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The subject of this thesis was the voltage control in distributed electricity 
generation by the using synchronous condenser. Wärtsilä gave this subject 
because Wärtsilä attempt to utilize synchronous generator as a reactive power 
producer when active power production is not needed. 

The purpose of this thesis was to discover how to use synchronous generator as a 
synchronous condenser. What kind of conditions are there to use the generator of 
the stationary power plant as a synchronous condenser and what kind of 
possibilities does it sets to the generator voltage control. A few different kind of 
voltage control solutions are also introduced and differences between them and 
the voltage control requirements in Wärtsilä`s the most common customer 
countries. 
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SYMBOLS AND ABBREVIATIONS USED 
 
Abbreviations 
 
 
AVR  Automatic Voltage Regulation 
 
TSU  Transmission Service Unit 
 
P3B PLN for distribution and load governing center of as unit of PLN 

as owner of grid and organizer of electricity system in Java, 
Madura and Bali island 

 
AESO  Alberta Electric System Operator 
 
AIES  Alberta Interconnected Electric System 
 
AVR  Automatic voltage regulation 
 
HVDC  High-voltage direct current 
 
EMF   Electro motoric force 
 
TSO   Transmission system operator 
 
MV   Medium voltage 
 
HV   High voltage 
 
AC  Alternating current 
 
DC  Direct current  
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1 INTRODUCTION 

The subject of this thesis is the voltage control in distributed electricity generation 

by using synchronous condenser. The main purpose of the thesis is to discover 

how to use synchronous machine as a synchronous condenser and improve 

electrical network voltage stability. Wärtsilä gave this subject because Wärtsilä 

attempt to utilize synchronous generator as a reactive power producer when active 

power production is not needed. 

In this thesis the standards and regulations of the voltage control requirements in 

Wärtsilä`s most common customer countries and different solutions of voltage 

control methods are studied. 

  



11 

 

2 WÄRTSILÄ 

Wärtsilä is a global leader in complete lifecycle power solutions for the marine 

and energy markets. Wärtsilä was founded in 1834. In 2013, Wärtsilä`s net sales 

totaled EUR 4.7 billion with approximately 18,700 employees. The company has 

operations in more than 200 locations in nearly 70 countries around the world. 

2.1 SHIP POWER 

 
Wärtsilä enhances the business of the marine and oil & gas industry customers by 

providing innovative products and integrated solutions that are safe, 

environmentally sustainable, efficient, flexible and economically sound. 

2.2 POWER PLANTS 

 
Wärtsilä Power Plants is a leading global supplier of flexible baseload power 

plants of up to 600 MW operating on various gaseous and liquid fuels. The 

portfolio includes unique solutions for peaking, reserve and load-following power 

generation, as well as for balancing intermitted power production. Wärtsilä Power 

Plants also provides LNG terminals and distribution systems. 

 
2.3 SERVICES 

 
Wärtsilä supports its customers throughout the lifecycle of their installations. 

Wärtsilä provides service, maintenance and reconditioning solutions both for ship 

machinery and power plants. In parallel with its main service operations Wärtsilä 

has launched innovative new services that support its customer`s business 

operations, such as service for multiple engine brands in key ports, predictive and 

condition based maintenance, and training. 
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3 INTRODUTION TO VOLTAGE STANDARDS AND 

CONTROL 

Nowadays electricity is necessary for almost all people. The system how 

electricity is transferred from producers to customer is called a network. It is very 

important to control the voltage because the supplier has to convey the highest 

possible quality to the customer with minimum faults. There are standards for 

these problems and if a fault occurs, there is a set time limit to fix the problem or 

the electricity distribution is disconnected. 

The nominal voltage of 400kV line ranges from 395 to 420kV and in fault 

situations 360-420kV. The nominal value of 220kV line ranges from 215-245kV 

and in fault situations 210-245kV. The nominal voltage range of 110kV line is 

105-123kV and in fault situations 100-123kV./15/ 

The nominal voltage of high voltage network in Finland is 110-, 220, and 400kV. 

The large power plants are connected to these voltage levels. The high-voltage 

network is responsible for the transmission of electricity over long distances./16/ 

The medium voltage network (1-35kV) transfers voltage from the high-voltage 

network to distribution transformers, which serve the low voltage networks. 

Smaller power plants supply electricity to this network. Small and average sized 

industrial plants and large public and business buildings are connected usually to 

medium voltage network and are using their own transformers./16/ 

The low voltage network is responsible for the final distribution of electricity to 

small consumers (100-1000V). In Europe the medium voltage is converted to 

400/230V and delivered to households, industries and offices. In the low voltage 

network the electricity is transferred from the distribution transformer either 

straight to the property or via a distribution cabinet./16/ 
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Figure 2. Transmission and distribution network diagram./2/ 
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4 NETWORK VOLTAGE CONTROL REGULATIONS AND 

STANDARDS 

In this chapter the standards and regulations of the voltage control requirements 

are introduced for Europe, Indonesia and U.S.A which are the most common 

customer countries for Wärtsilä. 

