

Jamal Armel

Web application development with Laravel PHP
Framework version 4

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Media Engineering

Thesis

11 April 2014

 Abstract

Author(s)
Title

Number of Pages
Date

Jamal Armel
Web application development with Laravel PHP Framework ver-
sion 4
53 pages
11 April 2014

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option .NET application development and Hybrid Media

Instructor(s)

Aarne Klemetti, Senior Lecturer

The purpose of this thesis work was to learn a new PHP framework and use it efficiently to

build an eCommerce web application for a small start-up freelancing company that will let

potential customers check products by category and pass orders securely. To fulfil this set

of requirements, a system consisting of a web application with a backend was designed and

implemented using built in Laravel features such as Composer, Eloquent, Blade and Artisan

and a WAMP stack.

The web application was built using the Laravel framework version 4, a modern PHP frame-

work that aims at making PHP development easier, faster and more intuitive. The web ap-

plication was built following the MVC architecture pattern. Admin panels were created for

easily updating and managing the categories and products and uploading product images

as well. A public interface was made available also to let registered users to log in and add

orders to their carts and proceed to check out using PayPal.

The application is easily expandable and features can be added or removed effortlessly

thanks to the Laravel’s ability to manage packages through Composer’s Packagist online

repository.

The results proved that Laravel 4 is effectively a premium choice for a PHP framework that

helps developers rapidly build secure, upgradable web applications.

Keywords PHP, Laravel 4, MVC, Database, eCommerce

Contents

List of Abbreviations

1 Introduction 1

2 Laravel’s main features 2

2.1 Architecture 2

2.2 MVC 4

2.2.1 Model 4

2.2.2 Views 4

2.2.3 Control 5

2.2.4 Database 5

2.3 Composer 7

2.4 Artisan 10

3 Creating the workflow and configuring our environment 11

3.1 Operating system 11

3.2 Terminal 11

3.3 Text editor 11

3.4 Bootstrap as the HTML5/CSS3/Javascript framework 12

3.5 Apache–MySQL–PHP package 13

3.6 Installing Composer 14

3.7 Installing Laravel 4 15

3.8 Database 16

4 Building the application with Laravel 4 20

4.1 Designing our application 20

4.1.1 The Idea 20

4.1.2 Entities, relationships and attributes 20

4.1.3 Map of the application 21

4.2 Creating a new application 23

4.2.1 Creating a main view 23

4.2.2 Creating the Eloquent models and their respective schemas 25

4.2.3 Image managing as an example of dependency management 30

4.2.4 Creating the Controllers and their respective Routes 32

4.2.5 Creating the views 38

4.3 Authentication and security 44

4.3.1 Authenticating users 44

4.3.2 Securing the application 48

5 Conclusion 50

References 52

List of abbreviations

MVC Model, View and Control

WAMP Windows, Apache, MySQL, and PHP

PHP Personal Home Page

DBMS Database Management System

SQL Structured Query Language

MySQL My Structured Query Language

ORM Object Relational Mapper

Apache Apache HTTP Server

HTTP HyperText Transfer Protocol

CRUD Create, Read, Update and Delete

CSRF Cross-Site Request Forgery

HTML HyperText Markup Language

CSS Cascading Style Sheets

JSON JavaScript Object Notation

URL Uniform Resource Locator

XML Extensible Markup Language

API Application Programming Interface

UI User Interface

1

1 Introduction

The purpose of this thesis work is to learn a new PHP framework and use it efficiently to

build an eCommerce web application for a small start-up freelancing company that will

let potential customers check products by category and pass orders securely. To fulfil

this set of requirements, a system consisting of a web application with a backend will be

designed and implemented using a modern MVC framework.

