

PENG XIA

3D Game Development with Unity
A Case Study: A First-Person Shooter (FPS)
Game

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

28 February 2014

 Abstract

Author(s)
Title

Number of Pages

PENG XIA
3D Game Development with Unity
A Case Study: A First-Person Shooter (FPS) Game

58 pages

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Markku Karhu, Head of Degree Programme in Information
Technology

The project was carried out to develop a 3D game that could be used for fun and as an
efficient way of teaching. The case of the project was a First-Person Shooting Game
which the player had to search the enemies on a terrain map and kill the enemies by
shooting. There were a few enemies on the terrain and they possessed four kinds of Artifi-
cial Intelligence (AI). The enemies would discover the player if the player entered into the
range of patrol or shot them, and the enemies made long-range damage to the player. The
player had to slay all enemies to win the game. If the player was slain, then the game was
over. The Health Points (HPs) were used to judge whether the player or enemies died. The
player could restore HPs according to touching the Heal Box or finishing a mission.

The game contains two main game scenes, one is the Graphic User Interfaces (GUI) sce-
ne and another one is the game scene. The player could play on or off the Background
Music, view the information of the controller and the author and start or end this game on
the GUI scene. The Skybox, Rigid body and Terrain were applied into the game. Also an
interesting way of damage calculating was used in the game.

The game engine used for the project was Unity 4. Unity 4 was developed by the Unity
Technologies. It is the synthesizing type of a game engine that the designers could use to
develop a 3D video game, visualized constructions and real-time 3D animations. As well
Unity is a cross-platform game engine, which means it supports the building of Windows
OS, Mac, iOS, Android, Web, Xbox 360, PS3, Wii, Flash Player and Google Native Client.

The project demonstrates the basic features of the First-Personal Shooting Game and the
process of the 3D game designing with the Unity 4 game engine. Also all assets and
scripts are flexible for future development.

Keywords 3D Game, First-Person Shooter Game, Unity Game Engine,
C#, .NET

Contents

1 Introduction 1

2 3D Game Design Theories 2

2.1 2D/3D Theories 2

2.1.1 Principles of Vectors 2

2.1.2 Defining 2D and 3D Space 5

2.1.3 Translation, Rotation and Scaling 6

2.2 Design Maxims or Rules of First-Person Shooter Game 8

3 Unity 3D Game Engine and Programming Development Environment 13

3.1 GUI of Unity 3D Game Engine 13

3.2 Significant Objects and Tools in Unity 3D 19

3.2.1 Cameras 19

3.2.2 Terrain Editor 21

3.2.3 Skybox 22

3.3 Development Environment and Scripts 24

4 Implementation 27

4.1 Collection and Design of Game Assets 27

4.2 Construction of Game Level 29

4.3 Implementation of Game Features 33

4.3.1 Fundamental Features 33

4.3.2 Damage System 39

4.4 GUI of Game Start 43

4.5 Building and Running the Game 49

5 Usability Test 51

6 Results and Discussion 54

6.1 Drawbacks and Future Development 54

6.2 Business and Marketing Strategies 55

7 Conclusion 56

References 57

1

1 Introduction

This project mainly deals with the development of a 3D game application with the Unity

4 game engine for Windows OS. Recently, the video game market appears to be of an

unprecedented stage, which means the springing up of more platforms lead to more

competition. The video game market is not just serviced for PC, PS3 and Xbox. The

mobile platforms basis on iOS, Android and Windows Phone rise sharply. As a result,

“cross-platform” come into people’s eyes.

Real time 3D games have existed for approximately ten years now. We have played

them, created assets in the style of our favorites, and maybe even “moded” a few of

them. However until recently, the cost of licensing one of the premier game engines

has ranged from several hundred thousand to several million dollars per title, relegating

the dream of creating one’s own 3D game to an unattainable fantasy. With Unity’s bold

move to offer a robustly featured free version of their engine, a radical change in the

pricing models of the high-end engines has rocked the industry which be willing to take

high cost to make games or CG (Computer Graphics).Unity 3D game engine is the

most professional, steady and efficient game engine, and Unity 3D game engine sup-

ports Web, PC, Mac, iOS, Flash, Android, Xbox360, PS3 and Wii platforms. [1, 3] The

project used the Unity 3D game engine to develop a 3D game, which the case of the

game is a first person shooter (FPS) game.

The report is aimed at people who are beginning with learning Unity and possess at

least a basic knowledge of the Unity 3D game engine. It does not discuss the whole

process of creating the game. Chapter 2 discusses the theories of the game design,

chapter 3 introduces and demonstrates the Unity game engine, chapter 4 discusses

the implementation of the project, and chapter 5 discusses the future development and

the feasibility of the market. The project is not developed with ways of generating rev-

enue. Using the game for recreating and teaching purposes is more suitable for it.

2

2 3D Game Design Theories

2.1 2D/3D Theories

An understanding of a motion and the driving forces thereof is crucial in understanding

games. Most game objects in games move. What makes them dynamic is that. If it is a

2D character such as the premier Angry Birds or a fully-fledged 3D character such as

Tomb Raider, their game environments and they are in constant motion. To compre-

hend the concept of motion, particularly with respect to computer games, a creation of

foundation knowledge in vector mathematics is required. The vectors are used com-

prehensively in game development for describing not only speed, acceleration, position

and direction but also within 3D models to specify UV texturing, lighting properties, and

other special effects. [1,175.]

2.1.1 Principles of Vectors

In 2D, a vector has x and y coordinates. But in 3D, it has x, y, and z coordinates. In

unalloyed mathematic system, a vector is not only a point in plane, but also a set of

dynamic coordinate instructions. There is a legend to be shown for understanding the

vectors. A fabled treasure map is created, and a cargo ship is stopping at the point (4.8)

called start. For an example, the sailors take three steps to the east and seven steps to

the south. As shown in Figure 1, the sailors move three steps to the east and a vector

(3, 0) is represented, which means move 3 in a positive x direction. Then the sailors

take seven steps to the south could be represented that a vector (0, -7), which means

move 7 in a negative y direction and 0 in the y direction. [1,175.]

3

 An imaginative map illustrating the usage of vectors. [1,176.] Figure 1.

To determine the final location, vector x and y values are added to the starting point x

and y values. For example, in Figure 1, the cargo ship lands at the point(4, 8) and the

sailors move positive three to x-axis, which will place them at (7, 8). Then they move

minus seven to y-axis, which will place them at (7, 1). Actually, they can also arrive the

same point by taking a shortcut, in other words, they can walk directly in a straight line

between the start point and the treasure. In the case, the two vectors (3, 0) and (0, −7)

must be combined together and the result is (3, −7). By using this new vector and de-

parting from the starting location, they will reach the same location at point (7, 1).

To come back to the cargo ship from the treasure, the sailors can walk along the same

paths which were illustrated above but in the reverse direction. This can be completed

by reversing the vector so that all coordinate values should be multiplied by − 1. In the

case, in order to get back to the ship they have to go along the vector (− 3, 7). It is the

best way for the persons to know the straight distance between the ship and the treas-

ure. The length of a vector, the representative is v, defined its magnitude and written |v|,

and it can be found by using Pythagoras' theorem, as shown in equation (1).

 | | √ (1)

Every game object or prefab in Unity has plenty of vectors which are related to it. The

transform component of a game object or prefab has three important properties: rota-

tion, position, and scale. The layouts of a classic game environment with the character

4

models as the objects are shown in Figure 2. Generally, in 3D, the x axis represents to

the side, the y axis up, and the z axis forward. Every game object or prefab has its own

transform property. The axes are indicated in the Scene window with three kinds of

arrowed lines.as red, which is shown in Figure 2, they are coloured as red, green and

blue. The y axis is green, the x axis is red, and the z axis is blue.

 The coordinates in the Edit Scene of Unity. Figure 2.

The environment in Unity has its own axes, and the orientation can be adjusted by the

approach which the user changes the viewing angle around to observe different objects.

In Unity, the orientation of the camera determines the main orientation. Also all game

objects have their own orientations drawn by x, y, z axes showing in the Scene window

while the game object is pitched on. Thus, by lying down a game object, the y axis of

this game object could be horizontal locally.

In Unity, the Vector2 and Vector3 classes are generally used. The position, rotation,

and scale values of a game object are stored as Vector3. The 2D vector information is

stored as Vector 2. a vector of a game object for x, y and z axes can be controled by

programming the codes Vector3.left, Vector3.up, and Vector3.forward respectively. The

users can move a game object along its axes without any code and its orientation.

5

2.1.2 Defining 2D and 3D Space

The theories of vectors in 2D or 3D space are applied in the same way. The difference

between a 2D coordinate system and a 3D coordinate system is the value of another

parameter. In 3D game engines, 2D games are developed by x and z axes. In 2D

games, generally every game object is positioned in the same plane, which has an

initialized value of y axis defined to be 0. Any movement of the game object thereafter

only can act in the plane. It is can be assimilated with moving an object around on a

planar ground top. In most 2D games, the main camera is placed directly above the

scene and perspective is removed to give the view of a truly 2D scene. Whether it is in

2D or 3D game, the camera is a critical component because it displays all actions of

the game objects to the player on the game scene. As a result the lens through the

game scene is perceived. Comprehending how the camera moves and how to adjust

what it acquires is essential knowledge. [1,185.]

