

Artem Moskalev

Multiplayer Game Server Software Architecture

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Degree Program in Information Technology

Thesis

05.04.2014

Author(s)
Title

Number of Pages
Date

Artem Moskalev
Multiplayer game server software architecture

37 pages
5 April 2014

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Internet Software Engineering

Instructor(s)

Olli Hämäläinen, Senior Lecturer

The purpose of the project was to show how large multiplayer server software used to be
implemented. The goal of the project was to create working multiplayer game server soft-
ware for a role-playing game.

The project was carried out in multiple modules, each of those representing an important
part of the game server software. As for the platform, upon which the implementation was
built, Java was chosen. Multiple frameworks were used in this solution in order to achieve
scalability, performance and maintainability required by the project goal.

As a result, the game server software was created. It allowed multiple thousand players to
connect to a single point, to play the game online, and to synchronize the state of the
characters. Each character was capable of performing location-based functions. The
common world was shared among all the player instances. The software supported asyn-
chronous full-duplex server-client communication, and the load of more than one thousand
users. The authentication capabilities were also embedded into the game.

The project shows how large complex software systems can be implemented. The server
software proves that creating network-based games is a challenging task and requires the
knowledge of different fields of computer science.

Keywords multiplayer game, server software, Java network program-
ming

Contents

1 Introduction 2

2 Software Functionality 4

2.1 Game Overveiw 4

2.2 Server Software Requirements 8

3 Theoretical Background 10

3.1 Client-Server Communication Protocols 10

3.1.1 Transport Protocol 10

3.1.2 Application Layer Protocol 11

3.2 Network Module I/O Strategy 14

3.3 Concurrency 15

4 Technology Presentation 18

4.1 Software Platform 18

4.2 Frameworks 20

4.3 Development Tools 22

5 Description of the Project 24

5.1 Bootstrap Module 25

5.2 Network Module 25

5.3 Dispatcher Module 28

5.4 Authentication Module 29

5.5 Game Module 30

5.5.1 Game Request System 30

5.5.2 Game Functions 31

6 Project Outcome 33

6.1 Project Results 33

6.2 Discussion 33

7 Conclusions 36

References 37

1

Abbreviations and Terms

API Application Programming Interface

CRUD Create-Read-Update-Delete

FTP File Transfer Protocol

GC Garbage Collection

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

I/O Input/output

Java EE Java Enterprise Edition

Java SE Java Standard Edition

JPA Java Persistence API

JVM Java Virtual Machine

LAN Local Area Network

MMO Massively Multiplayer Online

MVC Model-View-Controller

NIO Non-blocking Input/output

OO Object Oriented

ORM Object-Relational Mapping

RDBMS Relational Database Management System

RPG Role Playing Game

SQL Structured Query Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

XML Extensible Mark-up Language

XMPP Extensible Messaging and Presence Protocol

2

1 Introduction

At present, computer games are becoming an important part of people's lives. They are

played at home, in public transport, and even at work. This popularity is due to the fact

that games can be addictive, can help to spend time with pleasure and to communicate

with other people. Moreover, some types of computer games can also help in learning,

enhancing memory, can improve attention to detail and analytical skills. As a matter of

fact, playing games helps some people to socialize in the virtual world, find new friends

and improve teamwork. The latter makes some games especially valuable to employ-

ers who want to introduce some competition into the work process, or to improve the

teamwork of their employees. [1, 91-94.]

Computer games range from single player shooting simulators to multiplayer games,

where people struggle to defeat real human opponents or cooperate to complete diffi-

cult game missions in the virtual universe. Therefore, massively multiplayer online

(MMO) games have to manage large numbers of players at the same time and syn-

chronize them efficiently, which is not a trivial task and can be daunting for game de-

velopers. The game genre discussed in the context of the current project is a role play-

ing game (RPG). In such games, players have their own characters which can be

eventually upgraded. Nevertheless, to achieve this goal, cooperation with other people

or game objects is a priority. When role-playing games are multilayer, they can be at-

tended by thousands of people at the same time. In this case, they fall into the catego-

ry of MMO RPG. These are very interesting from the point of view of technology, be-

cause MMO RPGs deal with algorithms, artificial intelligence, concurrency, networking,

throughput and memory issues and other challenging fields of computer science.

Thus, the topic of this project is the architecture of a MMO RPG server. It deals with

difficult and interesting concepts of computer science, specifically network program-

ming and concurrency, as well as large software system design. The goal of the project

is to design and implement software, which would be capable of handling multiple con-

current players, providing the services for playing the game, persisting user data, and

synchronizing the clients communicating with the server. The software is made in col-

laboration with another student, Yuri Shukhrov, who is responsible for creating a user

interface for the game. The sample images of the user interface will be present in this

work.

3

The scope of the project includes connection establishment and network handling ca-

pabilities of a multiplayer game server, the protocol used between the server and its

clients, basic gaming services, such as the character management and world instance

support, and persisting the data of the players. Moreover, the project includes initial

security capabilities, game routines, such as fights, and automatic state management

(such as login and logout). However, algorithms, artificial intelligence, and testing are

beyond the scope of this project. On completion of the software, it will be possible to

play the multiplayer RPG through the implemented server software.

The thesis work continues and extends the innovation project on the same topic. The

game server software is improved in terms of its design, and the functions it provides.

The functions which are added mostly relate to the game and network modules of the

server software. The system is also enhanced in terms of software design. It lacks re-

dundant dependencies, and possesses simplified object-oriented (OO) structure. A

broad range of messages are introduced to further improve the communication be-

tween the server and its clients. There are some other improvements in the system

design ranging from new player interaction capabilities to data-driven object design.

Concurrency and handling user data remain the main features of the project. In this

part of the project the discussion is continued. The game data storage and retrieval is

discussed in more detail in the thesis project and its influence on game performance is

roughly evaluated. Moreover, the alternative technologies for the software development

are discussed and some light is shed on the limitations and drawbacks of the chosen

strategy to developing the software system in question.

4

2 Software Functionality

2.1 Game Overview

The main purpose of the project is to create functional game server software for playing

a multiplayer RPG. The most interesting feature of the project is that players take ac-

tions in turn and see the results of their actions as the text messages. The outcomes of

these actions are usually random. In order to achieve a successful outcome, the play-

ers must improve their character and develop new abilities. The higher level the player

possesses, and the better equipment the player has, the higher his or her chance of

winning is.

