color,1)

Listing 3. A python code that draws a rectangle to the detected face

33

As listing 3 illustrates, face_locations() was used to extract the four points of the

detected image. Then these points were applied to the OpenCV library to draw a

rectangle on a face, as illustrated in figure 35.

Figure 35. Detected face

4.2.2.2 Implementation of the Face Encodings

After the successful detection in figure 35, the new python subroutine called

findEncoding() was created to find the encodings for each face image in the dataset.

Firstly, this subroutine goes through the dataset, and for each image in the dataset, the

FaceNet method was used to generate those encodings. When the encoding process

is completed, the subroutine returns two lists. The first list is the encoding list of each

image in the dataset, as illustrated in Appendix 1. The second list is the list of the

names in the dataset, as shown in figure 36.

Figure 36. The returned name list from the subroutine

4.2.2.3 Implementation of the Face Classification

Once the face images were encoded, the subroutine called recognizeFaces() was

created to recognize faces using the support vector machine algorithm. This subroutine

takes the returned lists from the previous subroutine as inputs along with the image.

The process of the subroutine starts by generating the encodings of the real-time face

image detected from a webcam. Next, the encodings are looped through to calculate

the face distance and the result. The result is the list that compares the dataset faces

with the real-time face using the compare_faces() function of the face recognition

library and outputs the following list in figure 37.

34

Figure 37. The output of the result list

As figure 37 illustrates, the recognized face is labeled as true and others as false,

corresponding to figure 36.

The face distance is computed using equation (7) in section 2.1.1, which is the

Euclidean formula to find the sum of the distance between encodings of the dataset

and real-time faces, as shown in listing 3.

faceDistance = distance.euclidean(encodingList,encodingFace)

Listing 3. A python code to calculate the distance between encodings

The output from this calculation can be seen in figure 38.

Figure 38. The output from the euclidean formula

As figure 38 shows, the Euclidean distance of the recognized face is small compared to

others. Then the NumPy library was applied to get the index of the minimum value of a

list using the argmin() function, as shown in listing 4.

matchIndex = np.argmin(faceDistance)

Listing 4. The python code to get the minimum value of a list

The output from this line is equal to one, which is the index of the second element in a

list in figure 38.

The following listing 5 checks whether the result in figure 38 is true or false at the

minimum value.

names = []

if result[matchIndex]:

 name = classNames[matchIndex]

 color = (0,255,0)

 sm.sendData(ser,[0,0,1,0], 1)

35

else:

 name = 'unknown'

 color = (0, 0, 255)

 sm.sendData(ser,[1,1,0,1], 1)

names.append(name)

Listing 5. A python code to recognize faces.

Here, If the result is true, it means that the face is recognized. The name is labeled

according to the list in figure 38 and the match index. Then the data is sent to the

Arduino UNO to unlock the solenoid locks and turn on the green LED.

On the other hand, If the result is false, the name is labeled as ”unknown,” and the

Arduino UNO receives the data to keep the locks closed and turn on the red LED.

After successful decisions, listing 3 in section 4.2.2.1 was slightly modified according to

recognized and unrecognized faces, as shown in listing 6.

y1,x2,y2,x1 = faceLocation

y1,x2,y2,x1 = int(y1/0,25), int(x2/0,25), int(y2/0,25), int(x1/0,25)

cv2.rectangle(imgFaces,(x1,y1),(x2,y2),color,2)

cv2.putText(imgFaces, name, (x1+6, y1-6),

cv2.FONT_HERSHEY_COMPLEX,1,color,2)

Listing 6. A python code to draw a rectangle and put text to the recognize face [36]

Due to the image size in Figure 35, the face locations are increased four times to get

the proper face frame from the webcam. Then a rectangle and a text were added

around the face using the computer vision library.

36

4.2.2.4 Database

In this project, firebase was used to keep the data in google’s real-time database. First,

the firebase database was created, and then the following python module (listing 7)

was designed to get the communication with firebase.

from firebase import firebase

import datetime

fb = firebase.FirebaseApplication('https://face-rec-dd032-default-

rtdb.firebaseio.com',None)

def postData(name, time):

 data = {'Name': name,'Time': time}

 dateToday = datetime.date.today().strftime('%Y-%m-%d')

 fb.post(f'/{dateToday}',data)

Listing 7. Firebase Module

After importing the firebase library, the URL of the firebase database was copied to the

code. Then the postData() subroutine was created to post the name and the time to the

database.

