
 

 

 

  

Savonia University Of Applied Science 

Emulator of the 
read-out chain 
Emulator of the read-out chain of the TOTEM online software 
framework, and project management 

Risto Kivilahti 

1/20/2010 

 



Emulator of the read-out chain 2/126 
 

 

Preface 

 

 This report is the result of my master´s thesis carried out at CERN, 

European organization for nuclear research.  The master´s thesis is part of 

studies at Savonia university of applied science.  The thesis consisted from the 

project management side and from the development side.  The project 

management was done to support the work, to give a deterministic flow.  From 

project management side the thesis concentrates to the SCRUM.  From 

technical side the thesis contains CRC optimization part and emulator 

implementation part.  

  



Emulator of the read-out chain 3/126 
 

 

Table of Contents 

 

1. Introduction .................................................................................................. 8 

1.1. CERN ..................................................................................................... 8 

1.2. LHC........................................................................................................ 9 

1.3. CMS ..................................................................................................... 10 

1.4. TOTEM experiment.............................................................................. 11 

1.5. Roman Pots ......................................................................................... 12 

1.6. T1 ........................................................................................................ 13 

1.7. T2 ........................................................................................................ 14 

1.8. Read-out chain hardware ..................................................................... 15 

1.9. PC Data Acquisition software .............................................................. 16 

2. Development tools ..................................................................................... 17 

2.1. Trac...................................................................................................... 17 

2.2. Agilo ..................................................................................................... 18 

2.3. gdb ....................................................................................................... 18 

2.4. valgrind ................................................................................................ 18 

2.5. Make .................................................................................................... 18 

2.6. Editors .................................................................................................. 20 

3. Development process ................................................................................ 21 

3.1. Scrum .................................................................................................. 21 

3.1.1. Daily meetings ............................................................................... 22 

3.1.2. Burn down chart ............................................................................ 22 

3.1.3. Backlog ......................................................................................... 22 

3.1.4. Product backlog............................................................................. 22 

3.1.5. Release backlog ............................................................................ 23 

3.1.6. Sprint backlog ............................................................................... 23 



Emulator of the read-out chain 4/126 
 

 
3.1.7. Product owner ............................................................................... 24 

3.1.8. Scrum master ................................................................................ 24 

3.1.9. Subject matter expert .................................................................... 24 

3.2. Development process .......................................................................... 25 

4. Software design ......................................................................................... 26 

4.1.1. Maintainability ............................................................................... 26 

4.1.1.1. Documentation ........................................................................ 27 

4.1.1.2. Clear design ............................................................................ 28 

4.1.1.3. Low inheritance tree ............................................................... 29 

4.1.1.4. Memory management ................................................................ 30 

4.1.2. The PIMPL idiom ........................................................................... 31 

4.1.2.1. Compile time ........................................................................... 31 

4.1.2.2. Data protection ....................................................................... 31 

4.1.2.3. Clear header ........................................................................... 32 

4.1.2.4. Application Binary Interface .................................................... 32 

4.1.2.5. Performance hit ...................................................................... 32 

4.1.2.6. Implementation: The PIMPL pointer ....................................... 33 

4.1.2.7. Implementation: Inheritance from public virtual class ............. 34 

4.1.3. C++ templates ............................................................................... 35 

4.1.4. Compiling time............................................................................... 35 

4.1.4.1. The PIMPL idiom .................................................................... 35 

4.1.4.2. Include guard .......................................................................... 35 

4.1.4.3. Forward declaration ................................................................ 37 

5. The emulator .............................................................................................. 38 

6. Project schedule ........................................................................................ 40 

6.1.1. Emulator project release ............................................................... 41 

6.1.1.1. Setup environment .................................................................. 42 



Emulator of the read-out chain 5/126 
 

 
6.1.1.2. Project management ............................................................... 42 

6.1.2. Optimize CRC algorithm release ................................................... 43 

6.1.2.1. CRC studies ............................................................................ 43 

6.1.2.2. CRC study 2 ........................................................................... 43 

6.1.2.3. CRC prototype and benchmark .............................................. 44 

6.1.2.4. CRC optimization documentation ........................................... 44 

6.1.3. Implementation of CRC Class ....................................................... 44 

6.1.3.1. C++ studies............................................................................. 45 

6.1.3.2. CRC class ............................................................................... 45 

6.1.3.3. CRC class documentation ...................................................... 46 

6.1.4. Implementation of emulator class .................................................. 47 

6.1.4.1. Study the data acquisition packet frames ............................... 47 

6.1.4.2. Implementation of the emulator class ..................................... 48 

7. Optimization of CRC Algorithm .................................................................. 49 

7.1. Primitive error detection ....................................................................... 50 

7.2. CRC theory .......................................................................................... 51 

7.2.1. Binary division ............................................................................... 51 

7.2.2. Introduction to polynomial arithmetic ............................................. 54 

7.2.3. Interesting property of XOR operation ........................................... 58 

7.2.4. Poly ............................................................................................... 58 

7.3. Basic CRC algorithm............................................................................ 59 

7.3.1. Basic algorithm .............................................................................. 59 

7.3.2. Optimized basic algorithm ............................................................. 61 

7.4. Table-driven algorithm ......................................................................... 62 

7.4.1. The basic table-driven algorithm ................................................... 63 

7.4.2. Improved table-driven algorithm .................................................... 65 

7.5. 32 bit table-driven algorithm ................................................................. 67 



Emulator of the read-out chain 6/126 
 

 
7.6. Current CRC algorithm ........................................................................ 68 

7.7. Optimized CRC algorithm .................................................................... 70 

7.7.1. 16 bit table-driven algorithm .......................................................... 70 

7.7.2. Assembler optimization ................................................................. 71 

7.8. Benchmark ........................................................................................... 76 

8. CRC Class ................................................................................................. 78 

8.1. Requirements ...................................................................................... 78 

8.2. Study.................................................................................................... 78 

8.3. Design .................................................................................................. 79 

8.3.1. Table ............................................................................................. 79 

8.3.2. RefCount ....................................................................................... 80 

8.3.3. ref_ptr ............................................................................................ 80 

8.3.4. AutoMap ........................................................................................ 81 

8.3.5. Checker class ................................................................................ 81 

8.4. Implementation .................................................................................... 82 

8.4.1. RefCount ....................................................................................... 82 

8.4.2. ref_ptr ............................................................................................ 82 

8.4.3. AutoMap ........................................................................................ 83 

8.4.4. Table ............................................................................................. 83 

8.4.5. Checker ......................................................................................... 84 

9. The emulator class .................................................................................... 85 

9.1. Data acquisition frames ....................................................................... 85 

9.1.1. VFAT frame ................................................................................... 86 

9.1.2. OptoRx frame ................................................................................ 87 

9.1.3. TOT FED frame ............................................................................. 87 

9.2. Software implementation ..................................................................... 87 

9.2.1. Horizontal to vertical ...................................................................... 88 



Emulator of the read-out chain 7/126 
 

 
9.2.2. VFAT frame ................................................................................... 88 

9.2.3. VFAT generator ............................................................................. 89 

9.2.4. OptoRx emulator ........................................................................... 89 

9.2.5. TOTFED frame .............................................................................. 90 

9.2.6. The emulator ................................................................................. 90 

References........................................................................................................ 91 

Appendix ........................................................................................................... 92 

A: The project code ....................................................................................... 93 

  



Emulator of the read-out chain 8/126 
 

 

1. Introduction 

 

 This chapter provides base information of CERN, Totem 

experiment hardware and software.  The main purpose is to give background 

knowledge of the environment the thesis is done. 

 

 

1.1. CERN 

 

 CERN, the European Organization for Nuclear Research, is one of 

the world‘s largest and most respected centers for scientific research. Its 

business is fundamental physics, finding out what the Universe is made of and 

how it works. At CERN, the world‘s largest and most complex scientific 

instruments are used to study the basic constituents of matter — the 

fundamental particles. By studying what happens when these particles collide, 

physicists learn about the laws of Nature.  

The instruments used at CERN are particle accelerators and 

detectors. Accelerators boost beams of particles to high energies before they 

are made to collide with each other or with stationary targets. Detectors observe 

and record the results of these collisions. 

Founded in 1954, the CERN Laboratory sits astride the Franco–

Swiss border near Geneva. It was one of Europe‘s first joint ventures and now 

has 20 Member States.  

  



Emulator of the read-out chain 9/126 
 

 

1.2. LHC 

 

Large Hardron Collider (LHC) [1] is the world‘s largest particle 

accelerator, intended to collide opposing particle beams, of either protons or 

lead nuclei. 

 

 

Picture 1.2: The LHC ring, as it goes underground 

 

  



Emulator of the read-out chain 10/126 
 

 

1.3. CMS 

 

CMS stands for Compact Muon Solenoid: compact because it is 

―small‖ for its enormous weight, muon for one of the particles it detects, and 

solenoid for the coil inside its huge superconducting magnet.  It is a high-energy 

physics experiment in Cessy, France, part of the Large Hadron Collider (LHC) 

at CERN.  CMS is designed to see a wide range of particles and phenomena 

produced in high-energy collisions in the LHC.  Like a cylindrical onion, different 

layers of detector stop and measure the different particles, and use this key 

data to build up a picture of events at the heart of the collision.  

Scientists then use this data to search for new phenomena that will 

help to answer questions such as: What is the Universe really made of and 

what forces act within it?  And what gives everything substance?   CMS will also 

measure the properties of previously discovered particles with unprecedented 

precision, and be on the lookout for completely new, unpredicted phenomena. 

[2] 

 

Picture 1.3: The CMS in building phase (2008) 



Emulator of the read-out chain 11/126 
 

 

1.4. TOTEM experiment 

 

 The Total Cross Section, Elastic Scattering and Diffraction 

Dissociation (TOTEM) [3] experiment — small in size compared to the others at 

the LHC — dedicated to the measurement of the total proton-proton cross-

section.  TOTEM‘s physics program aims at a deeper understanding of the 

proton structure.  The experiment is divided to three detectors, Roman Pots, T1 

and T2.  Each detector is shortly described in the following chapters. 

 

 

Picture 1.4: The TOTEM forward trackers T1 and T2 embedded in the CMS detector 
together with the planned CMS forward calorimeter CASTOR. 

 

  



Emulator of the read-out chain 12/126 
 

 

1.5. Roman Pots 

 

Roman Pots (RP) [7] — placed at about 147m and 220m from the 

interaction point, designed to detect leading protons at merely a few mm from 

the beam centre.  The proton detectors in the Roman Pots are silicon devices 

designed by TOTEM with the specific objective of reducing the insensitive area 

at the edge facing the beam to only a few tens of microns. 

 

Picture 1.5: Roman Pots 

 

 

  



Emulator of the read-out chain 13/126 
 

 

1.6. T1 

 

The particle telescope closest to the interaction point (T1, placed at 9 

m) consists of Cathode Strip Chambers (CSC) [4]. 

 

Picture 1.6: T1 

 

 

  



Emulator of the read-out chain 14/126 
 

 

1.7. T2 

 

The T2 particle telescopes located at 13.5m on both sides of IP5 are 

detecting charged particles.  The gaseous electron multipliers (GEM) [5] were 

selected for detectors of the T2 telescope.  The T2 detector consists of 40 GEM 

detectors arranged in four quarters, each having ten detectors.  Each GEM 

detector consists from so called pads and strips.  The pads and strips form a 

net of wires, the pads creating vertical wires, and the strips creating horizontal 

wires.  This way the coordinates of the particle hit location is defined.  Each 

detector is read out by 17 VFAT microchips, 13 for the pads (120 pads per 

VFAT) and 4 for the strips (128 strips per VFAT).   

 

 

Figure 1.2: One quarter of T2 detector installed. 

  



Emulator of the read-out chain 15/126 
 

 

1.8. Read-out chain hardware 

 

The read-out of all TOTEM subsystems is based on the custom-

developed digital VFAT chip [6] with trigger capability.  The data acquisition 

(DAQ) system is designed to be compatible with the CMS DAQ to make 

common data taking possible at a later stage. 

The VFAT is the chip which reads the information directly from the 

sensor.  Data packets are transmitted from the VFAT outputs at a bit rate of 40 

Mb/s. The data is serialized and transmitted to the counting room via optical 

links.  All VFATs operate synchronously.  Once in the counting room the optical 

fibers are connected to the VME64x Host boards.  The incoming optical fibers 

are connected to optical receiver modules called optoRx-12.  From the VME 

card the data is read by a PC cluster. 

The host board is also called as a TOTFED.  TOTFED stands for 

TOTEM Front End Driver. 

 

 

Picture 1.3: VME64x Host Board 



Emulator of the read-out chain 16/126 
 

 

1.9. PC Data Acquisition software 

 

 The PC cluster is built on Linux.  The data acquisition software is 

standing on the XDAQ toolkit, which is middleware for distributed data 

acquisition systems.  The XDAQ is under the BSD license.  The platform has 

three components: 

 

- Core Tools contains all required packages to start working with XDAQ. 

 

- Power Pack contains packages that make it easier to develop distributed 

DAQ systems. 

 

-  Work Suite contains DAQ tool programs such as an event builder and 

readout components. 



Emulator of the read-out chain 17/126 
 

 

2. Development tools 

 

 Several tools were used in the development process and in this 

chapter we shortly introduce the tools used. 

 

 

2.1. Trac 

 

 The following is Trac authors comment of what is Trac. [1] 

 Trac is an enhanced wiki and issue tracking system for software 

development projects. Trac uses a minimalistic approach to web-based 

software project management. Our mission is to help developers write great 

software while staying out of the way. Trac should impose as little as possible 

on a team's established development process and policies.  

It provides an interface to Subversion (or other version control 

system), an integrated Wiki and convenient reporting facilities.  

Trac allows wiki markup in issue descriptions and commit 

messages, creating links and seamless references between bugs, tasks, 

change sets, files and wiki pages. A timeline shows all current and past project 

events in order, making the acquisition of an overview of the project and 

tracking progress very easy. The roadmap shows the road ahead, listing the 

upcoming milestones.  

 

 

  



Emulator of the read-out chain 18/126 
 

 

2.2. Agilo 

 

 Agilo is a free plugin for Trac. [2] It modifies Trac for easier 

handling of Scrum like software development processes.  This includes things 

like sprints and user stories.  Agilo is not mature software, but it is easily 

enough for this kind of thesis project. 

 

 

2.3. gdb 

 

 The GNU Debugger, gdb is a debugging tool used from shell. [3] 

 

 

2.4. valgrind 

 

 Valgrind is a software analysis tool. [4] In the thesis we use valgrind 

to check memory leaks.  Memory tests are done by creating testers for the 

classes and running those under Valgrind. 

 

 

2.5. Make 

 

 Make belongs to GNU´s not unix autotools family, or more 

commonly just GNU. [5] Autotools have many small applications to make 

developers life easier.  We only use Make because we produce code in own 

project which will be later integrated to a bigger project.  Make is sufficient to 



Emulator of the read-out chain 19/126 
 

 
check that all compiles, including the testers.  The following listing is official 

statement of the capabilities of GNU Make. 

 

- Make enables the end user to build and install your package without 

knowing the details of how that is done -- because these details are 

recorded in the makefile that you supply.  

 

- Make figures out automatically which files it needs to update, based on 

which source files have changed. It also automatically determines the 

proper order for updating files, in case one non-source file depends on 

another non-source file.  

As a result, if you change a few source files and then run Make, it does 

not need to recompile all your program. It updates only those non-source 

files that depend directly or indirectly on the source files that you 

changed.  

 

- Make is not limited to any particular language. For each non-source file 

in the program, the makefile specifies the shell commands to compute it. 

These shell commands can run a compiler to produce an object file, the 

linker to produce an executable, ar to update a library, or TeX or 

Makeinfo to format documentation.  

 

- Make is not limited to building a package. You can also use Make to 

control installing or deinstalling a package, generate tags tables for it, or 

anything else you want to do often enough to make it worthwhile writing 

down how to do it.  

 

 



Emulator of the read-out chain 20/126 
 

 

2.6. Editors 

 

 Multiple different code editors were used but the main tools were 

gedit [6] and vim [7].  These are simple text editors with syntax highlighting 

property.  No integrated development environment (IDE) was used.  gedit is a 

graphical editor provided by Gnome project, and vim is a text based editor used 

from shell. 

 

 

  

  



Emulator of the read-out chain 21/126 
 

 

3. Development process 

 

 Project management keeps track of progress and creates discipline 

and commitment to complete on time.  In this thesis the same person is the 

worker as well as the manager, but it does not make it less valuable to manage. 

The chapter is divided in two sections. The first part contains 

introduction to the SCRUM.  The second part contains an introduction to the 

development process used in this thesis. 

 

 

3.1. Scrum 

 

Scrum is a name of a development process.  The main goal is to 

quarantine something deliverable on time and in budget.  The other processes 

try to do the same, but it may not be the main focus to get something delivered.  

As an example another process may prioritize quality of the design. 

