

Markus Lindqvist

Integrating Unit Testing Processes
into Large Legacy Software System Development
Process

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

1 April 2014

 Tiivistelmä

Tekijä(t)
Otsikko

Sivumäärä
Aika

Markus Lindqvist
Yksikkötestauksen käyttöönotto laajan vanhan ohjelmis-
totuotteen tuotekehitysprosessin osaksi

49 sivua + 6 liitettä
1.4.2014

Tutkinto Insinööri (AMK)

Koulutusohjelma Tietotekniikan koulutusohjelma

Suuntautumisvaihtoehto Ohjelmistotekniikka

Ohjaaja(t)

Opettaja Sami Sainio
Ohjelmistoarkkitehti Mikael Lavi

Tässä esitetyn tutkimuksen tarkoituksena oli arvioida millaisia hyötyjä yksikkötestauskäytäntöjen
käyttöönotolla saavutettaisiin vanhan ohjelmistotuotteen tuotekehityksessä.

Yksikkötestauksen ja yksikkötestattavuuden vaikutuksia tuote X:n arvioitiin kuuden vuoden
ajalta, vuodesta 2007 vuoteen 2013. Tutkimus osoitti, että yksikkötestaukselle soveltuvan ympä-
ristön luominen ohjelmistokehittäjille voi viedä vuosia kun kyseessä on monimutkainen tuote.

Ensimmäisenä parannuksena yksikkötestaustyökalut liitettiin tuotteeseen ja jatkuvaan integraati-
oon (continuous integration). Jatkuvan tarkkailun (continuous inspection) raportit luotiin kehityk-
sen seuraamiseksi. Kävi selväksi, että kunnon työkalut ja infrastruktuurin ylläpito ovat oleellinen
osa tavoitteisiin pääsemistä. Kehittäjien kouluttamiseksi järjestettiin koulutustilaisuuksia ja järjes-
telmät dokumentoitiin.

Tuotteen arkkitehtuurin järjestelmällinen kehitys oli oleellinen osa testattavuuden luomista. Mo-
noliittinen tuote pitää modularisoida ja refaktoroida sellaiseksi jossa komponenttien testaaminen
on mielekästä. Tutkimuksen tulokset osoittavat että tuotteen modularisointi oleellisesti paransi
mahdollisuuksia yksikkötestaukseen.

Kehitystyö yksikkötestauksen osalta tehostuu esimerkiksi virheiden paikallistamisen osalta kun
työskennellään pienempien komponenttien kanssa. Pienempien kokonaisuuksien mittaamisesta
seuraa näkyviä tuloksia. Kohtuullisen kokoisissa komponenteissa yksikkötestikattavuuden kasvu
näkyy ja motivoi ohjelmistokehittäjiä jatkamaan käytäntöä.

Lopputuloksena voidaan todeta, että yksikkötestauskäytännöt on mahdollista sisällyttää haas-
teellisen tuotteen tuotekehitysprosessiin jos tahtotila siihen löytyy. Hyvä infrastruktuuri mahdollis-
taa ohjelmistokehittäjien työn, vähitellen lisäten yksikkötestauksen käyttöä ja testien kattavuutta,
josta seuraa tuotteen laadun parantuminen.

Avainsanat yksikkötestaus, arkkitehtuurikehitys, modularisointi

 Abstract

Author(s)
Title

Number of Pages
Date

Markus Lindqvist
Integrating unit testing processes into large legacy software
system development process
49 pages + 6 appendices
1 April 2014

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Sami Sainio, Lecturer
Mikael Lavi, Software Architect

The purpose of this study was to analyse the improvements of software development processes
of a legacy software product after introducing unit testing methodologies.

The results and effects on unit testing process and unit testability of Product X were analysed for
a period of six years, from late 2007 to 2013. The study showed that setting up a unit-testing-
friendly environment for software engineers can take years of time in a challenging product envi-
ronment.

Improvements started by integrating a unit testing framework into the product and setting up a
continuous integration system to utilise it. A continuous inspection dashboard was introduced to
follow the progress. It was seen that efficient tooling is a key to success, and that the new infra-
structure needs to be well maintained. Educating the developers on all this required organizing
trainings and documenting the systems.

Systematic development of the product architecture was a crucial part of making the system unit
testable. The monolithic product had to be modularised and refactored to achieve layered archi-
tecture where testing of components is meaningful. The results of the study indicate that modu-
larising a monolithic system greatly improved development workflows relevant to unit testing.

Having smaller components increased unit testing efficiency in terms of development speed and
pinpointing errors. Measurements of smaller entities for improvements gave visible results. In
reasonably-sized modules, the increases in unit testing coverage were real and motivated the
software engineers to continue the practice.

In conclusion, the unit testing process can be introduced in a challenging software development
environment if the intent of doing it exists. Good infrastructure enables the work of engineers, re-
sulting in incremental use of unit testing, increasing the testing coverage, which can be assumed
to affect the product’s quality positively.

Keywords unit testing, legacy software, architecture improvement,
modularisation

Table of contents

1 Introduction 1

2 Unit Testing Process 2

 What Are Unit Tests? 2

2.1.1 Structure of a Test Method 2

2.1.2 Test-Driven Development Process 3

2.1.3 Characteristics of Unit Tests 5

2.1.4 Unit Testing Frameworks 6

2.1.5 Measuring Unit Testing 8

2.1.6 Measuring Individual Unit Tests 9

2.1.7 Unit Testing as a Part of an Agile Process 10

 Characteristics of Legacy Software Systems 12

2.2.1 Complexity 13

2.2.2 Cohesion and Coupling 14

2.2.3 Unit Testing Legacy Software Systems 16

3 Introducing Unit Testing into a Large Legacy Software System 19

 Description of the Development Environment 19

 Initiative to Start Unit Testing in Late 2007 20

3.2.1 Integration of CppUnit Framework 21

3.2.2 TSAR Project 2008 23

3.2.3 Software Engineers’ Reactions to Unit Testing Initiatives 24

4 The PAMM Modularization Project 2010 25

 PAMM Vision 25

 Implementation of the PAMM Project 27

4.2.1 Challenges and Improvements in the PAMM Modularization Project 28

5 Systematic Development of Unit Testing Activities 30

 Change to GoogleTest Framework 31

 Continuous Integration System Improvements 32

 Continuous Inspection System - SonarQube 33

6 Results of the Improvement Projects 36

 Architecture Improvements 36

 Increased Use of Unit Tests 37

 Software Engineers’ Questionnaire Results 41

7 Conclusion 44

References 46

Appendices 1

Appendix 1: Unit Testing Challenges from Workshop 2008 / Rihtniemi 1

Appendix 2: Unit Testing Challenges 2011 / Lindqvist 1

Appendix 3: Program (Implemented in F#) Used to Extract the Table of Data about
Commits Which Contain Changes to Unit Tests 1

Appendix 4: Commits which Contain Changes to Unit Tests 1

Appendix 5: The Unit Testing Questionnaire Form 1

Appendix 6: The Responses to the Unit Testing Questionnaire Form 1

1

1 Introduction

Company A is a company developing many different enterprise computer software prod-

ucts in various business areas. This thesis focuses on a selected part of the largest

product suite of the company, Product X, which is structural engineering software.

The software was originally written using the C programming language, and later partly

converted to object-oriented C++, with extensibility interfaces for C (RPC) and .NET plat-

forms (C#, F#, C++/CLI).

The product development unit is responsible for maintaining almost eight million lines of

code, which is nearly twice as much as five years earlier. Long history and evolution from

a small single-purpose software to complex multipurpose product creates new chal-

lenges for the development process. To mitigate these challenges the company has

started systematic architecture and process development on many areas.

One way of ensuring a clean architecture and building high-quality software from the

bottom-up is to use unit testing or test-driven development from the start. This thesis

aims to document and analyse the improvements of the software development process

of Company A by integrating unit testing methodologies into the existing workflows.

As a result of this study, the following questions are answered:

 What are the usual challenges specific to implementing an effective, gradually

improving, unit testing process in a large legacy software?

 How have these challenges been tackled in Company A?

The research was conducted by analysing Company A’s internal documentation created

during the years in various improvement projects, and by interviewing top professionals

who have been working with these projects or in related areas in the company.

The effect of change is analysed over six years, from late 2007 to 2013, focusing on the

core component of the software product, excluding the external applications, plugins,

third-party software or application programming interfaces (API) from the analysis.

2

2 Unit Testing Process

2.1 What Are Unit Tests?

The Art of Unit Testing (2011) defines unit tests as follows:

A unit test is an automated piece of code that invokes a unit of work in the system

and then checks a single assumption about the behavior of that unit of work.

A difference to “ideal unit tests” described before is the fact that commonly in real-life

developers test multiple assumptions in single test cases, as opposed to only asserting

one condition. Combining multiple test methods into one may be necessary if test cases

require expensive setup processes, which need to be reduced for performance reasons.

In real life code bases, the components are often not really independent or usable alone.