It is worthwhile considering the use of a PHP framework when time is a limitation and

the developer’s PHP coding skills do not match the high level demanded to build a com-

plex application. Frameworks handle all the repetitive basic tasks of a PHP project, letting

the developer concentrate her/his efforts on the business logic and the general structure

of the project as a whole, in doing so, frameworks are becoming an ideal tool used by

said developers to rapidly build complex operational prototypes in a matter of hours with

minimal time spent on coding. Frameworks offer also whole range of ready-made utilities

and libraries.

The use of a robust framework is recommended when the security of the web application

is an essential requirement. It even becomes a necessity when the developer lacks the

necessary know-how to prevent security breaches from happening. Most of the modern

frameworks have built-in security features that range from input sanitising to automatic

cookie encryption.

Organised structure of the project as a whole, clear and clean code are required when

working in an organisation or co-developing an application in a team of developers.

Frameworks permit the organisation of said code into a logical architecture, thus facili-

tating its maintainability and expandability. To achieve this, modern PHP frameworks

follow the Model-View-Controller (MVC) architecture pattern.

Among the highly popular PHP frameworks, Laravel stands out with its claim in its ability

to produce a development process that is agreeable for the developer without losing the

application’s functionality. That is one of the many reasons it was chosen as the frame-

work of choice for building an eCommerce web application for Armel Solutions freelance

start-up. This thesis work will study if Laravel lives up to its claim by evaluating its ability

in building an up and running secure eCommerce web application in minimal time.

2

2 Laravel’s main features

This study will focus only on the features used during the building of the eCommerce

web application, otherwise this work will not be large enough to cover the entirety of the

features of the whole Laravel 4 framework.

2.1 Architecture

Laravel is a web application framework that tries to ease the development process by

simplifying repetitive tasks used in most of today’s web applications, including but not

limited to routing, authentication, caching and sessions. [1]

Since it manages to do all essential tasks ranging from web serving and database man-

agement right to HTML generation, Laravel is called a full stack framework. This vertically

integrated web development environment is meant to offer an improved and smooth

workflow for the developer. [2]

Unlike other vertically integrated environments, Laravel is unique in its way of prioritizing

convention over configuration. In fact, while many PHP frameworks demand a heavy-

duty XML configuration before starting the actual project, Laravel needs only a few lines

of PHP code to be edited and it becomes ready to use. Avoiding or using a minimum

amount of configuration files gives all Laravel web applications a similar code structure

which is very characteristic and identifiable. This might be considered at first glance as

serious constraint on how a developer might wish to organize the structure of her/his

own web application. However, these constraints make it actually a lot easier to build

web applications. [2]

All the new Laravel projects come out of the box equipped with a full directory tree and

also many placeholder files resulting in a structure permitting a quick start of the actual

development process. This structure is nevertheless fully customizable. Here in the fol-

lowing figure is shown what such a structure looks like: [3, 16.]

3

Figure 1. A New Laravel 4 project directory structure

4

2.2 MVC

The term MVC was briefly mentioned earlier in this work and it is worthwhile mentioning

now that Laravel is actually a fully-fledged MVC framework. MVC rapidly became the

industry’s standard practice used in every modern development environment. Many

frameworks such as Ruby on Rails, ASP.NET, CakePHP and CodeIgniter make use of

it to separate the logic behind the application from the representation layer. [4, 8.]

An MVC architecture pattern let the web application have many different views of a single

common model. That is, in our current context of building an eCommerce web applica-

tion, a Category page, for example, can have multiple views such as the Product List

View or Product Gallery View. In an MVC development environment, one model for the

Category table will be created and via that one model multiple views can be created. [4,

8.]

The MVC architecture pattern let the developer write a code that can be divided on the

basis of the following three things:

2.2.1 Model

A Model is the mode by which the developer can manipulate the data. It consists of a

layer residing between the data and the application. The data itself can be stored in

various types of database systems such as MySQL or even simple XML or Excel files.

[4, 8.]