Bi-dimensional (Two-dimensional) space is a geometric model of the planar projection

of the physical universe in which we live. The two dimensions are commonly called

length and width. Both directions lie in the same plane. To analyse a 2D case, as

shown in Figure 3, that of the classic Flatland example, in which a person lives in a 2D

universe and is only aware of two dimensions (shown as the blue grid), or plane, say in

the x and y direction. Such a person can never conceive the meaning of height in the z

direction, thus he cannot look up or down, and can see other 2D persons as shapes on

the flat surface he or she lives in.

 Understanding 2D space lab. Copied from Engineer Xavier Borg (2007) [2.] Figure 3.

6

Three-dimensional space is a geometric three-parameter model of the physi-

cal universe (without considering time) in which all known matter exists. These three

dimensions can be labelled by a combination of three chosen from the

terms length, width, height, depth, and breadth, in other words, They are usually la-

belled x, y, and z. Any three directions can be chosen, provided that they do not all lie in

the same plane. In physics and mathematics, a sequence of n numbers can be under-

stood as a location in n-dimensional space. When n = 3, the set of all such locations is

called 3-dimensional Euclidean space. It is commonly represented by the symbol .

This space is only one example of a great variety of spaces in three dimensions

called 3-manifolds. [3.]

2.1.3 Translation, Rotation and Scaling

Any game object whether it is in 2D or 3D can be performed with three transformations:

translation, rotation, and scaling. Translation relates to the movements and the position

of a game object and is specified by a 2D vector that the person in the previous section

moved on the map. The important feature of a translation is whenever the x, y, or z

values of an object are modified. The values can be changed all at once with a vector

or one at a time. To move a game object in the x direction by 8, the Unity c# is:

gameObject.transform.position.x += 8;

Listing 1. Object moves in the x-axis

To move the game object by 5 in the x, 9 in the y, and 14 in the z, in the Unity C#, it

could be written:

gameObject.transform.position.x += 5;

gameObject.transform.position.y += 9;

gameObject.transform.position.z += 14;

or gameObject.transform.position = new Vector3(5,9,14);

Listing 2. Translation test file

http://en.wikipedia.org/wiki/Universe
http://en.wikipedia.org/wiki/Matter
http://en.wikipedia.org/wiki/Length
http://en.wikipedia.org/wiki/Width
http://en.wikipedia.org/wiki/Height
http://en.wikipedia.org/wiki/Elevation
http://en.wikipedia.org/wiki/Breadth
http://en.wikipedia.org/wiki/Plane_(geometry)
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Euclidean_vector
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/3-manifold

7

Unity stores rotations as Quaternions internally. To rotate an object, use Trans-

form.Rotate. Use Transform.eulerAngles for setting the rotation as euler angles. A

game object can be rotated about its x, y, or z axis or the world x, y, or z axes. Com-

bined rotations are also supported. An object can be rotated around arbitrary axes

defined by vector values.

Finally, scaling changes the size of an object as shown in Figure 4. A game object can

be scaled along its x, y, or z axis. It is essential skill to change the scale of the game

object by setting each scale value individually, thus:

 Scaling an object. Figure 4.

It has to be known that the values for the scale are always multiplied against the prima-

ry size of the game object. Therefore, it is illegal to make a scale of zero. If the design-

ers want to flip an object, a negative scaling value could be used. For example, setting

the y axis scale to − 1 will turn the game object upside down. It is the necessary skill to

understanding how game objects will move around within a game. The designers have

to take some time to orient themselves with both 2D and 3D space. Fortunately, Unity

provides the feasible mathematics and reveals it behind various easy-to-use functions.

8

However, when something goes wrong in the game, it should be making some idea

where to start watching. [1,198.]

2.2 Design Maxims or Rules of First-Person Shooter Game

The theme throughout the game project is the word mechanic to relate to the actions

which are taking place in games from the internal operations of animation and pro-

gramming to the interactions between the environment and the player. However, in

game studies, the game mechanic is used to refer to developed relationships which

facilitate and define the game's challenges between game and players. They are com-

plicated systems that contain a series of rational motivations, actions, goals, and feed-

back of the players. Comprehending a game mechanic is useful for making actions and

other elements that may be implemented with that actions open up a plethora of infinite

ideas for games by combining actions, rules and goals. The cycle is illustrated in Figure

5.

 The game mechanic cycle. [1.] Figure 5.

9

The players are presented with a challenge. To achieve the challenge they obtain tools

which can be used to implement actions and rules that can define the scope of these

actions. The tools contain peripheral inputting objects such as sensors and keyboards,

as well as virtual tools in a game such as weapons, tool-boxes and keys. The rules

order how the players can play in the game world. In a card game, generally rules are

written in an instruction booklet and handled by players. In a video game, the player is

guided to be aware of the rules and the programming code of the game ensures that

the player can follow them. Also the program provides information to players depended

on their actions to assist them to learn how to play the game better and complete the

challenge. Part of the feedback mechanism can also inform the players while they win

or fail.

A first person shooter (FPS) is a genre of action video game that is played from the

point of view of the protagonist. FPS games typically map the gamer's movements and

provide a view of what an actual person would see and do in the game. [14]

In section 2.1, the 2 dimensions and 3 dimensions were explained with coordinates

system. This section will deal with the basic game design concepts, specifically those

relevant to the demonstration application. Actually, there is no-one to figure out the

specific rules for FPS games, but some game designers summarized a few maxims or

rules for this kind of game. Every designer who wants to make an FPS game should

pay attention to these maxims or rules. [4.]

Rule 1: Get into the action early

 Attract the player into the world by force; make use of that original confrontation

to set the tone. The first impression has to be followed up by developing the

tone. Example: Call of Duty 7. At the beginning of the Russian campaign, the

speech of the commissars combined with the war-crafts, explosions, and heavy

machine guns is passionate, intense, and does not go on forever.

 The player is not allowed to play the game abstractedly, which is a dangerous

signal at any point of the game. Example: Half-Life 2. When the introduction

appearing the scene of City 15 was much more effectively than the train se-

quence of Desert 2 from the predecessors of the game, the biased length of

10

time between take-off board and getting the hook would never have performed

in any other game.

This part is the responsibility of the art designer(s). Normally, the art designer(s) makes

several pictures and CG(s) to be GUI to attract the player. The exquisite GUI, meaning

of CG and fair-sounding BGM are easier to give the player a nice first impression. Ac-

tually, this is one important standard to judge if a game is good or not, because the

player always believes the feeling which he or she sees or hears.

Rule 2: The game world is the real world

There should not be only one approach from one position to another one; the player

should not feel constrained in their choice. Example: Halo 2. The environments of the

open city allows Master Chief to use different ways to achieve his goals, according to

rewarding the player for exploring the environment repeatedly rather than doing nothing,

while the replay value is adding. High playability of the linear game rapidly becomes

predictable and repetitive; making false ways to provide the delusion of free choice just

serves to make players angry. [4.]

Rule 3: The gameplay has to be fun

That the gameplay has to be fun goes without saying. The game elements and me-

chanics alone do not assure that the gameplay will be fun, so ways of making it fun

have to be devised specifically to the targeted user to fulfil rule 3. [5.]

Rule 4: Let the players realize their mistakes and survive (sometimes)

It is underused that the players realize that they have made a mistake in a moment.

Also giving the player more freedom in order to use their judgment for deciding how to

play (even if they’re wrong) is very important. A punishing system which punishes any

mistake would not be done indiscriminately, because it would prevent the player to

learn and adapt; they would rather keep on hitting their head against the keyboard. [4.]

11

The hard levels have to be set in every game. The player must find the skills to solve

the problems which he or she encounters in the game. In the FPS game, the player

may be slain by enemies over and over until he or she finds out the way to slay or pass

over the enemies. Normally, the way is not unique, so survival is quite important.

Rule 5: Try not to break the immersion

Immersion is the players’ emotional involvement, feel of tension and motivational feel-

ing. A simple crash bug or out-of-the-context content could easily break the immersion

of the players and easily take players out of immersion. Rule 6 states that the game

should be designed to pull the player in and keep them motivated as long as possible

with no interruption of the experience. [5.]

Rule 6: No-one lives forever

When playing a game, the player should feel a sense of urgency and passion; various

meaningful rewards should be made for effectiveness and timelines, even if they have

taken effect immediately. To achieve the missions just as the rescuing and fleeing, the

success rate that hinges upon whether the player acquired enough abilities makes the

quality of the rewards that the player would acquire. The rewards could be used to im-

prove the abilities of the player as a hero. Example: F.E.A.R. The Point Man could ac-

quire an amazing ability which can be exchanged in level four to be one room in one

second when the NPC that can help him is in danger. [4.]