The scrum belongs in the agile development process family.  In 

similar way the scrum is iterative meaning simply that the work is done in short 

iterations.  In iteration the currently highest priority features are done.  After 

iteration the product may not be finished, but it should be deliverable.  Iteration 

contains time for requirements, design and implementation.  In this way you do 

not need all the requirements immediately, and you do not have to design the 

whole software beforehand.  In this way the process provides agility to the 

software development 

This thesis does not go deep into the scrum itself, but we go 

through some of the main terms. [8] 

 

 



Emulator of the read-out chain 22/126 
 

 
3.1.1. Daily meetings 

 

In the scrum it is normal but not mandatory to have daily meetings.  

These are kept to improve team communication.  The main subjects are to find 

out what people have done yesterday, what they are going to do today and if 

any new problems have arisen. 

 

3.1.2. Burn down chart 

 

The burn down chart is a chart where on the x axel is the time in 

days, and on the y axel is the hours of work still to be done.  The burn down 

chart helps to visualize if the project is going to be finished in schedule.  This is 

maybe the most important tool offered by the scrum. 

 

3.1.3. Backlog 

 

A backlog is simply a list of tasks.  There are multiple different 

backlogs depending of the purpose.  The backlogs help people to prioritize 

tasks and to focus on essential. 

 

3.1.4. Product backlog 

 

In every phase of products life cycle there is most probably a list of 

tasks to be done.  Tasks can be any tasks from maintains tasks to 

implementation tasks.  In the scrum all the tasks to be done for one specific 

product are collected in the product backlog.  Some of these tasks may never 

be done, but those are still in the backlog because we never know if we actually 

have time later on. 



Emulator of the read-out chain 23/126 
 

 
3.1.5. Release backlog 

 

Production is often split to releases.  A release is an initial or 

upgrade version of a software product.  The length of a release is normally 

somewhere between three and twelve months, but there really is not any 

minimum or maximum length.  A release backlog contains all the tasks defined 

to be done in the specific release.  These tasks are chosen from the product 

backlog.  The release backlog is not mentioned in all the resources of scrum, 

but it is highly useful, and used in this thesis project. 

 

 

3.1.6. Sprint backlog 

 

This chapter is only a short introduction, and does not try to explain 

all what is defined around sprints.  It is highly recommended to read scrum 

manuals for more information. 

A sprint is the same as an iteration.  In scrum, it is a short period of 

time, normally three to thirty days.  A sprint backlog is a list of tasks to be done 

in this specific sprint.  A release contains multiple sprints, and the tasks to sprint 

backlog are brought from the release backlog.  If a next release is planned to be 

done in six months, and a sprint is defined to be one month long, there will be 

six sprints in the release. 

A sprint is more than just a period of time, it is a well defined 

production step.  When a sprint plan is done, accurate definition of product 

evolution is done.  It measures the progress, did the team get all the sprint tasks 

done or are we behind the schedule.  If the sprint was difficult and the team was 

able to finish only half of the tasks, we can estimate immediately that we are not 

able to finish all the tasks in this release. 

 



Emulator of the read-out chain 24/126 
 

 
3.1.7. Product owner 

 

Product owner is a person who is maintaining the product backlog.  

He is the person who prioritizes the features needed most by the stakeholders.  

He is responsible that the team is doing what is needed most at the moment. 

 

 

3.1.8. Scrum master 

 

The scrum master is more or less like a project manager.  His main 

task is to open any blocker situations, like a ―broken monitor‖ situation.  There is 

not just one type of scrum masters, but instead the role is adaptive.  If the 

scrum master is technically strong, he can help with unexpected technical 

problems.  If he is not technically strong he has to be able to find someone to 

solve the problem. 

 

 

3.1.9. Subject matter expert 

 

There are rarely position called subject matter expert, this person is 

simply someone who knows some area really well.  It can be some specific 

software knowledge or knowledge from the area the software is done.  These 

persons are anyway the ones who know the best how long it takes to finish 

some specific task.  In this way they are very valuable for any project and 

project manager. 

 

 

  



Emulator of the read-out chain 25/126 
 

 

3.2. Development process 

 

A development process helps people in the project to work in 

deterministic way.  There are many different process models to choose and 

there is lot of theory behind the facts why things are done like those are done.  

There is no reason to force to use some model exactly like it is if it does not fit, 

but we can still take guidelines.  Accurate explanation of different processes 

does not fit in the scope of this thesis, so only mainlines are shortly introduced.  

The process used in this thesis is slightly simplified scrum.  The scrum is good 

as it is, but in this project I just did not feel a need for everything. 

The product owner and the subject matter expert in the project is 

the supervisor.  The role of scrum master and scrum team is left for me.  The 

daily meetings of scrum are removed.  In this project we have only one person 

working day by day, so there really is not any reason to have one.  The project 

progress and estimate is still checked daily.  The burn down charts were not 

used either, even that those are normally highly useful.  The progress of this 

small project was easy to follow, so drawing charts could not bring any extra 

benefits. 

The product backlog is not used in the thesis project.  The focus is 

all the time kept in the tasks actually done in the thesis.  The release and sprint 

backlogs have more details.  A sprint is used to collect all the tasks which 

belong to specific phase in the project life.  In some cases a sprint can contain 

only one task.  It is used to concentrate the focus so that the project goes 

forward in deterministic way. 

 

  



Emulator of the read-out chain 26/126 
 

 

4. Software design 

 

 This chapter introduces common software design topics, which are 

important to take care or just good to have in almost any project.  This theory is 

also used as a base for this thesis project. 

 

 

4.1.1. Maintainability 

 

 The maintainability is often forgotten in the design, but in fact this is 

an important thing to take care.  It is rare that software once written will never 

be touched again.  It is also common that there are more people working with 

the same piece of code, if not with the initial version, but probably in some 

phase of codes life time.  Maintainable software is something where is easy to 

come back, and it is fast to understand for everyone.  An inexperienced 

programmer does not usually understand or believe that he will forget the code 

soon after he stops working with it.  It is also common that an inexperienced 

programmer tends to make ―smart‖ hacks or complicated code, almost like 

proving that he knows how to code.   This may even lead to a syndrome where 

a programmer writes as tricky and complicated code as he can.  It is also 

common, unfortunately, that the management does not understand 

maintainability, or they understand that the maintainability is important, but they 

do not know what is affecting to it. 

 We divide the maintainability issue to following three sections; 

documentation, clear design, and low inheritance tree. 

 

 

  



Emulator of the read-out chain 27/126 
 

 
4.1.1.1. Documentation 

 

 Documentation is probably one of the least valued things, but still 

being one of the most important.  Humans tend to see the current situation, but 

not to think much of the future.  It is like smoking, person thinks that is ok until 

he or she gets a lung cancer.  Missing documentation does not kill, but a big 

project without documentation is heavy for any development team.  A good 

documentation provides fast route to understand the architecture and 

implementation.  It shares the information efficiently through the project group 

and it decreases the need of specialists.  A specialist is a person who knows 

and remembers the code which others do not, and so comes important key 

member in the group.  Documentation helps new people to get in the project 

without using time of others, and so decreases the need of specialists.  It helps 

to make estimates of development times, and it makes development faster.  If 

you have a bug in your software which could also be a feature, a good 

document will clarify it.  Sadly in many companies they do not write 

documentation, and if they have not got used to have one, they do not know 

how to value it.  The budget and time saved by documentation will not be seen 

immediately, but at the next time when somebody has to dig in the code, it feels 

like a life saver. 

 There are many kinds of documents and this thesis takes 

advantage from two of the most important ones.  The first one is the Application 

Programming Interface (API) documentation and the second one is the design 

document. 

 

 

4.1.1.1.1. Application Programming Interface (API) 

 

The most important software project documentation is the 

Application Programming Interface (API) documentation.  This is the one made 

especially for the developers.  The purpose is to help a programmer to 



Emulator of the read-out chain 28/126 
 

 
understand how a piece of software is meant to be used, without need to look in 

the source file.  It is useful to write one even if some parts are easy to 

understand, API documentation also verifies what is wanted.  It does not take 

much time to write a simple API document, and even a simple one is multiple 

times better than no documentation at all. 

 

 

4.1.1.1.2. Design document 

 

The second most important is the architecture design document.  

The document contains information how pieces of software are connected to 

each other.  Once again a short description is multiple times better than no 

documentation at all.  For example an application which contains ten classes 

and no documentation, it is most definitely time taking to figure out how those 

are working together.  A short description of what those do and why, and how 

those are communicating with each other, makes the developers job much 

faster. 

 

 

4.1.1.2. Clear design 

 

 A clear design and implementation, it immediately shares opinions 

and flames war.  Let‘s drop most of it away and let‘s concentrate to the humans 

reading code.  Usually humans cannot remember million unorganized lines of 

code.  To handle this we usually categorize the code and separate it to multiple 

entities, each entity fitting nicely in one source file.  Then we separate the 

functionality and write each one of those in its own function.  The function size 

should be equal or less the size a person can parse and remember easily.  This 

is probably the most important rule from all of those. 



Emulator of the read-out chain 29/126 
 

 
 More important over the source file issues is the header file, which 

sums the functionalities which are offered by the source file.  A header file is 

often the only thing read by other developers.  This is the reason why a header 

is more important.  There is only one rule for a clear header file, keep it simple.  

Remove everything that is not mandatory, or transfer into the source file.  

Remember that the humans are slow to parse code, and more characters and 

lines there is to parse, more awkward it is to use. 

Do not implement anything too far to the future.  It often happens 

that those ―maybe needed‖ features are actually never needed.  If you 

implemented something you needed or you thought you would need, there is no 

reason to remove it, if it could be still used in some other situation.  This is not a 

statement to say that feature full classes are bad, but instead that a class full of 

unused features is. 

 

 

4.1.1.3. Low inheritance tree 

 

 Inheritance is one way to reuse code, and reusability is good, so 

why not then deep inheritance trees?  Every class in the tree is more or less 

static, connected from the top and under.  You cannot take anything from the 

middle, and a tiny change will affect to every class inherited.  This makes the 

whole tree actually static, and leads to monolithic design. 

 Everyone who has been building class hierarchies, inheritance 

trees, has ended up to a situation where it is not so easy to decide in which 

class a feature X belongs.  It is also common that in the half way of 

implementation you have to move a feature in the tree, and change every object 

related to the feature.  It usually needs lot of thinking to get all correctly in a big 

class hierarchy.  Remember, when things get complicated something is 

probably going wrong. 

 



Emulator of the read-out chain 30/126 
 

 
 

4.1.1.4. Memory management 

 

 The memory management is a huge subject to speak, and there 

are many books from different memory managers and models.  This thesis does 

not go deep in any manager or model, or neither tries to implement one.  The 

memory management is still important area and should not be forgotten. 

 The code should be written in way that the memory is freed in 

logical places and systematically.  More memory management you can write off 

from the hands of class user, the better.  In this thesis we use C++ language, 

which provides a nice feature called auto pointer, which helps exactly in 

previous. 

Another thing, which is actually often forgotten or unknown, is the 

memory fragmentation.  Sure, it is not the most important thing for a 

programmer to remember, and many programmers do not even care of it.  

Memory fragmentation hits to the performance of processor cache and to the 

used memory manager.  A memory manager in a project is usually centrally 

handled, and the main improvement done is that, it does not let the memory to 

fragment. 

The hit to the cache performance comes from the fact that it is hard 

for a processor to predict which piece of memory will be needed for next.  This 

increases the amount of cache misses, which directly affects to the 

performance. 

 

 

  



Emulator of the read-out chain 31/126 
 

 
4.1.2. The PIMPL idiom 

 

 The PIMPL stands for ―Private Implementation‖ or ―Pointer to 

Implementation‖.  The main purpose is to decrease project compiling time, but it 

has multiple other benefits as well. 

 The main idea is to move all private members to a local class, to a 

class which is in the source file.  All internal declarations are done in the source 

file.  If you need more private members you add those to the private class in the 

source file.  You only modify the header file when you need to change the API. 

Some say that the code comes more complicated, but when 

compared to the things it simplifies, it is well worth it.  For next the pros and 

cons we achieve with this.  The last two sections in this chapter show different 

implementation options. 

 

 

4.1.2.1. Compile time 

 

Modifications to private implementation do not initiate recompilation 

of every file.  Only API modifications initiate recompiling.  If you need a new 

private member, you add that to the private class.  Only this one source file has 

to be recompiled. 

 

 

4.1.2.2. Data protection 

 

 The data is protected, encapsulated well. 

 



Emulator of the read-out chain 32/126 
 

 
 

4.1.2.3. Clear header 

 

 As most of the definition goes in the source file, the header is bare 

and clear.  The header file now defines the API, but not internal implementation.  

The header is the one read by other developers, and the header without private 

implementation is just easier and faster to use. 

 

 

4.1.2.4. Application Binary Interface 

 

 The ABI is more stable, because every implementation change 

does not affect to it.  Example: If a developer optimizes the implementation and 

needs a cache pointer, this new member variable is declared in the private 

implementation class.  This does not change the binary size of the public class, 

and the ABI stays untouchable. 

 

 

4.1.2.5. Performance hit 

 

 It is true that the performance is not as good in all cases.  This is 

mainly because it uses more indirect references.  The performance hit is 

minimal and does not matter really, not even in highly optimized code. 

 

 

  



Emulator of the read-out chain 33/126 
 

 
4.1.2.6. Implementation: The PIMPL pointer 

 

 From our two implementation examples this is probably the most 

common way to implement, and that is why we introduce it first.  The 

implementation is simple.  In the source file we declare a class, which will 

contain the private implementation.  In the header file we add a forward 

declaration to the private class, and in the public class we add a pointer to the 

private class. 

 

/* file - source.c */ 

 

class Apimpl 

{ 

 /* Our private implementation */ 

}; 

 

 

 

/* file - header.h */ 

 

class A 

{ 

private: 

 class Apimpl; 

 Apimpl *pimpl; 

}; 

 

 

The only negative sides from this implementation are, the extra 

space used by the pointer and the memory fragmentation. 

 

 

  



Emulator of the read-out chain 34/126 
 

 
4.1.2.7. Implementation: Inheritance from public virtual class 

 

This implementation is based on a pure virtual class declared in the 

header file.  This class defines the interface, the API how the class shall be 

used.  Also it is mandatory to declare a newObject function in the header file.  

The rest of the implementation goes into the source file, where we declare the 

private implementation class inherited from the virtual base class.  The 

newObject function creates the object from the private class and returns it as a 

pointer to virtual base class. 

 

/* file – source.c */ 

 

class Apimpl : public A 

{ 

 /* Our private implementation */ 

}; 

 

 

/* file – header.c */ 

 

class A 

{ 

/* Our public implementation */ 

}; 

 

A newA (void); 

 

 

The negative side of this implementation is that the inheritance from 

this class is impossible.  Even that this sounds like a radical flaw, it is not really 

that radical.  If you calculate the times you had to inherit from some class and 

your architecture was not built in high inheritance tree, you probably notice that 

it is not that big flaw.  If you really have to inherit from some class, this 

implementation is not to be used. 

From the positive side, this does not add any pointers, nor creates 

any extra memory fragmentation.  The implementation is a bit clearer one too.  

This is the implementation style used in the code written in this thesis. 



Emulator of the read-out chain 35/126 
 

 
4.1.3. C++ templates 

 

 Templates are powerful but when over used, the consequences 

can be fatal.  Create templates only in cases where the implementation does 

not require anything from the used type.  As a rule of thumb, create a template 

from container and auto pointer classes only. 

 

 

4.1.4. Compiling time 

 

 Compiling time may not seem to be so important, but especially in 

large projects it is.  If the issue is properly taken care, compiling time can be 

many times faster.  This thesis introduces three ways to improve compiling time. 

 

 

4.1.4.1. The PIMPL idiom 

 

 As introduces before, the PIMPL structure does not change the 

public interface so often.  This can dramatically decreases the need to 

recompile in rapid development. 

 

 

4.1.4.2. Include guard 

 

 This means that every header is #included only once.  This is done 

by using so called include guards.  There are internal and external include 

guards, which work slightly differently.  If the compiler implements internally the 



Emulator of the read-out chain 36/126 
 

 
external include guard, the internal include guard is faster.  If this is not 

internally implemented, manual use of external guard is faster.  GCC and 

Cygwin environment are implementing the external guard internally, so only use 

of internal guard is needed. 

 

/* file – internal.h */ 

 

#ifndef __INTERNAL_H__ 

#define __INTERNAL_H__ 

 

/* Definitions in the intern.h */ 

 

#endif /* __INTERN_H__ */ 

 

 

 The internal include guard skips the definitions if the file has been 

introduced already. 

 

 

/* file – external.c */ 

 

#ifndef __EXTERNAL_H__ 

#include “external.h” 

#endif 

 

The external include guard goes one step further and it checks the 

need for header already in the source file.  The additional performance gain 

comes, because the compiler does not have to find and open the file for 

reading.  If the external include guard is implemented in the compiler, the 

compiler automatically checks if the file has been already read.  This thesis 

does not go deeper in the subject, but it is easy to find more information from 

internet in case needed. 