This leads to unit tests testing the class functionality plus its dependencies too, either

from the same module or even from different modules. Whether testing the class with

dependencies (as opposed to using mocks for example) is a good or bad depends on

the situation. Usually coupling with unrelated classes is considered a negative thing;

however, if the functionality is related and dependencies are simple, it may be reasona-

ble to test the classes together.

Google has solved the terminology problem by calling unit tests and unit-test-like tests

“small tests” (How Google Tests Software 2011), functional tests that test integration of

multiple modules “medium tests”. Integration and end-to-end tests are called “large

tests”. The importance has been placed on product quality and relevance of the tests,

not on naming conventions or strict ruling.

See chapter 2.1.2 about at which point in the development process the tests are written.

2.1.1 Structure of a Test Method

Structuring tests in a commonly known way is an industry proven method for easing the

maintenance and readability.

3

A unit test method usually consists of three different parts (Kotilainen 2012, 8-10), which

are called arrange, act and assert (Grigg 2012). The first part is used to set up test data

or objects for the second part, in which the actual program logic is invoked. The third part

checks that expected conditions are met, based on the results obtained from a produc-

tion code call.

Listing 1. Example of a unit test with Arrange-Act-Assert structure (Copied from Kotilainen 2012,
8).

Testing the same method, class or function with different parameter combinations often

leads to repetitive patterns in the setup code, which prepares test data or sets up the

environment. Code duplication is a highly ranked code smell (even called “the number

one in the stink parade” (Fowler 1999, 63)), and not good for maintainability. Code du-

plication is easily fixed by using the “extract method” (Fowler 1999, 89) refactoring, where

common code is combined to just one place and invoked from there.

Unit testing frameworks provide a place to put the common code that is run before or

after each test method; the setup and teardown methods. The framework itself takes

care that these auxiliary methods are invoked at the right time, which again makes the

test methods clearer.

2.1.2 Test-Driven Development Process

Normally, unit tests are written by the original developer of the production code, some-

time after the production code is finished. This approach has a few problems, some of

which are:

4

 The original developer might not anymore have a fresh idea about the in-
tent of the production code to produce valid tests for it, making it an effort
to get back into the code (Astels 2003, 5).

 The project might run out of time, in which case the tests will not be imple-
mented at all.

 Test coverage might not be sufficient to cover all of the production code.

Test-driven development (TDD) is an advanced way of implementing unit testing for all

code, before the production code is written.

The TDD process is defined (Poppendieck and Poppendieck 2009) like this

“Tests should be created first – before the code is written. Either the tests are

derived from the specification, or better yet, the tests are the specification. In either

case, coding is not done until the tests for that section of code are available, be-

cause then developers know what it is they are supposed to code.”

 The Test-Driven Development process (adapted from Bit by bit blog 2012).

The challenge of implementing a true TDD process (illustrated in figure 1) is that it re-

quires very high discipline from the developer. The aim is to write every test before the

5

production code is written. However, it has been seen that often it is tempting to start

experimenting and prototyping with production code, especially when requirements are

unclear (Dietrich 2011).

The practice of TDD was popularized in the early 2000s by the rise of the Extreme Pro-

gramming (XP) development method, which was developed by Kent Beck (Copeland

2001).

Writing tests before code is actually designing the interfaces, therefore resulting in more

understandable, simpler code (Poppendieck and Poppendieck 2006, 82). Unit testability

follows since the code already has the tests.

2.1.3 Characteristics of Unit Tests

Different sources define unit tests in various different ways, but some characteristics

seem to be commonly mentioned by all parties:

 Fast (Martin 2008, 132, The Art Of Unit Testing 2011): Unit tests need to
run fast, that is, they need to provide quick feedback for the software engi-
neer whether a piece of code worked or not.

 Repeatable (Martin 2008, 132, The Art Of Unit Testing 2011): The tests
need to be runnable in different environments, always producing identical
results. The tests may not yield different results when they are executed in
different order and they may not depend on random numbers or current
time.

 Small (Martin 2008, 132): Test code only runs a very limited subset of code
from a single module.

6

 Different Kinds of Testing (Adapted from Whittaker, Arbon and Carollo 2012, 46).

As seen in figure 2, How Google Tests Software (Whittaker, Arbon and Carollo 2012)

illustrates different types of automated testing using a stacked pyramid. In Google’s en-

vironments, software engineers write a large number of unit tests which run fast and

provide the basic guarantee of correctness for the software module. Longer-running

functional and integration tests, written by quality assurance engineers, only verify that

smaller pieces of the puzzle work together. Because of this, the number of high-level

tests can be lower. Confidence for the whole system is built by creating quality from the

bottom up.

2.1.4 Unit Testing Frameworks

Every programming environment has their own unit testing framework with the purpose

of enabling the rapid development of unit tests. Rapid unit test development in turn exists

to support development; therefore, unit testing tools are not just testing tools but im-

portant development tools (Wells 1999).

7

The framework implements functionality common to all test methods: handling setup and

teardown, execution of the tests, reporting the results, providing a collection of assertions

and other helper functions. It also provides support for IDE integration and build system

integration.

Usefulness of the framework decreases if usage requires extra effort from the developer.

In some frameworks, especially in those for old system programming languages such as

C and C++, it is a tedious to task to register test methods to be recognized by the frame-

work. In modern environments, the test method is easily announced to the framework by

adding an attribute on top of it.

A wide variety of high-quality assertions provided by the framework greatly increase the

usefulness of the built-in library. The purpose of an assertion is to check that a certain

condition is met when executing the code. Well-equipped frameworks support basic fea-

tures, comparing all primitive types and many commonly used collection types, as well

as advanced features such as mocking, advanced assertions (e.g. “check that a method

call crashes the process”) and verbose error logging and diagnostics.

Mocking is related to unit testing frameworks closely. Mocking frameworks provide fea-

tures for fluently creating small objects or implementations of interfaces to be used in

unit tests as replacements to real libraries. Mocks are used to provide minimalistic be-

haviour that is enough to run tests against some code. The behaviour of mocks is pre-

configured and they can be used to ensure that methods are called with certain param-

eters.

8

Listing 2. Example of a mock object usage (copied from Google 2011) in GoogleMock with
GoogleTest unit testing framework.

In the above example, the turtle interface is mocked and configured to expect at least

one call to method PenDown. If the painter does not reach PenDown at least once, the

test fails.

2.1.5 Measuring Unit Testing

Measuring unit testing as a development process is difficult. Productivity gains, higher

quality software and shorter time-to-market measures might show positive signs in high-

level indicators over a longer period of time, but it is challenging to link to a single process

which would cause the improvement.

Software projects are always unique and very difficult to repeat (or practically too expen-

sive to repeat); thus, it is challenging to compare how the same project with a similar

project team would perform using different processes or tools.

Few studies have been done about unit testing processes and their effects on software

development outcome. One study done at Microsoft (Williams, Kudrjavets and

Nagappan 2009, 81-89) shows that when unit testing was used on a second version of

a software project for one year, a significant drop of defects was seen compared to the

previous version, at the cost of increased development time. The study also suggests

that the work of testers “changed dramatically” because the “easy” defects were found

by the developers or were prevented due to the presence of automated unit tests”

(Williams, Kudrjavets and Nagappan 2009, 81-89).

9

2.1.6 Measuring Individual Unit Tests

Measuring unit tests is somewhat easier than measuring the process. The code physi-

cally exists, and can be technically analysed in itself, and in terms of actions it performs.

The number of test methods or the amount of test code does not indicate how well they

cover functionality, but can for example be used to track the ratio of unit test code to

production code, and whether the ratio is improving or degrading.

The most relevant measure of unit tests is the coverage, which answers the question

“how much of the production code was executed by the unit tests”.

Common technical measurements include the following:

 Method/function coverage reports the percentage of methods or functions
that are covered.

 Statement coverage reports the amount of program statements that are
covered.

 Branch coverage measures if different program statements are reached by
different control flows from branching execution commands (including if
and while). For example, the branching command “if(a || b)” offers four

different execution paths, of which three would reach inside the if branch,
and one (‘a’ and ‘b’ both evaluate to false) would not. In this example case,
a branch coverage of 25% (¼) could be returned if the control statement
never evaluated to true.

Listing 3. Unit testing coverage report visualized in Microsoft Visual Studio.

The listing above demonstrates how code coverage can be visualized in a development

environment, directly in the source code editor. The light blue background highlights ex-

ecuted statements and light red highlights statements that have not been executed. This

visualization does not take into account for branch coverage or function coverage.

10

The immediate value for the developer in seeing coverage data embedded in the devel-

opment environment is the ability to add relevant tests to cover missing areas quickly

and without task-switching.

2.1.7 Unit Testing as a Part of an Agile Process

The Agile Manifesto (Manifesto for Agile Software Development 2001) is a commonly

agreed set of good development principles, aimed to change the way software industry

works. The manifesto defines working software delivered early as one of the main objec-

tives.