Rule 7: The player must always know the objective

In any game, the players should understand what they need to do, even if they do not

realize exactly where to go or how to achieve a mission, they will decide upon their

action according to the information or clues which they obtained in the previous plot or

mission. If a game makes the player keeping on playing, then the game is failed. Mak-

ing players to wander the buildings for searching the switches, stronghold, or undefeat-

ed enemy just serves as a hint that the missions or clues are waiting for the players to

achieve. Example: Quake 4. Kane has the shortest time to activate elevators, and find

12

torso delivery systems. Even there is a fifteen minute detour to be requested for turning

on a barrel launching system, which is enough time for his mate to be divorced from

battlefield. However, if they neglect their purpose, they can also find the escaping point

at the top of ladders or lifts, but the rewards activating torso delivery systems cannot be

acquired.

Following the aforementioned set of design maxims or rules helps insure that the in-

tense and simulative game is played in a fun way. However, the game elements and

the sense of reality shall further be balanced finely through intense testing to make

sure that a FPS game occupies certain market and to be more playability. The strong

function of game engine and colourful game contents are playing the pivotal roles in a

processing of game design. Thus, a completed game has to be made by a set of the

mature designers, which consists of the Lead Designer, Art Designer(s), Programming

Designer(s), Product Consultant and etc. Chapter 3 discusses the function of the Unity

3D game engine and Chapter 4 discusses the use of these design rules for a GUI de-

sign and game design.

13

3 Unity 3D Game Engine and Programming Development Environment

Unity 3D is a cross-platform game engine with a built-in IDE developed by Unity Tech-

nologies. It is generally used to develop video games for computer platforms such as

web and desktop, consoles and mobile devices, and is applied by several million de-

velopers in the world. Unity is primarily used to create mobile and web games, but

there are various games to be developed for PC. The game engine was programmed

in C/C++, and is able to support codes written in C#, JavaScript or Boo. It grew from

an OS X supported game development tool in 2005 to the multi-platform game engine

that it is today.

Unity is the perfect choice for small studios, indie developers, and those of us who

have always wanted to make our own games. Its large user base (over 400,000 as of

April 2011) and extremely active user community allows everyone from newbies to

seasoned veterans to get answers and share information quickly.

Unity provides an excellent entry point into game development, balancing features and

functionality with price point. The free version of Unity allows people to experiment,

learn, develop, and sell games before committing any of their hard-earned cash. Unity

is very affordable, feature-packed Pro version is royalty free, allowing people to make

and sell games with the very low overhead essential to the casual games market.[6, 5.]

3.1 GUI of Unity 3D Game Engine

Unity 3D game engine is one kind of visualized game engines. It integrates Animation

Mechanics, Character Mechanics, Player Mechanics, Environment Mechanics and

Programming Developer together. Also it supports online assets shop to designers.

The designers could find and buy abundant game assets. As well the designers could

design their own assets by themselves. In this section, the GUI of Unity 3D is demon-

strated.

Main Editor Window

http://en.wikipedia.org/wiki/Mobile_game
http://en.wikipedia.org/wiki/Browser_game
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/JavaScript

14

Download Unity from official website and install it. When the user runs it for the first

time, he or she will be required to register the product by following the prompts. Regis-

tration can be done fast online even if the machine which the user has installed it on is

not connected to the Internet. To open with Unity, the user always starts with a project.

According to the operating instructions, the Main Editor Window would be opened,

which is shown in Figure 6.

 The new project in the Main Editor Window Figure 6.

The Main Editor Window indicates all tools and function windows. The first step of a

designer is to know this interface and what every button means, because almost all

operations are done in the window except programming edits. Every sub-window

should be known well.

Scene Window

The Scene Window mainly stores model assets of the game project. There are various

kinds of 3D models, such as players, enemies, NPC, items, sky, and terrain. All of

15

these models can be displayed in Scene Window. This window is the most important

part of Unity 3D, because it is the visualized design window, as shown in Figure 7.

 The Scene window indicating the camera object and the grid Figure 7.

The Scene window, shown in Figure 7, is where the user builds the visual scene of the

project, which he or she plans and executes their ideas. To show the grid in the Scene

window, switch on/off the Game Overlay button which is surrounded with the black cir-

cle. The designer could observe the whole structure of the project which he or she cre-

ated.

Game Window

After every complex edit, the objects reach the space which demonstrates the effect of

a game project, which is the Game View. The scene demonstrated depends on the

space where the camera illuminates. The designer can modify the scene in the Game

view, according to adjusting the position and rotation of the camera.

The Game window, shown in Figure 8, is the visual space where the user tests his or

her game object before building it in the runtime environment. It is a simulate runtime

16

environment, thus all objects have been implemented, unlike the Scene window, it has

no default lighting. The designer has to create the Main Camera to see objects in the

Game window.

 The Game Window Figure 8.

In the Game View, a “Free Aspect” list is used to set the aspect ratio of the game. The

“Maximize on Play” button is used to maximize the game scene. The “Stats” button is

used to set whether opening the window of the game status or not. The “gizmos” tools

bar can indicate all information of tools.

Hierarchy View

The Hierarchy View is used to store the specific objects in the Game Scene, such as

camera, texture 2D, texture 3D, light, box, spheres, cubes, models, plan, terrain. After

any new game project has been created, it is default to create a game scene and add

the main camera to the Hierarchy View of the scene.

The Hierarchy view indicates the game objects in the currently activated scene. Game

objects that are dynamically created and removed from the activated scene will emerge

here when they are created and activated in the scene.

17

Project Window

The Project Window mainly stores all asset documents which contain game scripts,

prefabs, models, animation models, fonts, physical materials, and GUI skins. The de-

signer can create or delete all material related to the project in the Project Window,

which is shown in Figure 9.

 The Project View Figure 9.

The Project view, shown in Figure 9, includes all the assets would be used for the cur-

rent project, as well as all scenes or levels are available for the completed game or

application. It is the storage which stores the assets that could be used for the project.

The assets can be deleted from the hard drive according to remove them from this lo-

cation. However it has to be cautious to remove the assets from the directory in Ex-

plorer, because it would cause breakdown of the scene which has activated these as-

sets. [6, 61.]

Inspector

The Inspector view is used to access various properties and components for the game

objects which the user has created and selected in either the Hierarchy or Project

views. Other object-related information can be accessed here. For example, click the

18

object that is in the scene view currently, the Main Camera, created in the Hierarchy

view, and then watch the Inspector view, which is shown in Figure 10

 The Inspector with the camera selected Figure 10.

The Inspector View is more complex relatively. It can be thought of as the space which

stores information of the game objects, game assets and game configuration. Whether

selecting a game object in the Hierarchy View, or a game asset in the Project View,

Inspector View would be opened.

19

Toolbar

Below in Figure 11 the menu bar is the toolbar, which contains five different controls.

 The Toolbar Figure 11.

The Transform tools afford functionality for manipulating and transforming. The button

on the far left, the palmate tool, can also become transforming and scale tools for ma-

nipulating and adjusting the Scene view. The user can change and move the view of

the objects by clicking and dragging them in the Scene view. To revolve around the

current viewport object, hold either the Alt key down or the right-key of the mouse while

clicking and dragging. To zoom the view, hold the Alt key and the right-key of the

mouse, at the same time slide the mouse UDLR (Up, Down, Left, Right). Certainly

there are other ways to operate these manipulations, which the user will discover while

he or she creates an object into the scene. But do not try it until an object is added to

the scene. [6, 63.]

3.2 Significant Objects and Tools in Unity 3D

In section 3.1, the basic UI of the Unity 3D game engine was explained. However most

of objects and properties could not be seen before the project was created. A complet-

ed game would be made of various objects and scripts. This section would illustrate a

few important objects and tools which were used in this project.

3.2.1 Cameras

The camera in Unity is created as a game object in the Hierarchy view and indicated in

the Scene window automatically. In a game the camera provides the visible area on the

screen, which means the camera provides the height and width of the view, also the

depth can be set. The whole visible space by a camera is called the view volume. If an

object which is created to the scene is not placed inside the view volume, it cannot be

20

seen on the screen. The shape of the view volume can be adjusted to orthographic or

perspective. These views are constructed from an eye position which could be imag-

ined with the location of the viewer, a near clipping three-dimensional space. [1, 192.]

Unity is illustrated in Figure 12. A perspective camera is used in Figure 12a. The way in

which perspective projections best show depth is evident from the line of buildings get-

ting smaller as they disappear into the distance. This is not the case for the orthograph-

ic camera shown in Figure 12b. Depth can only be determined by which objects are

drawn in front. The buildings appear to be flattened, because there is no the difference

of the size between the buildings in the distance. Figures 12c and 12d illustrate the

approach in which the view volume of the camera is indicated in the Scene window. If

an object is not placed inside the view volume of the camera in the Scene, it will not be

seen on the screen in the Game.

 A perspective camera in Unity 3D. Copied from Penny de Byl (2013) [1, 194.] Figure 12.

Figure 12 is a 3D game scene in Unity by using a perspective camera (a) and an or-

thographic camera (b). The tapered clipping shape is indicated by using the perspec-

21

tive camera (c). The cubic clipping shape is indicated by using the orthographic camera

in the Unity Scene.