 

 



Emulator of the read-out chain 37/126 
 

 
4.1.4.3. Forward declaration 

 

 Include a header when you have to use the API in it, but if you only 

refer to the class in the header, use forward declaration. 

 



Emulator of the read-out chain 38/126 
 

 

5. The emulator 

 

 The goal of the emulator project is to make the development of data 

acquisition software possible without a real hardware.  The hardware to be 

emulated consist VFAT chips, Front End Card (FED) and VME host board.  The 

VFAT chips are the ones reading the information from the sensors.  The FED 

then reads the information from the VFAT chips.  In the FED the electronic 

signal from VFAT chips is changed to optical signal, which then goes to VME 

host board.  On the VME host board, the optical signal is read by an OptoRX 

card.  From the VME host board the packet continues through S-link or VME 

bus.  The packet leaving either from S-link or VME bus, is the packet the 

emulator produces.  The hardware layout is shown in the picture 5.1.   

 

 

 

 

 

 

 

Picture 5.1: The hardware to be emulated. 

 

The project is divided in three separated subprojects.  The thesis 

contains also schedule chapter.  The schedule chapter is project management 

chapter, concentrating to releases and sprints.  The schedule is reviewed first 

and later comes the real implementation chapters.  In the first subproject the 

CRC algorithm is optimized, and the results are verified by benchmarking the 

old and new algorithms.  In the second subproject a CRC class is created, 

  VFAT

T 

 

  VFAT

T 

 

Front End 

Card 

FED 

VME Host board 

OptoRX 

OptoRX 

S-Link 64 

VME Bus 



Emulator of the read-out chain 39/126 
 

 
which uses the information gathered in the previous sprint.  In the third 

subproject the emulator class is created. 

 

 

 

 

 

 

 

 

Picture 5.2: The subproject. The timeline goes from top to bottom. 

 

 The last thing before moving forward is to introduce the idea of 

simplicity.  Everything in the thesis has been done simplicity in mind, even the 

process and management.  Remember still, simple is not the same as easy. 

 

“Keep It Simple, Stupid” – Some unknown developer 

  

CRC Optimization 

CRC Class implementation 

Emulator implementation E
m

u
la

to
r 

p
ro

je
c

t 



Emulator of the read-out chain 40/126 
 

 

6. Project schedule 

 

The chapter contains how the project schedule was built and 

success level estimations.  The schedule is done only from the implementation 

subprojects.  There are no technical details or requirements in this chapter.  

Technical information is left for the later chapters.  A tool called Trac was used 

with the Agilo plugin to track the progress of the project.  Trac was chosen 

because it is commonly used.  The agilo was chosen because it provides 

additional tools for agile development. 

The budget is enough for six months, which is the same as the size 

of master´s thesis and that creates also the deadline.  There is no project post 

management in the thesis, like bug tracking.  The post management is left for 

the next CERN developers. 

The first month was used to get information of environment, and 

parties working in it.  This period was important because it helped to understand 

where and why this work is needed.  This period also opened the terminology to 

understand what people in the experiment were talking.  The period was built 

from courses, different meetings, introduction tasks and from opportunities to 

see the real hardware.  Also hardware installations were done, like installation 

of a quarter of T2 detector.  This month is shortly described in the introduction 

chapter. 

In the second month, planning of the thesis began with more 

details.  The scope and the objectives were defined.  The project definitions 

from the second month are part of this chapter.  Also the details of the project 

management for the whole project are in this chapter. An initial schedule was 

created, with a big picture view to the project.  The last four months were more 

interesting from the thesis point of view and are separated under own sections. 

 In the tables which show the sprints done, the duration of a sprint 

does not mean the days of work spent to the sprint.  Instead it means how many 

working days there are between the start and end dates.  The possible holidays 



Emulator of the read-out chain 41/126 
 

 
are calculated in the duration as well.  The real time used is clarified in the 

sprint stories.  Only the implementation sprints contain the separated task lists. 

 As will be seen, there are study sprints which are more or less one 

task sprints.  The study sprints would not be normally as their own sprints, but 

because in this case it is impossible to estimate the implementation sprint, 

before the study sprint is completed.  Normally the study sprints are contained 

in some earlier sprints. 

 

 

6.1.1. Emulator project release 

 

 This is a release where goes all the management tasks and tasks 

which do not belong to any specific release.  The release begins 23.03.2009 

and ends 31.07.2009.  The days before the day 23 were more or less static and 

I was not personally managing this period.  The period contained introductions, 

meetings, courses related to the CERN, TOTEM experiment and this thesis 

(like. security course).  The tasks and sprints done in this release have least 

documental value, and that is the reason why this release is mostly scoped out 

from this document.  The following table shows the sprints done in the emulator 

project release. 

 

Sprints Start End Duration 

Setup environment 13.04.2009 17.04.2009 5 

Project 

management 

02.07.2009 08.07.2009 5 

 

Table 2.2.1: The sprints of the emulator project release 

 

 



Emulator of the read-out chain 42/126 
 

 
6.1.1.1. Setup environment 

 

 The goal of the sprint was to setup the software environment.  The 

sprint combined studies of what should be installed, and the installations.  The 

used computer was so new that it was not possible to install the scientific Linux, 

without spending lot of hours.  Ubuntu was installed with the XDAQ.  The XDAQ 

is only designed to work with the scientific Linux, so problems were 

encountered but all began to work in the end.  Later a virtual machine was 

used, as it should have been used in the first place.  This move would have 

saved lot of time. 

 

 

6.1.1.2. Project management 

 

 The status of the project was carefully checked, and it seemed that 

the time was running short.  Big part of project management related information 

was sorted, filtered and documented.  This chapter is part of this 

documentation. 

 

 

  



Emulator of the read-out chain 43/126 
 

 
6.1.2. Optimize CRC algorithm release 

 

 The goal of the release is to optimize CRC algorithm.  The following 

table shows the sprints completed in this release. 

 

Sprint Start End Duration 

CRC Studies 23.03.2009 03.04.2009 10 

CRC Studies 2 06.04.2009 10.04.2009 5 

CRC prototype and 

benchmark 

20.04.2009 08.05.2009 15 

CRC Optimization 

documentation 

11.05.2009 22.05.2009 10 

 

Table 5.1.2: The sprints of the CRC Optimization release 

 

 

6.1.2.1. CRC studies 

 

 The whole domain was new so it was impossible to estimate 

accurately how long it would take to study it.  Two weeks were reserved and in 

the end of the sprint things were still unknown.  The amount of information 

around CRC algorithm was underestimated. 

 

 

6.1.2.2. CRC study 2 

 

 CRC studies sprint was too short, so another study sprint was 

initiated.  This time one week was reserved, but one day from this was not 

needed to be used to the sprint.  The sprint succeeded, and the optimization 

studies were completed. 



Emulator of the read-out chain 44/126 
 

 
6.1.2.3. CRC prototype and benchmark 

 

 First a prototype was written in C, and tested that it can produce 

correct CRC calculations.  After this it was benchmarked and a small library was 

built.  Initial plan of the CRC class was built as well.  For this period there was 

lot of issues from outside of the sprint and because of that the estimate was set 

to 15 days.  There was ten days of active sprint hours.  The optimization was 

success and clear performance improvement was achieved. 

 

 

6.1.2.4. CRC optimization documentation 

 

 This was straight forward documentation sprint.  A part of this 

documentation is included in the thesis.  This sprint contained 8.5 days of actual 

work. 

 

 

6.1.3. Implementation of CRC Class 

 

 The goal of the release is to create a CRC class.  The following 

table shows the sprints completed in this release. 

 

Sprint Start End Duration 

C++ Studies 22.05.2009 26.05.2009 3 

CRC Class 27.05.2009 04.06.2009 7 

CRC Class 

documentation 

08.06.2009 12.06.2009 5 

 

Table 2.2.3: The sprints of implementation of CRC Class release 

 



Emulator of the read-out chain 45/126 
 

 
6.1.3.1. C++ studies 

 

 This did not include much syntax studies, but instead how to use 

C++ to create a good design and implementation.  This was very educational 

and very successful sprint.  The chapter software design has lot of old 

experience, but it also shows some of the fruits collected in this chapter. 

 

 

6.1.3.2. CRC class 

 

 This was the implementation sprint.  The design task in the sprint is 

a task from where design hours were taken slowly while the project was getting 

forward.  The following tables are showing the initial estimate and the later one 

the real hours spent. 

 

 

Image 2.2.3.2.1: CRC Class task list with estimates 

 



Emulator of the read-out chain 46/126 
 

 

 

Image 2.2.3.2.2: CRC Class task list with real hours spent 

 

 In the later chapters there is AutoMap class which is not in this list.  

This is because the need for this class was found in implementation phase.  

AutoMap hours are included in the CrcChecker class.  There was a design flaw 

which was fixed, but luckily the sprint was success also with the additional work. 

 

 

6.1.3.3. CRC class documentation 

 

 This was straight forward documentation sprint.  The estimate for 

this sprint was five days but it was finished in four days. 

 

 

  



Emulator of the read-out chain 47/126 
 

 
6.1.4. Implementation of emulator class 

 

 The goal of the release is to implement the emulator class.  The 

release is the last one before the deadline, and the schedule was getting really 

tight.  The following table shows the sprints completed in this release. 

 

Sprint Start End Duration 

Study the data 

acquisition packet 

frames 

09.07.2009 15.07.2009 5 

Implementation of 

the emulator class 

14.07.2009 24.07.2009 9 

 

Table 6.1.4: The sprints of Implementation and integration of emulator class 

release 

 

 

6.1.4.1. Study the data acquisition packet frames 

 

 The goal of this sprint was to learn how the packets of data 

acquisition are constructed, and which part of the data has to be emulated and 

how.  The information was collected through meetings and using documentation 

provided by CERN. [16][17]  The sprint was two days shorter than it was 

estimated. 

 

 

  



Emulator of the read-out chain 48/126 
 

 
6.1.4.2. Implementation of the emulator class 

 

 The goal of the sprint is to implement the frame classes and 

emulator classes.  There were four separated tasks in the sprint.  See the task 

estimates from the following table, and the real hours spent from the second 

table.  

 

Task Estimate 

Implementation of hor2ver 8h 

Implementation of vfatgenerator 24h 

Implementation of optorxemulator 20h 

Implementation of totfedemulator 20h 

Total: 72h 

 

Table 6.1.4.2.1: Estimated hours. 

 

Task Real hours 

Implementation of hor2ver 8h 

Implementation of vfatgenerator 22h 

Implementation of optorxemulator 18h 

Implementation of totfedemulator 16h 

Total 64h 

 

Table 6.1.4.2.1: Real hours spent. 

 

The estimation was enough this time as well.  It is actually rare that 

the estimates are well succeeded, it is really hard to make reliable estimate.  

Usually the projects are late, or there are long hours before the deadline.  One 

part why the estimates were so good is probably because this was done as a 

study.  There were more time and also discussion how things should be done, 

compared to normal industrial way.  A one good point here is anyway that all 

the tasks are small, none is measured as a one week long tasks.  It is just 

easier for us to measure small tasks than large ones. 

 



Emulator of the read-out chain 49/126 
 

 

7. Optimization of CRC Algorithm 

 

 The Cyclic Redundancy Check (CRC) is an error detection 

technique invented by W. Wesley Peterson in 1961.  Error detection is 

important when transferring data through noisy channel and we want to be sure 

that the data was not corrupted.  To achieve this we calculate a value 

representing the data, and we append the value to the end of the sent data.  

The receiver calculates the value from the data it received in the same way, and 

compares that to the value calculated by the transmitter.  If the values match, 

the data is assumed to be correctly received. 

 There are many different techniques to detect errors and none are 

bullet proof.  The main problem is that from multiple different data streams we 

can get exactly the same checksum.  Usually an error detection technique is 

evaluated by how fast it is to execute and how error proof it is.  The CRC is 

currently popular because it is easy to implement in binary hardware, 

mathematics are simple, and it has been proven to be efficient in error 

detection.  The IEEE recommended 32 bit CRC in 1975 and now it is widely 

used, like in Ethernet networks.  



Emulator of the read-out chain 50/126 
 

 

7.1. Primitive error detection 

 

 This chapter introduces a primitive error detection technique.  The 

reason is to show a simple example why none of the error detection techniques 

can be 100% reliable. 

The simple technique sums all the bytes in a message in a byte 

wide register and the total is the checksum.  As we can understand, multiple 

different combinations can produce a same checksum.  The byte position, total 

length of data and value could change in many ways, and we still could have 

the same checksum.  As an example we have three bytes: 

 

Data:  2  14  8 

Data with checksum: 2  46  8  56 

Erroneous data: 2  47  8  56 

Undetected error: 2  8  46  56 

 

The data is the data to be transmitted.  The data with checksum is 

the data with checksum appended to the end of it. The underscored byte is the 

checksum byte.  In the erroneous checksum case we can see how the 

checksum would detect an error because 2+47+8=57, instead of 56.  The 

undetected error is the received data which is corrupted, but the checksum is 

still valid and the error would go undetected.  As we can see, an error of n bytes 

long can go undetected if there is just one byte with a compensating error. 

 By using a wider register, like 16bits, we could get better result 

because the register would not overflow so fast.  The sum algorithm would still 

fail, but one byte long value could not compensate an error any more.  Instead it 

would need 16bit value to compensate. 



Emulator of the read-out chain 51/126 
 

 
 If the message is short it does not matter how wide the register is, 

because the summed value would never get big enough to touch the high end 

bits.  It would leave all the high end bits to zero.  One byte can touch eight bits 

and more only when the summing is overflowing.  To get better error detection 

efficiency, one byte should touch the register from wider area. 

As we can see, the simple algorithm would not do it in the modern 

world.  What we can conclude from this chapter is that, to get more efficient 

error detection we need complexity.  If we begin to think how we could achieve 

this, we notice that there are many different options coming in mind.  Two ways 

could be, to use a wider register, and to get more randomness from each byte.  

We do not go any deeper to different kind of possibilities and instead we move 

directly to the CRC theory. 

 

 

7.2. CRC theory 

 

 To understand the CRC it is good to understand how the idea 

evolved.  In this chapter we go through the binary division, which is probably the 

base for all modern error detection algorithms.  Secondly we preview 

polynomial arithmetic, which describes the evolution from division to exclusive 

or (XOR) operation, which is used by CRC algorithms.  In the third part we go 

through a property of XOR operation.  The last part is introduction to term poly, 

which is rather important term to know when working with CRC algorithms. 

 

 

7.2.1. Binary division 

 

 The idea behind CRC algorithms stands on division operation 

where the remainder is the checksum.  This is clearly more efficient in error 



Emulator of the read-out chain 52/126 
 

 
detection than summing.  To get good results with division, the divisor has to be 

more or less as wide as the register is.  Another important point is that we do 

not divide every byte in a message, but instead we divide the whole message 

as a one big number.  The divisor is a well defined, fixed number. 

The following listing is an example of binary division, using the 

same bytes as in our summing example.  A byte wide register is used to keep 

the example as simple as possible.  The divisor in our example is binary 1001, 

which equals nine as a decimal number.  The procedure itself is the same as in 

decimal long division. 

 

2   = 0000 0010 

46 = 0010 1110 

8   = 0000 1000 

dividend = 0000 0010 0010 1110 0000 1000 == 10 0010 1110 0000 1000 

divisor = 1001  



Emulator of the read-out chain 53/126 
 

 
              11111000000000 QUOTIENT 

       ______________________ 

1001   ) 100010111000001000  DIVIDEND 

 0000 

 ------ 

 10001 

         -1001 

         ===== 

          10000 

          -1001 

          ===== 

            1111 

           -1001 

            ==== 

             1101 

            -1001 

             ==== 

              1001 

             -1001 

              ==== 

               0000 

               0000 

               ------- 

                0000 

                0000 

                ------- 

                 0000 

                 0000 

                 ------- 

                  0000 

                  0000 

                  ------- 

                   0000 

                   0000 

                   ------- 

                    0001 

                    0000 

                    ------- 

                     0010 

                     0000 

                     ------- 

                      0100 

                      0000 

                      ------- 

                       1000 

                       0000 

                       ------- 

                       1000  REMINDER 

  



Emulator of the read-out chain 54/126 
 

 
7.2.2. Introduction to polynomial arithmetic 

 

 When working with the CRC or reading some manual of it, you 

cannot escape from word polynomial.  The manual itself may point that the 

polynomial is an important word.  Normally in the manuals it says that the 

specific CRC algorithm is using particular polynomial.  Also the manuals point 

out that the CRC algorithms are using polynomial arithmetic.  We do not need to 

know all from polynomial arithmetic, and instead we go this chapter through with 

an example from the parts we need. 