The Grid Code is a set of regulations, requirements and standards to ensure the 

safety and reliability of the operation and development of efficient system to meet 

the increasing electricity demand/6/ 

4.1 ENTSO-E, Europe 

ENTSO-E  is  organization  of  transmission  system  operators  in  Europe.  The  

mission  of  ENTSO-E  is  to  be  the  body  of  transmission  system  operators  of  

electricity on the European level. The purpose of the ENTSO-E is to improve 

cooperation in electricity market development of European Union member states. 

ENTSO-E replaces the previously acted national organizations in European 

Union. The organization is divided into five groups: Continental Europe, Nordic, 

Great Britain, Ireland and Baltic. The areas can be seen in Figure 2./1/ 

 

Figure 3. Members of ENTSO-E. /1/  
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4.1.1  ENTSO-E  Draft  Requirements  for  Grid  Connection  Applicable  to  all  

Generators 

ENTSO-E has a grid code called ”ENTSO-E Draft Requirements for Grid 

Connection Applicable to all Generators”. This Network Code defines a common 

framework of grid connection requirements for Power Generating Facilities, 

including Synchronous Power Generating Modules, Power Park Modules and 

Offshore Generation Facilities. It also defines a common framework of obligations 

for Network Operators to appropriately make use of the capabilities of Power 

Generating Facilities’ in a transparent and non-discriminatory manner ensuring a 

level-playing field throughout the European Union. In this thesis is focused on voltage 

standards and what kind of norm`s there are for voltage regulation./3/ 

4.1.2 Actions in Voltage Deviation 

ENTSO-E have standards for the minimum periods that the power generating module 

shall be capable of operating when voltage is deviating from the nominal value at the 

connection point without disconnecting from the network. Table 1 describes power 

plant actions in all countries that belongs to areas of ENTSO-E when voltage 

deviation is in within: 110-300kV. 

Table 1. Actions in case of a voltage deviation between 110-300kV /3/ 
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ENTSO-E defines the minimum period of time that the power plant should work 

without disconnecting from the network, when there is a voltage deviation.  

When the rated voltage of the connection point is 110kV (eg. Nordic countries) and 

the voltage deviates 90%-105%, that means voltage 99kV – 115kV, according to 

Table 1 the operating time of the power plant is unlimited and it will not disconnect 

from the network. If the voltage rises to 105%-110%, which means that voltage is 

115kV-120kV, then the voltage has 60 minutes to recover the allowed voltage level 

or otherwise the network will be disconnected./3/ 

ENTSO-E defines the minimum period of time that power plant should work without 

disconnecting from the network, when there is a voltage deviaton. When the rated 

voltage of the connection point is 400kV (eg. Nordic countries), then the allowed 

voltage levels and voltage rises to 90%-105%, that means the voltage 360kV – 

420kV. If the voltage deviates from that then some actions are needed after the time 

specified in Table 2. 

 

Table 2. Actions in voltage deviations between300kV-400kV/3/ 
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4.1.3 Fault-ride-through (FRT) 

The fault ride through is a requirement necessary for generators to remain 

connected to healthy circuits until the faulted element of plant and apparatus has 

been cleared from the transmission system. 

4.1.4 FRT requirements 

Grid disturbances such as severe voltage drop caused by short-circuit faults can 

lead to power-generating units disconnecting from the grid, which may cause 

instability in the grid. To avoid this, the grid code requires power-generating units 

to remain connected and continuously operated even if the voltage dip reaches 

very low values. The depth and duration of the voltage dips are usually defined by 

a voltage-time diagram. Figure 3 and Table 3 shows an example of FRT 

requirements during grid faults. The power-generating system must remain 

connected during the fault even when the grid voltage falls to 0-30% with 

duration of less than 150-250 ms depending country requirements. The system is 

allowed  to  be  disconnected  from  the  grid  only  when  the  voltage  dips  are  in  the  

area below the limit line. The grid codes also require the system to supply a 

certain amount of reactive current to support the grid voltage during the fault. It is 

noted that the limits and ranges for the FRT requirements vary with the grid 

operators in different countries, but they all share a common background and 

purpose./22/ 

Figure 3 and Table 3 describe the lower limit for a voltage-against-time profile by 

the Voltage at the Connection Point, expressed by the ratio of its actual value and 

its nominal value in per unit before, during and after a fault. Uret is the retained 

Voltage at the connection point, during the fault Tclear is the instant when the fault 

has been cleared./3/ 
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Figure 4. Typical Fault-Ride-Through curve/3/ 

 

 

Table 3. Fault-ride-through parameters/3/ 

Voltage parameters (pu) Time parameters (seconds) 

Uret: 0.05.-0.3 tclear: 0.14-0.25 

Uclear: 0.7-0.9 trec1: tclear 

Urec1: Uclear trec2: trec1  -  0.7 

Urec2: 0.85-0.9 and  

Uclear 

trec3: trec2  -  1.5 
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4.2 GRID CODE of Indonesia (Java-Madura-Bali-Sumatra) 

4.2.1 Voltage Control Requirements 

To maintain the voltage of the system on the nominal level is required in order to 

reduce losses of the grid and threat of voltage drop as well as the problem of 

stability of transient and steady state. Voltage control is also required to avoid 

damage to the equipment connected to the transmission grid, either too low or too 

high voltage, can cause damage. Moreover, the unbalance of voltage and 

harmonics must also be controlled in order to provide satisfactory service to the 

customers./6/ 

According to the grid code the control of voltage may be achieved by the 

following methods: 