2.2.2 Views

Views are the visual representation of our web application (presentation layer), they are

responsible for presenting the data that the Controller received from the Model (business

logic). They can be easily built using the Blade template language that comes with

Laravel or simply using plain PHP code. Blade is driven by template inheritance and

sections. When Laravel renders these Views it examines first their file extension, and

depending on it being either “.blade.php” or simply “.php”, determines if Laravel treats

our View as a Blade template or not. [3, 14.]

5

2.2.3 Control

The primary function of a Controller is to handle requests and pass data from the Model

to the Views. Thus a Controller can be considered as the link between our Model and

Views. [4, 8.]

The developer has the option to write her/his business logic either in Routers or Control-

lers. Routers can be useful when dealing with a small web application, or in rapidly de-

fining static pages. Writing Controllers for every single page of the web application is

thus not necessary. [4, 12.]

Figure 2. Interactions between all the constituent parts of an MVC architecture pattern. [3, 15]

2.2.4 Database

 Eloquent ORM

The Eloquent ORM provided with Laravel includes a simple PHP ActiveRecord imple-

mentation which lets the developer issue database queries with a PHP syntax where

instead of writing SQL code, methods are simply chained. Every table in the database

possess a corresponding Model through which the developer interact with said table. [5]

6

 Schema builder

The Laravel Schema class provides a database agnostic (i.e. can function with a multi-

tude of DBMS) way of managing all database related work such as creating or deleting

tables and adding fields to an existing table. It works with a multitude of databases sys-

tems supported by Laravel and MySQL being the default one. The Schema class has

the same API across all of these database systems. [6]

 Managing the database with Migrations

Migrations can be considered as a form of version control for our database. They allow

us to change the database schema and describe and record all those specific changes

in a migration file. Each Migration is usually associated with a Schema Builder to effort-

lessly manage our application's database. A migration can also be reverted or “rolled

back” using the same said file. [7]

Using our terminal we can issue the following commands to create or drop tables in our

database:

Command Description

$ php artisan migrate:install Creates the migration repository

$ php artisan migrate:make Creates a new migration file

$ php artisan migrate:refresh Resets and reruns all the migrations

$ php artisan migrate:reset Rollback all the database migrations

$ php artisan migrate:rollback Rollback the last database migration

Table 1. A collection of commands related to migrations. [4, 29]

7

 Seeders

The Seeder class lets us seed data into our tables. This feature is very valuable since

the developer may insert data into her/his database’s tables every time she/he wants to

test the web application. [4, 59.]

When the backend is empty we can populate it with some data by simply issuing the

following command in the terminal:

$ php artisan db:seed

2.3 Composer

Another feature that makes Laravel stand out from the other frameworks is that it is Com-

poser ready. In fact Laravel is itself a mixture of different Composer components, this

adds a much needed interoperability to the framework.

Composer is a dependency management tool for PHP. Essentially, Composer’s main

role in the Laravel framework is that it manages the dependency of our project’s depend-

encies. For example, if one of the libraries we are using in our project is dependent on

three other libraries and that there is a need to upgrade all those libraries, then there is

no necessity to manually find and update any files. It is possible to update all four libraries

via a single command through the command-line, which is, “$ composer update”. [8]

Composer has the ability to manage a dependency up to a given nth level, meaning that

all dependencies of our project can be managed via a single tool which is a really handy

option to have when we are dealing with a multitude of libraries. Another advantage of

using Composer is that it generates and handles an autoload file at the root of our ven-

dor/ directory, which will contain all the project’s dependencies that wires up the auto-

loading of classes when it is included in a PHP script. In doing so, there is no need from

the developer side to remember all dependencies’ paths and include each of them on

every file of the project, she/he just needs to include the autoload file provided by Com-

poser. [4, 11.]

8

Composer is installed in the form of a PHP executable that is added to the PATH envi-

ronment variable. A PATH environment variable is the listing of locations that is explored

when a command is run in the terminal. When Composer is installed properly, the devel-

oper can execute it through the command-line from any place in the file system using

the “$ composer” command. The project, and its dependencies, are defined within a

JSON file, named composer.json. [3, 22.]