The next step was to create a markAttendance() subroutine, as shown in listing 8.

import FirebaseModule as fbm

def markAttendance(name):

 with open('Attendance.csv','r+') as f:

 myDataList = f.readlines()

 nameList = []

 for line in myDataList:

 entry = line.split(',')

 nameList.append(entry[0])

 if name not in nameList:

 now = datetime.now()

 dateString = now.strftime('%H:%M:%S')

 f.writelines(f'{name},{dateString}\n')

 fbm.postData(name,dateString)

Listing 8. The python subroutine that marks the name and the date [36]

37

As Listing 8 illustrates, an empty CSV file called Attendance was created to check

whether the name is in the list or not. If the name is not in the list, then the subroutine

posts the name and the time to the real-time database using the postData() function of

the firebase module.

4.2.2.5 Transmitter Function

The transmitter function is the combination of all the subroutines mentioned above. It

activates the webcam and uses the returned values of subroutines to generate the

desired output, as illustrated in listing 9.

def main():

 encodingList, classNames = findEncodings("ImageAttendance")

 cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)

 sm.sendData(ser,[1,1,0,0],1)

 while True:

 success, img = cap.read()

 imgFaces, names = recognizeFaces(img, encodingList,

classNames)

 for name in names:

 if name == "unknown":

 sleep(0.2)

 else:

 markAttendance(name)

 cv2.imshow("Image", imgFaces)

 if cv2.waitKey(1) & 0xFF == ord("q"): break

Listing 9. The transmitter function

The function starts the operation by taking the returned values of the findEncodings()

function according to the images in the dataset called “ImageAttendance.” Then it

activates the camera and sends the initial lock and LED values to the Arduino UNO

board.

Then the webcam captures and inputs the image to the recognizeFaces() function.

Here, the for loop was used to loop through the names of the captured faces. If the

38

face is not recognized, the program does not publish anything. Otherwise, the name

and the time are sent to the database, as shown in Figure 39.

Figure 39. Data in the database

As Figure 39 illustrates, the data contains the name of the recognized person and the

time it is recognized.

In the end, the function displays the output, which can be seen in figure 40.

Figure 40. The output of the transmitter function

39

4.2.2.6 Serial Communication

In this project, the Jetson Nano is responsible for AI, and Arduino UNO is responsible

for Electronics operation. The Jetson Nano board is in serial communication with

Arduino UNO to transmit the desired data and make the components operate, as

shown in figure 41.

Figure 41. Illustration of serial communication

As figure 41 illustrates, Jetson Nano sends four-digit data to relays and LEDs. Here,

the dollar sign was used to split the data in vertical order while looping, which avoids

any confusion and defines the start and end digit of the signal. This sign was included

in both transmitter and receiver codes.

When the Jetson Nano connects to Arduino UNO with the USB cable, the python

subroutine shown in listing 10 checks if the boards are connected.

import serial

def initConnection(portNo, baudRate):

 try:

 ser = serial.Serial(portNo, baudRate)

 print("Device Connected ")

 return ser

 except:

 print("Not Connected ")

 pass

Listing 10. The python subroutine that tests the connectivity

Here, the subroutine checks the port number and the baud rate of the Arduino UNO

using the serial library and returns those initialized serial objects. When the Arduino

UNO is connected, the subroutine prints "Device Connected" and vice versa.

40

After the successful connection, the new subroutine was created to send the data to

Arduino UNO, as shown in listing 11 below.

def sendData(ser, data, digits):

 myString = "$"

 for d in data:

 myString += str(int(d)).zfill(digits)

 try:

 ser.write(myString.encode())

 print(myString)

 except:

 print("Data Transmission Failed ")

Listing 11. The python subroutine that sends the data

This subroutine takes the initialized serial object, data, and digits per data value as

inputs. The subroutine starts looping through the data. For each data, it inserts the

dollar sign and sends that data to the relevant port. If some issues occur in the

connection, the subroutine prints "Data Transmission Failed."

The next step was to create a receiver function for Arduino UNO to control the

components. This subroutine starts the operation by checking the dollar sign, as shown

in listing 12 below.

#define numOfValsRec 4

#define digitsPerValRec 1

int valsRec[numOfValsRec];

int stringLength = numOfValsRec * digitsPerValRec + 1;

int counter = 0;

bool counterStart = false;

String receivedString;

void receiveData() {

 while (Serial.available()) {

 char c = Serial.read();

 if (c == '$') {

 counterStart = true; }

 if (counterStart) {

41

 if (counter < stringLength) {

 receivedString = String(receivedString + c);

 counter++;}

 if (counter >= stringLength) {

 for (int i = 0; i < numOfValsRec; i++){

 int num = (i * digitsPerValRec) + 1;

 valsRec[i] = receivedString.substring(num, num +

digitsPerValRec).toInt();}

 receivedString = "";

 counter = 0;

 counterStart = false; }}}}

Listing 12. The Arduino C function that receives data [35]

As Listing 12 shows, when the dollar sign is detected and the counter is less than a

string length, then the function gets the data and increments the counter. Following

this, it loops through the received data elements. For each element, an array was

utilized to get and use them in the code independently.