 Synchronous generators equipped with voltage regulator 

 Synchronous condenser 

 Static VAr compensator 

 Parallel capacitor 

 Shunts reactor 

 Transformer tap changer 

The area control center is responsible for specifying a safe level of operation 

voltage for all main substations and for submitting such information to the 

generator and region/sub-region area control centers. The area control center is 

also responsible for directing the operation of system in such way so that the 

voltage of system is on the safe level. /6/ 

 
4.2.2 Voltage Unbalance 

Region/sub-region P3B (Java-Madura-Bali) or Transmission Service Unit TSU 

(Sumatra) are responsible for balancing the impedance of grid phase in order to 

limit the voltage unbalance. All grid users must balance phase currents in the 

connection point in order to limit negative sequence voltage of less than 1%./6/ 
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4.2.3 Voltage Harmonic Distortion (THD) 

Total harmonic distortion is a grid code requirement for voltage. All grid users 

must obey that their contribution to the THD on their connection point is less than 

3% from the root-mean-square (RMS) /6/ 

4.2.5 Grid voltage characteristics 

P3B and all grid users shall try as much as possible that the following voltages, at 

each connection point are met: 

 
Table 4. Limits for the system voltage to be maintained (Java-Madura-Bali)/6/ 

Nominal Voltage Nominal Conditions 

500 kV +5%, -5% 

150 kV +5%, -10% 

70 kV +5%, -10% 

20 kV +5%, -10% 

 

 
Table 5. Limits for the system voltage to be maintained. (Sumatra)/7/ 

Nominal Voltage Nominal Condition 

275 kV +10% -10% 

150 kV +10% -10% 

66 kV +10% -10% 

20 kV +10% -10% 
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4.3 U.S.A, AESO 

4.3.1 Voltage Fluctuation 

Facilities should adhere to the maximum voltage decrease and maximum 

frequency of occurrence as defined by the curve “Fluctuation Limits” in Figure 3. 

The voltage fluctuation limits represent the cumulative effects from all services at 

the point of connection. The curve lines are flat below 4 fluctuations per day, i.e. 

the voltage fluctuation should not exceed 5% at any time. The facility owner must 

carry out corrective action if the voltage fluctuations exceed the maximum 

permissible voltage fluctuation limits. For example once per second is allowed to 

vary 1% of the root-mean-square (RMS) /8/ 

 

Figure 5. Voltage Fluctuation limits. Ex 1. Voltage fluctuation repeating 2 times 

per hour shall not exceed 4 percent. Ex 2. Voltage fluctuation of 2 percent shall 

not occur more frequently than five timers per minute /8/ 
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4.3.2 Voltage Unbalance 

Any new three-phase facility must not increase the phase-to-phase voltage 

unbalance of the system by more than 1% as measured with no load and with 

balanced three-phase loading. The voltage unbalance on the electrical system 

under normal operating conditions must not exceed 3%. The voltage unbalance is 

calculated as follows: /8/ 

 

This calculation is defined by NEMA and American National Standard for 

Electric Power Systems and Equipment – Voltage Rating:  /8/ 

=      (1) 

 

4.3.3 Voltage Regulation 

All  generation  units,  whether  synchronous  or  not,  must  at  a  minimum  be  

dispatchable and capable of supplying continuous reactive power at any point 

within the limits of 0.9 power factor over-excited and 0.95 power factor under 

excited as measured at the generator unit terminals. The full range of the reactive 

power capability must be available over the entire MW operating range of the 

generator at the rated generator terminal voltage as shown by the shaded area in 

Figure 5. /8/ 

Each generating unit, under non-disturbance conditions, must be capable of 

maintaining a constant voltage at the generator terminals within +-0.5% of a set 

point by continuously modulating its reactive power output within the limits 

specified above. The voltage set point must be adjustable by the generating unit 

operator and dispatchable from the AESO system controller within +-0.5% of the 

nominal generator interface voltage./8/ 
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Unit transformers must have a tapped range so that the maximum unit output can 

be achieved throughout the system operating voltage range as specified in the 

project functional specification. At a minimum, unit transformers must be capable 

of a +-5% voltage range in 2.5% increments. 

The combination of the generator and the transformer capabilities must allow for a 

total operating voltage range +-10%./8/ 

Generators must operate in an automatic voltage control mode. Excitation systems 

with stator current limiters are not acceptable for interconnection. 

 

Figure 6. Generator reactive power capability requirements./8/ 
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5 VOLTAGE REGULATION IN ELECTRICAL NETWORK 

5.1 Voltage Regulation in Transmission Network 

Nowadays there are lot of different solutions for voltage regulation. However 

voltage regulation is much different between the transmission network and the 

distribution network. In the transmission network the reactive power plays a big 

role in voltage differences, because the transmission network resistance is low and 

the inductance is high. Therefore, there are generators that take care of voltage 

regulation via reactive power which means that synchronous generator either 

produces or consumes reactive power. There are also power electronics for 

voltage regulation e.g. STATCOM and SVC which are introduced later./4/ 

Voltage drop can be calculated by following formula: 

= 2 = IRcos + IXsin = +   (2) 

Reactive current Iq and reactive power Q have a large effect to the voltage drop 

when Reactance X is big compared to resistance R. See Figure 6. 