 As previously was seen, the message byte 46 in decimal was 0010 

1110 in binary.  This same value in hexadecimal would be 0x2E and in 

polynomial representation it would be: 

 

0*x^7 + 0*x^6 + 1*x^5 + 0*x^4 + 1*x^3 + 1*x^2 + 1*x^1 + 0*x^0 

 

Each bit is represented as a bit value multiplied by x squared the bit 

position.  If we remove the zero terms and multiplications by one, we get: 

 

x^5 + x^3 + x^2 + x^1 

 

So let‘s calculate something with the polynomial system.  To keep 

the example simple we take two small values, 11 and 3, and we multiply. 

11= 1011 

3 = 0011 

(x^3 + x^1 + x^0) * (x^1 + x^0) 

= (x^4 + x^3) + (x^2 + x^1) + (x^1 + x^0) 

 

= x^4 + x^3 + x^2 + 2*x^1 + x^0 

 



Emulator of the read-out chain 55/126 
 

 
Because we are calculating binary values, we know that the x is 

two.  With this knowledge we can then calculate the binary carries as well.  This 

means that the 2*x^1 equals x^2, and after we have calculated those all, we 

get: 

 

= x^5 + x^0 

 

 Let‘s make then a scenario where we do not know that the x equals 

two.  In this scenario we cannot assume that 2*x^1 equals x^2, and we cannot 

then handle the binary carries either.  Now every value is isolated from each 

other.  The mathematicians tried to solve this by changing the polynomial rules.  

One of these attempts is called polynomial arithmetic mod 2, which is actually 

also used in the CRC.  In these rules all the coefficients are calculated mod 2, 

which mean coefficients are either 0 or 1.  The second rule is that there are no 

carry.  These rules are actually the same as in binary arithmetic without carry.  

The rules in mind the previous calculation would simply turn out to: 

 

x^4 + x^3 + x^2 + x^1 + x^0 

 

Another important point with the new rules is that, the addition and 

subtraction operations would turn to the same operation.  For example: 

 

   1011  1011 

  +0110 -0110 

  ===== ===== 

   1101  1101 

 

 

  



Emulator of the read-out chain 56/126 
 

 
The subtraction/addition truth table: 

 

    0 + 0 = 0 

    0 + 1 = 1 

    1 + 0 = 1 

    1 + 1 = 0 

 

 

 The truth table is actually exactly the same as the exclusive or 

(XOR) operations truth table, and this is where we come to the CRC.  We use 

modulo 2 division to divide the messages in the CRC arithmetic.  The last 

important things to know between binary division and mod2 division are that, if 

the most significant bit is one the divisor divides in.  Secondly, equally many 

zeroes will be appended to the end of the dividend as the divisor is wide.  The 

zeroes in the end make sure that all the bits in the message will affect to the 

result.  In the following listing we use the same values as in the binary division 

and the new mod 2 division rules:  



Emulator of the read-out chain 57/126 
 

 
            111110000000000000 QUOTIENT 

       ______________________ 

1001   ) 100010111000001000 0000 DIVIDEND 

         1001 

         ------- 

          0011 

          0000 

          ------- 

           0110 

           0000 

           ------- 

            1101 

            1001 

            ==== 

             1001 

             1001 

             ==== 

              0001 

              0000 

              ------- 

               0010 

               0000 

               ------- 

                0100 

                0000 

                ------- 

                 1000 

                 1001 

                 ==== 

                  0010 

                  0000 

                  ==== 

                   0100 

                   0000 

                   ==== 

                    1001 

                    1001 

                    ==== 

                     0000 

                     0000 

                     ==== 

                     0000  REMINDER 

 

 

We did end the calculation before end, because the rest of the bits 

are zero and cannot affect to the result.  This is just to fit the calculation on one 

page. 



Emulator of the read-out chain 58/126 
 

 
7.2.3. Interesting property of XOR operation 

 

 In the mod 2 division we have multiple XOR operations one after 

another.  What is the most important thing for us to notice is that the order of the 

XOR operations does not matter.  If we XOR four different values, it does not 

matter which one is XORed first or last. For example, let‘s XOR five numbers; 1, 

2, 3, 4 and 5: 

 

    0001 

xor 0010 

xor 0011 

xor 0100 

xor 0101 

======== 

    0001 

 

Reordering the numbers to 2, 4, 3, 1 and 5: 

      0010 

xor   0100 

xor   0011 

xor   0001 

xor   0101 

======== 

        0001 

 

 

7.2.4. Poly 

 

 The name comes from polynomial arithmetic, and often a CRC 

algorithm is said to use a particular polynomial.  The divisor is also called as 

generator polynomial, which then turned out to simple polynomial.  In the CRC 

talk this word polynomial then turned to even simplified poly.  The poly is the 

divisor in CRC arithmetic.  It is really important part of CRC algorithms, and 

almost solely responsible how efficient a particular CRC algorithm is.  There are 



Emulator of the read-out chain 59/126 
 

 
books written from this subject, where professional mathematicians proof why a 

particular poly is an efficient one.  The mathematics of poly is out of scope from 

this project.  A poly is usually expressed as a hexadecimal value.  The VFAT 

chip at CERN uses 16 bit poly and its value is 0x8408. 

If you now calculate long binary mod 2 division, with a poly found 

from some source file and compare that to the CRC algorithm result, you notice 

that the result is not the same.  The poly from source code actually contains 

number one at front of it.  Like 0x8408 would turn to 0x18408.  This number one 

is actually omitted by the algorithm implementation.  To show why and how this 

happens, we have to implement something.  In the next chapter we implement a 

basic algorithm and explain how this number is omitted. 

 

 

 

7.3. Basic CRC algorithm 

 

 In the first part of this chapter we see an implementation of basic 

CRC algorithm in C language.  The algorithm is 32 bit, because that is the most 

standard.  On the same time, we go through why a poly loses its first bit one in 

CRC algorithms.  In the second part we make the first optimization to the basic 

algorithm. 

 

 

7.3.1. Basic algorithm 

 

 The basic algorithm follows pretty accurately the long binary 

division mod 2.   

 



Emulator of the read-out chain 60/126 
 

 
for (i=0; i<len; i++) 

{ 

 byte = *(data++); 

 

 for (j=0; j<8; j++) { 

     if ((byte >> 7) ^ (reminder >> 31)){ 

  reminder = reminder << 1 ^ POLY; 

 

    } else { 

             reminder = (reminder << 1); 

     } 

 

     byte <<= 1; 

 } 

} 

 

Listing 5.1: The basic CRC algorithm 

 

 The basic algorithm reads every byte from the data in a loop and in 

a second loop goes through every bit in the byte.  In the inner loop the algorithm 

checks the result of XOR operation between the first bit of the data byte and the 

first bit of the reminder.  If the statement is true, we shift the remainder one bit 

and XOR the poly in it.  If the statement is false, we shift the bit out from the 

reminder.  As a final thing we shift the next bit from byte to be the new top bit.  

One of the important things is that the top bit of the POLY, XORed with the top 

bits of data and reminder, decides if we XOR at all.  Then why the top most bits 

are XORed and shifted out, before being XORed with the POLY at all.  Here 

comes actually the extra bit one to the beginning of the POLY.  The same extra 

bit which is not shown in the CRC algorithms, but which is visible when 

calculating on paper.  The algorithm knows that this bit is there, so it is enough 

to XOR only the data and the reminder inside the if-statement.  We do not either 

lose information bits (bit ones), because when the extra POLY bit is XORed with 

shifted out bit one, it XORs to zero. 

In the following example we use four bit register to calculate the 

reminder, and it has some previous calculation data in it already.  The rest of 

the data is zero, so when shifted there is only zeroes left.  The out shifted bit is 

separated with space, but still visible in the example.  The poly is five bits when 

the extra bit one is calculated in.  The extra bit is underscored: 



Emulator of the read-out chain 61/126 
 

 
 

DATA:    0110 

 

POLY: 1  1001 

REG:    1101 

 

 

Shift REG and DATA: 

 

DATA: 0  1100 

 

POLY: 1  1001 

REG: 1  1010 

 

 

XOR the high bits (the space separated bits): 

 

DATA: 0  1100 

REG: 1  1010 

XOR:     1  1010 

 

 

XOR the POLY and the REG: 

 

POLY: 1  1001 

REG: 1  1010 

XOR: 0  0011 

 

 

7.3.2. Optimized basic algorithm 

 

 The basic algorithm puts bits in the register from the right end and 

at the same time shift the highest bit out from the left end.  If the register is 32 

bit wide, it means that before the first 32 bits, no bit it shifted out.  This also 

means that nothing is XORed while shifting the first 32 bits.  After someone had 

noticed this, he loaded the register with the first 32 bit of data before starting the 

loop. 

Let‘s go through one simple modification more before going to the 

next example.  In the if–statement of basic algorithm we XOR the next out 

shifted bits and check if the result is one.  To get the same result, we can XOR 



Emulator of the read-out chain 62/126 
 

 
the data bit to the reminder register and then compare the highest bit of the 

register.  This does not optimize much, but it definitely gives a cleaner 

implementation. 

 

register = *data++ << 24; 

register |= *data++ << 16; 

register |= *data++ << 8; 

register |= *data++; 

len -=4; 

     

for (i=0; i<len; i++) 

{ 

    byte = *(data++); 

    for (j=0; j<8; j++) { 

        if (register & 0x80000000) { 

            register = (register <<1) ^ POLY ^ (byte >> 7); 

 

        } else { 

            register = (register << 1) ^ (byte >> 7); 

        } 

 

        byte <<= 1; 

    } 

} 

 

Listing 5.2: The optimized basic CRC algorithm 

 

 

7.4. Table-driven algorithm 

 

The chapter is divided in two parts.  The first part introduces the 

basic table-driven algorithm, and the second part introduces slightly improved 

table-driven algorithm 

 

 

  



Emulator of the read-out chain 63/126 
 

 
7.4.1. The basic table-driven algorithm 

 

In the CRC algorithms the bits which are one in the data, define 

when to XOR the poly.  If we look the long binary division mod two, we can see 

that the reminder in the end is only the poly XORed multiple times with different 

offsets to the data.  We can know the next XOR operation position after 

another, because every XOR operation is modifying the reminder.  But what if 

we already knew the offsets, we could then XOR the poly even in random order 

and we would get the same result.  In the next example, we XOR short binary 

value 101 every time when the high bits are one, until the end of message. 

 

DATA: 1101 1011 000 

      101 

      === 

      0111 1011 

       101 

       === 

       010 1011 

        10 1 

        ======= 

        00 0011 000 

             10 1 

             ==== 

             01 100 

              1 01 

              ==== 

              0 110 RESULT 

 

 

 Let‘s put the data aside for now and XOR together the polys with 

the same offset as in the previous example. 

 

            101 

             101 

              10  1 

                    10  1 

                     1  01 

            ============= 

            1101  1011  110 



Emulator of the read-out chain 64/126 
 

 
 If we now XOR this value with the data, the result would be the 

same 110.  Actually what we know now also is that, when the data is 11011011 

and the poly 101, the result will be always 110.  If we now calculate a result for 

every byte and we put the values in a table.  Then when we don‘t ever have to 

XOR bits in the byte, and instead we can just check the result from the table.  

This is where we get to the implementation of table-driven algorithm. 

 

/* Table creation algorithm */ 

 

for (i = 0; i < 256; i++) 

{ 

    crc = i << 24; 

    for (j = 0; j < 8; j++) 

    { 

        if (crc & 0x80000000) 

            crc = (crc << 1) ^ POLY; 

        else 

            crc = crc << 1; 

    } 

    table[i] = crc; 

} 

 

 

/* Table-driven algorithm */ 

 

result = *data++ << 24; 

result |= *data++ << 16; 

result |= *data++ << 8; 

result |= *data++; 

len -= 4; 

     

for (i=0; i<len; i++) 

{ 

    result = (result << 8 | *data++) ^ table[result >> 24]; 

} 

 

Listing 7.1: The basic table-driven algorithm 

 

 This algorithm is actually rather fast, and you can find similar 

implementation from many places.  A table for each byte has 256 items, and 32 

bit algorithm needs four bytes per each item. 4 bytes x 256 makes 1KB of 

memory, and this is not much for today‘s computers.   



Emulator of the read-out chain 65/126 
 

 
 Some people are creating even a table for each 16 bits.  Would this 

make it double as fast, because every time you read a value for 16 bits of data.  

In this case the table size would be 65536 items and 4 bytes x 65536 makes 

256KB of memory.  256KB of random access memory (RAM) is not much, but 

we would like to fit that in the cache of processor.  256KB would not fit in the L1 

cache and it would flush the L2 cache, if not totally, a big part of it. 

 In this project we do not test processor cache efficiency, and 

instead we estimate that the eight byte table is the best one.  This will most 

probably change when the cache sizes grow. 

 

 

7.4.2. Improved table-driven algorithm 

 

 In the table-driven algorithm we shift a byte out from the left and a 

new byte in from the right side of the register.  In this way the bytes go through 

the register.  If we now remind us from the property of XOR, that it does not 

matter in which order we XOR values together.  In this case it would not matter 

do we XOR the new byte immediately when there is space in the register, or in 

some later phase.  We have to just take care we XOR the new byte in the 

register before or at the same time, as it is time to shift the byte out from the 

register. 

 In the following tables ‗b‘ means the same as data Byte and letter 

next to it, is there for an index numbering.  An ‗x‘ means XORed poly byte, and 

number next to it, is again just index number to separate the XORed bytes.  The 

cells with a yellow background describe the register with initial data.  The green 

cells are the poly.  The blue cells are the register after XOR operations.  The 

red cells are the new data bytes coming from the right side.  The violet cells are 

the cells which will be shifted out for next.  Notice that in the second table there 

are not red cells because the new data byte is directly XORed to the violet byte. 

 



Emulator of the read-out chain 66/126 
 

 

ba bb bc bd be 
   

 
x1 x2 x3 x4 

   

 
x1b x2c x3d x4e bf 

  

  
x5 x6 x7 x8 

  

  
x52c x63d x74e x8f bg 

 

   
x9 x10 x11 x12 

 

   
x963d x1074e x118f x12g bh 

    
x13 x14 x15 x16 

    
x131074e x14118f x1512g x16h 

        

        
        ba 0 0 0 

    

 
x1 x2 x3 x4 

   

 
x1b x2 x3 x4 

   

  
x5 x6 x7 x8 

  

  
x52c x63 x74 x8 

  

   
x9 x10 x11 x12 

 

   
x963d x1074 x118 x12 

 

    
x13 x14 x15 x16 

    
x131074e x14118 x1512 x16 

 

 As we can see the violet bytes are the same in the end, when the 

bytes are shifted out.  This means that we do not have to drag the data bytes 

through the register.  Instead we can XOR the byte just before we use it to fetch 

the next value from the look up table. 

 

while (len--) { 

    result = (result<<8) ^ table[(result>>24) ^ *data++];  

} 

 

Listing 7.2: The improved table-driven algorithm 

 

 There are two improvements through this.  We can remove the 

lines to initialize the register.  Secondly, when the last data byte is in the 

register, we do not have to begin to feed extra zeroes from the right like before.  

Feeding the extra zeroes from the right end can be actually a heavy task to 

complete.  In some implementations this means even reallocation of memory 



Emulator of the read-out chain 67/126 
 

 
and adding manually those zeroes to the end.  This kind of implementation 

would indeed be heavy.  With this improvement we can be sure that there is no 

need for awkward implementations to add the zeroes. 

 

 

7.5. 32 bit table-driven algorithm 

 

The name 32 bit table-driven algorithm might be a bit miss leading.  

32 bit means here the amount of bits of data read, per each round of algorithm‘s 

main loop.  The previous algorithms read one byte of data at time.  This means 

that if we can do it 32 bit at time, the algorithm will have three memory-to-

register operations less.  The only negative components are that the amount of 

data has to be dividable by four, and we have to take care of processor 

endianess.  To keep the following example simple, there are no endianess 

checks in it. 

 

while (data<end) 

{ 

    result ^= *data++; 

    result = table [result >> 24] ^ result << 8; 

    result = table [result >> 24] ^ result << 8; 

    result = table [result >> 24] ^ result << 8; 

    result = table [result >> 24] ^ result << 8; 

} 

 

Listing 7.3: The 32 bit table-driven algorithm 

 

  



Emulator of the read-out chain 68/126 
 

 

7.6. Current CRC algorithm 

 

 The current algorithm is more or less direct copy from the binary 

hardware calculation mechanism.  Each bit in each byte is looped around and 

XORed by the rules of CRC.  In the algorithm the topmost bit is the rightmost, 

and so the shifting is done to the right instead of left like in previous theory.  The 

algorithm begins to go through the stream of data also to opposite direction.   