There are a variety of characteristics that can describe the character. The most inter-

esting part is the hit points, damage, critical, anti-critical, dodge and anti-dodge points

of the character. These characteristics directly influence the performance of the charac-

ter in the fight and can be upgraded. Dodge and anti-dodge are responsible for the

ability of the character to avoid and to deliver hits to other players. Critical and anti-

critical points influence the ability of characters to deal and to protect themselves from

critical strikes. The main set of upgradeable characteristics is shown in figure 1.

Figure 1. Game interface character screen with statistics

5

Figure 1 implies that the player can equip his character with items. Items further im-

prove the ability of the character to compete in the fights, boosting damage, hit points

and other important characteristics. The game world is built around locations. When the

player is first initialized in the game world, his character is situated in the training room

location as shown in figure 2.

Figure 2. Character placed in the training room location

Every location has a predefined set of functions which a player can utilize. These func-

tions range from location to location, each location having a unique set of functions. As

for the training room, the character can create a duel request, which is an invitation to

other players to fight. Figure 2 shows the view, which a player has in the training room.

If one of the players publishes an invitation to have a fight, all other people in the loca-

tion can see and accept it. In this case a fight starts.

Figure 3 illustrates a fight between two players. When in the fight, two players` charac-

ters are shown opposite each other. Now, they need to deal damage to each other until

one of them loses all the hit points. The hit point bars are shown over the heads of the

characters. Each player has four body areas to attack another player into, but can

choose only one. The player also has four positions to block from which he can choose

only two.

6

Figure 3. Fight between two players

When the choice is made, the player presses an attack button. The data is stored in the

game, and the player begins waiting for the other player`s response as shown in figure

4.

Figure 4. Character awaiting response in the fight

7

Both players have the same fight functionality, and they do not know their opponent`s

moves. In these circumstances, the blocking and damage dealing events are random.

Blocking happens when one of the players randomly attacks the body part of the oppo-

nent which has been blocked. The damage dealing event occurs when the body part

which has been attacked, has not been blocked by the opponent. At the attack, a criti-

cal strike might happen (it means that the player would deal twice as much damage) or

a dodge event (it means that another character automatically avoids an attack).

This type of fight goes on until one of the character loses all the hit points. In this case

a victory is given to one of the players as seen in figure 5.

Figure 5. Character winning the fight

As seen from figure 5, there is a log in the middle of the screen. It notifies players about

events happening in the fight. All the attacks are documented in it in order for the play-

ers to see if their actions have taken any effect.

8

2.2 Server Software Requirements

As long as the server software has to support synchronization of clients with each other

and provide data storage service, it needs to have a broad range of features imple-

mented. One of the most important requirements is connected to the networking of

such an application. It should be able to:

- Be able to accept incoming requests from clients and establish sock-

ets with them

- Receive data from clients

- Send messages to clients asynchronously

- Have a small memory footprint

- Be able to accept a few thousand clients simultaneously

- Be modular and extensible by design.

The listed requirements relate only to the technical aspect of the game server software.

Nevertheless, there is a block of game functions which the software should be able to

perform. One of the main functions of the game server software is to perform authenti-

cation of players. These functions include:

- Registering new users

- Logging new users in by checking their credentials

- Finding players` characters and linking them with their profiles

- Re-logging players in case the connection is lost

- Signing players out

- Breaking the connection in case it is idle for a long time

- Breaking connections in case malformed requests are received from

clients

- Not allowing for concurrent use of one account by multiple players.

When the player has been registered, he needs to perform the game functions. The

game server software representing the game world has all the processes running as a

global object shared by all the clients and it needs to provide the following game ser-

vices available to all players:

9

- Ability to see the characteristics and equipment of the players` cha-

racters

- Storing the character in the database after the player signs out

- Ability to perform fights with other players

- Ability to improve equipment and fighting abilities of the character

- Walking around different locations

- Tracking the fight progress by reading logs

- Seeing lists of players available in any location

The listed functions are important in order to begin playing the most basic version of

the game. There can be other features implemented in the game, but they generally

come down to the listed functionality.

10

3 Theoretical Background

There are a great variety of multiplayer games, MMO game architectures, and con-

cepts, but the basic principles remain the same for all of these software systems. The

use of various software architectures and approaches is chosen according to the needs

of a particular game. Thus, ubiquitous methodologies and designs form unique server

software platforms when combined in a certain way. In order to explain the system ar-

chitecture of multiplayer game server software, the whole platform is divided into sepa-

rate layers and parts, which are further investigated in detail. The given approach helps

to reduce the complexity of the system as a whole and systematize constituent parts.

3.1 Client-Server Communication Protocols

3.1.1 Transport Protocol

The primary function of the game server software is client synchronization on a large

scale. Therefore, time of message delivery from a client to the server and reliability of

such a transmission is critical. Thus, the transport protocol used in the interaction of the

server and its clients is crucial and must be taken into consideration.

There are basically two common transport protocols for connecting server software and

clients: namely Transmission Control Protocol (TCP) and User Datagram Protocol

(UDP). Each of them has some limitations and advantages over the other. Their use in

a particular situation is influenced by the requirements posed by the software system. If

latency is the priority in the game (such as a real-time shooter or sport simulator) then

UDP is the right choice. However, if the priorities are reliability, the order of message

delivery (like in a chess game between two players) and security, TCP is the obvious

choice. UDP is more reasonable to use in small LAN games where the message loss

or corruption is improbable. [2, 644.]

TCP is a full-duplex communication protocol between the server and the client, which

represents two abstract streams, one of which is from the client to the server and the

other is from the server to the client. When the data needs to be delivered, it is written

into the outbound stream and read on the other side. When the data needs to be read,

the process is the opposite. In addition, when there is a problem with the connection,

11

the exception will be raised and it can be handled in a reliable way. All the data is re-

ceived in the right order, with no duplicates. All these benefits of TCP are achieved due

to a complex and thorough specification of this transport protocol. TCP packets carry

much more supplementary data in the payload in order to provide the listed bonuses,

and weigh more than UDP packets. The fact that each retransmission point of the net-

work on the message delivery path has to examine the validity of the information sent,

and take steps to prevent data loss or corruption, makes the processing times of TCP

packets much higher than those of UDP. [2, 644.]