When a new project is created in Unity, it will accompany with the Main Camera as a

game object in the Hierarchy. The settings will be indicated in the Inspector by select-

ing the Main Camera. While the near and far values which appear in Clipping Planes

are set in the Inspector, the resulting frustum can be indicated in the Scene. The width

and height of the viewing volume can be changed by modifying the value of the field of

view (FOV) for a perspective camera. The larger value of the field of view, the more the

player will be able to watch around the area where is immediate. To obtain a feel for

the field of view, hold our arms out to the side and look straight ahead as if to make a

cross figure with our body. Tardily bring our arms around to our front until we can just

see both hands out of the corners of our eyes while looking straight ahead. When the

hands come into peripheral vision, the angle which the arms make is the field of view.

The average forward-facing field of view of the human is approaching to 180° however

various birds are capable of almost 360°. The value of Depth is set for adjusting the

complementary field of view for the orthogonal camera in Unity. [1, 195.]

3.2.2 Terrain Editor

One general feature with many game engines is a terrain editor. Not only the users can

sculpt their idea into being, but they can develop it with flora from grass to shrub to

forest via paint textures. Unity provides a full-fledged terrain editor. In the terrain editor,

various objects can be created and developed, such as LOD (level of detail), distance

culling, and animations. Although this makes it extremely simple to set up and develop

a terrain, as with anything that makes numerous features for them, it also comes with

limitations. To acquire more in-depth information on the tree generator, the Reference

Manual must be found, and then choose the Terrain Engine Guide.

A Terrain object would be created to the scene in both the Hierarchy and the Project

views with the position at 0, 0, 0 when the user presses Create Terrain button. In the

Inspector, when the Terrain object is selected in the Hierarchy, the user will see the

properties and the tools which are available for developing it, as shown in Figure 13.

22

 The Terrain Tools in the Inspector Figure 13.

A feature must be regarded, which making sure the use using Default rather than Sce-

ne is lighting in the Scene window. The position, rotation and scale would be set in

Transform section, and here the default value is ok. The tools in Terrain (Script) section

are the main tools to create the terrain. For example, the user can use the first button

to create mountains with different heights and the fourth button to paint the trees, bush

or grassland. In general, the terrain editor is one of strongest functions in Unity 3D.

However it will not be illustrated in this paper. The readers could visit some unity fo-

rums to find more experiences about the terrain editor.

3.2.3 Skybox

The most general method for creating a sky with cloud textures and weather is to im-

port a skybox. Actually this is an inside-out cube placed over the main camera with

seamless images of the sky rendered on it. Because only six planes and six textures

are required, it is a relatively cost-effective approach to create a convincing-visual sky.

23

The six textures are referred to by their position on the cube: up, down, front, back, left,

and right. An example skybox is shown in Figure 14.

 The six textures are used to make up a skybox Figure 14.

Unity provides various skyboxes. To use them, the skybox package has to be imported

by right-clicking Asset > Import Package > Skyboxes. To implement a skybox to a

game, select the Main Camera object in the Hierarchy and find the location of the

Camera component in the Inspector, and then set the value of Clear Flags to Skybox.

Finally return to the main menu and select Edit > Render Settings, then the user can

choose the skybox material which he or she wants to apply with in the Inspector. In the

Game, the default skybox material (none) is applied. [1, 1043.]

Clouds

Dynamic fog is a more complex technique than the prefabricated fog. However the

common standard fog applied in computer graphics requires a faded out effect over all

3D assets such as terrain, prefabs in a scene, volumetric fog is included within a 3D

space. This requires more intensive processors rather than render. However, this is not

24

a real issue on current consoles and desktop machines. The types of natural effects

that can be completed with volumetric fog contain dark clouds, dust, and mist. The

player can watch the clouds whenever he or she wants to watch them from above.

Whereas the default fog provides a set of density, in volumetric fog the player can walk

through dense patches and light patches.

Weather

The weather impacts the visual sense and feel of the game environment. Although

players will not be able to feel the moist of virtual rain in a game environment, the ap-

propriate lighting, colouring, and special effects such as particle collider will make the

sensation like they are personally on the scene. [1, 1047.]

In this section, several important objects and tools were explained and illustrated.

However, a completed game is made of various objects and assets. Every excellent

game is completed by dozens of designers and it is always accompanied with abun-

dant assets and functions. In this paper, a few frequently-used objects and tools were

explained, which can be used to make a playable game.

3.3 Development Environment and Scripts

The core of interactivity is scripting. In Unity, every action and functionality is required

to be scripted. Fortunately, Unity provides plenty of ready-made scripts from various

sources. Unity operates with a large collection of useful scripts to get one up and run-

ning. The Help button indicated in the main menu is full of examples and segments of

scripts; a number of full Scripting sections also can be found. The Unity Forum and

Unity Answers also obtain various useful sources. As well the user can download the

tutorials in which he or she wants to find the useful approaches from the Unity website.

It would better to use the tutorial resources which contain the excellent cases with ex-

plaining what the code does. Unity scripts can be programmed in C#, JavaScript, and

Boo. [6, 100.]

Scripts

Scripts consist of four main types of components: variables, functions, equations, and

comments. Variables hold values that can be anything from numbers to text. Functions

25

do something, generally with variables and equations. Comments are ignored when the

code is executed, allowing the user to make notes about what the code is or should be

doing or even to temporarily disable the code.

When the user creates a new script with C#, a new script file would be created in the

area Assets>Script which is a folder that could be named by the user. If the user dou-

ble-clicks this file, and then the new script would be opened with MonoDevelop as a

new C# programming file. The MonoDevelop adds the necessary head files and clas-

ses automatically, as shown in figure 15.

 The new script Figure 15.

The function named Update is one of the most important functions in any game engine.

This function which is one of the system functions is checked at least every frame dur-

ing runtime to detect whether anything needs to be executed. For example, it can im-

plement the animations when a particular condition is met by checking.

The scripting system is based on Mono, [7] an open-source version of .NET. Like .NET,

mono supports many programming languages, but Unity only supports C#, Boo, and

JavaScript. Each language has its pros and cons. C# has the advantage of having an

official definition and many instructional books and online tutorials, is the closest fea-

tures to a main language on .NET and Mono, and thus used in plenty of commercial

and open-source software. But C# is the most verbose choice. In this game project, the

script language was C#. The game project included four scripts. Figure 16 shows all

scripts of the game.

26

 All scripts in this game Figure 16.

All scripts were created with the JavaScript language. These scripts must be bound

with special prefabs or game objects. The version of C# in Unity is more succinct but

apparently derived from the Boo implementation and not quite standard C# script (so it

has been suggested that it be called UnityScript).

In this chapter, the Unity 3D game engine was introduced and the UI was indicated.

The Scene view is the environment of making a game, because it is the visual envi-

ronment, and it supports a huge convenience to designers. Every view and window

plays the role of tools which could decorate the game. The parameters of every object

have to be set reasonably. The implementation of the game is script. Every effective

script must be bound with object or prefab, in order for the object to be working.

27

4 Implementation

The previous chapters dealt with the basic theoretical background about 3D game, and

Unity game engine and its development environment. To demonstrate how a 3D game

can be developed, a case study called First-Person Shooter (FPS) game was specifi-

cally created. This chapter demonstrates and discusses how the game and its main

features were implemented and it deals with design, methods and algorithms.

The player plays a sniper to find out all enemies and slay them on a terrain. When the

player shoots to enemies, the enemies generate hatred and shoot the player. Both the

player and enemies obtain heal-points (HP), who is slain when its HP is below zero.

The player could be healed when he or she touches the heal-boxes. The player must

slay all enemies to finish the game.

4.1 Collection and Design of Game Assets

A completed game is normally made with the required game assets. The game assets

consist of art assets and script assets. Art assets contain 2D/3D models, textures, pic-

tures, music and etc. They are usually used to make game objects and Graphic User

Interfaces (GUI). Game objects are the objects which can be in sight and arranged in

the game scene. It can be said that game objects are the essential elements which

constitute whole game. And script assets are used to make all game objects to be per-

formed. They are programmed with codes. Every script must be bonded with the suita-

ble object.

In this game, a few textures were collected and drawn to make the Graphic User Inter-

faces. And the standard assets packages were imported from Unity Assets Package.

Actually they are Character Controller Package, Terrain Assets, Skyboxes and Tree

Creators.

Character Controller Package

This package contains a 3rd character model which was used to make prefab with en-

emy game objects, a First-Person Controller which can simulate the animation of play-

er, and few scripts which were used to make model and controller to work. It is men-

28

tionable that the animations with “idle”, “walk”, “run” and “jump” are achieved for the

models.

Terrain Assets

The package contains the tree model and a few textures and rendering materials, such

as grass and palm. The designer can make the terrain and render all elements on the

terrain with the Terrain Editor which was referred to in the previous section. Certainly,

an outstanding art designer can make the assets more wonderful.

Skyboxes

Skyboxes were introduced in the previous section. The main function of skyboxes is

filling colourful dyestuff to the sky space in the game. In this case, the basic blue sky

and white clouds were filled. Figure 17 shows the effect of Skyboxes in the game.

 The effect of Skyboxes in the game Figure 17.