 

inline static unsigned short int 

crc_calc (unsigned short int crc_in, 

  unsigned short int dato) 

{ 

 int i; 

 unsigned short int v = 0x0001; 

 unsigned short int mask = 0x0001;     

 unsigned short int d=0; 

 unsigned short int crc_temp = crc_in; 

 unsigned char datalen = 16; 

 

 for (i=0; i<datalen; i++){ 

     if (dato & v) 

  d = 1;  

     else 

  d = 0; 

     if ((crc_temp & mask)^d) { 

  crc_temp = crc_temp>>1 ^ 0x8408; 

 

     } else 

  crc_temp = crc_temp>>1; 

 

    v<<=1; 

 } 

 

 return(crc_temp); 

} 

 

  



Emulator of the read-out chain 69/126 
 

 
unsigned short 

cern_algorithm (const void *data, 

unsigned int len) 

{ 

 int i; 

 unsigned short int crc_fin = 0xFFFF; 

 const unsigned short int *sdata; 

sdata = (unsigned short int*)data; 

 

 for (i=len/sizeof(unsigned short int)-1; 

i>=0; i--) { 

     crc_fin = crc_calc (crc_fin, sdata[i]); 

 } 

 

 return crc_fin; 

} 

 

Listing 7.4: The current CRC algorithm 

 

The current algorithm actually looks clumsier than the bit-by-bit 

basic algorithm in the previous chapter.  The function cern_algorithm goes 

through the whole message byte-by-byte and calls crc_calc for each of the 

bytes. The crc_calc function goes through each byte, bit-by-bit.  There are 

two if-else-statements from which the first one checks the topmost bit in 

incoming data and second one handles the register compared to top bit 

separately.  This double stepping does visualize the algorithm really well, but it 

also needs some extra instructions.  These extra instructions are not lethal, and 

most probably in the compiler optimized code the result is more or less the 

same as in the basic algorithm we saw earlier. 

  



Emulator of the read-out chain 70/126 
 

 

7.7. Optimized CRC algorithm 

 

 The old algorithm is using basic CRC algorithm with a bit clumsy 

implementation.  It is clear that there is much to improve.  The base of the new 

algorithm will be the 32 bit table-driven algorithm.  This type of 32 bit algorithm 

had the least C operations, so it is a good base to start.   

 

7.7.1. 16 bit table-driven algorithm 

 

 There are two things to modify from 32 bit algorithm to get it work 

as 16 bit CRC algorithm.  First, the reading operation has to be modified to read 

16 bits at time.  Secondly, the order we read the bytes and bits has to be 

reversed to support the CRC algorithm. 

 

unsigned short 

crcr_algorithm (const void *data, unsigned int len) 

{ 

 const unsigned short *end; 

 const unsigned short *ptr; 

 const unsigned short *lut; 

 unsigned short reg; 

 

 end = (const unsigned short*) 

(((unsigned int)data) + len); 

 ptr = (const unsigned short*)data; 

 lut = (const unsigned short*)(table); 

 reg = 0xFFFF; 

 

 while (ptr < end) { 

     reg ^= *--end; 

     reg = (reg >> 8) ^ lut[reg & 0xFF]; 

     reg = (reg >> 8) ^ lut[reg & 0xFF]; 

 } 

 

 return reg; 

} 

 

Listing 9.1: First implementation of the new CRC algorithm 



Emulator of the read-out chain 71/126 
 

 
7.7.2. Assembler optimization 

 

 The new algorithm looks good and it seems to have the smallest C 

footprint from all the algorithms above.  It would still be interesting to see if we 

can do something for it from assembler level.  Sure there is no sense to write 

assembler these days, even if the implementation would be faster.  But what we 

can do is to see if we can get ideas how to optimize our C code. 

 In this project we use gcc version 4.3.3.  The gcc can make us an 

assembler output from the C code by using flag ―–S‖.  The default assembler 

output syntax is AT&T, which is a bit messy compared to the Intel syntax.  This 

is of course every ones personal opinion, but it seems that most of us think that 

the Intel syntax is more comfortable.  With extra parameter ―-masm=intel‖ we 

can request assembler in Intel syntax.  We use ―–O3‖ optimization flag also, 

because we do not want to work on anything what compiler could do for us.  

The whole command will then be: 

 

gcc *.c –S –O3 –masm=intel 

 

 You can see the whole assembler output from the attachment XXX.  

For optimization reasons we are mainly interested to see the algorithm‘s main 

loop.  The following assembler listing will have additional comments to clarify it, 

which will not be found from the attachment. 

  



Emulator of the read-out chain 72/126 
 

 
.L6: 

 sub ecx, 2  ; --end 

 xor ax, WORD PTR [ecx] ; reg^= *end; 

 

 mov edx, eax       ; copy for reg>>8 

 movzx eax, al  ; reg&0xFF 

 shr dx, 8  ; reg>>8 

 xor dx, WORD PTR [ebx+eax*2] 

 mov eax, edx       ; copy for reg>>8 

 movzx edx, dl  ; reg & 0xFF 

 shr ax, 8  ; reg >> 8 

 xor ax, WORD PTR [ebx+edx*2]  

 cmp esi, ecx  ; (ptr < end) 

 jb .L6 

 

Listing 9.2: 16 bit table-driven algorithm assembler output 

 

From the listing we can see that the main calculation lines of 

algorithm are each four instructions long.  The difference between the C lines in 

assembler is that, on each C line we use different registers to do different 

operations.  Like on the first C line we use dx for shifting and on the second C 

line ax.  Here is the first C calculation line separated from the rest: 

 

 mov edx, eax   ; copy for 

reg>>8 

 movzx eax, al   ; reg & 0xFF 

 shr dx, 8   ; reg >> 8 

 xor dx, WORD PTR [ebx+eax*2] 

 

Listing 9.3: One C calculation line separated 

 

On the first line we copy the reg, so that we can operate on two 

different registers.  We need two registers to hold two different reg calculations, 

one for shifting and another for ANDing.  Other one goes to edx and other one 

to eax register.  On the next two lines in the middle, we calculate the shift and, 

AND operation.  On the last line we fetch from the look up table and XOR it all 

together. 



Emulator of the read-out chain 73/126 
 

 

The only thing that really hits in the eye is the first ‗mov‘ operation 

which is simply copying the data.  After this we then operate with ‗movzx‘ which 

could also make a copy at the same time.  If we now remove the ‗mov‘ 

instruction and reorder the registers: 

 

movzx edx, al    ; reg & 0xFF 

 shr ax, 8   ; reg >> 8 

 xor ax, WORD PTR [ebx+edx*2] 

 

Listing 9.3: Assembler optimized C line 

 

 

This is actually doing exactly the same and it even using one 

instruction less.  One instruction is not much, but if there are 12 instructions in 

the loop, two instructions less is 16.666% less.  The only problem is how to 

explain this for the C compiler. 

The C compiler goes through a line from left to right.  It first 

operates the inner most operations and then the higher once, but it always 

begins to read line from the left.  So the first operation it parses is the shift, and 

then it will notice the inner AND operation, which is executed before the shift.  A 

rough estimate is that the compiler caches the value in edx for the shift 

operation and goes to work on the inner operation first.  What would happen if 

we move the shift operation after the AND operation? 

We can actually see that in the 32 bit table-driven algorithm the 

shift operation is after the AND operation.  There really was no reason bigger 

than random event that those were swapped to the 16 bit table-driven algorithm.  

The new C code is following: 

  



Emulator of the read-out chain 74/126 
 

 
unsigned short 

crcr_algorithm (const void *data, unsigned int len) 

{ 

 const unsigned short *end; 

 const unsigned short *ptr; 

 const unsigned short *lut; 

 unsigned short reg; 

 

 end = (const unsigned short*) 

(((unsigned int)data) + len); 

 ptr = (const unsigned short*)data; 

 lut = (const unsigned short*)(table); 

 reg = 0x0000FFFF; 

 

 while (ptr < end) { 

     reg ^= *--end; 

     reg = lut[reg & 0xFF] ^ (reg >> 8); 

     reg = lut[reg & 0xFF] ^ (reg >> 8); 

 } 

 

 return reg; 

} 

 

Listing 9.4: The final C code after assembler checkout 

 

After the operations were swapped the assembler output turned out 

to: 

 

.L6: 

 sub ecx, 2 

 xor ax, WORD PTR [ecx] 

 movzx edx, al 

 shr ax, 8 

 xor ax, WORD PTR [ebx+edx*2] 

 movzx edx, al 

 shr ax, 8 

 xor ax, WORD PTR [ebx+edx*2] 

 cmp esi, ecx 

  jb .L6 

 

Listing 9.5: Assembler output after the last C modifications 

 



Emulator of the read-out chain 75/126 
 

 
 By swapping the operations we got two instructions less code, 

which is rather interesting.  The compiler optimization is out of scope of this 

project, so we do not go any further in this.  As a final thing, a random answer 

from Gcc community: 

 

―Deciding which variables and temporaries should go in which registers is a 

very hard problem. Compilers generally don't do it very well (compared to skilled 

hand coding). But not doing that well is not a "bug". At most it is "room for 

improvement".‖ 

  



Emulator of the read-out chain 76/126 
 

 

7.8. Benchmark 

 

The benchmarking between the current and the new optimized algorithm 

was done in a simple way to measure how long it took to run the algorithm.  

This period of time is different between different computers, so we do not show 

any time based values in the results.  Instead we show the values as ―relatively 

faster/slower‖.  The amount of data used was 220 bytes, which was run 192 

times for each algorithm.  In the real implementation we are handling 22 byte 

packages, but the benchmark results with a small package would be highly 

obfuscated by the rest of the benchmark implementation. 

The ten fastest rounds from the total run times were taken to the results, 

because those were least affected by external variables.  As an example of 

external variable could be a task swap by Linux scheduler.  To minimize 

external variables the benchmark was run with priority -20, which is the most 

prioritized process in Linux. 

C code is as good as the used compiler is, so the benchmark was 

compiled and run with different optimization flags.  The O1 -flag is optimization 

without any optimizations which take lot of time to compile.  The O2 –flag uses 

nearly all supported optimizations, but does not use the ones which may greatly 

increase the size of binary.  The O3 –flag uses all the possible optimizations the 

compiler provides. 

 

 

 



Emulator of the read-out chain 77/126 
 

 

 

Image 10.1: Comparative performance between the algorithms, with the 

different compiler optimization flags. 

 

 

 

 

  

507

229
201

150

23 11 11 11

0

100

200

300

400

500

600

No 
optimization

O1 O2 O3

Current

New



Emulator of the read-out chain 78/126 
 

 

8. CRC Class 

 

This sprint implements all the knowledge acquired in the previous 

sprint, in the way that it can be easily used by other developers. 

 

 

8.1. Requirements 

 

 Implement a class which provides an easy interface to use CRC 

algorithms.  User has to only create the object and calculate CRC without extra 

function calls.  Creation of lookup tables for CRC algorithms should be 

automatic, and created at the same time when creating the handle object.  The 

implementation has to support the current 16 bit algorithm, but other algorithms 

might be added later.  A CRC algorithm factory shall be kept on eye as a long 

term goal, even if it is not fully implemented in this project.  In the first step the 

factory can create new CRC lookup tables from different poly and register base 

combinations. 

If multiple objects are using the same arguments to create a lookup 

table, those shall automatically share the same lookup table in memory.  Each 

lookup table is identified by the poly and register base combination.  In the 

future identifier may also consist from the algorithm used. 

 

 

8.2. Study 

 

 I have around five years of experience from C language, but the 

C++ language was new.  In this phase it was mandatory to spent time to study 

how to design and implement in C++ language.  The main material used was 



Emulator of the read-out chain 79/126 
 

 
countless random web pages.  The time needed for this is reserved, because 

without good base knowledge it is impossible to create good, solid 

implementation. 

 

 

8.3. Design 

 

 Five separated classes were built.  The first one is Table class, to 

wrap a lookup table.  The second class is RefCounter class, which is a simple 

reference counter class. The third one is ref_ptr class which is an auto pointer 

class.  This is built to share a memory used by one lookup table.  The fourth 

class is to implement AutoMap class.  The main reasons are to map a lookup 

table to specific key, and to provide interface without memory management.  

The last class to implement is the handle class to use CRC algorithms.  This 

class uses all other classes and also implements the algorithm factory. 

 

 

8.3.1. Table 

 

The lookup table is wrapped by Table class, to make lookup table 

creation and usage more comfortable.  An array operator is provided to make 

the interface to be still like a normal array.  In case this hits badly to the 

algorithm performance, a function returning a raw pointer to the table is 

provided.  The Table supports only 16 bit lookup tables.  In case if 32 or 64 bit 

lookup tables are needed, extra methods will be added by overloading the 

previous ones or adding with new names.  The Table is not done as a template 

because it has very strict way of use.  

 



Emulator of the read-out chain 80/126 
 

 
8.3.2. RefCount 

 

 The only services provided from this class are increasing and 

decreasing the reference count, and return the current count as well.  The 

functionality is not complicated but it is put in own class to make the 

implementation of user classes to be simple.  Another reason is that it is highly 

possible that someone needs a thread safe and portable implementation in the 

future.  When well separated from the other classes this kind of enhancement is 

trivial to implement. 

 

 

8.3.3. ref_ptr 

 

 The sole purpose for the class is to share the memory used by the 

lookup tables.  The reference counting is keeping track of how many different 

handles there are to this lookup table.  When all the handles are gone, all the 

references are gone, and the lookup table is freed.  This class uses the 

RefCount class for reference counting.  Completely implemented auto pointers 

usually have every possible operator implemented to make it work with every 

possible child type.  This is not necessary at the moment, and only the features 

currently needed are implemented. 

 The class is done as a template class, so that it can be easily used 

for other purposes too.  If used for other purposes it is highly recommended to 

remove it from crc namespace, but no other modifications should be mandatory. 

 

 

  



Emulator of the read-out chain 81/126 
 

 
8.3.4. AutoMap 

 

 A map class is needed to keep track of built lookup tables. The 

class is more or less the same as any other map class.  The difference is that 

the class is designed to work well with auto pointers.  It is expected that an auto 

pointer is used and memory management is automatically handled when the 

map is needed no more.  The ref_ptr class is used with AutoMap.  The map 

template uses two types, first is the key type and the second is the auto pointer 

type.  These gives space for possible enhancements in the future.  The normal 

container functionality is implemented from the parts currently needed. 

 The class is done as a template class, so that it can be easily used 

for other purposes too.  If used for other purposes it is highly recommended to 

remove it from crc namespace, but no other modifications should be mandatory.  

The ref_ptr class in most cases is good to keep in the same package. 

 

 

8.3.5. Checker class 

 

 Two methods are provided, one to calculate CRC values and 

another to check if the result is the value we have already.  The calculate 

function returns the calculated CRC from data and length of the data.  The 

check function takes also the data and length as parameters, but also the CRC 

value to check against.  The check function returns a Boolean value one if the 

CRC matches, else zero. 

 

 

  



Emulator of the read-out chain 82/126 
 

 

8.4. Implementation 

 

The idea of this chapter is to introduce the main points of the 

implementation, and tell why things were done as those were done.  Most of the 

implementation is straight forward, so only uncommon or big main details have 

been gathered out.  The chapter is divided under five separated subtitles, one 

for each class.  The minimum has been implemented in the header, to keep the 

interface well readable.  The source and headers can be found from the 

appendix. 

 

 

8.4.1. RefCount 

 

 The Implementation is almost like yelling atomic implementation, 

which shall be done when taken in multi thread environment.  For debugging 

reasons the destructor has been made to abort if the count is not zero. 

 

 

8.4.2. ref_ptr 

 

 The class is implemented as a template class.  Only the currently 

needed operators have been implemented.  Equal -operator allows comparing 

against zero to see if there is a child in. 

 

 

  



Emulator of the read-out chain 83/126 
 

 
8.4.3. AutoMap 

 

 The class is implemented as a template class.  It uses std list as an 

internal container.  A separated structure is used to save the key and value pair.  

These structures are then places in a std list to create the map feature.  When 

the map is destroyed the list and the keys are destroyed as well.  The memory 

management is left for the types passed when the template class was created.  

Even that template classes should be usable by any type, here it is forced to 

use types which handle the memory management by them self.  This way the 

end user does not have to write destruction function to release memory 

allocated by the map and its children.  This removes some versatility but offers 

simplicity. 

 The std list is not the most efficient container type for this, but with 

the data amounts we use, it is.  As a future improvement the AutoMap could 

implement same interfaces as std containers. 

 

 

8.4.4. Table 

 

 The class offers creation of lookup tables for one type of 

algorithms.  Currently it is not possible to use external algorithms.  As an 

example, an algorithm may have to take care of the byte order.  Only 16 bit 

algorithms are possible, but internally the current algorithm is a template 

function to create the lookup tables.  The reason is that it is possible to create 

lookup tables for other bit widths if the same method can be used.  This is not in 

use currently because it is not needed, and secondly it is not certain if the 

method would be ok for other bit widths.  In the future the class could offer of 

this method and/or use of external algorithms. 

 

 



Emulator of the read-out chain 84/126 
 

 
8.4.5. Checker 

 

 This class is the main class which uses all the services provided by 

the other classes.  This is the handle class to be created for CRC calculations.  

It uses internally the factory and when the factory gets more features the API 

will be changed.  The class implements the default 16 bit algorithm to be used 

at CERN. 