 

Figure 7. Transmission line vector diagram and equivalent circuit. 
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Table 6. Typical transmission line conductors. 

Conductor 

type 

Voltage 

level kV 

Resistance 

/km 

Reactance 

/km 

Nominal 

current 

A 

X/R 

Duck 110 0,05 0,3 845 6 

Finch 110 0,054 0,271 1240 5,01 

 
 
5.2 Voltage Regulation in Distribution Network 

In  the  distribution  network,  reactive  power  does  not  have  so  a  big  effect  for  

voltage because the overhead line and underground cable resistance is much 

bigger compared to the reactance. In the distribution network the most common 

voltage control method is to use transformers equipped with on load tap changers. 

The tap changer is placed on the primary voltage side of transformer. 

Measurement is connected to the secondary voltage side. The tap changer keeps 

secondary voltage at the reference level. There are also some sources for reactive 

power which can be used for voltage regulation however in the distribution 

network generally there are much fewer ways to affect the voltage in the network. 

 
5.3 Decentralized Power Production Effect on Voltage 

5.3.1 Voltage Level Control 

Voltage regulation might become challenging in decentralized power production 

because: 

 Decentralized production might have limited features to control reactive 

power, depending unit size and used technique. 

 Sometimes reactive power production capability creates too high additional 

cost for decentralized power production. Power inverter is often rated 
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according to maximum active power and there is not enough capacity for 

reactive power. 

 When network is developing and changing continuously, it might require 

parameter change if voltage fluctuates all the time. 

 Renewable power production, like wind- and solar power, do not follow 

electricity consumption requirements. Produced electricity is consumed near 

the production plant during the high consumption time, but electricity has to 

be transferred a longer way during the low consumption time. 

The  main  function  of  electrical  network  is  to  transfer  the  electric  power  for  

consumers. Proper functioning of electrical network requires stable voltage level 

near the nominal voltage. Also electrical devices connected to network are 

designed to operate on certain voltage levels. 

The operation principles of electrical network have been changing during recent 

years. One remarkable change is increasing amount of decentralized wind power. 

The wind power is normally connected to the electricity network as an individual 

unit  or  as  group of  several  units.  Electricity  production  of  wind  power  plants  is  

very unstable and these cause fluctuation in the network power flow and this way 

also in the network voltage level. Normally transformer tap changers are not able 

to control voltage changes caused by large wind power plants. Therefore large 

wind  power  plants  have  to  be  equipped  with  their  own  voltage  control  system.  

This starts to be normal function nowadays, because the sizes of wind power 

plants are getting larger and larger all the time. Transmission system operators 

give detailed requirements for reactive power and voltage control at wind power 

plant connection point. /11/ 

If  a  wind  or  solar  power  plant  is  connected  to  the  weak  network  at  a  remote  

location,  there  can  be  challenges  with  both  over  voltage  and  under  voltage.  The  

power inverter can produce inductive or capacitive reactive power and improve 

voltage stability. However power inverters have some technical limit coming from 

the intermediate circuit. Overvoltage compensation is restricted due to 

intermediate circuit voltage limit and under voltage compensation is restricted due 
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to  current  limitation.  If  there  is  a  risk  to  exceed  the  over-or  under  voltage  limit,  

the  power  plant  owner  and  transmission  system  operator  has  to  agree,  how  to  

handle this kind of situation and who will make additional equipment investments. 

In  some  cases  the  most  economical  way  is  to  limit  power  plant  production  to  

avoid  too  high  a  voltage.  Normally  this  power  limitation  time is  so  short  on  the  

annual level that it does not influence the overall profitability./11/ 

Voltage is a local variable, as opposed to frequency, which is common for entire 

network. This aspect sets some challenges for voltage control, because the voltage 

level  of  certain  node  can  be  controlled  only  very  near  of  the  node.  The  

transmission network resistance is typically rather low and reactance rather high. 

Therefore, the voltage difference between two nodes is mainly depending on the 

reactive power flow between these two nodes. It is important to minimize the 

reactive power flow in the transmission network, because this way voltage can be 

kept on a suitable level everywhere in the network and the reactive power 

transmission capacity can be maximized./11/ 

The voltage control principles are changing nowadays. Earlier synchronous 

generators had an important role in the network voltage control, but that role is 

decreasing nowadays. One reason is that earlier power production and power 

transmission were handled by the same company, but nowadays these two 

functions are separated into two independent companies. This new situation 

means, that voltage control design is not taken into accounts so carefully, when 

new power plants are designed. Also the old power plant can be closed, if its 

profit is not on a high enough level anymore. Sometimes it is forgotten, that this 

power plant has an important role from the voltage control point of view in this 

area. Because power transmission companies are responsible for the network 

voltage level, they can be required to purchase reactive power from the power 

producer or they have to invest in their own voltage control equipment. Recent 

developments have shown that power transmission operators have started to 

require reactive power production from all power producers, which are connected 

to the network./11/ 
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Even if wind power plants have a good capacity of voltage control, they are still 

not able to replace traditional synchronous generators in voltage control. One 

reason is that traditional synchronous generators are located near large loading 

points,  where  there  is  also  an  important  electrical  network  node.  While  wind  

power plants are located in areas, where there are good wind conditions, but 

locations are not from the optimal electrical network point of view. As a result of 

this, additional voltage control equipment installed in the electrical network will 

have an important role in the future./11/  
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6 VOLTAGE CONTROL METHODS 

In this chapter some voltage regulation solutions are presented. 