Unlike TCP, UDP is less reliable. The sent data is not guaranteed to be received by the

other side of the communication channel. The pieces of the sent data can sometimes

arrive in the wrong order. Moreover, no error will be raised if an exception (such as lost

data) occurs. In this case, all the sent data might be lost, and neither the client, nor the

server, will know about it. In order to utilize UDP, the game server software has to im-

plement its own software module which would track the errors in the communication

process such as broken or lost data packets. The arriving messages have to be rear-

ranged by the receiving software module to put them in the right order. It is obvious that

constructing fully-functional UDP enabled game server software is a difficult and non-

trivial task. [3, 27-28.]

In the current project, the TCP protocol is used as a primary transport protocol for mes-

sage exchange between the server and the client. The game is turn-based, which

means it tolerates high latency. However, each command that a player issues is impor-

tant and must not be lost or corrupted. As long as the game server software is accessi-

ble for the clients globally, the loss and corruption of transmitted data is very probable

along such distances. Therefore, reliability and message delivery order are the main

priorities for the game. All the mentioned qualities fully correspond with the TCP trans-

port protocol, and, thus, TCP is used as a transport protocol for message exchange

between the server and clients in the current project.

3.1.2 Application Layer Protocol

The communication between the server software and the client happens on multiple

levels. The highest level of such communication is application communication protocol.

There are a number of existing protocols working on this level of abstraction including

Hypertext Transfer Protocol (HTTP), Extensible Messaging and Presence Protocol

12

(XMPP), File Transfer Protocol (FTP) and others. Each of these protocols serves a

particular purpose. As for HTTP, it is used for most of the web content on the Internet,

allowing people to browse web pages and get access to resources such as documents

or music.

As a matter of fact, large distributed software systems such as multiplayer games em-

ploy their own custom protocols to deliver messages from the client to the game server

and receive the responses in legible format. The application layer communication pro-

tocol must be flexible and powerful enough to deliver any type of information required

by the game server software or its clients in a definitive yet standardized way. Thus, a

custom protocol based on Extensible Mark-up Language (XML) for data presentation

has been developed for the project. It features an asynchronous request-response

code-based approach for delivering messages from the client to the server software.

The server software pushes messages to the client asynchronously when the response

is ready, which is possible due to TCP underlying the communication process. The

requests from the client to the server always represent an action to perform. They

change the state of the player`s character in the game world. The typical request is

presented in listing 1.

<request command="login">

 <parameters>

 <parameter name="login" value="elf" />

 <parameter name="password" value="male" />

 </parameters>

</request>

Listing 1. Example of login request issued by the client

Each request consists of one command which defines an action and zero to multiple

command parameters. These parameters carry different name-value pairs which are

then parsed by the server software in order to retrieve the details for the received

command. In listing 1, the required parameters for the login command are login, and

password. These parameters are supplied every time a login command is sent to the

server. Next, the server software request processing module decodes the message

and acts accordingly. The server can send a response or a stand-alone message to the

13

client in order to notify it of the changes happening in the game world. The messages

from the server software are structured differently than request messages.

<systemMessage>

 <code>13</code>

 <text>You have logged in!</text>

</systemMessage>

Listing 2. Example of login message from the server

In listing 2, the message from the server about successful login procedure is pre-

sented. This message can be sent from the server every time when the login command

has succeeded. However, this type of message is returned only as a response to the

request. Nevertheless, listing 3 presents a message from the server that can be re-

ceived without any prior request.

<gameMessage>

 <code>301</code>

 <location>TRAININGROOM</location>

 <character level="1" gender="male">elf</character>

</gameMessage>

Listing 3. Example of message from server stating that some player has entered the

location

All the messages received from the server contain the code which must be interpreted

by the client in order to decide what to do with the message. After the code is under-

stood, the message is scanned, and necessary parameters are extracted. Thus, the

client can be notified by the server of new updates in the game world and hold the

player up-to-date.

14

3.2 Network Module I/O Strategy

The network module is the central part of the server software system and an entry point

for the incoming messages to the game world, decoding and storing them in the memo-

ry and linking game resources with the communication channels. It is also responsible

for establishing and breaking connections to clients, detecting the incoming messages

on the channels, starting new concurrent tasks for serving requests, and detecting the

periods of idleness of clients.

As long as the main purpose of the network module is to synchronize and connect a

large number of clients together, an appropriate strategy for the task has to be chosen.

There are several approaches to achieve this. One of them is a “blocking input/output

method”. When a socket connection is established, the server needs to read the incom-

ing data through the input stream. When it is done in a blocking manner, there must be

a thread for each client on the server. When there is no data transferred, the thread is

blocked (doing nothing) in the memory, consuming resources. When the data arrives,

the thread immediately proceeds to its execution. The drawback of this approach is that

there might be a large amount of clients sending no data. Nevertheless, each thread

takes a significant effect on the memory and, thus, the server cannot have more than a

few thousand concurrent connections at the same time.

Another approach is the “non-blocking input/output”. This approach utilizes a prede-

fined number of threads which reside in the memory. The presumption is that most of

the threads are inactive for most of the time. When new data arrives in the socket, it is

stored in a buffer by the operating system [4, 791]. Next, there must be a background

thread checking all the buffers of clients in an infinite loop. When it detects that there is

some data in one of the buffers, it allocates a new thread from the thread pool. This

thread now performs some action with the data received in the buffer. When the

processing is over, the thread is returned to the pool where it will reside until the next

buffer full of data is detected.

The non-blocking approach can provide a larger number of concurrent connections

simultaneously. It is achieved due to the fact that there is a limited amount of threads

even though there are a large number of clients connected. Nevertheless, when the

latency is the priority, the blocking approach should be chosen. Even though the non-

blocking connection management can reduce the number of threads and, thus, the

15

impact on the memory, the background thread checking the incoming data must check

all the buffers in turn, which means there is a small delay between receiving the data

and its detection. However, the delay is a few milliseconds, which is an acceptable la-

tency time for most of the game server software architectures. [5, 7-17.]

This project uses the non-blocking approach for serving client requests as long as the

latency is not the main priority for a turn-based game but memory is. Moreover, due to

the nature of the game, there will inevitably be many clients silently waiting for server

responses and, thus, occupying memory. As long as the genre of the game is RPG, the

server software will store big amounts of data in memory at any given moment of time.

The non-blocking approach allows reducing the memory use by limiting the number of

allocated resources to players.