Composer is the way the PHP community is heading to, thus there are thousands of

thoroughly tested packages already available in the Composer package archive. Laravel

was designed in such a way that it integrates Composer packages easily. All what Com-

poser needs to do is to read the contents of the composer.json file and connect to Pack-

agist, which is an online repository of packages, to resolve all the dependencies, recur-

sively. These dependencies are then downloaded to our local directory called vendor/,

and then their state is recorded to a file named composer.lock. [3, 25.]

9

Figure 3. A view from Packagist, the online repository for Composer [7]

Laravel combined with the power of Composer gives the developer more freedom in

choosing what kind of packages she/he would like to use with her/his web application.

For example, if she/he do not like the default Mail component that comes with Laravel,

which is Swift Mailer, and she/he wants to replace it with a more preferred package like

the PHPMailer component for example, which is likewise Composer ready; thus, switch-

ing between the two packages would be a very easy task. The developer can replace

components at will and with ease when there is need to do so via the Composer and

Laravel configuration. [4, 12.]

10

2.4 Artisan

A developer would have to usually interact with the Laravel framework using a command-

line utility that creates and handles the Laravel project environment. Laravel has a built-

in command-line tool called Artisan. This tool allows us to perform the majority of those

repetitive and tedious programming tasks that most of developers shun to perform man-

ually. [4, 13.]

Artisan can be utilized to create a skeleton code, the database schema and build their

migrations which can be very handy to manage our database system or repair it. We

may as well create database seeds that will allow us to seed some data initially. It can

also be employed to generate the basic Model, View and Controller files right away via

the command-line and manage those assets and their respective configurations. [4, 13.]

Artisan let us even create our very own commands and do convenient things with them

such as sending pending mails to recipients or anything that can be necessary to

properly run our web application. Unit tests for our web application can also be run

through Artisan. [4, 13.]

11

3 Creating the workflow and configuring our environment

3.1 Operating system

Laravel is a cross platform framework which is built with interoperability in mind. It can

be used on top of a variety of operating systems, including but not limited to Linux, Mac

OSX and Windows. The operating system of choice for this project is Microsoft’s Win-

dows version 8.1, which is the latest offering from the software giant.

3.2 Terminal

As it was discussed earlier in this work, a developer usually interacts with Laravel frame-

work through a command-line. The Windows operating system comes equipped with two

of such command-lines, that is, the Command prompt and the Powershell. However, for

our project we are going to use a popular third party terminal named Cygwin. So why

make such a choice? The reason is that one of the major inconveniences that a devel-

oper can face in a modern development environment is supporting her/his application

across heterogeneous platforms. [9]

Cygwin offers a standard UNIX/Linux shell environment, together with many of its greatly

handy commands to the Windows platform. By utilizing Cygwin, a developer may handle

various environments in a reliable and effective way. [9]

To install Cygwin we need to download the executable file from the author’s website [9]

and double click on the downloaded file and just follow the instructions, the installation

is done automatically. [9]

3.3 Text editor

For this project the text editor of choice to build our web application will be Sublime Text

3. It is a web developer's editor that can do few useful tasks from the editor window itself.

Therefore, the developer does not have to constantly switch between windows and run

tasks from other applications. Another important aspect of the Sublime Text editor is its

12

Package Control, this package manager allows us to add the package's features. [4,

226]

3.4 Bootstrap as the HTML5/CSS3/Javascript framework

Bootstrap is arguably the industry’s most popular frontend web development framework.

It offers a full range of user-friendly, cross-platform and tested pieces of code for fre-

quently used standard UI conventions. Bootstrap significantly speeds up the undertaking

of building a frontend web interface because of its ready-made, thoroughly tested blend

of HTML markup, CSS styles, and JavaScript behaviour. With these essential founda-

tions rapidly set up, we can confidently modify the UI on top of a solid basis. [10, 7.]