Working software releases, especially in the case of large code base, are achieved by

testing early in the process, focusing on automated tests implemented by software engi-

neers who themselves create them as they write production code (Workroom

Productions Ltd 2007, 5-6).

Writing tests early, for all bug-fixes, the efficiency throughout the process is increased.

Software does not get broken in a similar way twice, and developer confidence in chang-

ing code increases. This is in line with the views presented in the Agile Manifesto on

technical quality: “Continuous attention to technical excellence and good design en-

hances agility.” (Principles behind the Agile Manifesto 2001). Also, the initial quality of

the software is better and the company’s ability to produce a final product is faster, if

covering defects are found during development with unit tests (How Google Tests

Software 2011, 219).

Adopting agile practices in an existing organization can be a tedious process and take a

considerable amount of time. Raja Bavani has compiled the Agile Maturity Curve (Bavani

2012), a framework for implementing an agile process in a distributed development team

(see figure 3).

11

 Distributed Agile: The Maturity Curve (adopted from Bavani 2012).

According to this framework, it takes about 4 to 6 months for a development team to

reach a streamlined development process in which automated unit tests are included as

a normal practice. Before having unit testing as a daily process, considerable amount of

infrastructure work needs to be done, including setting up a continuous integration sys-

tem (build scripts, daily builds), integrating a unit testing framework, refactoring existing

code and writing coding guidelines.

After reaching the streamlined level, the development process is supported by static

analysis and dynamic analysis tools, guiding metrics and test-driven development meth-

odology. Static analysis creates programmatic feedback for the code the developers

have been writing, aiming to find bugs early, as well as finding other non-conformities

that differ from agreed development practices. Dynamic analysis is performed by running

the unit tests in monitored environment for analysing memory leaks, other memory prob-

lems and problematic platform API usage.

Adopting these processes in organizations which have not used them previously can

require a notable effort. Practically, in order to implement change successfully, organi-

zational change is required to form new teams and to define responsibility areas for de-

veloping and maintaining new systems.

12

2.2 Characteristics of Legacy Software Systems

Legacy software and degeneration of product architecture is, or at least should be, a

concern of any software company. Most software projects start with relatively clean code

and well-thought architecture but as features are added quickly to meet deadlines, or

changes are made without full understanding of the code, the overall system and parts

of it eventually get harder to understand. This effect is described by Feathers in the fol-

lowing quote.

What starts as a clean crystalline design in the minds of the programmers rots,

over time, like a piece of bad meat. (Feathers, 2004, Foreword)

A major indicator of a legacy software system is whether the code is considered to be

legacy code or not. Different sources define legacy code in different ways, but some

developers call any code they do not understand legacy code (Feathers, 2004, Preface

xvi). Michael Feathers has a stricter view as he defines legacy code to be any code which

does not have tests (Feathers, 2004, Preface xvi). He underlines the fact that changing

code without tests is very risky, and it is impossible to tell if the architecture is improving

or getting worse if there are no tests to give feedback.

The key is that aging by itself does not make software a legacy system by Feathers’

definition. An old system with good tests can be as easy and safe to maintain as a freshly

started project.

Other characteristics that indicate a legacy system include the lack of up-to-date docu-

mentation, or no documentation at all, complex build and automated testing systems,

and tedious installation process.

In many companies the legacy systems reach a point when they need systematic re-

engineering efforts. Alternatives vary from rewriting the system to re-engineering parts

of it (Sneed 1999, 1) or even leaving it as it is and hoping for the best. Long-term business

continuity follows from keeping the software relevant by rearchitecting it but that comes

with its risks. It has been found that in a rearchitecting project, testing is easily a major

bottleneck, performance degrades (due to an increase of instructions executed, even

though code line count would go down) and programming errors happen, diverting the

control flow and otherwise altering the behaviour (Sneed 1999, 3-4).

13

2.2.1 Complexity

Software products by their very nature grow to be complex systems (Brooks 1987). The

complexity, which makes the system harder to understand, is a major cost in software

development. For example, it is estimated that in the 2000s, the maintenance cost of a

software product can be up to four times larger than the initial development cost (Pfleeger

and Atlee 2010, 550). The complexity problem is so typical to software products that it

has been named as one item in the “laws of software evolution” as pointed out in the

following quote.

Laws of Software Evolution: As an evolving program is continually changed, its

structure deteriorates. Reflecting this, its complexity increases unless work is done

to maintain or reduce it (Pfleeger and Atlee 2010, 541).

Software complexity can be understood in a few different ways, but this definition focuses

on how the developer understands the code. As a result of highly complex software, it

can become very difficult to work with, which might lead to slow development times and

a defective product.

Why the complexity measurement is relevant for legacy systems, is the fact that they

have been usually developed for a very long time. When adding new components to

software, in most cases the overall system’s complexity “increases much more than lin-

early” (Brooks 1987). Structuring the programs into classes and modules are ways to

make the complexity manageable (Beck and Diehl 2011).

Two commonly used measures for studying are Halstead’s method and McCabe’s

method (Kearney, et al. 1986). In Halstead’s method, the number of the program opera-

tors (the keywords and functions) and operands (identifiers and constants) are combined

to produce the volume and difficulty metrics for the program (Kearney, et al. 1986). Com-

bining the difficulty with the volume, the metric can be used to estimate the effort and

time needed to implement the program.

McCabe’s complexity measurement measures linearly independent execution paths

through the code (McCabe 1976). The volume of the code does not reflect how complex

it is, but how different control statements (e.g. for, if) branch the program execution flow.

14

2.2.2 Cohesion and Coupling

Cohesion and coupling measurements are also related to software complexity. As al-

ready mentioned, to make a software system manageable, it is composed of modules

which group functionality together and depend on other modules. The usual pattern is to

collect related functionalities into a single module. Cohesion can then be used to meas-

ure the relatedness of code in the module, giving an indication of how well these func-

tionalities really belong together. A modular system is described by Yourdon and

Constantine (1979, 106) in the following quote.

The most effectively modular system is the one for which the sum of functional

relatedness between pairs of elements not in the same module is minimized.

Well-architected code is highly cohesive and the cohesion holds a module together

(Spinellis and Gousios 2009, 39). However, legacy systems often have low cohesion,

which may result from a lack of documentation and further worsen the situation when

new modifications are applied without sufficient understanding of the system.

As can been seen in the following figure, components of Module 1 do not necessarily

belong together because of low cohesion, while Module 3 seems to be highly cohesive

except part E, which may belong elsewhere

 Examples of different levels of cohesion.

Interconnections between modules should be minimized. Modules with a low number of

dependencies to other modules and little knowledge of other modules are easier to work

15

with and easier to replace with other components. The measure of dependencies be-

tween modules is called coupling (Spinellis and Gousios 2009, 39). The process of sys-

tematically reducing these dependencies is decoupling (Yourdon and Constantine 1979,

99). Different levels of coupling are illustrated in figure 5.

 Dependencies between modules increase coupling (adapted from Pfleeger and Atlee
2010, 297).

Types of coupling include (Pfleeger and Atlee 2010, 299):

 Common coupling, where modules share global data.

– For example usage of global variables instead of function arguments.

– Global data could be scattered through many modules, making it difficult
to analyse program state.

 Control coupling, where a module might know too much about other mod-
ules’ internals, controlling the logic of the module by passing in parameters
(data or control flags).

 Data coupling, where two modules share similar (but different) data struc-
tures.

 Subclass coupling (Oregon State University 2004), which happens in ob-
ject-oriented languages where a child class depends on its parent class.

Unit testing a highly coupled system is close to impossible as the individual components

cannot be used alone to perform meaningful work, since they depend deeply on other

modules (Spinellis and Gousios 2009, 40).

According to Heikniemi (2012, 20), half of the effort of introducing unit testing to devel-

opment is refactoring dependencies to make code testable, while the other half includes

learning the practice of unit testing, setting up the tools and writing the tests.

16

Coupling and cohesion are not just matters of maintenance cost or testability, but im-

portant factors of realized software quality. Studies have shown that high coupling and

low cohesion in software correlates positively with the amount of defects. A study on a

C++ telecommunication application concluded that these metrics can be used to predict

defective classes in an object-oriented system, and that coupling of classes increases

the probability of having a defect in there (Succi, et al. 2003).

In today’s world information security is a hot topic. Software faults can be local, and users

can find workarounds to accomplish their tasks, but information leakages can have wider

impact, as they might interfere with users’ privacy or security. With connected software,

it is relevant to understand that these previously presented low-level software metrics

can have a major effect on software quality. This is shown in an extensive case study

done about Mozilla Firefox, which found that the parts of the product, which were non-

cohesive, complex and coupled, were more likely to be less secure (Chowdhury and

Zulkernine 2010).

2.2.3 Unit Testing Legacy Software Systems

Writing unit tests against existing code is usually challenging because tests can only be

written for code that is designed in a certain way. In testable code the dependencies are

injectable and other design patterns are properly used.