In Figure 17, the blue sky is a background and white clouds are immobile. The effect is

the basic effect of default Skyboxes in Unity. The designer can make more effect with

3D animation software and then imports these assets to Unity.

29

Tree Creator

Tree Creator is just a folder which contains a big-tree model and rendering materials. It

is used to make trees on the terrain. These trees can be collided.

A few textures, pictures and music were collected and designed for the game. Most of

the textures and pictures were used to make Graphic User Interfaces of the Game

Start, and the rest of the assets were used to draw Heal-Point bar and numbers. The

assets are shown in Figure 18.

 The art assets collected and designed for the game Figure 18.

The art assets are important in a game. These assets determine the qualities of game

models and the effects of the vision. How can a game attract the players in vision? It is

the goal which all art designers work hard for.

Other important assets in a game are script assets. The scripts are the key that makes

whole game to perform perfectly. In the game, the script language is C#. All scripts are

listed and shown in Figure 16. “Script_Enemy” controls the animations, artificial intelli-

gence (AI) and damage calculation of enemy objects. “Script_Game” handles the per-

formances of whole game. “Script_Menu” makes the Game Start window in real-time.

“Tools” contains few public functions and parameters.

4.2 Construction of Game Level

A game level is a section or part of a game. Most games are so large that they are

broken up into levels, so only one portion of the game needs to be loaded at one time.

To complete a game level, a gamer usually needs to meet specific goals or perform a

http://www.webopedia.com/TERM/G/gamer.html

30

specific task to advance to the next level. In puzzle games, levels may be similar but

more difficult as you progress through the game. [8.]

In games with linear progression, levels are areas of a larger world. Games may also

feature interconnected levels, representing locations. Each level usually has an associ-

ated objective, which may be as simple as walking from point A to point B. When the

objective is completed, the player usually moves on to the next level. If the players fail,

they must usually try the same level again or perhaps return to the very start of the

game. In games with multiple human players, the level may simply end once a limit in

points or time has been reached. Not all games order the levels in a linear sequence;

some games allow the player to revisit levels or complete them in any order, some-

times with an over world in which the player can transition from one level to another.

A person who creates levels for a game is a level designer or mapper. The latter is

most often used when talking about first-person shooters where levels are normally

referred to as maps. The computer programs used for creating levels are called level

editors. Sometimes a compiler is also required to convert the source file format to the

file format used by the game, particularly for first-person shooters. Designing levels is a

complex art that requires consideration for visual appearance, game performance, and

gameplay. Creation of levels is an integral part of game modding [9.]

In this game, the game level contains one terrain, ten enemy objects and five heal-

boxes. The elements which designing the terrain include:

 Creation and set of terrain: The designer must create ‘terrain’ game object in

the Scene Window, and then click ‘setting’ button to set all parameters in ‘Reso-

lution’ area to be suitable values.

 Topography: The ‘Raise/Lower Terrain’ button must be picked to some damage

to the terrain, which means the designer can design the topography on the ter-

rain, such as the mountains.

 Paint Textures: It is the painting approach with the topography in a scene.

Some textures like the pigment are painted on the terrain until a terrain is

achieved such as a mountain. [6, 131.]

 Trees: The Place Trees tool is an important part of the terrain editor is. The de-

signers could create and arrange trees by using the terrain editor. To populate

their scene, the Tree Creator must be imported. The effect depends on the ef-

fect of the tree model.

http://en.wikipedia.org/wiki/First-person_shooter
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Level_editor
http://en.wikipedia.org/wiki/Level_editor
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/File_format
http://en.wikipedia.org/wiki/Mod_(computer_gaming)

31

 Sky: A traditional sky-dome would have the advantage of working on systems

that do not have much shader support, but because it generally uses simple

spherical mapping, it’s prone to distortion at the top. Take care to use an image

that avoids the problem as much as possible. Sky-domes also have the disad-

vantage of finite geometry. If they are too close, we will see where they inter-

sect the regular scene geometry. If they are too far, they extend the camera

clipping plane and increase the possibility of Z order fighting where two surfac-

es are too close to each other.

 Packages: Packages are collections of game assets which can be imported into

a project without significant dependency. In the following section, I will make

use of an asset package imported for this project. I may also wish to experiment

with an asset package available for download from the Unity3D website, Ter-

rainAssets.unitypackage. This package includes various useful textures, mod-

els, and other terrain-related assets. [6, 150]

According to the above processes, the fundamental terrain was completed. It was a

rough sketch as shown in Figure 19.

 The outline of the terrain Figure 19.

Trees created by the terrain editor may be made to animate to sway in the breeze. The

automatic LOD is provided; the full mesh tree is swapped out for a painted board with

the image of the tree at a certain distance, and at a far distance, the painted board is

not drawn at all, or distance rejected. When the Place Trees tool is selected, the value

of these distances can be set in the Inspector, but more importantly, the distances will

32

be automatically reduced by the engine to insure that the slower machines can also

operate with the acceptable frame rate. The shadowing effect is provided. The trunk

and leaves will be darkened, when the tree is on the shadowed side of a mountain.

Other game objects containing enemy objects and cube objects were arranged on the

terrain also. They constitute a completed game level together. Every game object ob-

tains its own function in the game. Enemy objects must be slain to finish the game, and

the cube objects can heal the heal-points of player. In Figure 20, the enemy objects

and cube objects are distributed on the terrain.

 The distribution of enemy objects and cube objects Figure 20.

In Figure 20, a little part of the terrain is shown, and all game objects are distributed in

this area. The white points are cube objects and the red points are enemy objects.

They distribute around the trees which are green. The scale of the terrain is quite larger

than the scales of other game objects, as result all game objects just can be arranged

in the little area for shortening the play time.

33

In the game level, the background music was used. It was easy to be created with a

game object and added the audio component with a music source. It should be noted

that this game object must bond with the Frist person character controller name “hero”

object in the game.

4.3 Implementation of Game Features

Scripts can contain any amount of information and instruction. It will be up to the de-

signer to keep his or her scripts organized, so the game engine will know how and

when to use the information. Another scripting challenge is deciding where to put the

scripts. With some scripts, for example, the instructions to open and close a door, the

choice will be easy; in this case the script can go on any door in the scene that needs

to be functional. Likewise, the script that causes an alligator to rush out and snap at the

player’s character will more than likely belong on the alligator. Other scripts, however,

may not be associated with anything in particular, such as a script that changes day

into night. It may control the state of several objects in the scene, but it may be de-

pendent on time, rather than player interaction, to know when to execute the instruc-

tions. In this case, the designer would probably make an empty GameObject for the

express purpose of holding that particular script and name it accordingly. [6, 93.]

4.3.1 Fundamental Features

In the previous chapter, it was noted that the scripts are the key which makes the game

objects to work. The section demonstrates how all the functions of any objects, which

were referred to in previous section were implemented with bonded scripts. Four

scripts were created with C#. In the Unity game engine, all the game objects that the

designer made must be shown in the “Hierarchy” window, and then these objects just

can be designed and placed in the “Scene” window. In this section, the fundamental

functions are implemented and discussed.

There are two kinds of ways to make game objects:

 Creation: The designers can click ‘Create’ button in ‘Hierarchy’ window to make

new and rough game objects, such as ‘Cube’, ‘Sphere’, ‘Camera’ and etc.

These game objects must be designed and adjusted by designers to be re-

quired objects.

34

 Prefabs: When the designers find this kind of matter that a same game object

has to be used with several times, it is quite troublesome to create the same ob-

ject repeatedly. Unity game engine supports a way to resolve this condition, and

that is ‘Prefabs’. The designers can create game objects with the prefabs in the

‘Project’ window. When the objects are used, the designers just need to drag

the prefabs to the ‘Hierarchy’ window.

In the game, two game objects were created with prefabs. They are ‘Enemy’ and ‘Cu-

be’. Next we discuss how to implement the functions of game objects. Firstly, we can

see the animations of the ‘Enemy’ object in the ‘Inspector’ window, as shown in Figure

21.

 The animations of ‘Enemy’ game object Figure 21.

Figure 21 shows that there are four kinds of animations of this object. They are idle, run,

walk and jump_pose. In this game, the first three animations were implemented. It is an

easy code to implement these animations with C#. Listing 3 shows the code.

35

Listing 3. The code to play animation with C# in “Script_Enemy”

In Listing 3, only one function was used to play the animation ‘idle’ or ‘walk’. This code

is normally used in conditional clauses. Because the completed codes are long, here

the instructions of these animations are introduced.

 Idle: This script makes random numbers from 0 to 2. If the number is 0, then the

‘idle’ is played, and then assigns “STATE_STAND” to ‘enemyState’ parameter.

 Walk: If the number is 1, then the ‘Enemy’ object rotates a random direction in

one second, and next plays ‘walk’, and then assigns “STATE_WALK” to ‘ene-

myState’ parameter.

 Run: There are two ways to make the object to run. One is the hatred is activat-

ed and another is attack range is activated. If the player shoots to enemy, then

the hatred is activated. If the player accesses to the attack range of enemy,

then the result is that the enemy run to player.