There are many ways to download Bootstrap, but not all these ways of downloading

Bootstrap are equal. For this project though, and for the sake of rapidity, we will use

Initializr which generates templates based on HTML5 Boilerplate by permitting the de-

veloper to select which components she/he wants from it. [11]

Then after clicking on the download button we will get the following directories and files,

logically grouping common assets and providing both compiled and minified variations.

The directory and file tree will look like this: [12]

bootstrap/

├── css/

│ ├── bootstrap.css

│ ├── bootstrap.min.css

│ ├── bootstrap-theme.css

│ └── bootstrap-theme.min.css

├── js/

│ ├── bootstrap.js

│ └── bootstrap.min.js

└── fonts/

 ├── glyphicons-halflings-regular.eot

13

 ├── glyphicons-halflings-regular.svg

 ├── glyphicons-halflings-regular.ttf

 └── glyphicons-halflings-regular.woff

Please note that this thesis work is mainly focusing on the Laravel framework, therefore

the use of the Bootstrap framework or the HTML markup, CSS styling and the JavaScript

actions of our web application will not be discussed further than this present chapter.

3.5 Apache–MySQL–PHP package

A database is a collection of data with a predefined structure. The set of data it repre-

sents can range from as little as a shopping list to a large volume of information in a

corporation’s network. A database management system is needed to manipulate the

data stored in a computer database. [13]

One of the most popular database management systems is MySQL server, it uses the

Structured Query Language commonly referred to as SQL. SQL is arguably the most

commonly used standardized language for manipulating databases. SQL statements

can be used in various ways, they might be entered directly or embedded into a code

written in a different language, or use an API that hides the SQL syntax altogether. In

our project we will use the second option of embedding the SQL statements into a differ-

ent programming environment. [13]

The Laravel framework has a very few system requirements, however it explicitly needs

PHP version 5.3.7 or above and MCrypt PHP Extension, the latter comes bundled with

newer versions of PHP. [15]

Our WAMP stack of choice for this project is WampServer. To install it we need to down-

load the executable file from the author’s website [14] and double click on the down-

loaded file and just follow the instructions, the installation is done automatically. The

WampServer package is delivered with the latest releases of Apache, MySQL and PHP,

that is, Apache: 2.4.4, MySQL: 5.6.12, PHP: 5.4.12 and PHPMyAdmin: 4.0.4. [14]

14

Figure 4. The version of the installed PHP

3.6 Installing Composer

As it was mentioned earlier in this work, Laravel framework utilizes Composer to manage

its dependencies. To install Composer on our Windows machine we need to be sure

beforehand that we have an appropriate version of PHP installed, then we can get the

Composer Windows installer from the author’s website [8] and download the Composer-

Setup.exe file. During the process of installation, the installer will ask for the location of

the PHP executable in our system, and since we are using WAMP the location is

C:/wamp/bin/php/php5.4.12/php.exe. The installation will continue automatically then by

finalizing the install of Composer and adding the php and Composer commands to our

PATH. [3, 24.]

To make sure that Composer is installed properly, we open a new terminal window and

enter the command “$ composer –v”, this command should output the version infor-

mation message. [3, 24.]

15

Figure 5. Composer version information message

3.7 Installing Laravel 4

We may install Laravel by simply issuing the “$ composer create-project laravel/laravel”

command in our terminal followed by the name of the project, but before that we have to

be sure that we change the directory to our development folder. [15]

16

Figure 6. Command issued to create a new Laravel project

After a successful installation, Laravel may still require one set of permissions to be con-

figured, that is, the folders within the app/storage directory require write access by the

web server. This can be achieved by issuing the command “$ chmod –R 755” followed

by the name of the directory.” [15]

Figure 7. Changing the permission to access app/storage directory

3.8 Database

To create the database for our Laravel project, we simply open the phpMyadmin panel

in our browser of choice and we proceed to create the database by giving it a name and

editing the security credentials.