4.2.2.7 Receiver Function

Firstly, the Arduino pin of each component was defined and set up as input or output.

Then the new function was created to pass the received data to solenoid locks and

LEDs, as shown in listing 13.

void unlock_solenoid() {

 digitalWrite(solenoid1Pin, valsRec[0]);

 digitalWrite(solenoid2Pin, valsRec[1]);

 digitalWrite(greenLed, valsRec[2]);

 digitalWrite(redLed, valsRec[3]);}

Listing 13. The Arduino subroutine that sends digital values to the components

As listing 13 shows, the array was used to get each signal element and assigned to the

components using the function in listing 3.

42

Overall, there are three main functions in the code that loops all the time, as shown in

listing 14.

void loop() {

 receiveData();

 unlock_solenoid();

 oled();

}

Listing 14. The Looping process of the functions

The first function is to receive the data from the Jetson Nano. The second one is the

function above to pass data to the components. Finally, the last function is to display

the status message on the OLED display according to the data and the distance from

the ultrasonic sensor.

4.2.3 User Interface

The web page was created using HTML, CSS, and javascript. The first step was to

create a login interface for the webpage, which can be seen in figure 42.

Figure 42. Login Interface

43

After a successful login, The firebase configurations were used to access the data, and

the webpage displays it, as the following figure 43.

Figure 43. List of the recognized people

5 Conclusion

The goal of the project was to build a facial recognition system that could recognize

human faces, log information into the database, and unlock the door.

The thesis project was executed in three steps. During the first step, the machine

learning and deep learning algorithms were used to recognize faces and send the data

to the google database. In the second step, AI data is transmitted to the electronics

components and sensors to make a smart lock system. Finally, the last step was to

design a webpage that requires a login and displays the attendance list.

The project’s result was accomplished as expected, and the prototype could

successfully recognize human faces and activate the electronics components. It has

fast performance and could log information about recognized humans in the Google

database.

This prototype can be used for office doors to identify employees, open the door and

send the boss an attendance list, which displays the employee’s name and entry time.

A future improvement of the prototype could be implementing more extensive

algorithms to distinguish the pictures and real faces from a camera. These algorithms

would make the prototype faster, secure, and suitable for commercial purposes.