The main point in the voltage regulation are: 

 To avoid over and low voltage 

 To maintain the realiability 

 To keep a good quality of electricity 

 To minimize losses 

6.1 Synchronous Machine Excitation 

6.1.1 Excitation and Structure 

A synchronous machine has an automatic voltage regulator that controls reactive 

power. Reactive power is controlled by changing the generator excitation, which 

has an effect on the generator internal voltage. Synchronous machine excitation is 

an economical way to keep the connection point voltage at the right level. /2/ 

The DC field excitation of a large synchronous generator is an important part of 

its overall designs. The reason is that the field must ensure not only a stable AC 

terminal voltage, but must also respond to sudden load changes in order to 

maintain system stability. Quickness of response is one of the important features 

of the field excitation./18/ 

In Figure 7 brushless excitation is introduced. Automatic Voltage Regulator 

supplies DC-current (Im) to the excitation generator stator winding, where it forms 

magnetic field. The excitation generator rotor is rotating in the magnetic field and 

a 3-phase AC-voltage is created to the excitation generator rotor windings. The 

created AC-voltage is rectified by a rectifier bridge and then connected to the 

main generator rotor winding, where DC-voltage (Ur) creates an excitation current 

(Ir), which creates a 3-phase AC voltage to the main generator stator windings (U, 

V, W) 
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Figure 8. Principle of brushless excitation. (1) Main generator, (2) Excitation 

generator, (3) Rectifier bridge, (4) Automatic Voltage Regulator /21/ 

 

 

Figure 9. Synchronous generator active power and reactive power control 

principle. /2/ 

  



31 

 

Vector  diagrams  and  equivalent  circuits  are  widely  used  for  analysis  of  all  AC  

electrical machines.  

 
In Figure 9 synchronous generator equivalent circuit and vector diagram are 

demonstrated. Terminal voltage Uv is controlled by changing excitation current 

Iex. The generator equivalent diagram shows that reactive current Iq has an 

important role to control terminal voltage UV. As seen in Figure 9, where is shown 

how reactive current influences to electro motive force E1, eventhough active 

current remains the same. 

       (3) 

 

Figure 10. Generators equivalent circuit diagram and vector diagram. 
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Figure 11. PQ-diagram of the synchronous condenser. 
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6.1.2 Automatic Voltage Regulator (AVR) 

An AVR is a voltage controller for the generator. The AVR is a part of the 

synchronous machine magnetic circuit. The AVR controls the generators output 

voltage.  AVR  can  be  set  to  different  control  modes  such  as  voltage  control,  

reactive power control or power factor control modes. 

In order to control the output voltage of the AC generator, the DC field current in 

the rotor must be controlled to compensate for changes coming from load 

changes. This adjustment is done automatically by the automatic voltage 

regulator. 

In this thesis work, ABB UNITROL 1000-15 is used as reference AVR. 

The main features of the UNITROL: 

 Automatic voltage control with adjustable PID controller 

 Power factor and reactive current control modes 

 Excitation current regulator with PI control 

 Various limiter and protection functions 

 Reactive power sharing for generators connected in parallel 

 Commissioning and maintenance Tool CMT 1000 

 Voltage matching prior to synchronization 

 Serial communication 

6.2 Load sharing methods 

When a generator sets are in a paralleled arrangement, the voltage and frequency 

outputs of the generator sets are normally forced to exactly the same values when 

they are connected to the same bus. Consequently, the generator set control 

systems cannot simply monitor its own influence on the bus voltage. If, for 

example, one set operates at a higher excitation level than the other sets, the 

reactive load will not be shared equally.  
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6.2.1 Voltage DROOP 

Droop voltage regulation allows the generator voltage to decline by a 

predetermined percentage of the voltage range as the reactive load changes./9/ 

Voltage DROOP communicates via voltage level between generators. 

 

 

 

 

 

 

 

 

  

U/kV

Generato r  2

204060100 80 20 40 60 10080
S[%]S[%] Generator 1

11.00

11.25

10.75

10.50

U[kV]

Genera tor reac tive load

Vqcc

Definitions

= vo ltage  refe rence

Un
Voltage deviation

Underexcita tion
lim ite r

11.50

I t<37.52

Limited  time 
operati on

5% DROOP

 Figure 12. bus voltage will vary as a function of reactive load. The changes in reactive 

load will be shared equally if the droop settings are the same./10/ 
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6.2.2 Voltage droop compensation (VDC) 

In order to share equally the amount of reactive power between parallel connected 

generators and keep the busbar voltage level at nominal in the island operation the 

AVR has a special feature called voltage droop compensation control. The units 

are connected together with a RS-485 bus. In VDC mode all AVR`s operate in the 

voltage droop. The principle is that each AVR writes the value of its own amount 

of reactive power to the RS-485 bus. Each unit reads these values and calculates a 

common average MVAr setpoint, and compensate the effect of voltage droop. 