17

Figure 8. The created database

Before getting started, we need to be sure to configure the database connection in

app/config/database.php file by editing the lines of PHP code containing the credentials

to match our database’s credentials. Laravel’s default database, which is MySQL will be

kept as our database management system for our current project.

18

Figure 9. Database connection set-up

After configuring the database we can start our application without the need for firing up

our WAMP local server as Laravel utilizes the built-in development server that is bundled

with PHP version 5.4 or newer. To start our development server, we simply use the Arti-

san command “$ php artisan serve”. [3, 32.]

Figure 10. Starting the Laravel’s built-in development server

19

To check that our application is up and running and that our Laravel installation is done

properly we open our web browser and we enter the following URL: http://localhost:8000.

We should be greeted with Laravel's welcome message.

Figure 11. Screenshot of a successful Laravel installation

This ends the first half of this work where we introduced the Laravel framework and cre-

ated and configured a development environment for our eCommerce project. Next, the

building process of our web application will be covered fully.

20

4 Building the application with Laravel 4

4.1 Designing our application

4.1.1 The Idea

The aim of this project is to build a browsable database of categories and products. An

administrator will be able to create pages for her/his categories and products and input

simple information such as the name, availability, and image for each product. Our web

application will support the basic Create-Retrieve-Update-Delete operations (CRUD).

We will create also pages available for the public with the option to filter products by

category and letting the users log in and pass their order and proceed to checkout using

PayPal. All of the security, authentication, and permission features will be covered in

more details in the chapter “Authentication and security”.

4.1.2 Entities, relationships and attributes

Initially, the application’s entities must be defined. An entity is a place, a thing or a single

person about which data can be stored or classified and have stated relationships to

other entities. From the initial requirements, we can define the following entities and their

respective attributes: [3, 30.]

• Categories, which have an identifier and a name.

• Products, which have a numeric identifier, a title, a description, a price, an avail-

ability and an image.

• Users, which have a numeric identifier, a first name, a last name, an email and a

telephone and whether or not he’s an admin (default is not an admin)

This information is essential in assisting us with building our database schema that will

store the predefined entities, relationships, and their attributes and Models, that is, the

PHP classes representing the objects in our database. [3, 30.]

21

categories

products

users
name

title

description

price

availability

image

firstname

telephone

lastname

email

admin

UserIDPK

CategoryIDPK

ProuctIDPK

password

CategoryIDFK

Figure 12. Relationship between constituents of the database

NB: PK->Primary Key and FK->Foreign Key.

From the diagram we can see that categories will have a “hasMany” relationship with the

products and products will have a “belongTo” relationship with categories. This will be

discussed further more when we will build our Models.

4.1.3 Map of the application

Presently, the URL structure of our web application must be defined. There are many

advantages in making sure to have expressive and clean URLs. From the usability point

of view, navigating our web application will be done with ease and appear less daunting

22

to the visitor. They, the URLs, will also usually rank high in search engine results espe-

cially if they have appropriate keywords. We are going to utilize the following routes [18]

in our web application to fulfil the initial set of requirements: [3, 31.]

Method Route Description

GET / Index

GET admin/categories/index Overview page

GET admin/categories/create Form to create a new category page

GET admin/categories/destroy Form to confirm deletion of page

GET admin/products/index Overview page

GET admin/products/create Form to create a new product page

PUT admin/products/index Form to update a product page

GET admin/products/destroy Form to confirm deletion of page

GET store/category/id Overview of single category

GET store/view/id Overview of single product

GET store/cart Overview page

GET store/contact Overview page

Table 2. The application’s set of routes

23

4.2 Creating a new application

4.2.1 Creating a main view

As explained earlier in this work, Blade templating let us create hierarchical layouts by

letting the templates be nested and/or extended. [3, 40]

The procedure is quite straight forward, that is, we copy the “index.html” file that comes

with our Bootstrap installation and we save it as app/views/layouts/main.blade.php.