3.3 Concurrency

The concurrency issue is applicable to all multiplayer games. This concept spans

beyond the networking layer of the multiplayer game server software. When dealing

with threads, a few very important concepts come into light: resource safety and

access fairness, as well as liveliness and performance of threads.

In a large multiplayer game some of the resources of the game (location, items, trajec-

tory of the bullet) are shared among multiple players that can use them. Nevertheless,

while one player is using a resource, the other players to whom the resource is also

available, might not wait until the first player completes his work with the resource. As

long as the game server software is a highly concurrent environment, many actions

happen simultaneously. If these actions modify the same data, an unexpected failure

might occur, even leading to serious consequences to the whole system. Such a situa-

tion happens when one of the players changes the shared data. If any player uses the

resource while it is being changed by another player, the resource might be left in an

unexpected state. This fact raises the necessity for the measures to ensure that no

incompatible actions happen at the same time. Such measures ensure that the prin-

ciple of resource safety is implemented. The main idea behind the principle of resource

safety is to protect players from unexpected results. However, special techniques need

to be used to achieve well performing, but at the same time safe system design. In or-

der to achieve the resource safety, some constraints must be introduced. [6, 5-6.]

16

One of the ways to protect a resource is such a synchronization mechanism as lock.

Locks prevent multiple players from misusing a resource. This mechanism is imple-

mented in many variations in different programming languages. When a resource is

protected by a lock, it is important to ensure that the resource is evenly shared among

players as long as some of them might not be able to access the resource due to wait-

ing. If this constraint is not fulfilled, one of the players might wait for too long for the

server software to respond to his request, because other players have access to the

resource in question and the waiting player is never chosen to use the resource.

Moreover, a situation called “deadlock” might happen in the process of synchronizing

the access to multiple resources. In this situation, one of the players acquires an

access to a resource and needs to access another resource too. However, the second

resource is taken by another player who needs the first player's resource in turn. In this

situation the two players wait for another resource indefinitely, which causes the whole

system to stop working. This potentially dangerous situation must be avoided by all

means. [7, 138-139.]

Figure 6. Abstract deadlock illustration

In figure 6, a deadlock situation is described in terms of cars. It is assumed that each

road is a resource and each car is the user of a road resource. Each car can move only

17

forward, and, thus, has to wait until the road in front of it becomes empty. Nevertheless,

in this case, none of the cars can move anymore. The roads cross and each driver oc-

cupies the road segment (resource) before the junction, waiting for the resource (con-

tinuation of the road) to become available. Nevertheless, it will never happen, and the

system of cars will never continue moving. Thus, the system is in the deadlock.

The last problem related to concurrency in multiplayer game server software is

throughput and cost of synchronizing the access to the resources. The synchronization

can improve the performance of the game server software greatly and lower the laten-

cy of the responses from the server. However, as long as some resources might not be

safe, they must be synchronized. If synchronized properly, only one player at a time

might access the resource. As long as the same is true for many players, it might take

a lot of time to use the resource by many players sequentially. The mentioned situation

represents the safety/performance trade-off because if some of the resources are syn-

chronized, the overall performance of the game server software will decrease. Never-

theless, it is necessary because not synchronizing the access to vulnerable resources

might lead to critical errors in the program execution. [6, 6-7.]

The other important issues when dealing with multiplayer RPG server software are

database access and memory management, which partly interfere with the already

mentioned problems, such as concurrency. This project aims at creating a server soft-

ware architecture which will be capable of handling thousands of concurrent users, who

would be able to play the game online, and addressing the problems of the multiplayer

games mentioned in the previous paragraphs.

18

4 Technology Presentation

4.1 Software Platform

Multiple technologies can be used to implement the server software for a multiplayer

game. Nevertheless, it is important that the chosen technology addresses the issues

which an engineer can encounter in the process of software development. There exist

a number of software platforms to choose from, in terms of stability, ease of develop-

ment, speed and maintainability. Nevertheless, the choice for the project is the Java

platform. The Java platform includes the Java Virtual Machine (JVM), a rich set of libra-

ries and frameworks and the Java programming language. It is open-source, easy to

use and addresses the needs of the project.

There has been some amount of skepticism about using Java as the platform for game

development due to concerns about its performance. Java uses heap as the primary

data storage during the program execution, with limited capabilities of storing data on

the stack. C++ programming does not have this limitation and any data type can be

stored on the stack, though this capability is used mostly for small data types, such as

arrays or combinations of primitive data types. As long as the access to the stack is

faster than access to the heap, C++ might perform better in applications where a large

amount of work on primitive data types is done. However, most of the data types in the

current project are complex, and the difference between Java and C++ must be neglig-

ible.

Java also uses more memory than natively-compiled languages. One of the reasons is

that JVM and its processes take up some memory. Another reason is that garbage

collection happens in predefined intervals of time, chosen by the JVM user, so that

unused objects are kept in the memory until it is cleaned. This feature is the main

benefit of Java as well as its drawback, as the programmer does not manage memory

directly and relies on the JVM to perform memory allocation and freeing. In figure 7, the

process of freeing memory on the heap is shown. The blue area represents the space

in the memory taken by the objects, used and unused. The peaks in the graph show,

that Garbage Collection (GC) process has successfully run and some memory has

been freed. Nevertheless, the peaks do not happen often, and the memory can remain

dormant for long periods of time.

19

Figure 7. An example of memory, being freed by the GC thread

Another problem, which is posed by the garbage collection, is that while the unused

memory is being processed, the virtual machine can stop the execution of a program

for a while. Even though the time span is measured in milliseconds, it can be critical for

certain programs. Nevertheless, latency is not the priority for this project, so that wait-

ing intervals of up to a quarter of a second are accepted. Moreover, if the performance

of the garbage collection is not acceptable, it can be fine-tuned to work in small inter-

vals, thus, not stalling the execution of the program at all. [8, 178-181.]

One of the main benefits of Java platform is the ease of software development with the

Java programming language. As long as the memory management is automated by

JVM, the number of bugs and mistakes in the program execution drops down dramati-

cally in comparison to natively compiled languages such as C or C++. Moreover, Java

as a platform provides a broad set of open-source tools and frameworks, which further

simplify the process of software development removing the burden of system pro-

gramming from the engineer, leaving more time to write business logic of the applica-

tion. As long as the multiplayer game server software is a large project which requires

a considerable amount of work, the approach which simplifies and accelerates the

software creation process is preferable. The implementation of this project is also de-

pendent on robust development strategies and tools which can help to write software

modules fast. As a result, Java is chosen over C and C++ for the game server imple-

mentation. [9, 44-45.]