Therefore, the voltage level on the busbar is always kept at nominal. 
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Figure 13. Voltage droop compensation 
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6.2.3 Power Factor control 

Power factor control means that the AVR will adjust the generator excitation 

current in such a way, that the power factor (cos phi) of the generator output 

remains constant, independent of changes in the active power output. 

When the generator is running parallel with the grid, the power factor control is 

way to control excitation and reactive load. When in the PF control, the AVR is 

trying to match the reactive load proportionally to the active load so that the Q/P 

ratio is maintained. Normally the power factor is a very steady parameter, but if 

there are rapid changes in the engine active load, this may result in oscillation in 

the power factor meter as the AVR will try to match the excitation with the 

varying active load. From the system point of view it is more important to aim at 

the steady excitation level in order to obtain the constant reactive power output 

and steady system voltage./10/ 

6.2.4 VAr control 

The VAr-control means that the AVR will adjust the generator excitation current 

in such a way, that the reactive power of the generator output remains constant, 

independent of changes in the active power output. 
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6.3 STATCOM 

6.3.1 Structure 

The  STATCOM–static  reactive  power  compensator  is  a  device  that  produce  or  

consumes reactive power. STATCOM consists of a self-communicating bridge 

structure (e.g. IGBT) and a DC-circuit. The simplest DC-circuit can be 

condensator. The device can produce and consume reactive power because the 

inverter can be turned on/off by the rhythm required. The STATCOM magnitude 

of the voltage can be adjusted and the voltage level is determining if the device is 

consuming or producing reactive power to network./2/ 

6.3.2 Functioning 

Producing and consuming reactive power with STATCOM is based on adjusting 

the inverter output voltage relative to the network voltage, which means that when 

adjusting the inverter output voltage higher than the network voltage, the reactive 

current moves towards the network and STATCOM starts to produce reactive 

power to the network through the connection transformer. Correspondingly when 

the inverter voltage is smaller than the network voltage, the direction of the 

current changes and STATCOM starts to consume reactive power. As acting, 

STATCOM uses active power. If the inverter does not get active power from the 

network, the switching components depletes the DC-side energy storage./5/ 

When the network voltage suddenly falls, the difference between output voltage 

and the network voltage rises, and STATCOM produces more reactive current to 

the network that tries to support the network voltage./2/ 

If STATCOM is installed in the middle of the line it keeps the voltage in the 

connection point the same as the ends of the line. This way it is possible to 

transmit much more active power than without compensation, but this also effects 

that the reactive power consumption is higher./2/ 
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Figure 15. Structure of STATCOM /2/ 

. 
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6.4 Static VAr compensator (SVC) 

SVC is a parallel capacitor and reactor. Capacitance and reactance value can be 

changed by connecting thyristors. If the susceptance of the capacitors is bigger or 

smaller than the reactors susceptance, the SVC can control the network voltage 

either by producing reactive power to the network or consuming it from the 

network. 

When the reactive power increases in the line, also the power angle increases. The 

SVC can produce active power up to a certain limit and increase active power 

transmission capacity which means the angle decreases at same active power 

level. 

When  the  maximum  reactive  power  production  limit  of  the  SVC  is  reached,  

compensation will not increase anymore and then the situation is the same as if 

there is parallel fixed sized capacitor in the middle of the line. 

The SVC can be also connected to substation, where it can be used as voltage 

control in continuous mode. Quick control is useful especially after network 

failures.  Due  to  fast  control,  the  device  improves  transient  stability  and  can  

attenuate electro-mechanical fluctuations between network areas. When the SVC 

is located in a substation, it might in some cases improve electro-mechanical 

fluctuations attenuation and in some cases it might impair it. Therefore location 

and control philosophy of SVC have to be done carefully/2/ 
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Figure 16. Structure of SVC /2/ 

 
 
6.5  Transformer Tap Changer 

The voltage is regulated by changing the ratio of the transformer. With the on-

load  tap  changer  it  is  possible  to  change  the  ratio  of  the  transformer  even  if  the  

transformer is energized and loaded. The on-load tap changer is normally 

connected to the primary voltage side and voltage measurement is connected from 

the voltage measurement transformer located on the secondary voltage side. 

Normally tap changer regulates busbar voltage just after transformer. Modern tap 

changer controllers have a function, which compensates the power line voltage 

drop and the voltage can be kept constant on the main load point. The 

compensation is based on the power flow through the transformer and power line 

R  and  X  values.  Because  of  this  feature  the  on-load  tap  changer  is  suitable  for  

continuous voltage regulation and it keeps the secondary voltage constant. /13/ 
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Figure 17. Principle diagram of on load tap changer. 

 

Figure 18. Picture of on load tap changer /2/ 
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The on-load tap changer steps up or down if there is a difference between set 

point and measured value. There is a dead band around the set point, value where 

stepping is not done. Usually the change is made step by step. The dead band and 

delay are needed to eliminate up-and-down voltage regulation too often. If the 

voltage difference is big enough, the tap changer steps again after the delay. The 

delay can be from few seconds to some minutes. Normally the step size is 0.5%-

1.5%. The dead band is usually twice as much as one step. The on-load tap 

changer also has a control limit that cannot be exceeded. The transformer with the 

on-load tap changer is used in the radial distribution network, and it keeps the 

upstream voltage constant. When the voltage drops in the distribution network, 

the on-load tap changer reacts after a delay if the voltage difference is big enough. 