Commonly appearing problems include the usage of singletons and a global state, and

class constructors that contain production code and have non-injectable dependencies.

APIs that do not enable mocking objects or interfacing database or network IO for testing

are another major problem.

Kenneth Truyers (2012, 1) describes the refactoring problem like this.

You can’t refactor because you don’t have tests and you can’t write tests because

you can’t refactor.

The “Legacy Code Dilemma” is also identified by Feathers (Feathers 2004, 16). To solve

the problem, he proposes a set of refactorings that can be done safely, with minimal risk

of breaking the existing code to enable unit testing. For a while, after making the code

17

testable, the overall architecture might become messier since all dependencies cannot

be resolved in an ideal way (Feathers 2004, 18).

The following example shows a refactoring of a piece of code to make it testable. The

C++ method in Listing 4 reads a file and calculates the length of the contents. However,

due to one small implementation detail, it is difficult to test with unit tests.

Listing 4. Code for calculating the length of a file.

Unit tests may not access the file system, network or other resources, as they should be

standalone. With this method, the problem is that the call to read_file cannot be mocked

for testing: it cannot be replaced with another function call on runtime, because it is a

static method.

A straightforward way to refactor this would be moving the file system dependency higher

in the call tree, leaving only the relevant production code in place, which is now easy to

test with predefined test data. This is demonstrated in Listing 5.

Listing 5. A refactored version of the code for calculating the length of a file.

Another way (presented in Listing 6) would be implementing an interface, rather than

using a static method for reading the file. The interface can be replaced at runtime with

a mock implementation producing data for unit testing.

18

Listing 6. Another way of refactoring the code for calculating the length of a file.

The second technique is commonly called “extract interface”, also presented by Truyers

(Truyers 2012). However, the first refactoring is more suitable for this problem due its

simplicity.

The question remains: How will we know that we did not break anything when we

changed the code?

19

3 Introducing Unit Testing into a Large Legacy Software System

3.1 Description of the Development Environment

Product X has a long development history, starting in late 80’s. The originally multiplat-

form software was converted into a single-platform (Microsoft Windows-only) product in

the 2000’s.

Product X was originally developed in C, with C++ taken into use in the early 2000’s. The

product package in total is composed of about 5 million lines of code. This research

focuses only on the “Core” part (see figure 6 for high-level architecture), which has grown

from 1.5 million lines of code in 2004 to 2 million lines of code in 2008 (Company A 2014).

 High level architecture of Product X.

20

While accumulating a considerable amount of code and new product features, the sys-

tem has also accumulated a lot of technical debt, essentially turning the product into

legacy software, according to many definitions of the phrase.

The development tools are the following:

 Microsoft’s Visual Studio integrated development environment (IDE) with
additional extensions to enhance productivity.

 The software is built using Microsoft’s build tools with the Microsoft C++
compiler and linker.

 Integration builds are automated and made periodically of snapshots from
the version control system.

In 2008, the Core consisted of 122 code libraries grouped into a single module. This

module was used by the software engineers and the build system to produce the final

Core executable. Due to the large number of libraries in Core, build times could be as

high as one hour when performing a non-incremental build. Smaller changes to code

base could result in build times from a few minutes to tens of minutes.

Having to build six different configurations of the product creates a performance chal-

lenge for the build system. The product is built for 32-bit and 64-bit platforms with internal

debug and release modes, in addition to official release builds.

3.2 Initiative to Start Unit Testing in Late 2007

Working with Product X was found challenging by the developers in 2007, as the product

was already quite old. Several decades of work and dozens of different engineers were

the main reasons that the complexity had increased and module structure had become

hard to work with. Automated programmatic tests did not exist and the high-level inte-

gration testing farm was only a few years old.

The lack of architectural documentation as well as other module-level documentation

and a clear vision of future development had caused the code to degrade, making it

difficult to maintain.

21

At the time, groups of individuals started to see that the development practices would

need to be re-evaluated. These feelings got backed up by new ideas gathered by attend-

ing to developer conferences (Heikkonen 2014).

3.2.1 Integration of CppUnit Framework

The first improvement ideas were soon realised in the form of integrating the CppUnit

(CppUnit 2009) unit testing framework into the Core module. The build of Core was con-

figured to have two output targets, one for building the main application executable and

another one to run the test methods using CppUnit.

The main use-case for the unit test runner soon after first implementation was creating

test cases for a specific code library that had been found to be architecturally challenging

and was known to be developed further in future (Villa 2014). In addition to that, the unit

tester was planned to be used for prototyping and experimentations such as learning unit

testing.

The most important features of the unit test runner were:

 A possibility to pause the execution in the beginning, which enabled a de-
veloper to attach a debugger

 The ability to create XML reports, which allowed integrating the runner into
the build system.

From the beginning, the test runner had two categories of tests: the tests were either

pure unit tests or tests requiring in-memory database during execution. Most of the tests

had a run-time dependency to in-memory database because Product X had been funda-

mentally implemented in a way that many components access the database directly with-

out any abstraction layer.

Many instructions written for the development of Product X about CppUnit framework

usage focused on explaining how to use the Visual Studio debugger with the tests, and

how to set tests up correctly to use mocks or the in-memory databases. This resulted

from the fact that most of the production code in certain large libraries depended directly

on the database (Ahtiainen, Unit testing introduction 2009), in addition to other complex

dependencies. Ability to use the debugger was often useful since incorrectly set up tests

22

often caused the unit test runner to crash without giving indication about which test

method was the problematic one.

Having the unit test runner integrated into the local builds received mixed responses from

developers; some were eager to try the unit testing approach and some were afraid that

further increasing the size of the code-base by writing a lot of tests would not be wise

(Villa 2014).

In the end, the unit test runner was integrated only into the build system (as opposed to

be run locally on developers’ machine) to be run after every commit. Running it before

committing code changes to the version control system was not technically enforced nor

included in the process yet (Villa 2014).

 A screenshot of a unit test runner integrated to CruiseControl.NET hosted build system
(Company A 2008).

The screenshot from 2008 shows the fact that at the time it was not a top priority to

immediately fix unit tests. The recent builds table lists failing builds from several hours,

but it did not prevent any development work from continuing, since local builds would

succeed. At the time there was no management enforcement to prioritize fixing failing

tests, since the testing process was not official yet.

23

Individuals promoted and maintained the system in addition to their other assignments

as there was no named responsible person for the system (Salonen 2014).

3.2.2 TSAR Project 2008

A multi-year roadmap for the incremental renewal of the architecture was approved in

2007. Improvements would start in a project called TSAR, using a cross-functional team,

combining knowledge from several line-organization teams, for doing actual modularisa-

tion work towards higher-level goals (Ahtiainen, TSAR Project Plan 2007).

The TSAR vision identified three main points for long-term architecture development tar-

gets (Heikkonen, TSAR Vision 2008):

 More features quicker (scaling development, faster development)

 Long term sustainability (maintainability, competitiveness)

 Better quality (product efficiency, reliability in number of defects)

It was seen that unit testing would help delivering higher-quality software more efficiently.

In the TSAR Vision, it was noted in a list of threats that if the architecture improvement

project is not started, “Unit testing is largely [...] impossible due to high coupling”

(Heikkonen, TSAR Vision 2008).

During 10 development sprints, among other work, the TSAR project accomplished mod-

ularisation of four Product X libraries as independent, reusable entities, which were cov-

ered with unit tests (Ahtiainen, Accomplished in TSAR 2010).

Extracting the libraries was relatively simple, because the libraries chosen were tool-like

components with limited dependencies. For this reason, it was easy to cover the func-

tionality with unit tests (Ahtiainen 2014).

Components were tested by covering most of the public interface functions, which en-

sured enough overall coverage of the targets. Automatic tools for measuring the cover-

age were not used in the project; thus, no coverage information is available.

24

Learning about unit testing was a part of the project since the process was new to all

developers participating. Architecturally, the project helped to realise how much work it

would be to improve the rest of the system (Ahtiainen 2014).

3.2.3 Software Engineers’ Reactions to Unit Testing Initiatives

After TSAR and other initiatives for unit testing, a workshop was held to gather improve-

ment ideas for the unit testing process (Rihtniemi 2014). The virtual architect team was

organizing the workshop and lead developers were invited to bring in more viewpoints.

The main findings of the workshop were (see Appendix 1):

 Refactoring is needed to write unit tests.

 Developers are not aware of how to write good unit tests.

 Some fear the process change.

 People do not see the benefits of unit testing.

All the comments are natural from developers who have never worked with a unit-tested,

unit-testable and modularised code base. The “I’ll believe it when I see it” attitude is

visible in the answers of the workshop. Some developers were not even ready to try unit

testing because they felt the effort was too high.

To improve the situation, several actions were implemented. A guideline for unit testing

was written to match the need for information sharing and documentation. People were

encouraged to continue improving the system by educating other developers face-to-

face, using pair-programming for example.