The key to engaging interaction is being able to specify conditions under which various

alternative scenarios play out. Even in a traditional shooter game, an object may need

to be hit a certain number of times before it switches to its destroyed state. Each time it

is hit, the program must check to see if certain conditions have been met before it

knows what to trigger. Each of these conditions can also be thought of as a state.

.

The game is a Sniper Rifle Mode game which one kind of First-Person Shooter game.

Thus there are few required features must be implemented. The Aim Point and the

Heal-Points (HP) must be drawn in real-time as shown in Listing 4.

36

Listing 4. The code of drawing AP and HP in “Script_Game”

This sub function is used to draw the Aim Point and Heal-Points bar in the game. The

position of mouse must be read and the Aim Point was drawn that depends on it. The

textures which were prepared for them were used. The effect is shown in Figure 22.

37

 The effect of Aim Point and HP bar in the game Figure 22.

There are two Heal-Points bars to be indicated in Figure 22. The top-left HP bar is HP

of enemies. When the player aims at the enemy, it would appear on top-left. The bot-

tom-left HP bar is the HP of the player. It is always indicated until the game has ended.

Another important feature in the game is ‘Heal-boxes’. The heal-boxes are the game

objects which were distributed on the terrain. Their function is to increase the heal-

points of the player when the player finds and touches them. To implement the function,

three steps must be considered. Firstly the player must collide with the heal-boxes and

secondly the heal-boxes increase the heal-points of the player. Finally the heal-boxes

must be destroyed. The relevant codes are shown in Listing 5.

38

Listing 5. The code of implementation of Heal-boxes in “Script_Game”

The name of the game object is “Cube”. It must be according to the value of “col-

lObj.name”. Otherwise there will be the errors. The heal-boxes are destroyed after they

heals the HP of the player one time, which means every heal-box only can be used one

time. Thus the HP of the player is limited. This way is one way to control the difficulty of

the game.

In Listing 4, it was referred to how to make the graphic user interfaces with C#. The

function ‘GUI.DrawTexture(new Rect position, texture image)’ was used to draw texture

in game. The function is also used to make “You Win” and “You Dead” GUI when the

player wins or dead respectively.

This section demonstrated how to create the game objects, and how to implement the

animations of the ‘Enemy’ game object, draw the Aim Point and Heal-Points, and make

the Heal-boxes. The fundamental features of the First-Person Shooter game were im-

plemented. The next section will demonstrate and discuss the damage system. It is a

special design of the damage for the sniper rifle mode game.

39

4.3.2 Damage System

Hit points, also known as health points (or HP), damage points, heart points, life points,

or just health (among other synonyms), is a finite value used to determine how much

damage (usually in terms of physical injury) a character can withstand. When a charac-

ter is attacked, or is hurt from a hazard or fall, the total damage dealt (which is also

represented by a point value) is subtracted from their current HP. Once their HP reach-

es 0, the character will be unable to fight. In role-playing games, health is often abbre-

viated as "HP".

The damage system is used to control the HP of the player and enemies. There are

three normal ways to design the damage system in a game. [10.]

 The classic damage way: A fixed amount of HP and if they are drained, the role

of the player is dead, this is the most simple one and not very realistic, since the

role is the same with 1 HP as the role is with 100 HP, but if the role has only 1

HP left every little thing will kill the role. Picking up health packs will instantly

heal you. All in all not very realistic.

 The more arcade like one: In some modern shooters the player has regenera-

tion and hidden HP, so if the player gets hit the screen becomes red, but if he or

she waits a little time the role of the player will recover and so only die, if the

player receive serious damage in a short time, but in the long run the player can

eat as many bullets as he or she wants also not realistic.

 Realistic damage system: Direct hits mostly cause instant death and grazing

shots will seriously injure the role making the player loses health over time or

render the role immobile. Very realistic but also not fun in many cases.

In this game, the classic damage way supported the damage system. There are two

different damage ways. One is Player Hurts to Enemies, and another one is Enemies

Hurt to Player. There are a few codes to be shown for explaining these two ways. The

Player Hurts to Enemies is shown in Listing 6.

http://en.wikipedia.org/wiki/Synonym
http://en.wikipedia.org/wiki/Role-playing_game

40

Listing 6. The damage way of the Player Hurts to Enemies in “Script_Enemy”

In the previous section the Aim Point was drawn in the game. The position of the Aim

Point is accordant with the mouse. Thus if the player aims at the enemy and left-clicks

mouse, the hatred of enemy is activated and the HP is reduced by 5. When the HP of

enemy is equal or less than 0, then the enemy is slain. The ‘Enemy’ game object must

be destroyed. And the script makes a message called “EnemyHurt”. It is the key to cal-

culate the number of the enemies in another script. At the same time, the HP bar of

enemy is drawn in real-time because it got damaged. The cycle of drawn HP bar is a

completed left-click of mouse finished. The result is shown in Figure 23.

41

 The effect of enemies’ HP bar when it got damage Figure 23.

This damage way is a normal way which is used in every game that obtains a damage

system. The Enemies Hurt to Player damage way is a different way, because the play-

er must be hurt after the hatred of the enemy is activated. Listing 7 shows how the ha-

tred of the enemy is activated.

Listing 7. The code used to activate the hatred in “Script_Enemy”

If the player enters into the patrol range of the enemy or shoots the enemy, the hatred

of the enemy is activated. The script makes random numbers from 0 to 20. When the

number is 0, then it makes a message called “HeroHurt”, which means the player is hit.

This message is grabbed by a function in “Script_Game”, and then the damage is cal-

culated. This way which used the random numbers is one way of the critical damage.

In other words, the enemy makes damage to the player with a 5% rate. This way can

be used to control the damage speed of the enemy. Listing 8 shows how to finish the

damage.

42

Listing 8. The code calculating the damage in “Script_Game”

The damage which the player got from the enemy is 1 HP every hit. If the HP of the

player is equal or less than 0, then the value “STATE_LOSE” is assigned to the pa-

rameter ‘gameState’, and finally the texture “YOU DEAD” is drawn.

When all scripts are completed, these scripts must be bonded with the objectives which

are the game objects or prefabs. Firstly the aim game object or prefab must be picked.

According to clicking ‘Add Component’ button in the “Inspector” window, the designer

can add abundant assets for this object or prefab, such as Scripts, Mesh, Audio, Ren-

dering, Physics and etc. And then the debugging must be done. Unity supports a play

mode in real-time, in order to debugging the scripts in any time. The designer can click

‘play’ button above “Scene” window to check whether the script works. If there are any

errors in the scripts, then a warning word would appear in the “Scene” window. The

designer can pick “Console” window which is right to “Project” window to check what

kinds of errors existed in the script. The game objects will be worked, when the scripts

are bonded with them.

This section discussed how the damage system was constructed for the Sniper Rifle

Mode shooting game. There were two different ways to calculate the damages. A spe-

cial random damage was implemented when the enemies made the damage to the

player. We can understand it does not hit the player with every shoot. This way can be

used to control the reduced speed of the HP of the player effectively. Finally, the ap-

proach how to bond the game objects with the scripts was explained, and the debug-

ging way was explained also. The game part of the game was demonstrated complete-

ly. The game start part will be shown in the next section.

43

4.4 GUI of Game Start

GUI is a very important component of a game. Unity provides two functionalites called

GUIText and GUITexture for 2D text and textures respectively, which are used to dis-

play the texts or textures on the screen when the run button is clicked. For example,

Fugu Maze on the iPhone has a GUITexture representing a move-forward button on

the lower-left portion of the screen. [11, 130.]

To design UnityGUI text, the concept of cascading style sheets (CSS) must be under-

standed, because it is patterned. The designer can define colours and fonts for a par-

ticular style by setting GUISkin. In GUISkin property, every GUI element must inherit its

properties. This makes for a consistent look and feel throughout. Also the GUI ele-

ments refer to 3D objects can be treated differently.

The default font in the operating system is used firstly in Unity. Fortunately the designer

can use any other font which he or she provides. It makes the file size smaller by using

the default font. However there would be a small risk that the text could appear varia-

tion on different systems. For this game, the font Arial is set which is shown in Figure

24.

 The Arial font in the Inspector Figure 24.

When using a font in most 3D engines for 2D text, a bitmap of the full alphabet and

characters is generated for each font and size specified. When the designers specify

Dynamic in Unity, the bitmap generated by the operating system is used, saving down-

load time and texture memory during runtime. The downside is that if the designers

44

specify a font that is not present on the operating system, a fallback font will be used in

its place. Even when using generic fonts such as Arial, there may be slight differences

among systems. I will investigate this further when we experiment with different fonts

later on in the project. Dynamic fonts are currently supported only on desktop platforms

(i.e., Mac and Windows). [6, 459.]

In the game, the 2D GUI was made. The assets contain one background picture, one

background picture with help information, a few textures with guide text and back-

ground music. A new scene must be created firstly. And then the Main Camera object

and Music object were created. The position of Main Camera did not need to adjust,

because the imagery just is required. In the script, few variables must be defined and

initialized to be called in late. These values of these variables were normally initialized

with textures in “Inspector” window. The initialized variables are shown in Figure 25.