 Sharing lookup tables is done by using ref_ptr auto pointer with 

every lookup table.  The auto pointers are then put in the AutoMap object, 

where those can be found by using the poly/register base key.  This key is 

declared as a CrcKey structure.  The map object holds one reference count in 

ref_ptr auto pointers so that none of the lookup tables will be freed before the 

AutoMap is destroyed.  This way the handle objects can be created and freed 

lightly, knowing that the lookup tables are created only once.  Each handle 

object contains ref_ptr to the Table object, and when the handle is destroyed 

the ref_ptr is destroyed, and the reference to Table is freed.  The map object is 

static and automatically freed when the application ends. 

 The map is providing multiple different algorithms or poly to be 

used in the same application.  This is actually rather rare need and it could be 

enough to use only std list instead of a map.  This would mean that there could 

be only one poly and register base pair which would be defined at the 

initialization phase.  The reason to still use map, is that it does not need lot of 

extra work and it gives more options for the future enhancements. 

  



Emulator of the read-out chain 85/126 
 

 

9. The emulator class 

 

 In this chapter we go through the design and implementation of the 

emulator class.  Shortly, the emulator is creating similar packets as there were 

something real connected to the network interface of a PC.  This means that we 

have to write data in correct layout and also take care that the data looks valid, 

from parts it is needed.  The chapter explains the hardware behind the frames, 

and why things are implemented in this specific way. 

 

 

9.1. Data acquisition frames 

 

 The names for the frames come from the hardware places where 

those are constructed.  The data acquisition frames are VFAT frame, OptoRx 

frame and TOTFED frame.  VFAT frames are the smallest ones (24 bytes), and 

one OptoRx frame contains 32 VFAT frames.  TOTFED is the biggest frame 

and contains maximum of six OptoRx frames. 

 

Picture 9.1: Data acquisition frames structure. 



Emulator of the read-out chain 86/126 
 

 
9.1.1. VFAT frame 

 

 The VFAT frame consists six bytes of header information, the data 

and 16 bit CRC checksum.  The data is the data read from the sensors and the 

CRC is the CRC checksum from the whole VFAT packet.  The only thing 

needing more explanation is the header. 

 The header is divided in three, two byte fields. Each field has a 

constant number identifying that specific header field.  The fields are Bunch 

Crossing (BC) identifier, Event Counter (EC) identifier including Flags, and Chip 

ID identifier.  The following picture shows the details. 

 

 

Picture 9.1.1: The VFAT frame 

 

 The BC number is 12 bit counter which increments on every VFAT 

clock cycle.  The EC number is 8 bit counter which increments on every level 

one trigger signal.  The flags are identifying the state in the VFAT chip.  The 

chip ID identifies the chips from each other. 

 



Emulator of the read-out chain 87/126 
 

 
9.1.2. OptoRx frame 

 

 Each OptoRx packet contains data from two fibers.  One fiber 

transfers 16 VFATs, so two fibers transfer 32VFATs.  OptoRx receives data 

from VFATs parallel, so that the first bits of VFAT frames arrives first, then 

the second bits, etc.  The data is also written directly in memory, so that the 

first 32 bits read from the memory, are the first bits from all 32 VFAT frames.  

We could say that the hardware serializes the data.  The data in the OptoRx 

frame is in serialized form.  The picture 9.1, shows one of these packets and 

how the VFAT frames are in the OptoRx frame. 

 

 

9.1.3. TOT FED frame 

 

 The data from OptoRx is written to 12 separated buffers by the 

main FPGA on the TOTFED board, one buffer per each fiber.  At the same time 

the header and footer is written.  After this the packet is sent to a PC.  The 

emulator is creating these same packets.  In the picture 9.1 the TOTFED frame 

is the biggest one, the one with grayed background. 

 

 

9.2. Software implementation 

 

 In this chapter we go through the classes and tools created to 

implement the emulator.  The implementation was divided in multiple 

independent units.  The implementation contains a tool to turn horizontal bits to 

vertical bit order.  In this case the OptoRx emulator will use it to turn the bits of 

VFAT frames.  The OptoRx emulator creates the data directly received by the 



Emulator of the read-out chain 88/126 
 

 
optorx. The VFAT has two classes.  The first one is built to manage the frame 

and another one to generate realistic VFAT packets. 

 

 

9.2.1. Horizontal to vertical 

 

 This tool was not implemented as a class, but instead 

implementation contains direct function calls.  There are three functions, one 

top of each other.  The bitcopy function copies one bit value from place A to B.  

This function is then used in the hor2ver_char implementation, which copies 

8bytes at once.  The hor2ver_char is then used in the hor2ver_area function.  

The hor2ver function copies a buffer from place A to B. 

 

 

9.2.2. VFAT frame 

 

 The VFAT frame is full of small bit values, which are shown in the 

order in the following listing. 

 

unsigned int BCCode : 4; 

unsigned int bcnumber : 12; 

unsigned int EventCode : 4; 

unsigned int eventnumber : 8; 

unsigned int flags : 4; 

unsigned int ChipID : 4; 

unsigned int chipid : 12; 

char channeldata[16]; 

unsigned int crc : 16; 

 

 The application binary interface (ABI) of the bit fields is compiler 

specific.  This means that the compiler can move the values in memory as it 

likes.  The gnu compilers do not offer option to set this structure to be as it is, 

and ask compiler to skip moving of the bits.  This is the reason why all the bit 

field operations have to be handled manually.  The bit field syntax is nice, so it 

is rather sad that this kind of feature is not implemented.  If the compiler would 

implement this kind of feature, there would still be portability problems. 



Emulator of the read-out chain 89/126 
 

 
 The name of the class is HFrame, it is actually a bit misleading.  

The reason for this is that the current class is in horizontal bit order.  This is 

leaving space if someone wants to write in the future a class also to manage 

vertical frames, like VFrame. Then both classes can be derived from dummy 

VFATFrame class, just to define and document.  The next developer should still 

remember to not use virtual functions, because this would add an invisible 

pointer to a virtual table.  This would simply break the ABI of the structure, or 

force the developer to write it so that the framedata locates always in the heap, 

and never in the stack. 

In the implementation is get and set function pairs for each variable.  

This approach was taken, because it probably produces the nicest 

implementation. 

 

 

9.2.3. VFAT generator 

 

The VFAT generator uses the VFAT frame to generate packages 

which do look like real ones, so this is also an emulator in that sense.  The 

generator also provides signals like in the VFAT chips.  At the moment only the 

clear signal is implemented, but it is implemented so that new signals are easy 

to add.  At the moment the signals are not needed in the emulator, and the only 

reason to write this was to create a base for the future. 

 

 

9.2.4. OptoRx emulator 

 

 There is not OptoRx frame implementation, mainly because all the 

data is in serialized form.  The packet is neither edited when it has been built to 

this state, so spending time for this is not urgent.  Instead, an emulator is built to 

create these packages.  The OptoRx frame contains all the data in serialized 

form 

The hor2ver function is not highly optimized, but before really 

optimizing, the function should be benchmarked.  The implementation is rather 

simple and clear, so there is no point to make it more complicated before 

benchmarking.  Hopefully this is fast enough, but in case it is not, I would begin 



Emulator of the read-out chain 90/126 
 

 
to look optimization options from here.  At the moment we copy all the bits, bit 

by bit every time.  It would be possible to preset the constant values of VFAT 

frame to the memory.  In this way 48 bit sized copies could be skipped. 

 

 

9.2.5. TOTFED frame 

  

The TOT FED frame is simply defining the structure of the frame.  

One frame consists from header, footer, subframe and frame.  The frame 

contains multiple similar shells, which are called as subframes.  Each subframe 

contains header, footer and the data. 

 

 

9.2.6. The emulator 

 

The emulator itself is a simple class using all other classes to do its 

job.  It still fills the header and footer in a proper way.  The rest of the 

implementation is following the same guide lines as the other classes. 

  

  



Emulator of the read-out chain 91/126 
 

 

References 

 

1. http://lhc.web.cern.ch/lhc/ 

2. http://cms.web.cern.ch/cms/index.html 

3. http://totem.web.cern.ch/Totem/ 

4. http://www.inst.bnl.gov/programs/gasnobledet/hepnp/csc.shtml 

5. http://ts-dep-dem.web.cern.ch/ts-dep-dem/products/gem/ 

6. http://totem.web.cern.ch/Totem/work_dir/electronics/pdf%20files/VFAT2S

pecV5.pdf 

7. http://accelconf.web.cern.ch/AccelConf/e06/PAPERS/MOPLS013.PDF 

8. http://www.scrumalliance.org/ 

9. http://trac.edgewall.org 

10. http://www.agile42.com/cms/pages/agilo 

11. http://www.gnu.org/software/gdb 

12. http://valgrind.org 

13. http://www.gnu.org/software/make/ 

14. http://projects.gnome.org/gedit/ 

15. http://www.vim.org 

16. http://indico.cern.ch/getFile.py/access?contribId=29&sessionId=6&resId=

0&materialId=slides&confId=54346 

17. http://cdsweb.cern.ch/record/1069713/files/cer-002725469.pdf 

  

http://lhc.web.cern.ch/lhc/
http://totem.web.cern.ch/Totem/
http://ts-dep-dem.web.cern.ch/ts-dep-dem/products/gem/
http://totem.web.cern.ch/Totem/work_dir/electronics/pdf%20files/VFAT2SpecV5.pdf
http://totem.web.cern.ch/Totem/work_dir/electronics/pdf%20files/VFAT2SpecV5.pdf
http://accelconf.web.cern.ch/AccelConf/e06/PAPERS/MOPLS013.PDF
http://trac.edgewall.org/
http://www.agile42.com/cms/pages/agilo
http://www.gnu.org/software/gdb
http://valgrind.org/
http://projects.gnome.org/gedit/
http://indico.cern.ch/getFile.py/access?contribId=29&sessionId=6&resId=0&materialId=slides&confId=54346
http://indico.cern.ch/getFile.py/access?contribId=29&sessionId=6&resId=0&materialId=slides&confId=54346
http://cdsweb.cern.ch/record/1069713/files/cer-002725469.pdf


Emulator of the read-out chain 92/126 
 

 

Appendix 

 

A: The project code 

  



Emulator of the read-out chain 93/126 
 

 

A: The project code 

  

 

/** \file automap.hh 

 *  \brief More or less like std::map, but is used with auto pointers. 

 *         Memory management is left for the auto map and pointers. 

 * 

 *  \author Risto Kivilahti <kivilaht@cern.ch> */ 

 

#ifndef __AUTO_MAP_HH__ 

#define __AUTO_MAP_HH__ 

 

#include <list> 

#include <cstring> 

#include "ref_ptr.hh" 

 

 

namespace crc 

{ 

 

 

template <typename Key, typename AutoPtr> 

struct KeyValuePair 

{ 

 Key key; 

 AutoPtr value; 

}; 

 

 

template <typename Key, typename AutoPtr> 

class AutoMap 

{ 

public: 

 ~AutoMap () throw (); 

 void add (Key &key, AutoPtr &value) throw (); 

 void remove (Key &key) throw (); 

 AutoPtr* find (Key &key) const throw (); 

 

private: 

 std::list<KeyValuePair<Key,AutoPtr>* > m_items; 

}; 

 

template <typename Key, typename AutoPtr> 

AutoMap<Key,AutoPtr>::~AutoMap () throw () 

{ 

 typename std::list<KeyValuePair<Key,AutoPtr>* >::iterator 

iter; 

 

 for (iter=m_items.begin(); iter!=m_items.end(); iter++) 

 { 

  delete *iter; 

 } 

} 

 

  



Emulator of the read-out chain 94/126 
 

 
/** \brief Adds a new item in the AutoMap. 

 *  \param key Key to identify the data. 

 *  This has to be unique through the table. 

 *  \param value The value, the information saved. 

 *  \todo If the key already exists in the AutoMap, replace it. */ 

template <typename Key, typename AutoPtr> 

void 

AutoMap<Key,AutoPtr>::add (Key &key, AutoPtr &value) throw () 

{ 

 KeyValuePair<Key,AutoPtr> *kvp; 

 kvp = new KeyValuePair<Key,AutoPtr>; 

 

 kvp->key = key; 

 kvp->value = value; 

 

 m_items.push_front (kvp); 

} 

 

/** \brief Remove an item identified by the key from the AutoMap 

 *  \param key The key to identify the value to be removed. 

 *         If there is no data for the key, does nothing. */ 

template <typename Key, typename AutoPtr> 

void 

AutoMap<Key,AutoPtr>::remove (Key &key) throw () 

{ 

 void *vkey = reinterpret_cast<void*> (&key); 

 typename std::list<KeyValuePair<Key,AutoPtr>* >::iterator 

iter; 

 

 for (iter=m_items.begin(); iter!=m_items.end(); iter++) 

 { 

  void *tmp = reinterpret_cast<void*> (&(*iter)-

>key); 

  if (memcmp (tmp, vkey, sizeof (Key)) == 0) { 

   m_items.erase (iter); 

  } 

 } 

} 

 

  



Emulator of the read-out chain 95/126 
 

 
/** \brief Find an item identified by the key from the AutoMap. 

 *  \param key The key to identify the value to lookup 

 *  \retun Pointer to the found value, in AutoPtr Pointer. 

 * 

 *  \todo API to return pointer to auto pointer is a bit akward, 

 *  check is there something todo for this ? */ 

template <typename Key, typename AutoPtr> 

AutoPtr* 

AutoMap<Key,AutoPtr>::find (Key &key) const throw () 

{ 

 void *vkey = reinterpret_cast<void*> (&key); 

 typename std::list<KeyValuePair<Key,AutoPtr>* 

>::const_iterator iter; 

 

 for (iter=m_items.begin(); iter!=m_items.end(); iter++) 

 { 

  void *tmp = reinterpret_cast<void*> (&(*iter)-

>key); 

  if (memcmp (vkey, tmp, sizeof (Key)) == 0) { 

   return &(*iter)->value; 

  } 

 } 

 

 return 0; 

} 

 

 

} /* namespace crc */ 

 

#endif /* __REF_MAP_HH__ */ 

 

 

  



Emulator of the read-out chain 96/126 
 

 
/** \file crcchecker.hh 

 *  \brief CRChecksum checker. 

 *  Calculates CRChecksum with table driven algorithm. 

 *  Poly and the register base can be defined. 

 *  New tables are created and memory managed by the Checker. 

 * 

 *  \author Risto Kivilahti <kivilaht@cern.ch> */ 

 

#ifndef __CRC_CHECKER_HH__ 

#define __CRC_CHECKER_HH__ 

 

 

namespace crc 

{ 

 

const unsigned short g_default_16bit_poly = 0x8408; 

 

class Checker 

{ 

public: 

 virtual ~Checker () {} 

 

 virtual unsigned short calculate (const void *data, 

unsigned int len) = 0; 

 virtual bool check (const void *data, unsigned int len, 

unsigned short crc) = 0; 

}; 

 

 

Checker *newChecker (unsigned short poly, unsigned short regbase); 

 

 

} // nampespace crc 

 

#endif /* __CRC_CHECKER_HH__ */ 

  



Emulator of the read-out chain 97/126 
 

 
/** \file crcchecker.cpp 

 *  \brief CRChecksum checker. 

 *  Calculates CRChecksum with table driven algorithm. 

 *  Poly and the register base can be defined. 

 *  New tables are created and memory managed by the Checker. 

 * 

 *  \author Risto Kivilahti <kivilaht@cern.ch> 

 * 

 *  \todo More table driven CRC features ? 

 *  Like own defined algorithms and different table creation 

 *  algorithms.  Reversed crc ?  etc. etc. */ 

 

#include <map> 

#include "crcchecker.hh" 

#include "automap.hh" 

#include "crctable.hh" 

#include "ref_ptr.hh" 

 

 

namespace crc 

{ 

 

/* This is the key used to map the crctables in the AutoMap */ 

struct CrcKey 

{ 

 unsigned short poly; 

 unsigned short base; 

}; 

 

 

static AutoMap <CrcKey,ref_ptr<Table> > g_algorithms; 

 

 

class CheckerImpl : public Checker 

{ 

public: 

 CheckerImpl (unsigned short poly, unsigned short base); 

 unsigned short calculate (const void *data, unsigned int 

len); 

 bool check (const void *data, unsigned int len, unsigned 

short crc); 

 

private: 

 unsigned short algorithm_16bit (const void *data, unsigned 

int len); 

 void fetchTable (const unsigned short poly, const unsigned 

short base); 

 ref_ptr<Table> m_table; 

 unsigned short m_base; 

}; 

 

  



Emulator of the read-out chain 98/126 
 

 
void 

CheckerImpl::fetchTable (const unsigned short poly, const unsigned 

short base) 

{ 

 ref_ptr <Table> table; 

 CrcKey key = { poly, base }; 

 

 table = *g_algorithms.find (key); 

 if (table == 0) 

 { 

  table = newTable (poly, base); 

  g_algorithms.add (key, table); 

 } 

 

 m_base = base; 

 m_table = table; 

} 

 

 

CheckerImpl::CheckerImpl (unsigned short poly, unsigned short base) 

{ 

 fetchTable (poly, base); 

} 

 

 

/** \brief Calculates CRChecksum from the data passed. 