25

4 The PAMM Modularization Project 2010

4.1 PAMM Vision

The fact that computer software grows in complexity as it evolves, as presented in chap-

ter 2.2.1, was also visible in Product X. Effects of complexity could be seen in employees’

motivation and productivity, as well as implementation efficiency for creating new fea-

tures and maintaining existing ones.

Project PAMM started in 2010, as a long-term initiative to ensure business continuity and

personnel satisfaction with the working environment. Profit growth and business conti-

nuity would result from the capability of launching new products more easily, based on

well architectured existing products. Product development would work more efficiently

by introducing fewer defects in existing products when the architecture is sound, making

unit testing and other modern ways of development possible.

Product X was, until 2009, compiled together so that all of the core code libraries were

linked into a single monolithic executable. In general, when more libraries are added into

a project, the linking part soon becomes a bottleneck in the build process of a large C++

project.

The following figure displays the increase in the number of libraries in Core, compared

to the number of executable modules produced from those libraries.

26

 Number of executable modules and code libraries 2004-2013.

The architecture of combining all libraries into a single module allowed all of them freely

interconnect with any other libraries in the system, which during the years resulted in low

cohesion and high coupling. Because of the large size of the code base and the lack of

clearly defined architectural boundaries, all types of coupling presented in 2.2.2 and

other sources can be found.

Based on the logical architecture of the existing system, the practical goal of the PAMM

project was to split the large monolithic system into four smaller modules.

Two large main subsystems were identified in the product and modularised as their own

entities. Both of these depended on common functionality, which was also separated into

a new module. Higher level application logic and the user interface logic were left in the

remaining module.

Architecturally, this change means more visibility of the high-level product structure to

the developers, by making the module structure clear already in the development envi-

ronment (Ahtiainen 2014).

27

In their daily work, the developers spent quite much time compiling the monolith; even

incremental builds of the system were slow. For example, linking times were measured

in minutes rather than seconds.

4.2 Implementation of the PAMM Project

The following figure demonstrates the high-level monolithic architecture the modularisa-

tion started from, and the resulting situation after the PAMM project was implemented.

 The starting point and the goal of PAMM project.

In the figure, the green arrows indicate compile-time dependencies and the blue and red

arrows indicate run-time dependencies. As the modules have been developed to be

highly interconnected, the interfaces between them could not be completely cleaned dur-

ing the refactoring project, leaving the unwanted dependencies in the system.

The red-arrow (run-time) dependencies cannot be present at build-time, because there

would be circular dependencies between the modules. Rather, the dependencies are

connected when the actual application is initialized.

The blue arrow from module 2 to module 3 indicates a logical and architecturally allowed

dependency which is also hooked in place at runtime only. This allows compiling the two

subsystems in parallel.

28

4.2.1 Challenges and Improvements in the PAMM Modularization Project

The PAMM project was estimated to last from 6 to 12 months. Simultaneously to the

refactoring project the product feature development was ongoing as usual. This created

a major challenge for the automated testing system and the build system since they had

to support two ways of delivering binaries, which had not been a requirement earlier.

A new way of building the modular software was implemented while most developers still

worked on the old way of building a monolithic application. After PAMM was carried out

successfully, each new module and the main executable module had their own unit test

runners. Developers working with only improvements to module 2 were able to run only

the subset of tests included in that module when performing incremental builds.

 Unit test runner projects attached to each module.

As the build system was overhauled to support building modularized software, the unit

test runner also received an important update. Each module was configured to include a

new project for creating an executable runner to run unit tests from libraries included in

the module (see figure 10).

The efficiency of the edit-compile-test cycle was greatly improved. The ability to narrow

down regressions was increased when only a relevant subset of the tests was run. This

29

was a major improvement over the previous situation, in which all the unit tests were run

every time a build was made. Improvements made it possible to make unit tests run as

part of every developer build when they built any of the modules.

Failing unit tests would fail the build and the developer would have to fix the issue imme-

diately instead of carrying on with possibly broken code. Before this change was made,

defective code was sometimes checked into the build system, hindering other develop-

ers when they got the latest code.

The dependencies between modules, both allowed and not allowed, were combined into

large C++ interfaces and exported from the modules. This way they could be used as

interface documentation, clearly indicating inter-module dependencies, therefore making

the current state of the architecture visible. In addition to architecture documentation, the

interfaces could be used in unit testing for creating mock implementations of them.

30

5 Systematic Development of Unit Testing Activities

In the beginning of 2012 two full-time employees were assigned to develop unit testing

practices in Company A’s product development unit. A vision for the improvement work

was formed, based on previous experiences and feedback from development teams.

“Unit testing is feasible and considered a normal part of development work.”

(Lindqvist, Unit testing vision 2012).

The vision acted as longer term target, but practical work started from creating an im-

provement roadmap. For the roadmap, the developers were interviewed about the issues

related to unit testing. Comments from interviews included (see Appendix 2):

 Legacy code is impossible or difficult to test.

 Team leads/product owners are not interested in technical quality.

 Some of the existing tests are badly implemented.

 Too much setup is needed because of dependencies.

 Direct dependencies to database do not allow creating pure unit tests.

 Feedback from the continuous integration system is slow.

The first two items are organizational development items, not something that was ad-

dressed immediately. The ideas were communicated further to relevant parties. The

product architecture unit, with the help of the lead developers, would start the necessary

refactoring projects, as well as educate personnel about legacy code.

Other concrete action items included holding a test-driven development study group for

interested developers, scheduling a project to move away from CppUnit and a decision

to start collecting metrics about improvements.

The study group about test-driven development and unit testing in general was a success

and had a high number of participants. The company provided time and facilities for

trying out newly learned techniques about writing good unit tests in a real-life code base.

Since all code is reviewed in the development teams, also those not participating in the

group were exposed to unit testing and were encouraged to learn and give feedback.

31

To make technical quality everyone’s business in product development, new guidelines

were agreed upon with line managers (Lindqvist, Unit testing guideline 2012):

 It is not allowed to introduce new coding guideline violations during pro-
jects.

 Unit testing coverage may not decrease.

 All new code must be unit tested to meet a certain coverage level.

The new guidelines, like the existing ones such as that code reviews are mandatory,

would be followed up periodically during feature development.

5.1 Change to GoogleTest Framework

The increased volume of unit tests and users of unit tests also meant greater demand

for better tools and a higher-quality unit testing framework. The status of the CppUnit

framework was evaluated with the conclusion that its usage would not support future

needs. The last release was in 2009 with no forthcoming updates.

Missing support for continuous integration systems and development environment inte-

gration are the main drawbacks of using CppUnit. Test development suffers from the

lack of missing features of CppUnit, many of which are found as standard features in

other unit testing frameworks.

Asserts in unit tests stop execution of a test method when the first problem is detected

even though developers would often like to see the results of the following assertions as

well. This is a problem especially in C++ environments with long edit-build-link-test cy-

cles.

GoogleTest provides an improvement to conventional assertions called non-fatal asser-

tions. Using non-fatal assertions allows the test to run through multiple checks without

stopping at the first failure, and reporting them all at the end. GoogleTest also provides

a very rich set of customizable assertions, which report the errors in much finer granu-

larity than CppUnit, thus speeding up error detection.

32

Many times tests result in a failure for a known reason, or are under development or

planned to be fixed in the future. For this reason, developers need to be able to suspend

the failing test in a more sophisticated way than just by removing the code or disabling it

using comments. Marking a method with a disabled attribute allows the continuous inte-

gration system to keep track of the tests so they are not forgotten.

Useful unit tests fail sometimes, and by failing they alert developers that their code has

regressed. However, not all programmatic errors lead to failing assertions. Some lead to

memory leaks, or to different types of undefined behaviour (LLVM Project 2011), in which

case the operating system usually terminates the program. During unit test runs, it is not

useful to blindly terminate execution. It is more useful to catch the problem and report it

in the test results. GoogleTest uses the Structured Exception Handling (Microsoft n.d.)

of the Microsoft Windows operating system to catch undefined behaviour in test meth-

ods. It reports these failures and continues with the next test.

5.2 Continuous Integration System Improvements

In the early 2013 the TeamCity (JetBrains 2014) continuous integration system replaced

CruiseControl.NET. For the developers, this meant greater visibility of technical quality:

the number of unit test methods, both passed and failed, were displayed for each build

(as seen in figure 11).

Changes from each commit are now linked to each build, which makes strict process

enforcement possible, if wanted. Builds can be configured to automatically fail or send

notifications if the number of tests or test coverage decreases over the defined threshold.

 Continuous integration system in use.

33

Having a modern continuous integration system came with a lot of possibilities for other

improvements as well. The tools were set up to catch new types of defects from the unit

tests.

Dynamic analysis of unit tests was set up using the Intel Inspector XE toolset. Dynamic

analysis reveals memory leaks, memory corruption and uninitialized memory access

(Intel 2014), all common problems for native code.