 The initialized variables in Script_Menu Figure 25.

There were three background pictures to be used in the GUI, and an audio source was

added to the GUI. The variable which initialized with GUISkin must be defined with

“public GUISkin” in the script. In Unity, there are two types of GUI elements. Of the

objects that can be created through the GameObject menu, the designers have already

used the GUI Texture. The GameObject varieties of text and texture objects are han-

dled individually and exist in the game hierarchy. They are not affected by the GUI Skin

specifications. The second type of GUI elements, Unity GUI, must be scripted to exist.

If the designers are a bit more comfortable with scripting, they will be using the Unity

GUI to create and handle text and to eventually convert the cursor. The Unity GUI con-

sists of a GUI Skin and GUI Styles.

Firstly, a new GUISkin asset must be created according to clicking the “Create” button

in the “Project” window, and then pick it, the information is shown in the “Inspector”

window. The “Custom Styles” option has to be found, which is very important to help

the designers to set their own GUI. The designer must know how many GUI buttons he

45

or she wants to make clearly. Finally the designer has to enter the number for the size

parameter and set his or her own GUI buttons. Figure 26 shows the result.

 The Custom Styles of GUISkin in the game Figure 26.

There are seven GUI buttons in the game. Every button obtains its own background

picture which was designed for it specially. The names must be made reasonably, be-

cause they will be called in the script. It is should note that before the designers exper-

iment with different textures in the GUISkin, they should know that if the texture does

not show up in the asset browser, they would not be able to get it back without creating

a new GUISkin.

For showing GUI on the screen, the function OnGUI must be used in the script. The

OnGUI function is similar to the Update function in that it is called at least every frame

and that is where the code is must be to create the GUI controls. There were four func-

tional buttons required to be implemented. They were Start, Option, Help and Exit. The

Start button can start the game when the player clicks it. The Option button obtains two

functions: music on and music off. The player can choose if the background music is

on or off. The Help button indicates the information of operating ways and the author.

The Exit button is used to exit the game. Thus the four functions must be made in the

script, and they must be called in the OnGUI function. Listing 9 shows how the func-

tions were called.

46

Listing 9. The code of the OnGUI function in Script_Menu

The player can activate the function which he or she wants to click. We can see the

function “RenderMainMenu” in Listing 9. This function is made to rendering the main

menu of the game start. The whole outline of the GUI is designed and made in this

function. If the designers are not planning on limiting the screen resolution, the user will

be able to choose a resolution at run-time. If they remember that GUI elements retain

their pixel size regardless of screen resolution, it becomes clear that they need access

to the screen size in order to centre the text messages. Fortunately, they can use

Screen.width, Screen.height, and a bit of math inside the command to get what they

want. Listing 10 shows the code how the main menu is rendered.

47

Listing 10. The code of RenderMainMenu function in Script_Menu

In the previous section, the function “new Rect” was used to set the position, height

and width of the texture. The function “GUI.Button” is similar to the function

“GUI.DrawTexture”. However the last parameter of the function “GUI.DrawTexture” is

using the texture immediately, and here the Custom Styles which were set in “GUISkin”

are using in the “GUI.Button” function. Another special function is Application.loadLevel.

This function is used to load another game scene. It is the secret that when the player

clicks the Start button, then the game is running.

In the previous paragraphs, almost all functions which were used in the script were

listed and explained. The key points are the calls of the textures and outline of the GUI.

The next the effect is shown in Figure 27.

48

 The GUI of the game start in the game Figure 27.

The process which is to design the GUI requires more patience. The textures and pic-

tures require collecting and designing to be necessary. However it offers the sense of

achievement to the designers.

In this section, the Unity GUI was introduced as a means of adding 2D text on screen

to display mouseover and message text. I discovered the GUISkin, which provides a

way of creating GUI elements with a consistent look and feel, and later, the GUIStyle,

which is a means of overriding the skin in particular places. I experimented with the

parameters for the GUI controls, and found that they could make label controls look like

box controls while still acting like labels. After I learned that the GUI elements exist only

through scripting, I found that “Rect” parameters define the position and region a con-

trol will occupy. I would find more fun designing a game or a brilliant GUI.

49

4.5 Building and Running the Game

The Unity game engine is a cross-platform engine. It is limited with the interfaces

among the different game platforms. Unity game engine supports almost all game plat-

forms in the world, but because of the file size of the executed files, the games de-

signed with Unity are released on computer platforms. The game is also built on the

Windows 7 system. It is quite easy to build a game in Unity. The designers just need to

click the “File” button and pick the “Build & Settings” button to finish it. The interface of

the “Build & Settings” is shown in Figure 28.

 The interface of Build & Setting in Unity Figure 28.

50

In Figure 28, the Scenes in the “Build” window are shown. I must add all scenes which I

have designed for the game. And the scenes have to be marked. Then I can choose

the platform which I want to release the game on in the Platform window. On the right,

the information of the platform which I chose is indicated. After everything is ready, if I

click Build or Build and Run button, the game will be made to the exe file. The players

can double-click this exe file to play the game. The size of the game is 20 MB. It is a

little game, but it is fun.

In this chapter, the whole process how the game was designed and implemented was

demonstrated. The damage system of a FPS game was discussed also. The parts of

the codes were demonstrated and explained. The several functions are the fundamen-

tal functions for designing a game, such as OnGUI, GUI.DrawTexture, gameOb-

ject.animation.Play and etc. Unity supports the strong functions to the designers.

51

5 Usability Test

Software projects have four objectives; to produce the required functionality, in budget

and in schedule, with acceptable quality. That statement may be true for ordinary soft-

ware development projects, but are these objectives enough for game development.

[13]

Playability is the ease by which the game can be played or the quantity or duration that

a game can be played and is a common measure of the quality of gameplay. Playability

evaluative methods target games to improve design while player experience evaluative

methods target players to improve gaming. There are various approaches to test how

the players would feel with a game. In the final step of the project, the survey was

made to test the playability. There were ten players to be surveyed. The basic infor-

mation of them is shown in table 1.

 Degree Programme Degree Gender

Description

Information
Technology * 7

Bachelor * 8 Male * 7

Business
Management * 2

Master*1 Female * 3

Neurology * 1 Doctor * 1

Table 1. The partition of the players (* means the amount of the people)

I made the survey with the ten players after they had played the game. The goals of the

survey are to test the functionality and playability. The survey contains three stages.

Data Collection

A questionnaire was created to ask few questions about the completeness of the func-

tionality and playability (see Appendix). The first part was used to collect the infor-

mation of the players. The second part had shown the functionalities that we discussed

in previous chapters. These functionalities were listed on the questionnaire paper, and

the scores between 0 and 2 were appended. Score 0, 1, 2 was respectively represent-

ed uncompleted, completed and completed well. The list includes the First-Person

52

Controller, the Shooting Mode, the Terrain, the Skybox, the AI of the Enemies, the

Damage System, the Heal-boxes and the GUI, which represents eight functionalities in

the game. The every player could make score with the functionalities up to 16 points.

The third part was the question about the playability of the game. The question sup-

ported three options to the players. The first option was the game is quite easy to play,

it is a recreational game and not worth selling or leaning. The second option was the

game obtains some useful functionalities, it is enough used for education. The last op-

tion was the game is worth to be the product of business. Finally, the players could

make suggestion with the game.

Date Analysis

According to the survey I have got the amount scores of the completeness of the game

and the level of the playability. The scores were divided to three levels, 0 – 7 was bad

level which means the game was not completed, 8-12 was good level which means the

game was completed, 13-16 was the favourable level which means the completeness

is high. The proportion that every option was chosen in the part Ⅲ indicated the playa-

bility of the game. I think any option that was chosen by 40 percent players could rep-

resent the result.

Result

The result of the survey is that every player made more than 8 points in the part Ⅱ,

and 50 percent players chose second option, 20 percent players chose the last option

and 30 percent players chose first option. The both results are shown as in table 2.

53

(a)

(b)

Table 2. The Results of the survey

According to the result of table 2 (a), we can find that the average score is 13, which

means the players who participated in the survey considered the game has been

achieved the premier goals and completed well. The table 2(b) indicated the level of

the playability, most of the players thought the game could be used for education.

0

2

4

6

8

10

12

14

16

18

The Scores of the
Completeness

Average

The levels of the Playability

Recreation

Education

Business

54

6 Results and Discussion

6.1 Drawbacks and Future Development

Currently the game is achieved completely as a First-Person Shooter game on the

Windows 7 platform. The player can enjoy the fun when he or she shoots the enemies.

Because of the damage system, the player would be killed by the enemies. He or she

would play the game seriously.

The disadvantages are obvious also. The game only support one shooting mode which

is the sniper rifle mode, which means the player cannot choose the weapon that he or

she favours to play the game with. The new play mode means more weapon models

and damage systems required. The design of 3D model requires the professional talent

who is good at art design, or the models can be found and downloaded from the Unity

App Shop with a charge.

The current version has no more drawbacks of its own, but it could benefit greatly from

implementation of more features. These features are discussed below.