20

Java is cross-platform and JVM implementations exist for all major types of operating

systems and some hardware systems such as microcontrollers [10, 2]. In terms of this

project, it means that Java can be used in conjunctions with the Linux operating system

which is free. It makes Java an optimal choice over other rival technologies such as

.NET, which requires investments in case the project is continued and used for earning

money.

Some other important features of Java as a platform are its scalability and modularity.

These qualities allow to reuse the written software and to improve the speed of devel-

opment even further. The scalability feature of Java stems from the fact that it is very

modular. When a new software module is implemented, it can be easily added to the

working project continuously without the need to rebuild the whole system completely.

In such a way very large and complex systems can be created. This feature is present

in many other platforms but Java excels its rivals such as C or C++ at the moment.

4.2 Frameworks

After choosing Java as the main software platform, a set of libraries and frameworks

are to be chosen in order to further simplify the process of the game server develop-

ment. One of the most important issues is the communication between the server and

the clients. This communication can be performed in multiple ways. The easiest way is

a request-response communication pattern, where clients send requests to the server

software frequently, querying for the update information. In this scheme, the server

receives a request and sends a response back to the client along with the data about

the game world state changes. The main drawbacks of this communication type are

latency and unnecessary bandwidth consumption as long as many responses from the

server contain no meaningful information. If there are many connections at the same

time, the server channel might get congested and the latency will increase progressive-

ly. In regard to the mentioned fact, common web frameworks (such as Java Enterprise

Edition (EE) web layer, Spring Model-View-Controller (MVC), etc.) cannot be used for

the project as long as they represent a request-response communication pattern.

Another approach is to use a full-duplex communication channel between the server

and a client. In such a way the server itself can notify the client when something impor-

tant happens in the game world and the number of requests to the server decreases

21

dramatically. This strategy is more preferable for the current project because the game

world changes seldom and it is important not to congest the communication channel of

the server by unnecessary requests. The optimal choice is plain Java SE. The connec-

tions between the clients and the server are to be created using plain TCP sockets.

Java Standard Edition (SE) possesses all the required classes in the distribution pack-

ages (java.io, java.net). Nevertheless, the common architecture, given in many books

for beginning programmers, where Java TCP sockets are used in a blocking manner, is

not applicable to large multiplayer game server software. The main problem is that

each connection creates its own thread, and in case there are many connections, the

memory footprint is too large for fast and reliable operations of the server software.

One of the ways to bypass the limitation on the number of simultaneous connections is

the usage of NIO approach. With this approach, a new thread is not created for each

connection to the server but rather a fixed thread pool is used, and, thus, the amount of

connections can excess a few thousands or even more, depending on the hardware

and frequency of incoming requests. The required classes are placed in the java.nio

package of the standard Java SE distribution. Nevertheless, the work with those tools

requires considerable programming experience and is hard for inexperienced users. In

order to simplify the work with the Non-blocking input/output (NIO) and avoid possible

mistakes, the Netty framework has been used in the project. This framework is used to

simplify the development of high-performance, concurrent network applications, such

as HTTP servers and other software which needs the support of thousands of concur-

rent users, and is used by many well-known organizations such as RedHat, Twitter,

and Apache to name a few. [5, 2-3.]

The network layer of the multiplayer game server software is connected to the game

module. The latter is responsible for the operations of the game itself. It stores the state

of players and the game world. It also stores and runs the game processes such as

fights or other game events. This part of the game server software is written in plain

Java SE. As long as this module of the server software is shared among all the players

and needs to update its state accordingly, it is highly concurrent and makes a heavy

use of the tools from the java.util.concurrent package.

The game server software needs to store players` data frequently, and, thus, it requires

a persistence layer which is responsible for the database access. In order to simplify

the work with the database, the persistence layer of the game is tightly integrated with

22

the game module of the software. The Java Persistence Application Programming In-

terface (JPA) has been chosen for this project to speed up the work with the database

and remove unnecessary complexity when storing and retrieving necessary data. JPA

is an Object-Relational Mapping (ORM) framework which is a part of the specification

of Java EE. It makes a representation of Java objects in the database by translating

object fields into relational database table rows. This process is handled by the frame-

work, and, thus, the programmer has to work only with the Java programming language

without the need to know Structured Query Language (SQL). However, the Java plat-

form does not restrict the user to utilizing only the predefined implementation of the

JPA specification. In this project, the EclipseLink persistence provider has been used. It

is a well-established implementation of the JPA specification.

EclipseLink can be used in conjunction with most Relational Database Management

System (RDBMS) but the choice for this project is MySQL. It is scalable and fast, and

can be used free of charge. It supports the create/read/update/delete (CRUD) set of

operations, joined tables and constraints such as primary and foreign keys. These facts

make it suitable for use in the project. Moreover, MySQL provides connectors for the

Java platform which can be used from the Java programming language (through Eclip-

seLink or directly) to communicate with the DBMS efficiently.

4.3 Development Tools

The Eclipse Integrated Development Environment (IDE) has been chosen for work be-

cause it automates the majority of development tasks and is very flexible and extensi-

ble. It also provides a convenient user interface. The next important feature of Eclipse

is its possible integration with Maven. Through the Eclipse repositories, Maven plug-in

can be installed through a sequence of short steps. Moreover, Eclipse is tightly inte-

grated with JPA and easy to use to produce the documentation for the project automat-

ically.

Maven is a software management project tool which allows building projects in a uni-

form way. It simplifies the project compiling, reporting, and packaging. One of the most

important features of the tool is that it provides a uniform build cycle, which is always

followed stage by stage from compiling to installing the packaged product into the re-

pository. Another important feature of Maven is dependency management. When a

new library is to be added to the project, Maven can automatically download it from the

23

repository online and include it into the local workspace. The main benefit of such an

approach is that when there are a great number of dependencies or third-party libraries

in the project, Maven can track their versions and update them accordingly. In case a

new version of the product is used, Maven detects it and resolves the arising depen-

dencies. It is also tightly integrated with software unit testing tools, and even provides a

directory structure to place all the required tests to. Moreover, tests comprise one of

the build-cycle stages of Maven and all the following stages after testing are cancelled

in case any tests fail. It allows to unit-test software modules in a uniform and reliable

way.