Traditionally, Intel tools have been used occasionally when problems were reported or

suspected, but now, with the tools continuously running, a subset of code is always

tested automatically, providing invaluable feedback. If memory leaks are found from unit

tests, it is very likely that the problems are visible when running the full application stack

(Tiensuu 2014). Good tooling has helped to reveal several otherwise difficult-to-diagnose

memory-management issues which have been fixed before the code was ever shipped

to customers or the testing department.

The ability to run the tests in a system which collects the data about them has helped to

improve the reliability and speed of the tests. As presented in Characteristics of unit tests,

common traits of unit tests include repeatability and fast execution speed. The repeata-

bility of tests is ensured by the build system running the tests in shuffled order, to auto-

matically test them in a changing environment. This has helped to catch quite many ini-

tialization and clean-up issues from the tests, as well as other false assumptions about

the running environment.

According to Bavani’s (2012) framework, the system can now be considered streamlined;

the most relevant tools and processes are now automated, and the infrastructure is ready

and utilised by development teams to deliver results.

5.3 Continuous Inspection System - SonarQube

Unit testing coverage builds, dynamic analysis builds, several static analysis tools, unit

test runs, integration test builds and other automated tools created a lot of data every

day. The need for a dashboard for all of this data became obvious.

34

The SonarQube Continuous Inspection system was introduced in product development.

SonarQube is designed to drive towards better software by providing tools for managing

code quality, as well as other services, as seen in figure 12.

 SonarQube framework (copied from SonarQube 2014).

The implementation work done in unit tests is also reflected elsewhere in the system;

development in code coverage might also be visible in complexity or the number of new

bugs.

Displaying the data does not help by itself, but drilling down in the historical development

of metrics gives the possibility to analyse the current situation, predict the future state of

the system and, most importantly, enables steering future work based on historical data.

Tools integrated into the SonarQube system during 2012-2013 were:

 CppCheck, static analysis tool for C++, for finding different kind of program-
ming errors.

 BullseyeCoverage, code coverage analysis for C++.

 GoogleTest, unit test run statistics.

 Rough Auditing Tool for Security (RATS), static analysis scanner for secu-
rity vulnerabilities in C and C++.

 cpplint, C++ style checking.

 Vera++, static analysis tool for C++, for following coding conventions and
style.

With respect to the process, the introduction of such an extensive toolset for a large,

already existing code base turned out to be challenging in the beginning. The amount of

non-conforming code was huge and it was difficult to get developers to believe in the

35

system, as fixing a hundred items from several hundred thousand does not make a no-

ticeable difference in the graphs.

In the long run, the visibility of metrics has shown its value: the developers have been

more motivated to improve code quality and unit test coverage.

36

6 Results of the Improvement Projects

In this chapter, the results of the change are discussed. The data which is discussed was

collected from the available documentation about Product X and from a questionnaire

sent to all developers who have worked with Product X during the time from 2008 to

2013.

In 2013, many of the actions implemented in 2012 really started to pay off. The systems

allowed monitoring status and quality of the code on the level of individual projects and

developers. The continuous inspection dashboard allowed monitoring the product’s qual-

ity in terms of testing coverage, automatically found defects, architecture issues and style

violations

Personal dashboards in the continuous inspection system made it easy for developers

to track technical debt in the areas they worked on. The changes in metrics also allowed

targeting supporting actions, when needed, to relevant teams. In legacy systems, the

pace of development often slows down as complexity grows, as discussed already in

previous chapters. With metric management tools and practices in place, the growth of

complexity can be managed.

6.1 Architecture Improvements

Architectural improvement projects were running simultaneously to feature development

for almost all the time from 2008 to 2013 and have greatly improved the modularity of

Product X, as seen in figure 13.

The seven modules allow optimal workflows and a fine granularity of metrics. Clear bor-

ders between the modules have provided a way of decoupling many functionalities by

just reorganising the code.

37

 Product architecture development, modularisation into independent components.

Interfaces between modules act as documentation and guide further development. Im-

plemented features are of higher quality in the current system, both from a technical

perspective and feature-wise (Salonen 2014). This results in more modularised code,

which is easier to maintain, and leads to increased efficiency in the development pro-

cess.

6.2 Increased Use of Unit Tests

The target was to introduce unit testing to product development, which practically means

software engineers should be changing or adding unit tests while they work on produc-

tion code.

A program (see Appendix 3) was implemented to analyse the commits to unit tests in the

version control system. All changes to files under “test” subdirectories in the source code

repository1 were counted as changes to unit tests. These commits were then grouped by

person and year, for years 2010 to 20132 and analysed for trends.

1 In Product X Core, the unit test code exists under a “test” subdirectory in each library
2 Note: Linking unit tests to an issue or defect fixed would perhaps yield better results, but the

limitations in the version control system currently do not make this possible. In the development
it is not unusual to use multiple commits to fix a single issue, where only one of the commits
implement or update the tests, and the others might fix the bug or review comments.

38

Persons who had a non-zero unit testing coverage from 2010 to 2013 were selected for

analysis of the trend.

In the following graph, active unit testers of 2013 are presented in descending order from

left to right. Different bars can be used to compare each individual to their results in

previous years. In general, many of these employees have increased their changes to

unit tests during the follow-up period. On average, 30% of the commits in 2013 contained

changes to unit tests.

 Average percentages of commits which included changes to unit testing-related
files.

It is clear from the averages of each year’s commits (see figure 15) that the percentage

of changes to unit tests steadily increased every year. This increase is a logical conse-

quence of making the process easier and the tools more available. The motivators for

these improvements are discussed in chapter 6.3.

39

 Average percentages of commits which included changes to unit testing-related
files.

While the changes to unit tests soared, the number of actual tests increased too. The

adoption of unit testing is visualised in the following figure. Over the years, the number

of test methods added to the code base has grown steadily. The graph also highlights

the modularisation of Product X by displaying the counts of tests in each module.

 The number of unit tests.

40

It is possible to observe a similar growth in terms of coverage data as well. At the end of

2013, 35% of all functions in Product X Core were covered by unit tests and 12% of

condition/decision coverage3 was achieved.

 Code coverage development.

When looking at the overall system, it can be seen that while new features were devel-

oped, the pace of code growth was somewhat lowered and the number of libraries had

increased. Having a larger number of libraries with smaller amount of code indicates that

the software is more modular than before, making maintenance work easier. Architec-

tural work has been an important part of making unit testing feasible by producing

smaller, meaningful libraries that can be tested more independently or with fewer de-

pendencies.

3 BullsEye Testing Technology refers to decision coverage, which is also known as branch cov-
erage presented in chapter 2.1.6. Condition/decision coverage is “composed by the union of con-
dition coverage and decision coverage” (Bullseye Testing Technology 2011).

41

 The development in number of libraries and average amount of code per library.

6.3 Software Engineers’ Questionnaire Results

A questionnaire about unit testing related improvements was sent to developers who had

been working with Product X Core from 2007 to 2013. Developers were asked to rate

whether certain implemented actions to improve unit testing actually improved it in their

opinion. The full questionnaire form is in Appendix 5 and the responses are in Appendix

6.

Based on the answers, most of the developers found the many architectural improve-

ments highly useful (on a scale of Not at all useful (1) to highly useful (5)).

42

 Left: Usefulness of high-level modularization of product.

 Right: Usefulness of “other modularisation work” (refactoring of components, spec-
ifying interfaces, modernizing code)

The usefulness of unit testing education, including study groups, guidelines, other in-

structions and code reviews, was also measured in the questionnaire. Another question

asked about improvements for the unit testing framework, specifically whether the

change from CppUnit to GoogleTest was useful.

 Left: Usefulness of unit testing education.

 Right: Unit testing framework improvements.

Personal motivation of the employee is often the key to the success. When developers

were asked what motivates them to use unit testing, the answers clearly suggest that the

process is seen as a useful method for improving the product’s quality.

43

The answers for these questions are on a scale of Do not agree (1) to Strongly agree

(5).

 Left: Unit tests have helped you to find real bugs.

 Right: Unit testing process has helped to increase the overall quality of the product.

44

7 Conclusion

In this thesis, six years of advancements in product development processes were ana-

lysed, mainly concentrating on the unit-testing viewpoint. A wide range of changes have

been implemented across the product development department, improving the organi-

sation, processes, tooling and the knowledge of the software engineers.

The change towards unit testing began from the bottom up, driven by motivated individ-

uals, before any official enforcement existed. After the encouraging results from the early

adopters, these practices became officially required for all developers. Developers were

motivated to change their ways of working when they saw the progress and the benefits.

Other positive factors that affected people were study groups, supporting guidance and

peer pressure.

It has been observed during the years that for unit testing high quality tooling must be

available, and a clearly defined process needs to exist, to start reaching the majority of

developers.

In the case of Company A, according to all the data presented in the previous chapters,

the continuous and systematic development of the product architecture greatly advanced

the possibilities for unit testing. In general, smaller modules allow effective development

workflows in terms of the edit-compile-test -cycle.

Based on the previous insights, the components of successful environment for unit test-

ing are gathered in the following figure.

45

 Components for achieving successful unit testing practices in a legacy software.