/14/ 

 

6.6 Comparison of VAr support technologies 

Table 7 shows that the capital cost of the synchronous condenser is the lowest but 

the cost of losses are the highest. The final decision between techniques has to be 

calculated based on project specific parameters. 

Table 7. Cost comparison of Synchronous condenser, SVS and STATCOM /23/ 

 Proportional capital cost Proportional cost of 

losses 

Synchronous condenser 100 100 

SVC 113 21 

STATCOM 132 33 
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6.6.1 Synchronous Condenser 

Synchronous condensers have several advantages: 

 Synchronous condensers contribute to short-circuit power level of the bus 

to which it is connected 

 Condensers reactive power production does not drop rapidly with 

decreasing system voltage especially if the exciter is a rotating exciter and 

the  auxiliary  field  for  the  exciter  is  fed  from  a  power  supply  that  is  not  

affected by the voltage dip. 

 Condensers have high inherent transient overload rating. During power 

swing there is an exchange of kinetic energy between a synchronous 

condenser and the power system and if the terminal voltage drops, 

synchronous condensers can supply reactive power up to two times the 

rating of the machine for short periods. 

 Condensers are easy to maintain and have relatively few parts that could 

require servicing. 

 Condenser can provide continuous control of reactive power output over 

the complete operating range. 

Disadvantages: 

 The dynamic response of the synchronous condenser order to increase its 

output is slow because it takes some time to change the field excitation. 

 If  the  condenser  are  for  some  reason  or  another  tripped,  it  would  take  a  

relatively  long  time  to  re-start  compared  with  an  SVC  or  STATCOM  

which could be restarted within seconds. /23/ 

6.6.2 SVC 

Advantages: 

 An SVC provides fast and continuously variable capacitive and inductive 

reactive power supply to the power system. 



44 

 

 An SVC has the lowest losses at zero output and lower losses than 

synchronous condenser or STATCOM at full output. 

 The high speed of response allows the SVC to be used for oscillation 

damping control and flicker reduction in additional  to providing voltage 

support. 

Disadvantages: 

 SVC`s  cannot  respond  strongly  to  severe  voltage  dips  as  the  reactive  

power output which comes from statically switched capacitors or fixed 

capacitors falls off with voltage squared. 

 SVC`s have a higher capital cost than synchronous condenser. 

 The installation and commissioning of an SVC is more complex than for 

synchronous condensers. /23/ 

6.6.3 STATCOM 

Advantages: 

 Simple equipment configuration with symmetrical output capability. 

 Continuous steady state and dynamic voltage support. 

 More robust than an SVC with respect to the variation of the network 

capability. 

Disadvantages: 

 The  cost  of  STATCOM  is  normally  higher  than  either  SVC  or  

synchronous condensers. 

 The losses increase rapidly with output current and would be higher than 

for a comparably rated SVC at full output. /23/ 
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7 SYNCHRONOUS CONDENSER 

This chapter introduces the principles of synchronous condenser as a voltage 

regulator. 

7.1 Principle 

The synchronous condenser is a synchronous generator which is operated without 

a prime mover and the purpose is to produce and absorb reactive power. Re-using 

the existing generator, its foundation and building, auxiliary systems and grid 

connections offers an economical source of reactive power capacity. With the 

automatic voltage regulator, it can automatically control the reactive power output 

to maintain a constant terminal voltage. An important benefit of a synchronous 

condenser is that it contributes to the overall short circuit capacity in the network 

node where it is installed. This, in turn, improves the chances that equipment 

connected to the network will be able to “ride through” network fault conditions. 

The machine acts as an enormous 3-phase capacitor whose reactive power can be 

varied by changing the DC excitation. The excitation control is performed by an 

AVR which is tuned to match the requirements of the specific application /19/ 

The operational area and application restrictions may be slightly different for dif-

ferent generator designs. Figure 18 shows the general principle of the synchronous 

condenser mode of a generator. In the generator mode the active power capability 

shown in the vertical direction of the diagram is always restricted by the 

mechanical input power from the prime mover (2). The reactive power capability 

shown in the horizontal direction in the diagram is in the area restricted by the 

stator (1), rotor (3) current limits and the minimum excitation limit (4) of the 

generator. In the synchronous condenser mode, here illustrated by the green line, 

the  operation  is  restricted  by  the  minimum  excitation  limit  (4)  and  the  rotor  

current limit (3). 
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Figure 18. P/Q diagram of synchronous generator. Green line represent 

synchronous condenser mode./19/ 

7.2 Applications 

During power swings there is an exchange of kinetic energy between a 

synchronous condenser and the power system. During such power swings, a 

synchronous condenser can supply a large amount of reactive power. It has about 

10 to 20% overload capability for up to 30 minutes. The synchronous condenser 

has an internal voltage source and is better able to cope with low system voltage 

conditions. Peaking power generation units can be operated as synchronous 

condensers if required. Such units are normally equipped with clutches which can 

be used to disconnect the prime mover from the generator when active power is 

not required from them. Recent applications of synchronous condensers have been 

mostly at HVDC converter stations connected to weak systems. /19/ 
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Nowadays synchronous condensers are specially designed to meet the needs of 

hybrid renewable power systems. During high wind period, the prime mover can 

be turned off, and the generator as in synchronous condenser handles voltage 

control. /19/ 

If the system cannot furnish the required starting power, a pony motor is used to 

bring them up to synchronous speed. Once the synchronous machine is on-line, 

the pony motor is de-energized./19/ 

Advantages using an integrated synchronous condenser: 

 When active power is not needed and while the prime mover is in stand-by 

mode can voltage control and reactive power support can continue in the 

synchronous condenser mode. 