We will use Laravel helpers instead of regular HTML code, which will help us write more

concise code and also escape from any HTML entities. We do these changes following

these examples: [16]

For styles: <link rel="stylesheet" href="css/main.css"> becomes

{{ HTML::style('css/main.css') }}

For scripts: <script src="js/vendor/modernizr-2.6.2.min.js"></script> becomes

{{ HTML::script('js/vendor/modernizr-2.6.2.min.js') }}

For images: becomes

{{ HTML::image('img/user-icon.gif', 'Sign In') }}

To define a main Blade template we use the following basic structure: [17]

24

Then we can use the main Blade template from within another View by using this basic

structure:[17]

The “@yield” command is a placeholder for the many sections that a nested view can fill

and override. While the “@section” and “@stop” commands both define the blocks of

content that are going to be injected into the main template. A schematization of this

whole process can be seen in the following diagram:[3,40.]

<html>

 <body>

 @section('sidebar')

 This is the main sidebar.

 @show

 <div class="container">

 @yield('content')

 </div>

 </body>

</html>

@extends('layouts.main)

@section('sidebar')

 @parent

 <p>This is appended to the main sidebar.</p>

@stop

@section('content')

 <p>This is the body content.</p>

@stop

25

main.blade.php index.blade.php
@extends(main)

@yield(header)

@yield(content)

@section(header)

@section(section)

Message (if any)

Figure 13. Blocks of content being injected into main template [3, 40]

Practically we empty our main content section in the main.blade.php file and replace it

with @yield(‘content’). The resulting code will be the "main" template that each of our

views in our web application will use. [3, 40.]

A notification area between the header and the page content has been prepared in case

there is a need to inform the user about the outcome of certain actions. This flash mes-

sage originates from the Session object.

The next step is to bring the other resources for our main View, to do so we copy all the

css/js/img/fonts assets that come with our Bootstrap installation and we place them in-

side our app/public directory. [3, 40.]

The creation of the individual views for each section of our web application will be cov-

ered in full details later in the “Creating views” section of this work.

4.2.2 Creating the Eloquent models and their respective schemas

As we have previously seen, Laravel 4 comes bundled with an ORM of its own named

Eloquent, this powerful tool will let us define our entities, map them to their respective

database tables, and manipulate them by simply using PHP methods instead of SQL

syntax.

26

We begin with defining the models with which our application is going to interact. We

previously recognised three main entities, categories, products and users. It is a conven-

tion among Laravel developers to write a model’s name in the singular form; a model

named Product will map to the products table in the database, and the Category model

will map to the categories.

The Category model, saved inside app/models/Category.php, will have a “hasMany” re-

lationship with the Product model [21]

Figure 14. Category model

To create the migration for this model we issue the command “$ php artisan mi-

grate:make” followed by the name of the migration.

27

Figure 15. Migration creation

We then open the migration file inside app/database/migrations and we write the schema

using the Schema class. [21]

Figure 16. Schema builder with create and drop methods

To create the table in the database all we have to do now is to issue the command “$

php artisan migrate”.

28

Figure 17. Artisan migrate to create the table in the database

Figure 18. Categories table created successfully

We follow the same previous steps to create the Product model, which is saved inside

app/models/Product.php, and it will have a “belongsTo” relationship with the Category

model. [21]

Figure 19. Product model

29

Figure 20. Product schema

The types must be always the same. So we need to be careful to always make the foreign

key column unsigned when it references an incrementing integer. [6]

Figure 21. Products table created successfully

The User model is a special case because of its security implications, it will be covered

later in the “Authenticating users” section of this work.

30

4.2.3 Image managing as an example of dependency management

For our products viewed in the store we need to upload images and resize them to be

able to preview them as thumbnails. To do so, we need to utilize an external package

named Intervention/image. To add this new dependency, we must install it through Com-

poser. We head to our composer.json file and add the following highlighted line: [4, 109.]