As a result of all the improvement work, the whole infrastructure for unit testing was taken

into use and the code coverage of unit tests rose to an acceptable level. The vision of

making unit testing feasible and a normal part of development work was achieved.

46

8 References

Ahtiainen, Aleksi (Software Architect). 2014. Interviewed by Markus Lindqvist on 14

January.

Ahtiainen, Aleksi. 2010. “Accomplished in TSAR.” Unpublished presentation.

Ahtiainen, Aleksi. 2007. “TSAR Project Plan.” Unpublished document.

Ahtiainen, Aleksi. 2009. “Unit testing introduction.” Unpublished presentation.

Astels, David. 2003. Test-driven development: a practical guide. New Jersey, Prentice

Hall.

Bavani, Raja. 2012. “Distributed agile: The maturity curve.” Agile Record 2012:9: 26-28.

Beck, Fabian, and Stephan Diehl. 2011. “On the congruence of modularity and code

coupling.” Proceedings of the 19th ACM SIGSOFT symposium and the 13th

European conference on Foundations of software engineering 5 Sep. 2011: 354-

364.

Bit by bit blog. 2012. Introduction to test driven development [online]. URL:

http://bitbybitblog.com/introduction-to-test-driven-development/. Accessed April

09, 2014.

Brooks, Frederick. 1987. “No silver bullets: Essence and accidents of software

engineering.” University of North Carolina.

Bullseye Testing Technology. 2011. Code coverage analysis - condition/decision

coverage [online]. URL:

http://www.bullseye.com/coverage.html#basic_conditionDecision. Accessed

April 09, 2014.

Chowdhury, Istehad, and Mohammad Zulkernine. 2010. “Can complexity, coupling, and

cohesion metrics be used as early indicators of vulnerabilities?” Proceedings of

the 2010 ACM Symposium on Applied Computing 22 Mar. 2010: 1963-1969.

Company A. 2008. CruiseControl.NET build system. Unpublished document.

Company A. 2014. Lines of Code, History. January. Unpublished document.

Copeland, Lee. 2001. Extreme programming [online]. 3 December URL:

http://www.computerworld.com/s/article/66192/Extreme_Programming.

Accessed January 15, 2014.

CppUnit. 2009. CppUnit [online]. URL: http://cppunit.sourceforge.net. Accessed January

16, 2014.

Dietrich, Erik. 2011. Test driven development (TDD) [online]. 22 June. URL:

http://www.daedtech.com/test-driven-development. Accessed March 14, 2014.

http://bitbybitblog.com/introduction-to-test-driven-development/
http://www.bullseye.com/coverage.html#basic_conditionDecision
http://www.computerworld.com/s/article/66192/Extreme_Programming
http://cppunit.sourceforge.net/
http://www.daedtech.com/test-driven-development

47

Feathers, Michael. 2004. Working effectively with legacy code. Prentice Hall

Professional.

Fowler, Martin. 1999. Refactoring: improving the design of existing code. Addison-

Wesley Professional.

Google. 2011. Using mocks in tests [online]. URL:

https://code.google.com/p/googlemock/wiki/ForDummies#Using_Mocks_in_Tes

ts. Accessed January 15, 2014.

Google. 2011. How google tests software [online]. 23 March. URL:

http://googletesting.blogspot.fi/2011/03/how-google-tests-software-part-

five.html. Accessed January 17, 2014.

Grigg, Jeff. 2012. Arrange-Act-Assert [online]. 12 July. URL:

http://c2.com/cgi/wiki?ArrangeActAssert. Accessed January 10, 2014.

Heikkonen, Teemu (Chief Software Architect). 2014. Interviewed by Markus Lindqvist on

14 January.

Heikkonen, Teemu. 2008. “TSAR vision”. Unpublished document.

Heikniemi, Jouni. 2012. Yksikkötestauksen käyttöönotto. Microsoft TechDays 2012,

Helsinki.

Intel. 2014. Intel® Inspector XE 2013 [online]. URL: http://software.intel.com/en-us/intel-

inspector-xe. Accessed February 12, 2014.

JetBrains. 2014. TeamCity [online]. URL: http://www.jetbrains.com/teamcity/. Accessed

February 12, 2014.

Kearney, Joseph K., Robert L. Sedlmeyer, William B. Thompson, Michael A. Gray, and

Michael A. Adler. 1986. “Software complexity measurement.” Communications of

the ACM 29.11 (1986): 1044-1050.

Kotilainen, Lauri. 2012. Yksikkötestauksen haasteita kentältä. Microsoft TechDays 2012,

Helsinki.

Lindqvist, Markus. 2012. “Unit testing guideline .” Unpublished document.

Lindqvist, Markus. 2012. “Unit testing vision.” Unpublished document.

LLVM Project. 2011. What every C programmer should know about undefined behavior

#1/3 [online]. 13 May. URL: http://blog.llvm.org/2011/05/what-every-c-

programmer-should-know.html. Accessed February 12, 2014.

Manifesto for agile software development [online]. 2001. URL: http://agilemanifesto.org/.

Accessed December 19, 2013.

Martin, Robert C. 2008. Clean code: A handbook of agile software craftsmanship.

Prentice Hall.

https://code.google.com/p/googlemock/wiki/ForDummies#Using_Mocks_in_Tests
https://code.google.com/p/googlemock/wiki/ForDummies#Using_Mocks_in_Tests
http://googletesting.blogspot.fi/2011/03/how-google-tests-software-part-five.html
http://googletesting.blogspot.fi/2011/03/how-google-tests-software-part-five.html
http://c2.com/cgi/wiki?ArrangeActAssert
http://software.intel.com/en-us/intel-inspector-xe
http://software.intel.com/en-us/intel-inspector-xe
http://www.jetbrains.com/teamcity/
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://agilemanifesto.org/

48

McCabe, T.J. 1976. “A complexity measure.” Software Engineering, IEEE Transactions

on 4 (1976): 308-320.

Microsoft. n.d. structured exception handling [online]. URL:

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680657.aspx.

Accessed February 12, 2014.

Oregon State University. 2004. Introduction to OOP chapter 23 [online]. URL:

http://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info/slides/chap23/slid

e12.htm. Accessed March 12, 2014.

Pfleeger, Shari Lawrence, and Joanne M. Atlee. 2009. Software engineering: Theory

and practice. Prentice Hall.

Poppendieck, Mary, and Tom Poppendieck. 2006. Implementing lean software

development: From concept to cash. Addison-Wesley Professional.

Poppendieck, Mary, and Tom Poppendieck. 2009. Leading lean software development:

Results are not the point. Addison-Wesley Professional.

Principles behind the Agile Manifesto [online]. 2001. URL:

http://agilemanifesto.org/principles.html. Accessed December 19, 2013.

Rihtniemi, Timo (Manager, Product Architecture). 2014. Interviewed by Markus Lindqvist

on 27 January.

Salonen, Mika (Software Architect). 2014. Interviewed by Markus Lindqvist on 28

January.

Sneed, Harry M. 1999. “Risks involved in reengineering projects.” Reverse Engineering,

1999. Proceedings. Sixth Working Conference on 6 Oct. 1999: 204-211.

SonarQube. 2014. SonarQube [online]. URL: http://www.sonarqube.org/. Accessed on

15 March.

Spinellis, Diomidis, and Georgios Gousios. 2009. Beautiful architecture, 1st Edition.

O’Reilly Media.

Succi, Giancarlo, Witold Pedrycz, Milorad Stefanovic, and James Miller. 2003. “Practical

assessment of the models for identification of defect-prone classes in object-

oriented commercial systems using design metrics.” Journal of Systems and

Software 65.1 (2003): 1-12.

The art of unit testing. 2011. Unit test – definition [online]. URL:

http://artofunittesting.com/definition-of-a-unit-test/. Accessed December 13,

2013.

Tiensuu, Jeppe (Software Engineer). 2014. Interviewed by Markus Lindqvist on 22

January.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680657.aspx
http://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info/slides/chap23/slide12.htm
http://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info/slides/chap23/slide12.htm
http://agilemanifesto.org/principles.html
http://www.sonarqube.org/
http://artofunittesting.com/definition-of-a-unit-test/

49

Truyers, Kenneth. 2012. How to unit test and refactor legacy code? [online] 15

December. URL: http://www.kenneth-truyers.net/2012/12/15/how-to-unit-test-

and-refactor-legacy-code/. Accessed December 18, 2013.

Wells, Don. 1999. Unit testing framework [online]. URL:

http://www.extremeprogramming.org/rules/unittestframework.html. Accessed

January 24, 2014.

Whittaker, James A, Jason Arbon, and Jeff Carollo. 2012. How Google tests software.

Addison-Wesley Professional, 2012. Westford, Massachusetts, United States.

Villa, Petteri (Manager, Product Offering). 2014. Interviewed by Markus Lindqvist on 22

January.