24

5 Description of the Software

In this project the server software for a multiplayer RPG has been implemented. The

server consists of a few modules which together perform multiple game functions. The

most important parts of the software are its networking module (controls the connec-

tions between the clients and the server), dispatcher module (connects the game mod-

ule, authentication module, and the network module), game module (tracks and con-

trols the world state), and system module (which includes the functions for data sto-

rage, message creation and other utility functions). There is also a bootstrap module,

which loads all the other modules, and which represents the entry point for the soft-

ware, in the bundle.

All the modules are laid in a tied architecture, where upper layers can communicate

only with adjacent layers. Moreover, each module performs a particular function which

is unique for this part of the game server software. Each software level communicates

only with its counterparts as shown in figure 8.

Figure 8. Tiers of the server software architecture

Network Module

Dispatchers

Authentication

Module
Game Module

System Module

B
O
O
T
S
T
R
A
P

M
O
D
U
L
E

25

According to the diagram, the bootstrap module spans across all modules because it

load all of them. Other modules are organized in a hierarchical manner. The system

module is also partially used by all modules. However, it is prevalent in the game and

authentication modules as long as they store the character data to the database.

5.1 Bootstrap Module

The bootstrap module is responsible for launching all other modules. It is also the

module which is the entry point for the software application. When the main class is

started in this module, it automatically starts the network module, initializes the game

module and tools to work with the persistence (system module). The module also spe-

cifies the order in which communication channel handlers are supplied to newly-

connected users, and basic Netty server configuration such as thread pools or the port

on which the server would listen to TCP connection requests.

The first function that the module performs is bootstrapping the network module. When

the user has specified the port on which the application is going to run, the bootstrap

module starts the Netty server, allocates the listening accepting socket, specifies what

to do on connection event (register decoders and encoders, user session and output

dispatcher), initializes the world and its locations, and registers the JPA persistence

context (through system module).

Some other functions of the bootstrap module are stopping the server, initializing the

logging framework in order to store the information about possible exceptions thrown

during the execution of the program and providing the console user interface for start-

ing the server software. The application can be started through a console interface with

one simple command. If there are mistakes at the server software startup (no port has

been specified), the user will be notified about them in the console. In case there are

no critical errors at the startup, the logging framework switches on and starts logging all

the following errors and exceptions.

5.2 Network Module

The network module is responsible for allocating client connections and managing

them. The central part of this module is the Netty framework. It represents a pipeline

26

which all the incoming messages pass through, and which all the messages, headed

for the clients, also traverse. After accepting the connection from the client, the network

layer allocates a pipeline for each client. Next, the Netty framework tracks if any bytes

from the remote host have been received. In case some bytes have been received

from the remote peer, they are dispatched into the user pipeline. If the connection is

idle, the pipeline is stored in the memory, not consuming any Central Processing Unit

(CPU) time because no thread is managing it until it becomes active again.

On the message path, the incoming and outgoing messages are being changed, to

prepare them for the module of dispatchers. Decoders change the incoming requests

and pass them to the request dispatcher in the dispatcher module, while encoders re-

ceive the messages from the output stream dispatcher. Encoders are used by the

game module to distribute messages and transfer them to the remote clients.

The network module possesses multiple encoders and decoders which perform specif-

ic network tasks, such as tracking the amount of time for which the client has remained

idle (IdleChannelDisconnector). This object is registered up and down the pipe, so that

it can track the channel in the direction of requests as well as responses. In case the

game client remains silent for a long period of time, it is disconnected from the server.

This class also detects any errors in the processing of requests, communication chan-

nel disconnects, and special codes, which control the game, in which case it can call

the cleanup methods on the player resources. The network module also checks the

validity of requests from clients with one of its decoders. If the request is not valid, the

connection is immediately closed.

The last decoder sends the request object directly to the dispatcher, where it can be

processed. The first encoder in the pipeline is known also to one of the dispatchers,

and all the messages from the server to the client are sent directly by the dispatchers`

layer into the pipeline. This architecture allows for full-duplex communication between

the server and its clients.

As long as the request-response system of the game server software is asynchronous,

the sequence diagrams represent the order of actions for the request and the response

separately. During the request phase as seen in figure 9, the request is first sent to the

ByteToStringEncoder. This part translates the bytes into arrays of readable characters

in UTF-16 encoding. Then it sends the character set to the StringToRequestDecoder

27

which constructs a Java request object out of the given character data. RequestPro-

cessor decides to which dispatcher the particular request should be sent to.

Figure 9. Sequence diagram for network module request processing

When the response is sent to the client asynchronously, one of the dispatchers con-

structs a response object, and calls the encode method of the ResponseToStringEn-

coder. This method turns the Java object to the character array. Next, the message is

sent to the StirngToByteEncoder, which encodes the response into bytes and dis-

patches it to the client. This process is illustrated in figure 10.

Figure 10. Sequence diagram for network module response processing

28

The network module also has the hooks to the cleanup routines. In case the disconnec-

tion is detected, the network module calls the methods to free the user resources. It

also catches multiple exceptions connected to the network layer operation. These er-

rors are logged, and the recovery mechanism is launched. These functions are stored

in the IdleChannelDisconnector, which does not do anything on normal request or re-

sponse processing. Nevertheless, if an exception occurs, or the channel is idle for too

long, it automatically starts the mentioned processes.

5.3 Dispatcher Module

The dispatcher module is responsible for calling the methods of the game module ac-

cording to the requests received from the network module. It is situated right between

the game world and the connection to the client. When the first request is received from

the client, it is always dispatched to the authentication module. If the registration/login

has been performed successfully, all the subsequent requests are forwarded to the

game module. However, all the dispatchers are allocated through main request dis-

patcher which has no state but controls the access to dispatchers dynamically. All the

requests always flow through the main request dispatcher.

The central concept to the dispatcher module is the player session. The session is allo-

cated already in the network module on connection but some of its fields are not popu-

lated yet. When the connection is initiated, the session is given an instance of a new

player. Next, the session stores the instance of the output-message dispatcher, which

is also created on connection allocation. After this, the session becomes available to all

the other dispatchers through the incoming requests. After a successful login, the ses-

sion is given an instance of the game dispatcher, which stores the in-game character of

the player and calls the methods to control the processes in the game world.