 *  \param data The data to calculate CRC from. 

 *  \param len The lenght of the data. 

 *  \return Calculated CRC */ 

unsigned short 

CheckerImpl::calculate (const void *data, unsigned int len) 

{ 

 return algorithm_16bit (data, len); 

} 

 

/** \brief Calculates CRChecksum from the data passed and compares it 

to the crc 

 *  \param data The data to calculate CRC from. 

 *  \param len The lenght of the data. 

 *  \param crc The CRC to compare against. 

 *  \return 1 if the CRChecksums are the same, else 0. */ 

bool 

CheckerImpl::check (const void *data, unsigned int len, unsigned short 

crc) 

{ 

 return (algorithm_16bit (data, len) == crc); 

} 

 

 

Checker * 

newChecker (unsigned short poly, unsigned short regbase) 

{ 

 if (poly == 0) 

 { 

  poly = g_default_16bit_poly; 

 } 

 

 CheckerImpl *impl = new CheckerImpl (poly, regbase); 

 return impl; 

} 

 



Emulator of the read-out chain 99/126 
 

 
 

unsigned short 

CheckerImpl::algorithm_16bit (const void *data, unsigned int len) 

{ 

 const unsigned short *end; 

 const unsigned short *ptr; 

 const unsigned short *lut; 

 unsigned short reg; 

 lut = m_table->get (); 

 

 end = (const unsigned short*)(((unsigned int)data) + len); 

 ptr = (const unsigned short*)data; 

 reg = m_base; 

 

 while (ptr < end) 

 { 

  reg ^= *--end; 

  reg = lut[reg & 0xFF] ^ (reg >> 8); 

  reg = lut[reg & 0xFF] ^ (reg >> 8); 

 } 

 

 return reg; 

} 

 

 

} // namespace crc 

 

 

  



Emulator of the read-out chain 100/12
6 

 

 
/** \file crctable.hh 

 *  \brief CRC Table is the table for table driven algorithm. 

 * 

 *  \author Risto Kivilahti <kivilaht@cern.ch> 

 * 

 *  \todo Future support for 32 and 64 bit CRC table */ 

 

#ifndef __CRC_TABLE_HH__ 

#define __CRC_TABLE_HH__ 

 

 

namespace crc { 

 

class Table 

{ 

public: 

 virtual ~Table () {} 

 

 virtual unsigned short operator[] (unsigned short) = 0; 

 virtual const unsigned short *get (void) const throw () = 

0; 

}; 

 

Table *newTable (const unsigned short poly, const unsigned short 

regbase); 

 

}; 

 

#endif /* __CRC_TABLE_HH__ */ 

 

 

  



Emulator of the read-out chain 101/12
6 

 

 
/** \file crctable.cpp 

 *  \brief CRC Table is the table for table driven algorithm. 

 * 

 *  \author Risto Kivilahti <kivilaht@cern.ch> */ 

 

#include "crctable.hh" 

#include "stdlib.h" 

 

 

namespace crc { 

 

class TableImpl : public Table 

{ 

public: 

 TableImpl (void *table); 

 ~TableImpl (); 

 

 const unsigned short *get (void) const throw (); 

 

 unsigned short operator[] (unsigned short id); 

 unsigned int operator[] (unsigned int id); 

 

 unsigned int* operator= (unsigned int* p); 

 unsigned short* operator= (unsigned short* p); 

 

private: 

 void *m_table; 

}; 

 

 

TableImpl::TableImpl (void *table) 

{ 

 m_table = table; 

} 

 

TableImpl::~TableImpl () 

{ 

 free (m_table); 

} 

 

/** \brief Return a pointer to the raw data of the table. 

 *  This is unsigned short, so use with 16 bit algorithm. 

 *  You can use either operator[], or this function to get the raw 

data. 

 *  When used in algorithm loop, the operator[] seems to be more or 

less 3 times 

 *  slower than the raw data. 

 *  \return The pointer to the raw data. */ 

const unsigned short * 

TableImpl::get (void) const throw () 

{ 

 return (unsigned short*)m_table; 

} 

 

unsigned short 

TableImpl::operator[] (unsigned short id) 

{ 

 return ((unsigned short*)m_table)[id]; 

} 

 



Emulator of the read-out chain 102/12
6 

 

 
unsigned int 

TableImpl::operator[] (unsigned int id) 

{ 

 return ((unsigned int*)m_table)[id]; 

} 

 

unsigned int* 

TableImpl::operator= (unsigned int* p) 

{ 

 m_table = p; return p; 

} 

 

unsigned short* 

TableImpl::operator= (unsigned short* p) 

{ 

 m_table = p; return p; 

} 

 

 

template <class T> 

static void 

calculate_lut (T *table, T poly, T regbase) 

{ 

 int i, j; 

 T val = regbase; 

 

 for (i=0; i<256; i++) { 

  val = i; 

 

  for (j=0; j<8; j++) { 

   if (val & 0x1) { 

    val = (val >> 1) ^ poly; 

 

   } else { 

    val = val >> 1; 

   } 

  } 

 

  table[i] = val; 

 } 

} 

 

Table * 

newTable (const unsigned short poly, const unsigned short regbase) 

{ 

 unsigned short *table = (unsigned short*)malloc (256 * 

sizeof (unsigned short));  

 TableImpl *timpl = new TableImpl (table); 

 

 calculate_lut<unsigned short> (table, poly, regbase); 

 

 return dynamic_cast<Table*>(timpl); 

} 

 

} /* namespace crc */ 

 

 

  



Emulator of the read-out chain 103/12
6 

 

 
/** \file hor2ver.hh 

 *  \brief Converts horizontal bits to vertical bits 

 * 

 *  Horizontal: 

 *  1111 

 *  0000 

 *  1111 

 *  0000 

 * 

 * 

 *  Vertical: 

 *  1010 

 *  1010 

 *  1010 

 *  1010 

 */ 

 

#ifndef __HORIZONTAL_TO_VERTICAL_HH__ 

#define __HORIZONTAL_TO_VERTICAL_HH__ 

 

 

void hor2ver_area (const unsigned char *src, unsigned int amount, 

 unsigned char *dest, unsigned char destbit, unsigned int 

destwidth); 

 

inline void bitcopy (const unsigned char *from, unsigned char frombit, 

  unsigned char *to, unsigned char tobit); 

 

void hor2ver_char (const unsigned char *from, unsigned char *to, 

  unsigned char tobit, unsigned int towidth); 

 

 

#endif /* __HORIZONTAL_TO_VERTICAL_HH__ */ 

 

 

  



Emulator of the read-out chain 104/12
6 

 

 
/** \file hor2ver.cpp */ 

 

#include "hor2ver.hh" 

 

 

void 

hor2ver_area (const unsigned char *src, unsigned int amount, unsigned 

char *dest, 

  unsigned char destbit, unsigned int destwidth) 

{ 

 for (unsigned int k=0; k<amount; k++) { 

  hor2ver_char (src, dest, destbit, destwidth); 

  src++; 

  dest += destwidth*8; 

 } 

} 

 

void 

hor2ver_char (const unsigned char *from, unsigned char *to, unsigned 

char tobit, 

  unsigned int towidth) 

{ 

 for (unsigned char i=0x80; i!=0x00; i>>=1) { 

  bitcopy (from, i, to, tobit); 

  to+=towidth; 

 } 

} 

 

 

inline void 

bitcopy (const unsigned char *from, unsigned char frombit, unsigned 

char *to, 

 unsigned char tobit) 

{ 

 if (*from & frombit) { 

  *to |= tobit; 

 } 

} 

 

  



Emulator of the read-out chain 105/12
6 

 

 
/** \file optorxgenerator.hh */ 

 

#ifndef __OPTORX_GENERATOR_HH__ 

#define __OPTORX_GENERATOR_HH__ 

 

 

namespace totfedemu 

{ 

 

 

class OptoRxGenerator 

{ 

public: 

 virtual ~OptoRxGenerator () {}; 

 virtual unsigned char *generateTo (unsigned char *dataptr) 

= 0; 

}; 

 

 

OptoRxGenerator *newOptoRxGenerator (void); 

 

 

} /* namespace optorx */ 

 

#endif /* __OPTORX_GENERATOR_HH__ */ 

 

 

  



Emulator of the read-out chain 106/12
6 

 

 
/** \file optorxemulator.cpp */ 

 

#include "optorxemulator.hh" 

#include "vfatgenerator.hh" 

#include "hor2ver.hh" 

#include <string.h> 

 

namespace totfedemu { 

 

 

class OptoRxGeneratorImpl : public OptoRxGenerator 

{ 

private: 

 VFATGenerator *m_vfatgen; 

 const vfat::HFrame *m_frame; 

 

public: 

 OptoRxGeneratorImpl (); 

 ~OptoRxGeneratorImpl (); 

 const unsigned char *generate (void); 

 unsigned char *generateTo (unsigned char *dataptr); 

}; 

 

 

OptoRxGeneratorImpl::OptoRxGeneratorImpl () 

{ 

 m_vfatgen = NewVFATGenerator (32); 

} 

 

OptoRxGeneratorImpl::~OptoRxGeneratorImpl () 

{ 

 delete m_vfatgen; 

} 

 

 

unsigned char * 

OptoRxGeneratorImpl::generateTo (unsigned char *dataptr) 

{ 

 memset (dataptr, 0, sizeof(dataptr)); 

 /* Defines the vertical byte to write */ 

 for (int k=0; k<4; k++) { 

  /* Defines the bit in the byte to write */ 

  for (int i=0x80; i!=0x00; i>>=1) { 

   m_frame = m_vfatgen->generate_next (); 

   hor2ver_area ((const unsigned 

char*)m_frame, 

    

 sizeof(vfat::HFrame), dataptr+k, i, 4); 

  } 

 } 

 

 /* Reading the NULL out. */ 

 m_vfatgen->generate_next (); 

 

 return dataptr; 

} 

  



Emulator of the read-out chain 107/12
6 

 

 
OptoRxGenerator * 

newOptoRxGenerator (void) 

{ 

 return new OptoRxGeneratorImpl; 

} 

 

 

} /* namespace totfedemu */ 

 

 

  



Emulator of the read-out chain 108/12
6 

 

 
/** \file ref_ptr.hh 

 *  \brief Reference calculated pointer. 

 *  Every copy of ref_ptr shares a reference count with 

 *  the original ref_ptr. 

 *  When copy is created, reference count is increased, and when copy  

 *  is deleted, reference count is decreased. 

 *  When the count reaches zero, the object will be destroyed. 

 * 

 *  There is no real API to use the object, but instead it should be  

 *  used like the auto_ptr.  Check auto_ptr manual for more. 

 * 

 * 

 *  \author Risto Kivilahti <kivilaht@cern.ch> */ 

 

#ifndef __REF_PTR_HH__ 

#define __REF_PTR_HH__ 

 

#include "refcount.hh" 

#include <assert.h> 

 

 

namespace crc 

{ 

 

template <typename T> 

class ref_ptr 

{ 

public: 

 ref_ptr () throw (); 

 ref_ptr (T *ptr) throw (); 

 ref_ptr (const ref_ptr<T> &ptr) throw (); 

 virtual ~ref_ptr () throw (); 

 

 ref_ptr<T>& operator= (T *ptr) throw (); 

 ref_ptr<T>& operator= (const ref_ptr<T> &ptr) throw (); 

 T& operator* () const throw (); 

 T* operator-> () const throw (); 

 

 bool operator== (const ref_ptr<T> &ptr) const throw (); 

 

private: 

 void unBind (void) const throw (); 

 

 mutable T *m_object; 

 mutable RefCount *m_refcount; 

}; 

 

 

template <typename T> 

ref_ptr<T>::ref_ptr () throw () 

{ 

 m_object = 0; 

 m_refcount = 0; 

} 

 

 

  



Emulator of the read-out chain 109/12
6 

 

 
template <typename T> 

ref_ptr<T>::ref_ptr (T *ptr) throw () 

{ 

 m_object = 0; 

 m_refcount = 0; 

 

 if (ptr == 0) { 

  return; 

 } 

 

 m_object = ptr; 

 m_refcount = new RefCount (); 

 assert (m_refcount != 0); 

 m_refcount->inc (); 

} 

 

 

template <typename T> 

ref_ptr<T>::ref_ptr (const ref_ptr &ptr) throw () 

{ 

 m_object = 0; 

 m_refcount = 0; 

 

 if (&ptr == 0) { 

  return; 

 } 

 

 if (ptr.m_object != 0) { 

  assert (ptr.m_refcount != 0); 

  ptr.m_refcount->inc (); 

  unBind (); 

  m_object = ptr.m_object; 

  m_refcount = ptr.m_refcount; 

 } 

} 

 

 

template <typename T> 

ref_ptr<T>::~ref_ptr () throw () 

{ 

 unBind (); 

} 

 

 

template <typename T> 

ref_ptr<T>& 

ref_ptr<T>::operator= (T *ptr) throw () 

{ 

 unBind (); 

 if (ptr == 0) { 

  return *this; 

 } 

 

 m_object = ptr; 

 m_refcount = new RefCount (); 

 assert (m_refcount != 0); 

 m_refcount->inc (); 

 return *this; 

} 

 



Emulator of the read-out chain 110/12
6 

 

 
 

template <typename T> 

ref_ptr<T>& 

ref_ptr<T>::operator= (const ref_ptr<T> &ptr) throw () 

{ 

 unBind (); 

 

 if (&ptr == 0) { 

  return *this; 

 } 

 

 if (ptr.m_object == 0) { 

  return *this; 

 } 

 

 assert (ptr.m_refcount != 0); 

 

 if (ptr.m_refcount->inc () == 0) { 

  return *this; 

 } 

 

 m_object = ptr.m_object; 

 m_refcount = ptr.m_refcount; 

 return *this; 

} 

 

 

template <typename T> 

T& 

ref_ptr<T>::operator* () const throw () 

{ 

 return *m_object; 

} 

 

 

template <typename T> 

T* 

ref_ptr<T>::operator-> () const throw () 

{ 

 return m_object; 

} 

 

 

template <typename T> 

bool 

ref_ptr<T>::operator== (const ref_ptr<T> &ptr) const throw () 

{ 

 if (&ptr == 0) { 

  return (m_object == 0); 

 } 

 

 return (m_object == ptr.m_object); 

} 

 

  



Emulator of the read-out chain 111/12
6 

 

 
template <typename T> 

void 

ref_ptr<T>::unBind (void) const throw () 

{ 

 if (m_object != 0) { 

  assert (m_refcount != 0); 

  if (m_refcount->dec () == 0) { 

   delete m_object; 

   delete m_refcount; 

  } 

 

  m_object = 0; 

  m_refcount = 0; 

 } 

} 

 

} /* namespace crc */ 

 

#endif /* __REF_PTR_HH__ */ 

 

 

  



Emulator of the read-out chain 112/12
6 

 

 
/** \file refcount.hh 

 *  \brief Reference counter. 

 *  Simple reference counter class. 

 * 

 *  \author Risto Kivilahti <kivilaht@cern.ch> 

 * 

 *  \todo Make thread safe, atomic. */ 

 

#ifndef __REF_COUNT_HH__ 

#define __REF_COUNT_HH__ 

 

 

namespace crc 

{ 

 

 

class RefCount 

{ 

public: 

 RefCount (void) throw (); 

 ~RefCount (void) throw (); 

 

 unsigned int inc (void) throw (); 

 unsigned int dec (void) throw (); 

 

 unsigned int get (void) const throw (); 

 

private: 

 unsigned int m_count; 

}; 

 

 

} /* namespace crc */ 

 

#endif /* __REF_COUNT_HH__ */ 

 

 

  



Emulator of the read-out chain 113/12
6 

 

 
/** \file refcount.cpp 

 *  \brief Reference counter. 

 * 

 *  \author Risto Kivilahti <kivilaht@cern.ch> 

 * 

 *  \todo Make thread safe */ 

 

 

#include "refcount.hh" 

#include <assert.h> 

 

namespace crc 

{ 

 

 

RefCount::RefCount () throw () 

{ 

 m_count = 0; 

} 

 

RefCount::~RefCount () throw () 

{ 

 assert (m_count == 0); 

} 

 

/** \brief Return the current reference count. 

 *  \return The current reference count. */ 

unsigned int 

RefCount::get (void) const throw () 

{ 

 return m_count; 

} 

 

/** \brief Increase reference count by one. 

 *  \todo There is no protection for overflow, 

 *  but can someone really need ? 

 *  \return The current reference count. */ 

unsigned int 

RefCount::inc (void) throw () 

{ 

 return ++m_count; 

} 

 

/** \brief Decrease the reference count by one.  If count is zero, 

does nothing. 