Williams, Laurie, Gunnar Kudrjavets, and Nachiappan Nagappan. 2009. On the

effectiveness of unit test automation at Microsoft. Software Reliability

Engineering, 2009. ISSRE'09. 20th International Symposium on 16 Nov. 2009:

81-89.

Workroom Productions Ltd. 2007. Testing in an agile environment [online]. URL:

http://www.workroom-

productions.com/papers/Testing%20in%20an%20agile%20environment.pdf.

Accessed December 19, 2013.

Yourdon, Edward, and Larry L. Constantine. 1979. Structured Design: Fundamentals of

a discipline of computer program and system design. Prentice Hall.

http://www.kenneth-truyers.net/2012/12/15/how-to-unit-test-and-refactor-legacy-code/
http://www.kenneth-truyers.net/2012/12/15/how-to-unit-test-and-refactor-legacy-code/
http://www.extremeprogramming.org/rules/unittestframework.html
http://www.workroom-productions.com/papers/Testing%20in%20an%20agile%20environment.pdf
http://www.workroom-productions.com/papers/Testing%20in%20an%20agile%20environment.pdf

Appendix 1

 1 (2)

9 Appendices

Appendix 1: Unit Testing Challenges from Workshop 2008 / Rihtniemi

The following information is from a mind map produced by Rihtniemi in 2008 for the

collection of information about Product X’s unit testing challenges.

● Knowledge

○ How to write good unit tests? +++++

○ Who is able to help?

○ No good examples available ++

○ People do not see the benefits of unit testing

○ Guidelines are outdated +

○ Unit testing has not been used much

○ Regression testing system

● Test maintenance

○ Tests need refactoring in the future

○ Code changes require test changes

○ Slows down new development in development phase

○ Fixing test defects requires time

○ Fakes have to be maintained

○ Slows down defect fixing

● Change in way of working

○ More effort needed during implementation -> tests are not done

○ Easier to continue the same way as before

○ Test implementation & planning need to be included in project items

● Framework

○ We don’t have it yet +++

○ Building it is hard

○ Easy to use tools are missing

○ Hard to test [data] visualization

● Coverage

○ Only those parts should be tested which are touched

○ What is sufficient level [of coverage]?

○ Tools for measuring [missing?]

● Software architecture

○ Some parts of the code are difficult to test +

○ Message system [of the product] hides execution paths

○ Refactoring is needed to enable unit testing +++

○ Dependency of different components and UI

Appendix 1

 2 (2)

○ Several small changes are needed during implementation

○ Running tests is slow

○ A lot of big classes

○ A lot of different level tests are needed

○ Some tests have execution paths down in the layer structure and some

up in the layer structure

● [Product] requirements

○ Unclear for old code

○ Hard to test

○ Unclear for new code

Appendix 2

 1 (2)

Appendix 2: Unit Testing Challenges 2011 / Lindqvist

The following information is from a mind map produced by Lindqvist in the first quarter

of 2012. It was used to collect information about the status of Product X unit testing

challenges relevant for developers during the past year.

 Legacy code cannot be tested
 Technical difficulties

o CppUnit tests badly implemented
o Too much work needed, could take even 80% defect fix
o Higher level testing not possible
o Hard to “unit test” when database faking is needed
o Knowledge of current code base is low
o Trial-and-error coding style makes it impossible to do test-first devel-

opment
o Fixing unit tests is not fast enough, debugger is often needed
o Refactoring needed before a developer can unit test existing code
o Need to fake too much: data, settings, callbacks, UI
o Cannot test against interfaces if they do not exist
o Basic primitive types should exist before testing (math utils, contain-

ers)
 Organizational

o No habit of doing unit testing
o Product/business owners not interested in “technical quality”
o Product/business owner or team leader/scrum master doesn’t require

testing
o Feeling that by using unit testing customer defects cannot be pre-

vented
o Too much high-priority defects to be fixed => no time to testing
o Testing simple code areas not seen as important
o Good practices not shared between teams
o Documentation and training are missing
o Coordination: How to know if something is already tested? Where to

add tests?
o Projects are ended before features are finished, no time to do “addi-

tional things”
o Testing of subcontracted components challenging
o Feedback from systems is slow (automated testing, build system)
o Projects are missing lower level test plans

 Positive findings (these were also collected in the interviews)
o Success stories from unit testing
o Positive attitude towards unit testing
o TDD approach used in .NET API development
o CppUnit database fakes have progressed

Appendix 2

 2 (2)

o Tests are integrated into builds
o Testing new code is possible and straightforward
o Tests help to understand the functionality when doing code reviews
o Seeing the progress in code coverage is motivating
o Unit testing prevents and reveals architectural issues

Appendix 3

 1 (1)

Appendix 3: Program (Implemented in F#) Used to Extract the Table of Data
about Commits Which Contain Changes to Unit Tests

open System
open System.IO
open System.Reflection
open System.Text.RegularExpressions
open Microsoft.FSharp.Core.CompilerServices
open ScmHistory

let path = @"AllCheckins.txt"
let allCommits = (new ScmHistory(path)).Data

// Check if filename is a unit test file
let isTestFile (filename:string, rev) = filename.Contains("test/")
// Check if this changeset contributes to tests
let hasCheckedAnythingToTests changeset = changeset.changedfiles |> List.exists
isTestFile

// List of individual developers
let allpersons = allCommits |> Seq.map(fun f -> f.person) |> Seq.distinct

printf "Person,2008,2009,2010,2011,2012,2013\n"
for currentPerson in allpersons do
 // For each year, fetch the ratio between contributions for testing / total
contributions
 let data = [|2008 .. 2013|] |> Array.Parallel.map(fun currentYear ->
 let ifCurrentYearAndCurrentPerson commit =
 commit.date.Year = currentYear &&
 commit.person.Equals(currentPerson)

 let allContributions = allCommits |> Seq.filter ifCurrentYearAndCur-
rentPerson
 let testContributions = allContributions |> Seq.filter hasCheckedAny-
thingToTests

 let allContributionCount = allContributions |> Seq.length |> float32
 let testContributionCount = testContributions |> Seq.length |> float32

 (testContributionCount / allContributionCount))

 // Print data for user if it has been more than zero 2010-1013
 // This is relevant so that we can inspect the /change/ in the number of con-
tributions
 if data.[2] > 0.f && data.[3] > 0.f && data.[4] > 0.f && data.[5] > 0.f then
 printfn "%s,%f,%f,%f,%f,%f,%f" currentPerson data.[0] data.[1] data.[2]
data.[3] data.[4] data.[5]

Console.ReadKey()

Appendix 4

 1 (1)

Appendix 4: Commits which Contain Changes to Unit Tests

Person 2008 2009 2010 2011 2012 2013

p1 0.00 % 0.00 % 6.73 % 22.53 % 26.32 % 58.14 %

p2 0.00 % 3.42 % 11.18 % 25.93 % 29.13 % 49.04 %

p3 10.00 % 27.12 % 15.93 % 17.61 % 29.31 % 46.38 %

p4 13.09 % 28.49 % 30.78 % 35.64 % 57.89 % 42.52 %

p5 26.06 % 35.58 % 38.27 % 40.87 % 54.32 % 39.50 %

p6 0.00 % 0.00 % 13.33 % 36.08 % 49.04 % 38.05 %

p7 0.00 % 16.43 % 24.04 % 21.21 % 20.27 % 36.78 %

p8 35.29 % 16.19 % 18.66 % 4.95 % 14.58 % 34.38 %

p9 3.64 % 24.06 % 22.04 % 32.88 % 43.78 % 34.03 %

p10 0.00 % 0.00 % 4.29 % 8.99 % 19.10 % 29.37 %

p11 17.44 % 17.19 % 12.02 % 44.12 % 46.67 % 28.10 %

p12 13.33 % 11.11 % 16.39 % 18.47 % 17.36 % 21.85 %

p13 0.00 % 1.27 % 7.11 % 7.31 % 6.93 % 21.03 %

p14 0.00 % 0.84 % 2.78 % 1.67 % 3.57 % 16.67 %

p15 0.00 % 4.51 % 13.18 % 18.82 % 26.32 % 15.20 %

p16 0.00 % 5.13 % 6.80 % 10.43 % 6.94 % 14.21 %

p17 0.00 % 0.00 % 6.79 % 9.09 % 21.25 % 14.16 %

p18 5.37 % 3.99 % 18.53 % 7.80 % 15.60 % 6.66 %

Average 6.90 % 10.85 % 14.94 % 20.24 % 27.13 % 30.34 %

Appendix 5

 1 (4)

Appendix 5: The Unit Testing Questionnaire Form

Appendix 5

 2 (4)

Appendix 5

 3 (4)

Appendix 5

 4 (4)

Appendix 6

 1 (7)

Appendix 6: The Responses to the Unit Testing Questionnaire Form

6

Appendix 6

 2 (7)

Appendix 6

 3 (7)

Appendix 6

 4 (7)

Appendix 6

 5 (7)

Appendix 6

 6 (7)

Appendix 6

 7 (7)