44

References

1 Silke Otte [online] How does Artificial Intelligence work?

 URL: https://www.innoplexus.com/blog/how-artificial-intelligence-works/

 Accessed on: 14.10.2021

2 Sas [online] Artificial Intelligence

URL: https://www.sas.com/en_us/insights/analytics/what-is-artificial-

intelligence.html

 Accessed on: 14.10.2021

3 Resquared [online] What is AI?

 URL: https://www.resquared.com/blog/what-is-ai

 Accessed on 14.10.2021

4 IBM [online] Strong AI

 URL: https://www.ibm.com/cloud/learn/strong-ai

 Accessed on: 14.10.2021

5 IBM [online] Machine Learning

 URL: https://www.ibm.com/cloud/learn/machine-learning

 Accessed on: 15.10.2021

6 Towards Data Science [online] What are the types of machine learning?

URL: https://towardsdatascience.com/what-are-the-types-of-machine-learning-

e2b9e5d1756f

 Accessed on: 15.10.2021

7 IBM [online] Supervised learning

 URL: https://www.ibm.com/cloud/learn/supervised-learning

 Accessed on: 16.10.2021

8 Rohith Gandhi [online] Support Vector Machine – Introduction to Machine

. Learning Algorithms

URL: https://towardsdatascience.com/support-vector-machine-introduction-to-

machine-learning-algorithms-934a444fca47

 Accessed on: 16.10.2021

9 OpenCV [online] Introduction to Support Vector Machines

 URL: https://docs.opencv.org/3.4.15/d1/d73/tutorial_introduction_to_svm.html

 Accessed on: 16.10.2021

10 Yeng Miller – Chang [online] The mathematics of Support Vector Machines

 URL: https://www.yengmillerchang.com/post/svm-lin-sep-part-1/

 Accessed on: 16.10.2021

45

11 IBM [online] Unsupervised Learning

 URL: https://www.ibm.com/cloud/learn/unsupervised-learning

 Accessed on: 20.10.2021

12 IBM [online] Deep Learning

 URL: https://www.ibm.com/cloud/learn/deep-learning

 Accessed on: 22.10.2021

13 IBM [online] Neural Networks

 URL: https://www.ibm.com/cloud/learn/neural-networks

 Accessed on: 23.10.2021

14 Ismail Mebsout [online] Deep Learning’s mathematics

 URL: https://towardsdatascience.com/deep-learnings-mathematics-f52b3c4d2576

 Accessed on: 23.10.2021

15 Gavril Obnjanovski [online] Everything you need to know about Neural networks

. and backpropagation

URL: https://towardsdatascience.com/everything-you-need-to-know-about-neural-

networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a

Accessed on: 23.10.2021

16 Ismail Mebsout [online] Convolutional Neural Network’s mathematics

URL: https://towardsdatascience.com/convolutional-neural-networks-mathematics-

1beb3e6447c0

Accessed on: 25.10.2021

17 Wikipedia [online] Convolution

 URL: https://en.wikipedia.org/wiki/Convolution

 Accessed on: 25.10.2021

18 IBM [online] Recurrent Neural Networks

URL: https://www.ibm.com/cloud/learn/recurrent-neural-networks#toc-what-are-r-

btVB33l5

Accessed on: 26.10.2021

19 IBM [online] Computer Vision

 URL: https://www.ibm.com/se-en/topics/computer-vision

 Accessed on: 26.10.2021

20 Satyam Kumar [online] Face Recognition with OoenFace

URL: https://medium.com/analytics-vidhya/face-recognition-using-openface-

92f02045ca2a

Accessed on: 30.10.2021

46

21 Kaspersky [online] What is Facial Recognition

URL: https://www.kaspersky.com/resource-center/definitions/what-is-facial-

recognition

Accessed on: 01.11.2021

22 Adam Geitgey [online] Modern Face Recognition with Deep Learning

URL: https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-

recognition-with-deep-learning-c3cffc121d78

Accessed on: 01.11.2021

23 Mrinal Tyagi [online] Histogram of the oriented gradients

URL: https://towardsdatascience.com/hog-histogram-of-oriented-gradients-

67ecd887675f

Accessed on: 03.11.2021

24 Luka Dulcic [online] Face Recognition with FaceNet and MTCNN

 URL: https://arsfutura.com/magazine/face-recognition-with-facenet-and-mtcnn/

 Accessed on: 03.11.2021

25 Ismail Mebsout [online] Object Detection and Face Recognition algorithms

URL: https://towardsdatascience.com/object-detection-face-recognition-algorithms-

146fec385205

Accessed on: 03.11.2021

26 Python [online] What is Python?

 URL: https://www.python.org/doc/essays/blurb/

 Accessed on: 10.11.2021

27 OpenCV [online] About

 URL: https://opencv.org/about/

 Accessed on: 11.11.2021

28 TensorFlow [online] Introduction to TensorFlow

 URL: https://www.tensorflow.org/learn

 Accessed on: 11.11.2021

29 MultiComp Lab [online] OpenFace

 URL: http://multicomp.cs.cmu.edu/resources/openface/

 Accessed on: 11.11.2021

30 Google Firebase [online] Firebase

 URL: https://firebase.google.com/

 Accessed on: 15.11.2021

31 Interneting is hard [online] Introduction to HTML, CSS and Javascript

 URL: https://www.internetingishard.com/html-and-css/introduction/

 Accessed on: 15.11.2021

47

32 Nvidia Developer [online] Jetson Nano Developer kit

 URL: https://developer.nvidia.com/embedded/jetson-nano-developer-kit

 Accessed on: 16.11.2021

33 Nvidia Developer [online] Getting started with Jetson Nano Developer kit

URL: https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-

devkit#intro

Accessed on: 17.11.2021

34 Arduino [online] Overview

 URL: https://www.arduino.cc/en/pmwiki.php?n=Main/arduinoBoardUno

 Accessed on: 20.11.2021

35 Arduino [online] Code

 URL: https://forum.arduino.cc

 Accessed on. 20.11.2021

36 Python [online] Code

URL: https://www.analyticsvidhya.com/blog/2021/11/build-face-recognition-

attendance-system-using-python/

Accessed on: 21.11.2021

https://forum.arduino.cc/t/no-response-from-the-servos/930430
//www.analyticsvidhya.com/blog/2021/11/build-face-recognition-attend
//www.analyticsvidhya.com/blog/2021/11/build-face-recognition-attend

48

Appendix 1

1 (1)

Appendix 1. The encodings of an image in the dataset

Figure 44. The encodings of the image