A character controller is the dispatcher responsible for the game functions. It has an

internal access to the player's session and, thus, to the player's output stream. When

initialized, it retrieves the character from the game world and initializes it. In case the

first stage is completed successfully, the class registers the output dispatcher for the

game character so that all other players can communicate with this particular player.

The system of controllers is complicated and shown in figure 11.

29

Figure 11. Dispatcher module structure

As seen from figure 11, the dispatchers are combined into a complex structure. Their

responsibilities are fully separated but it is often required to use multiple dispatchers at

the same time. Output stream represents the dispatcher which is responsible for send-

ing messages to the clients. All the dispatchers have an access to the output stream

through the client session. Any request from the user carries a reference to the session

instance. The main request dispatcher decides which dispatcher to invoke according to

the incoming request, and when the decision is made, the session object is passed

over to the dispatcher along with the request.

5.4 Authentication Module

The authentication module is separate from the game module because they perform

totally different tasks. The purpose of the authentication module is to decide whether a

client, trying to connect to the game module, is eligible to do that. The authentication

layer uses persistence in order to save and retrieve the player credentials from the da-

tabase. Moreover, it checks if the user credentials correspond to any other credentials

stored in the database. In case the match is found, a signal to the request dispatchers

is made in a form of changing the state of the player object inside the player session.

Main Request Dispatcher

Authentication Module

Controller

Game Module Controller

Session

Request

Output Stream

30

When the first request is received from the main request dispatcher, the authentication

module considers it to be either a register request or a login request. In case it is a reg-

ister request, the module checks if it can register the player. If it can do that, the regis-

tration is performed, and the user is automatically logged in. In case a client sends a

login request, the authentication module checks if the credentials are correct. If the

decision is positive, a new game controller is created and stored inside the user ses-

sion. The user state changes to “logged” automatically.

5.5 Game Module

The game module of the server software is responsible for managing the game world

and the players` characters. It has a vast number of functions, and is includes persis-

tence functionality. When the user is authenticated, the following requests are decoded

and sent to the game controller by the main dispatcher. The game controller can un-

derstand what particular requests mean and invoke them on appropriate game objects.

5.5.1 Game Request System

There are a few types of requests for the game: global requests, location requests,

character requests, and fight requests. Each type of request performs its functions if

the player character is in the right state. The character can exist only at one state at the

moment as seen from figure 12.

Figure 12. State diagram of the player´s character

31

The global requests represent the functions which can be accessed at any point in the

game, at any time, and, thus, they can be called from any state of the character. These

requests include the request to log out or to get the information about another player.

Another type of requests is the character requests. They relate to the character

changes such as moving to another location, or equipping weaponry, and can be per-

formed only when the character is idle.

One more type of requests is location requests. Each location has a list of fights avail-

able at a particular location. As an example, training room has an ability to create new

fight applications and start new fights through registered applications. Every location

has a command which returns a list of players available at the particular location. Wea-

pon shop has a command which is used to buy new weapons or to list the stock of the

shop. All the location command can be issued when the player is in the idle or applica-

tion states.

The last type of requests is fight requests. These commands can be issued only when

the character is in the fight with other players. Fight requests can inform the character

to attack another character in the fight, or to use a special ability on the player's allies

or enemies. As an example, a special command exists for attacking the enemy in a

fight. In case one of the fighters has been idle for too long, a fight-finish command can

be sent. This command instantly kills the last remaining enemy in case he is the last

one in the enemy team. When the player has been killed but the fight is going on as

long as there are remaining players, the player`s state turns into defeated, and he can

no longer issue any commands in the fight until it is over. When the fight is over, all

players go to the idle state.

5.5.2 Game Functions

There are a number of functions that a player can perform in the game. The player's

functionality specifies what can be done in the game world. For the game world, three

locations have been implemented (training room, barracks and castle) as singletons

[11, 170-177]. When entering the location, the player receives the list of players` cha-

racters present in the location, and the player will also receive the messages about

other characters entering or leaving the location. In the training room, an application

can be submitted. Application represents an invitation for other players to fight with the

32

character, applying for a fight. Any of the characters in the location can accept the fight.

In this case, the fight can be started.

The fight represents a step-by-step turn-based action. When the user chooses where

to attack his opponent and chooses which body parts he wants to protect, an attack will

be issued. Next, the player needs to wait for the response of his opponent. When the

opponent responds, the system will calculate the probabilities, and decrease the hit

points of the players who take damage. The team where no players are left alive is

considered to have lost. When the defeat is registered, the player's state will be

changed and he will be returned to the location where he will be able perform non-fight

functions.

The player can issue the commands to get to know the information about other players

at any time. In case of such a request, its target is located and some of its data is trans-

ferred to the inquiring party. The character can also move around the locations of the

game world. Every location has its own set of functions available only in that location.

One more feature of the system is the state tracking. When the user logs out, his cha-

racter is persisted in the database. Nevertheless, if the character is in the fight, he will

not be saved until the fight is over. It allows the users to reconnect in case their con-

nections are broken.

33

6 Project Outcome

6.1 Project Results

The minimum requirements of the server software for a multiplayer role-playing game

were fulfilled during the project. The implementation provided the features to lo-

gin/register and play the game, and to establish and synchronize communication

among multiple clients in a concurrent manner.

The features which belonged to the minimum requirements for the software were all

implemented. The business logic of the software was of the utmost importance. Mul-

tiple objects (Fights, Locations, etc.) needed complex procedures in order to work with

many clients at the same time. As an example, fights required a complex set of time-

outs, running in separate threads. This detail posed serious obstacles in implementing

the software.

Another difficult implementation feature was that the world had to track the state of ac-

tive fights, and in case one of the players left the game, his resources had to be

cleaned up automatically. As long as players attacked at different times, and many ac-

tions depended on the enemy or ally, the synchronization of the fight became difficult.

In addition, game message distribution was hard to implement. The messages had to

be supplied to the right players at the right time. This fact laid even more restrictions on

the logic of player request processing. Nevertheless, the server software was built and

it provided the required functionality.

6.2 Discussion

One of the most difficult parts of the game server software was the network module.

This module served as the basis for the game and its entry point, which resulted in a

limited set of technologies which could be chosen for this purpose according to the

given requirements. Moreover, the server-client communication model was in the focus

of thorough attention from the beginning of the project since it was the main entry point

of the server software.