 *  \return The current reference count. */ 

unsigned int 

RefCount::dec (void) throw () 

{ 

 if (m_count == 0) { 

  return 0; 

 } 

 

 return --m_count; 

} 

 

 

} /* namespace crc */ 

 

 



Emulator of the read-out chain 114/12
6 

 

 
/**  \file totfedemulator.hh */ 

 

#ifndef __TOTFED_EMULATOR_HH__ 

#define __TOTFED_EMULATOR_HH__ 

 

#include "totfedframe.hh" 

 

namespace totfedemu 

{ 

 

 

class FrameEmulator 

{ 

public: 

 virtual ~FrameEmulator () {} 

 

 /* Generates a TOT FED frame.  Running numbers in VFAT  

 * frame are updated as should, like event number.  A new  

 * buffer is always allocated, so the user is responsible  

 * to free it. */ 

 virtual Frame *generate (void) = 0; 

}; 

 

 

FrameEmulator* newFrameEmulator (unsigned int firstfiber); 

 

 

} /* namespace totfedemu */ 

 

#endif /* __TOTFED_EMULATOR_HH__ */ 

 

 

  



Emulator of the read-out chain 115/12
6 

 

 
/** \file totfedemulator.cpp */ 

 

#include "totfedemulator.hh" 

#include "optorxemulator.hh" 

#include <string.h> 

 

 

namespace totfedemu { 

 

 

class FrameEmulatorImpl : public FrameEmulator 

{ 

public: 

 FrameEmulatorImpl (unsigned int firstfiber); 

 ~FrameEmulatorImpl (void); 

 

 Frame *generate (void); 

 

private: 

 unsigned int m_firstfiber; 

 OptoRxGenerator *m_optogen[6]; 

 void generateHeader (Header *header, unsigned int fiber); 

 void generateFooter (Footer *footer, unsigned int fiber); 

 void generateSubFrame (SubFrame *subframe, unsigned int 

fiber); 

}; 

 

 

FrameEmulatorImpl::FrameEmulatorImpl (unsigned int firstfiber) 

{ 

 m_firstfiber = firstfiber; 

 for (int i=0; i<6; i++) { 

  m_optogen[i] = newOptoRxGenerator (); 

 } 

} 

 

void 

FrameEmulatorImpl::generateHeader (Header *header, unsigned int fiber) 

{ 

 header->SOFCode = 0x50; /* Const SOF Code */ 

 header->afiber = fiber; 

 header->notused = 0x00; /* Field not used */ 

 header->bfiber = ++fiber; 

} 

 

void 

FrameEmulatorImpl::generateFooter (Footer *footer, unsigned int fiber) 

{ 

 footer->EOFCode = 0xA0; /* Const EOF Code */ 

 footer->afiber = fiber; 

 footer->notused = 0x00; /* Field not used */ 

 footer->bfiber = ++fiber; 

} 

 

  



Emulator of the read-out chain 116/12
6 

 

 
void 

FrameEmulatorImpl::generateSubFrame (SubFrame *subframe, unsigned int 

fiber) 

{ 

 generateHeader (&subframe->header, fiber); 

 generateFooter (&subframe->footer, fiber); 

 

 /* Hack: fiber - m_firstfiber.  For each fiber pair there 

 * is one OptoRxGenerator.  The ID of generator follows  

 * linearly the fiber nbr. 

* So we use fiber nbr to select correct OptoRxGenerator. 

*/ 

 m_optogen[fiber - m_firstfiber]->generateTo ( 

(unsigned char*)(subframe->data)); 

} 

 

totfedemu::Frame * 

FrameEmulatorImpl::generate (void) 

{ 

 Frame *frame = new Frame; 

 memset (frame, 0, sizeof(Frame)); 

 

 for (int i=0; i<6; i++) { 

  generateSubFrame (&(frame->subframe[i]),  

m_firstfiber+i); 

 } 

 

 return frame; 

} 

 

FrameEmulatorImpl::~FrameEmulatorImpl (void) 

{ 

 for (int i=0; i<6; i++) { 

  delete m_optogen[i]; 

 } 

} 

 

/* \brief Returns new FrameEmulator. 

 * \param firstfiber The first fiber ID, the rest are sequential. 

 * \return Newly allocated FrameEmulator */ 

FrameEmulator*  

newFrameEmulator (unsigned int firstfiber) 

{ 

 return new FrameEmulatorImpl (firstfiber); 

} 

 

 

} /* namespace daqemu */ 

 

 

  



Emulator of the read-out chain 117/12
6 

 

 
/** \file totfedframe.hh */ 

 

#ifndef __TOTFED_FRAME_HH__ 

#define __TOTFED_FRAME_HH__ 

 

namespace totfedemu { 

 

 

struct Header 

{ 

 char SOFCode; // = 0x50 const 

 char afiber; 

 char notused; // = 0x00 const 

 char bfiber; 

}; 

 

struct Footer 

{ 

 char EOFCode; // = 0xA0 const 

 char afiber; 

 char notused; // = 0x0 const 

 char bfiber; 

}; 

 

struct SubFrame 

{ 

 Header header; 

 unsigned int data [192]; 

 Footer footer;  

}; 

 

struct Frame 

{ 

 SubFrame subframe[6];  

}; 

 

 

} /* namespace totfed */ 

 

#endif /* __TOTFED_FRAME_HH__ */ 

 

 

  



Emulator of the read-out chain 118/12
6 

 

 
/** \file vfatframe.hh */ 

 

#ifndef __VFAT_FRAME_HH__ 

#define __VFAT_FRAME_HH__ 

 

namespace vfat 

{ 

 

 

/* 

 VFAT frame is like this structure.  Const in some fields 

 means that the value of this field is set to const value. 

 

 unsigned int BCCode : 4; // = 10 const; 

 unsigned int bcnumber : 12; 

 unsigned int EventCode : 4; // = 12 const; 

 unsigned int eventnumber : 8; 

 unsigned int flags : 4; // = 0; 

 unsigned int ChipCode : 4; // = 14 const; 

 unsigned int chipid : 12; 

 char channeldata[16]; 

 unsigned int crc : 16; 

*/ 

 

class HFrame 

{ 

private: 

 /* There are here to verify the data in the framedata, in 

case needed */ 

 unsigned int getBCCode (void) const; 

 unsigned int getEventCode (void) const; 

 unsigned int getChipCode (void) const; 

 

public: 

 char framedata[24]; 

 HFrame (); 

 

 void setBCNumber (unsigned int bcnbr); 

 unsigned int getBCNumber (void) const; 

 

 void setEventNumber (unsigned int eventnbr); 

 unsigned int getEventNumber (void) const; 

 

 void setFlags (unsigned int flagsval); 

 unsigned int getFlags (void) const; 

 

 void setChipID (unsigned int chipid); 

 unsigned int getChipID (void) const; 

 

 char *getDataPtr (void); 

 

 void setCRC (unsigned int crc); 

 unsigned int getCRC (void) const; 

  

 void print (void) const; 

}; 

 

} /* namespace vfat */ 

 

#endif /* __VFAT_FRAME_HH__ */ 



Emulator of the read-out chain 119/12
6 

 

 
/** \file vfatframe.cpp 

 *  \brief VFATFrame and handling of the bitfields. */ 

 

#include <stdio.h> 

#include "vfatframe.hh" 

 

 

namespace vfat 

{ 

 

static const char BCCODE = 0xa0; 

static const char EVENTCODE = 0xc0; 

static const char DEFAULTFLAGS = 0x00; 

static const char CHIPCODE = 0xe0; 

 

 

HFrame::HFrame () 

{ 

 framedata[0] = BCCODE; 

 framedata[2] = EVENTCODE; 

 framedata[3] = DEFAULTFLAGS; 

 framedata[4] = CHIPCODE; 

} 

 

unsigned int 

HFrame::getBCCode (void) const 

{ 

 return (unsigned int)(framedata[0] >> 4) & 0x0F; 

} 

 

unsigned int 

HFrame::getEventCode (void) const 

{ 

 return (unsigned int)(framedata[2] >> 4) & 0x0F; 

} 

 

unsigned int 

HFrame::getChipCode (void) const 

{ 

 return (unsigned int)(framedata[4] >> 4) & 0x0F; 

} 

 

void 

HFrame::setBCNumber (unsigned int bcnbr) 

{ 

 /* Write high bits */ 

 framedata[0] = (framedata[0] & 0xF0) | (char) ((bcnbr >> 8) 

& 0x0F); 

 

 /* Write low bits */ 

 framedata[1] = (char) (bcnbr & 0xFF); 

} 

 

  



Emulator of the read-out chain 120/12
6 

 

 
unsigned int 

HFrame::getBCNumber (void) const 

{ 

 /* Read high bits */ 

 unsigned int ret = (unsigned int)framedata[0] & 0x0F; 

 ret <<= 8; 

 

 /* Read low bits */ 

 ret |= (unsigned int)framedata[1]; 

 

 return ret & 0x0FFF; 

} 

 

void 

HFrame::setEventNumber (unsigned int eventnbr) 

{ 

 /* Write high bits */ 

 framedata[2] = (framedata[2] & 0xF0) | (char)((eventnbr & 

0xF0) >> 4); 

 

 /* Write low bits */ 

 framedata[3] = (framedata[3] & 0x0F) | (char)((eventnbr & 

0x0F) << 4); 

} 

 

unsigned int 

HFrame::getEventNumber (void) const 

{ 

 /* Write high bits */ 

 unsigned int ret = (unsigned int)((framedata[2] & 0x0F) << 

4); 

 

 /* Write low bits */ 

 ret |= (unsigned int)((framedata[3] & 0xF0) >> 4); 

 

 return ret & 0xFF; 

} 

 

void 

HFrame::setFlags (unsigned int flagsval) 

{ 

 framedata[3] = (framedata[3] & 0xF0) | (char)(flagsval & 

0x0F); 

} 

 

unsigned int 

HFrame::getFlags (void) const 

{ 

 return (unsigned int)(framedata[3] & 0x0F); 

} 

 

 

  



Emulator of the read-out chain 121/12
6 

 

 
void 

HFrame::setChipID (unsigned int chipid) 

{ 

 /* Write high bits */ 

 framedata[4] = (framedata[4] & 0xF0) | (char) ((chipid >> 

8) & 0x0F); 

 

 /* Write low bits */ 

 framedata[5] = (char) (chipid & 0xFF); 

} 

 

unsigned int 

HFrame::getChipID (void) const 

{ 

 /* Read high bits */ 

 unsigned int ret = (unsigned int)framedata[4] & 0x0F; 

 ret <<= 8; 

 

 /* Read low bits */ 

 ret |= (unsigned int)framedata[5]; 

 

 return ret & 0x0FFF; 

} 

 

 

char * 

HFrame::getDataPtr (void) 

{ 

 return &framedata[6]; 

} 

 

void 

HFrame::setCRC (unsigned int crc) 

{ 

 framedata[22] = (char)((crc >> 8) & 0xFF); 

 framedata[23] = (char)(crc & 0xFF); 

} 

 

unsigned int 

HFrame::getCRC (void) const 

{ 

 unsigned int ret = (((unsigned int)framedata[22]) << 8); 

 ret |= (unsigned int)framedata[23]; 

 

 return ret & 0xFFFF; 

} 

 

 

  



Emulator of the read-out chain 122/12
6 

 

 
void 

HFrame::print (void) const 

{ 

 printf ("BCCode:      %d\n" 

  "bcnumber:    %d\n" 

  "EventCode:   %d\n" 

  "eventnumber: %d\n" 

  "flags:       %d\n" 

  "ChipCode:    %d\n" 

  "chipid:      %d\n" 

  "channeldata: %.*s\n" 

  "crc:         %2X\n", 

  getBCCode (), 

  getBCNumber (), 

  getEventCode(), 

  getEventNumber (), 

  getFlags (), 

  getChipCode (), 

  getChipID (), 

  16, 

  &(this->framedata[6]), 

  getCRC () 

  ); 

} 

 

} /* namespace vfat */ 

 

 

  



Emulator of the read-out chain 123/12
6 

 

 
/** \file vfatgenerator.hh */ 

 

#ifndef __VFAT_GENERATOR_HH__ 

#define __VFAT_GENERATOR_HH__ 

 

#include "vfatframe.hh" 

 

namespace totfedemu 

{ 

 

 

typedef void(*VFATDataEmulator)(char *channeldata, vfat::HFrame 

*packet); 

 

 

enum VFATSignal 

{ 

 ClearSignal = 0, 

 

 NumberOfSignals 

}; 

 

 

class VFATGenerator 

{ 

public: 

 virtual ~VFATGenerator () {} 

 /* Returns a VFATFrame with the next chipID, or 0 if none 

 * is left. After 0 the loop begins again and you generate  

 * the first one again. Loop is as long as vfatcount. 

  * After every loop the event number is increased. */ 

 virtual const vfat::HFrame* generate_next (void) = 0; 

 

 /* Emit VFATSignal for all the VFATs.  Currently only 

 * ClearSignal is supported. */ 

 virtual void emit_signal (VFATSignal signal) = 0; 

}; 

 

 

/* \brief Returns new VFATGenerator. 

 * \param vfatcount The amount of VFATs in the generator. 

 *        There is chipID for each of the VFATs. */ 

VFATGenerator* NewVFATGenerator (unsigned int vfatcount); 

 

 

} /* namespace daqemu */ 

 

#endif /* __VFAT_GENERATOR_HH__ */ 

 

 

  



Emulator of the read-out chain 124/12
6 

 

 
/** \file vfatgenerator.c 

 *  \todo At the moment VFAT flags are not emulated in anyway and are  

 *  always zero. */ 

 

#include <sys/time.h> 

#include <stdlib.h> 

#include <limits.h> 

#include <string.h> 

#include "vfatgenerator.hh" 

#include "crcchecker.hh" 

 

namespace totfedemu { 

 

 

class VFATGeneratorImpl : public VFATGenerator 

{ 

public: 

 VFATGeneratorImpl (unsigned int count); 

 ~VFATGeneratorImpl (); 

 const vfat::HFrame* generate_next (void); 

 void emit_signal (VFATSignal signal); 

 

private: 

 unsigned int m_vfatcount; 

 unsigned int m_currentvfat; 

 vfat::HFrame m_vfatgenbuf; 

 VFATDataEmulator m_data_emu; 

 crc::Checker *m_crcchecker; 

 

 void channel_data_emulator(char *channeldata, const 

vfat::HFrame *packet); 

 void clear_signal (void); 

}; 

 

 

VFATGeneratorImpl::VFATGeneratorImpl (unsigned int count) 

{ 

 m_data_emu = 0; 

 m_vfatcount = count; 

 m_currentvfat = 0; 

 m_crcchecker = crc::newChecker (0x8888, 0xFFFF); 

} 

 

VFATGeneratorImpl::~VFATGeneratorImpl () 

{ 

 delete m_crcchecker; 

} 

 

  



Emulator of the read-out chain 125/12
6 

 

 
const vfat::HFrame* 

VFATGeneratorImpl::generate_next (void) 

{ 

 struct timeval tv; 

 

 if (m_currentvfat > m_vfatcount) { 

  m_currentvfat = 0; 

  /* Event is changed only when all the VFATs are  

 * created. */ 

  unsigned int eventnbr =  

m_vfatgenbuf.getEventNumber (); 

  eventnbr++; 

  m_vfatgenbuf.setEventNumber (eventnbr); 

  return NULL; 

 } 

 

 /* Set chipIP */ 

 m_vfatgenbuf.setChipID (m_currentvfat); 

 

 /* Set BCN */ 

 gettimeofday (&tv, NULL); 

 m_vfatgenbuf.setBCNumber (tv.tv_usec); 

 

 /* Set channel data */ 

 channel_data_emulator (m_vfatgenbuf.getDataPtr (), 

&m_vfatgenbuf); 

 

 /* Set CRC */ 

 m_vfatgenbuf.setCRC (m_crcchecker->calculate 

(&m_vfatgenbuf, 

        

sizeof (vfat::HFrame) - 2)); 

 

 m_currentvfat++; 

 return &m_vfatgenbuf; 

} 

 

 

void 

VFATGeneratorImpl::clear_signal (void) 

{ 

 m_currentvfat = 0; 

 m_vfatgenbuf.setBCNumber (0); 

 m_vfatgenbuf.setEventNumber (0); 

} 

 

void 

VFATGeneratorImpl::emit_signal (VFATSignal signal) 

{ 

 switch (signal) 

 { 

  case ClearSignal: 

   clear_signal (); 

   break; 

 

  default: 

   break; 

 }; 

} 

 



Emulator of the read-out chain 126/12
6 

 

 
void 

VFATGeneratorImpl::channel_data_emulator (char *channeldata, const 

vfat::HFrame *packet) 

{ 

 unsigned int *intdata = (unsigned int*)channeldata; 

 

 srand (packet->getBCNumber ()); 

 

 /* int is assumed to be 32bit long. */ 

 for (int i=0; i<4; i++) { 

  /* Get some random data. */ 

  intdata[i] = (unsigned int)(1000000.0 * (rand() / 

3555555.0)); 

 } 

} 

 

VFATGenerator* 

NewVFATGenerator (unsigned int vfatcount) 

{ 

 VFATGenerator *vfatgen = new VFATGeneratorImpl (vfatcount); 

 return vfatgen; 

} 

 

} /* namespace daqemu */ 

 

 

 