 New models support: A new weapon model will be added and the suited dam-

age system will be updated also. It is a large challenge to change the model of

enemies. In the game, the 3rd character model was imported from the Character

Controller which is the default package in Unity, thus the model is rough, and

there are only four types of the animation. If the time will be adequate, the char-

acter model will be changed also.

 Updating system AI: Currently the AIs of enemies are hatred activated and pa-

trol. The damage way depending on the distance between the player and the

enemy is considered, which means the enemies make the higher damage if the

distance is shorter. The way of the patrol which the enemies make is monoto-

nous. The larger area which the enemies patrol could be implemented with

waypoints, which means there would be fixed waypoints to make the enemies

patrolling with the regular way.

 Mission Controller: The current way of healing the HP of the player is only heal-

boxes. The heal-boxes are limited. If the player cannot slay all enemies before

all heal-boxes are using up, the player is quite dangerous. Thus a new way of

increasing the HP is that a new game object called NPC is created, and the

55

player can activate the mission from the NPC, when the player finishes the mis-

sion, he or she would get 100 HP. Also the mission is easy to be finished.

 More platforms could be supported: As we know, Unity supports the cross-

platform, thus the game could be made on more game platforms. The iOS and

Android are the best choice. Because the mobile game is the most popular

nowadays.

6.2 Business and Marketing Strategies

There are several business models that can be used for the game. The first one is a

free version model where the app could be downloaded for free from the App Store of

Unity or Apple with free content. In this model the revenue will be coming from adver-

tisements on the pages of the game. The advantage is the game can be updated slow-

ly, and the disadvantage is the revenue is little. Another option is to make a premium

version where users are entitled to all the contents for free once they purchase the

game or a premium subscription account with a monthly or yearly fee. This requires the

game must be updated fast. More new features can attract more customers.

A survey about the usability was distributed to ten players. The result is that half of

them thought the playability of the game was significant game, and three people

thought it was just a recreating game, and the rest of the players thought it was an ex-

cellent game. The feasibility for placing it on the market would not be large.

Fortunately, the App Store supports a large App platform for the designers. One’s us-

ages of apps on iPads, rather than iPhones or iPod Touches have sky rocketed in 2011.

According to App Annie, downloads on iPad for 2011 have grown 200%, compared to

70% for downloads on iPhone. It is a reliable choice to the App Store. [12]

The truth is that a wonderful product occupies the market. A game that would occupy a

seat in the market would require special features and attracting playability. Thus im-

proving the game is the goal.

56

7 Conclusion

The aim of this project was to create a 3D game which was the First-Person Shooter

game with the Unity game engine. This required I had a fundamental knowledge about

the Unity game engine and programming. A game engine is the core of creating a

game. The integration of model design, level design and script design is the game en-

gine, which is complex and powerful. The Unity game engine supports visualized de-

sign, thus it is a strong game engine which is suitable for a beginner. However, it is not

very easy to learn the Unity game engine well. There are various functions to be real-

ized.

In order to make the game to be an integrated game, two scenes were designed. One

was the game start scene and the other one was the game scene. As a result, the

game start scene was achieved with 15 textures and pictures. Although just a few tex-

tures were used for the game scene, three scripts were created for it. The number of

codes outnumbered 550 lines.

All of the game features were achieved as the First-Person Shooter game. More game

features were looking forward to the future. The goal of the report was to demonstrate

how to create a 3D game with the Unity game engine and discuss the implementation

of the scripts. The damage system was one of the special designs. Two kinds of com-

mon damage ways were explained. The usages of the Skyboxes and the terrain design

were the characteristics in the game.

The most important aspect of the game design is thinking how to create more new

playabilities. This game is a product of a beginner who favours creating a virtual world.

There might be more possibilities for the game in the future. This report demonstrated

the whole process of making an FPS game with Unity.

57

References

1 Penny de Byl. Holistic Game Development with Unity. Focal Press: 1 edition

November 15, 2011.

2 Xavier Borg. Understanding 2 dimensional spaces [Online]. Blaze labs re-

search. URL: http://www.blazelabs.com/f-u-hds.asp . Accessed 10 September

2013.

3 Wikipedia. Three-dimensional space [Online]. Wikipedia, the free encyclopae-

dia.

URL: http://en.wikipedia.org/wiki/Three-dimensional_space. Accessed 11 Sep-

tember 2013. Accessed 11 September 2013

4 Patrick Congdon. Academic Word: Ten Maxims Every FPS Should Follow

[Online]. Website: GameCareerGuid.com; 26 February 2007.

URL:

http://www.gamecareerguide.com/features/344/the_academic_word_ten_maxi

ms_every_fps_should_follow.php?page=1. Accessed 12 September 2013.

5 Iuppa Nick, Borst Terry. End-to-end game development. USA: Elsevier, Inc.;

2010.

6 Sue Blackman. Beginning 3D Game Development with Unity: The World’s Most

Widely Used Multiplatform Game Engine. New York, USA: Springer Science +

Business Media, LLC.; 2011.

7 Philip Chu. Game Development with Unity. [Online] Copyright © 2003-2010

Technicat, LLC.

URL: http://www.cocoachina.com/downloads/video/2010/0617/1698.html.

Accessed 15 October 2013.

8 Webopedia. Game Level [Online]. ITBUSINESSEDGE, Property of Quinstreet

Enterprise.

URL: http://www.webopedia.com/TERM/G/game_level.html . Accessed 10 No-

vember 2013.

58

9 Wikipedia. Level (Video Gaming) [Online]. Wikipedia, the free encyclopaedia.

URL: http://en.wikipedia.org/wiki/Level_(video_gaming) . Accessed 15 Novem-

ber 2013.

10 Duion. Damage Systems [Online]. FreeGameDev Forums. 25 June 2013.

URL: http://forum.freegamedev.net/viewtopic.php?f=5&t=4645 .Accessed 14

December 2013.

11 Michelle Menard. Game Development with Unity. USA: Cengage Learning;

2012.

12 App Annie. Infographic: The rise of the planet of the apps [Online]. San Fran-

cisco, CA:App Annie; 16 February 2012.

URL: http://www.appannie.com/blog/infographic-rise/. Accessed 13 January

2014.

13 Jussi Kasurinen & Kari Smolander. What Do Game Developers Test in Their

Products? [PDF]. Department of Software Engineering and Information

Management, Lappeenranta University of Technology. Accessed 6 March

2014.

14 Techopedia. Definition - What does First Person Shooter (FPS) mean? [Online].

Techopedia.com.

URL: http://www.techopedia.com/definition/241/first-person-shooter-fps. Ac-

cessed 23 February 2014.

Appendix 1

1 (3)

A survey On Players’ Responses towards the FPS Game with Unity

This survey is used to collect the responses from the players who have played

this game. The purpose is testing the usability of the game. There are three

parts on the survey. The part Ⅰis required that the player to fill in their infor-

mation. The part Ⅱ is the questionnaire about the completeness of the game.

The player must spend few minutes to play the game and make the scores for

the functionalities. The part Ⅲ is the questionnaire that is used to evaluate the

level of the playability. The player has to choose an option which he or she fa-

vours.

Part Ⅰ: General Information

1. What is your age?

 A. 16 – 18 B. 19-24 C. 25-30 D. over 30

2. What is your gender?

A. Female B. Male

3. What is your degree?

A. Bachelor B. Master C. Doctor

4. What is your degree programme?

Part Ⅱ: Players’ Attitudes towards the Completeness of the Game

1. Does this game can be played with First-Person Perspective?

A. 0 (No) B. 1 (Yes) C. 2 (Yes, perfect)

2. Does the game can be played with Shooting Mode (Sniper Rifle Mode)?

A. 0 (No) B. 1 (Yes) C. 2 (Yes, perfect)

Appendix 1

2 (3)

3. Does the game possess the terrain (trees, mountains and grassland)?

A. 0 (No) B. 1 (Yes) C. 2 (Yes, perfect)

4. Could you see the sky and white clouds in the game?

A. 0 (No) B. 1 (Yes) C. 2 (Yes, perfect)

5. How do you think the AI of the enemies (hatred, patrol, damage)?

A. 0 (They did nothing) B. 1 (They performed with any bug) C.2 (perfect)

6. How do you think the damage system in the game?

A. 0 (It is difficult to win) B. 1 (Playable) C. 2 (Very balanced)

7. Do the Heal-boxes work?

A. 0 (No) B. 1 (Yes) C. 2 (Yes, perfect)

8. How do you think the GUI of the game start?

A. 0 (ugly) B. 1 (Good) C. 2 (Perfect)

Part Ⅲ: Players’ Attitude towards the playability

There are three options to be supported to the player. You can choose an option which

you trend to. The option which you chose is the evaluation of the playability. Please to

choose the option depends on your own experience.

A. The game is quite easy to play. It is just used to make recreation in short time.

B. The game has good playability. It is not only used to make recreation, but also

as the educational material. Because it is a completed game with the special

functionalities.

C. The game has a potential to be developed with business. The application can

be downloaded with charge.

Appendix 1

3 (3)

Please give some suggestions on the game

THANK YOU VERY MUCH FOR YOUR RESPONSES!