34

During the process of development, the Java EE request-response model for the client-

server communication was rejected because it did not fulfill the requirement stating that

all clients had to be immediately notified about the events taking place in the game

world. In this model, the requests had to be made frequently in order to retrieve the

new information about the world state. Nevertheless, this approach could congest the

network bandwidth to the server because many requests would not carry any payload.

In order to avoid it, some delay should have been set on requests. However, a pause

between requests would inevitably lead to the delay problem, which emerged when the

client game state was not synchronized properly with the game world state.

In order to solve the problem, a full-duplex communication link between the client and

the server was created. The link worked over TCP-socket and sent data in both direc-

tions. The drawback of this approach was that much memory and CPU power was

wasted in an attempt to save a thread for each player in the main memory of the game

server software. With this technology, the capacity of the server was around one thou-

sand users at most. Nevertheless, a better approach was chosen for the project. The

asynchronous non-blocking input/output was used. This technology helped to scale the

server software easily, consuming a few times less resources than the original ap-

proach with plain TCP sockets and one thread per connection. The introduction of the

Netty framework helped to scale the server software and make it meet the require-

ments.

The other important part of the game server software was the shared world for many

players and authentication/reconnection functionality of the implementation. In order to

achieve the safe use of shared resources among players, a large number of constraints

were introduced in the software. The implementation required considerable amount of

research in the field of concurrent programming and design patterns. The problems

which were still present in the server software implementation were its shared-resource

bottlenecks related to the atomic execution of parts of the program. As long as some

objects were prone to concurrency modification exceptions, large chunks of code could

be executed by only one thread at a time which resulted in a queue of requests waiting

for the execution. In case a guarded object was used by too many clients, the res-

ponses could take a noticeable delay before being processed, resulting in high latency

for the players. The described problem still needs to be resolved in the future releases

of the implementation.

35

Another interesting part of the implementation was related to the database access.

Database operations took a long time to complete and this fact had to be managed in

some way by the server software. The solution was to perform the database access as

rare as possible. In fact, the database access happened only at the moment when the

player was leaving the game. It allowed reducing the number of database operations

with the player to two in one session: game character retrieval and game character

saving on exit. Nevertheless, the performance of the database operations might be-

come more important in the future because there were many other operations which

were going to be implemented, and needed the database access. The performance

can be critical in the future. This issue is the main drawback of the software at the mo-

ment.

In the project I learned several important concepts related to concurrency and net-

works. These fields of computer science were especially applicable to the servers of

multiplayer role-playing games because they related to the basic problems and aims of

this type of software. In the project I designed and implemented the whole system de-

scribed in the previous chapters and from my point of view, the greatest benefit of it

was that I learned to plan and implement large projects and maintain them. In the

course of working, I faced a number of serious challenges which I successfully over-

came. In the future the project is to be developed further. As a result, the persistence

and the concurrency of the game should be improved. As for the game features, new

locations and advanced functionality are to be added into the future releases.

Some of the new features might include such location as auction or battle grounds.

There are going to be artificial intelligence fighters in the game. In order to make the

game more interesting, a set of quests and a broader range of weapons and inventory

items could be introduced. In the future, the server software would be distributed over

multiple nodes. One of the nodes would provide the game services, the other one

would provide authentication services, and the last one would serve static context to

clients such as images or sound. A separate server might be introduced for chat and

related services. Moreover, the payment system might be viable in case the software

was published online. With regard to this, encryption might also be applied to the com-

munication protocol.

36

7 Conclusions

The goal of this project was the creation of server software for a massively multiplayer

online role-playing game. All the aims were achieved and all the minimum require-

ments fulfilled. As a result, a working server software implementation was created.

Among the features implemented in the project were the network module, which con-

nected (reconnects) and disconnected clients from the server, the authentication mod-

ule, which controlled the login procedures, and the game module which represented

the game world with the players` characters inside of it. The technologies used in the

project included Java and multiple related frameworks to simplify the work with the da-

tabases and to improve the network module. In the process of choice, multiple pro-

gramming languages and platforms were compared to each other, and the most ap-

propriate one was chosen. The technology of choice was dictated by the necessities of

the project and the speed and ease of software development.

During the implementation of the program, multiple obstacles were met. The most diffi-

cult ones were connected with the concurrency and persistence. Some of the problems

were not fully resolved but only to the level when it did not stop the software from

achieving the declared goals. In the future releases of the software, most of the prob-

lems were to be eliminated and new features added, so that the project would continue.

Overall, the project was an interesting and difficult challenge through which I learned a

large amount of new material about advanced computer science concepts such as

concurrency, design patterns, or software architecture of large systems. Moreover,

during the implementation of the project I acquired skills which could be necessary in

my future career. All the above facts make this software unique and it required a solid

amount of work.

37

References

1. Jeannie Novak . Game Development Essentials: An Introduction, Third Edition.
USA, New York: Delmar, Cengage Learning ; 2012.

2. Mike “MrMike” McShaffry and David “Rez” Graham. Game Coding Complete,

Fourth Edition. USA, Boston: Course Technology, Cengage Learning; 2013.

3. Elliotte Rusty Harold. Java Network Programming, Third Edition. USA,

Sebastopol: O’Reilly Media, Inc.; October 2004.

4. Andrew Davison . Killer Game Programming in Java. USA, Sebastopol: O’Reilly

Media, Inc.; 2005.

5. Norman Maurer. Netty in Action, Manning Early Access Program , Version 4 .

Manning Publications; Estimated release date: May 2014.

6. Brian Göetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, Doug

Lea. Java Concurrency in Practice. Addison-Wesley, 2006.

7. Scott Oaks, Henry Wong. Java Threads, Third Edition. USA, Sebastopol:

O’Reilly Media, Inc.; September 2004.

8. Bruce Eckel. Thinking in Java, Fourth Edition. USA, Stoughton, Massachusetts:

Pearson Education, Inc.;November 2010.

9. Jonathan S. Harbour. Beginning Java SE 6 Game Programming, Third Edition.

USA, Boston: Course Technology, Cengage Learning; 2012.

10. Kathy Sierra, Bert Bates. Head First Java, Second Edition. USA, Sebastopol:
O’Reilly Media, Inc.; February 2005.

11. Elisabeth Freeman, Eric Freeman, Bert Bates, Kathy Sierra, Elisabeth Robson.

Head First Design Patterns. USA, Sebastopol: O’Reilly Media, Inc.; October
2004.