 No additional voltage control infrastructure is needed at the plant 

connection point. 

 The machine inertia support to stabilize the power system during 

disturbances, load fluctuations or variability of renewable generation 

output. 

 A synchronous machine produces a high amount of reactive power for a 

short time period in response to a system fault. 

 

Figure 19. Combustion engine generating set with synchronous condenser 

feature./19/ 
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8 WÄRTSILÄ SOLUTION 

This chapter introduces Wärtsilä solutions how to disconnect the generator from 

engine. 

8.1 Clutch 

 
The generating set with a synchronous condenser function has to be provided with 

a clutch installed between the prime mover and the generator. The design of a 

clutch can be seen in Figure 22 and its engaging principle. The connection 

between the two clutch halves, which are equipped with friction plates, and the 

outer part is established by driving the clutch halves outwards pneumatically by 

compressing air bought through the generator shaft. The compressed air flows 

through the shaft and into the clutch, as illustrated by the red arrows in Figure 20. 

To provide the needed air flow an integrated compressor is needed which can be 

placed at the non- drive end of the generator.  

 

 

Figure 20. Clutch-coupling. /19/ 

The clutch is engaged during the engine start-up and can be disengaged as the 

generating set has been accelerated up to nominal speed and the generator has 
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been synchronized with the grid. Re-engaging, in case active power is needed, is 

done  only  when the  rotating  speeds  of  engine  and  generator  are  again  the  same.  

This leads to minimal wear of the friction plates allowing very long service 

intervals for the clutch. 

As soon as the generator is disengaged from the engine, the engine can be shut 

down and the generator can continue operating as a condenser. Again, whenever 

the active power is required, the engine is started and accelerated up to the speed 

representing system frequency, which allows the clutch to be engaged. After this 

the generating set is ready for the power production. 

8.2 Operation Modes 

The main purpose of the synchronous condenser function included in Wärtsilä 

generating set is to improve voltage balance, even though active power production 

is not needed. It is recommended to use the same generator excitation control 

mode continuously regardless of prime mover operation. This way the voltage can 

be kept on the constant level continuously. The starting and stopping of the prime 

mover does not influence the generator terminal voltage and reactive power 

production. 

When the generating set is operating in the synchronous condenser mode, then 

possible excitation control modes are voltage control and reactive power control. 

Because the power factor control is not possible in the synchronous condenser 

mode, it has to be avoided also in the normal generating set mode. 

When AVR is set to the voltage control mode, it keeps the generator terminal 

voltage on the constant level according to the set point. Sometimes it is possible, 

that the constant voltage point is on the HV busbar step up on the transformer 

high voltage side. Then the cascade control method has to be utilized, where AVR 

takes care of the generator terminal voltage, but a PLC gives a new voltage set 

point for AVR based on the HV busbar voltage. 
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Figure 21. Principle of Cascade control 

 

The electrical network operator can also require constant reactive power 

production. Then AVR has to be set to the reactive power control mode and the 

generator produces certain amount of reactive power based on the set point. In this 

mode the network operator likes to get help to gain the reactive power balance and 

the final voltage control is made by another method, such as the power 

transformer tap changer. 
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9 CONCLUSION 

The subject of the thesis was voltage control in distributed electricity generation 

by using synchronous condenser. The use of synchronous condenser only as a 

voltage regulator has been reduced since it is not so cost-effective. There is lot of 

decentralized power production which is not in continuous use. The purpose of 

the thesis was to discover how to use synchronous machine as a synchronous 

condenser and improve electrical network stability and to compare synchronous 

condenser to other solutions of voltage control methods since nowadays there are 

lot of different kind of solutions. 

All voltage control methods are based on adjusting reactive power. Wärtsilä 

attempt is to utilize already existing synchronous generator as a reactive power 

producer when active power is not needed. Synchronous generator spins freely 

and it is used only if needed. 

There are also lot of advantages using synchronous generator as voltage controller 

as presented earlier. A synchronous machine can, irrespective of running 

generator or condenser mode, produce a high amount of reactive power for a short 

time period of time in response to a system fault. This can be very valuable for 

assisting system stability by supporting the system voltage during and after 

disturbance. A high short circuit level or ratio is also essential in controlling the 

allowed harmonics level in power system. A synchronous machine is an internal 

voltage source, this means unlike with a capacitor/reactor bank or SVC, the value 

of reactive power from a synchronous condenser can be continuously adjusted 

even with reduced system voltage. Reactive power from a capacitor bank or SVC 

decreases with decreasing voltage, while a synchronous condenser can increase its 

current as voltage decrease. 
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