Figure 22. Adding a new dependency through Composer

And then we run the following Composer command in our terminal: “$ composer update”.

This will install the Intervention package in the vendor directory. To make sure that

Laravel autoloads it we also need to add the service provider of the class. We need to

31

go to app/config/app.php in the service provider array section and add the following high-

lighted line for Intervention:

Figure 23. Binding the service provider with the Laravel setup

After finishing the previous step, we can have access to the Intervention library through

the image alias autoloaded by Laravel. To do so, and in the class aliases section of the

same file we need to add the Facades [19], so we can simply access it via an alias in our

alias array: [4, 109.]

32

Figure 24. Adding the Facade for Intervention

The last step is to create a location to store our uploaded images. We will add a folder

named “products” to the directory public/image/.

The image save and resize methods will be used in our products controller.

4.2.4 Creating the Controllers and their respective Routes

As we’ve seen earlier in this work, the primary function of a Controller is to handle re-

quests and pass data from the Model to the Views. Thus a Controller can be considered

as the link between our Model and Views.

 Categories controller

33

To create the Categories Controller, inside app/controllers directory we add the following

CategoriesController.php file [21]

Figure 25. Categories Controller

Then we can register the corresponding route in app/routes.php file. To do so we add

the following highlighted line to the aforementioned file which will indicate the URI:

34

Figure 26. Tying the categories Controller’s action to a set of routes

The app/routes.php file will be edited later to include more routes from other Controllers.

 Products controller

Similarly we create the products Controller with the following code inside app/control-

lers/ProductsController.php:

35

<?php

class ProductsController extends BaseController {

 public function __construct() {

 $this->beforeFilter('csrf', array('on'=>'post'));

 }

 public function getIndex() {

 $categories = array();

 foreach(Category::all() as $category){

 $categories[$category->id] = $category->name;

 }

 return View::make('products.index')

 ->with('products', Product::all())

 ->with('categories', $categories);

 }

 public function postCreate() {

 $validator = Validator::make(Input::all(), Product::$rules);

 if ($validator->passes()) {

 $product = new Product;

 $product->category_id = Input::get('category_id');

 $product->title = Input::get('title');

 $product->description = Input::get('description');

 $product->price = Input::get('price');

 $image = Input::file('image');

 $filename = time()."-".$image->getClientOriginalName();

 Image::make($image->getRealPath())->resize(468,249)->save(pub-

lic_path().'/img/products/'.$filename);

 $product->image = 'img/products/'.$filename;

 $product->save();

 return Redirect::to('admin/products/index')

 ->with('message', 'Product Created');

 }

 return Redirect::to('admin/products/index')

 ->with('message','Something went wrong')

 ->withErrors($validator)

 ->withInput();

 }

 public function postDestroy() {

 $product = Product::find(Input::get('id'));

 if ($product) {

 File::delete('public/'.$product->image);

 $product->delete();

 return Redirect::to('admin/products/index')

 ->with('message','Product Deleted');

 }

 return Redirect::to('admin/products/index')

 ->with('message','Something went wrong, please try again');

 }

 public function postToggleAvailability() {

 $product = Product::find(Input::get('id'));

 if ($product) {

 $product->availability = Input::get('availability');

 $product->save();

 return Redirect::to('admin/products/index')->with('message', 'Product Up-

dated');

 }

 return Redirect::to('admin/products/index')->with('message', 'Invalid

Product');

 }

}

36

Then we update again our set of routes by adding the following line to app/routes.php:

Route::controller('admin/products', 'ProductsController');

 Store controller

<?php

class StoreController extends BaseController {

 public function __construct() {

 $this->beforeFilter('csrf', array('on'=>'post'));

 }

 public function getIndex() {

 return View::make('store.index')

 ->with('products', Product::take(4)->orderBy('created_at', 'DESC')->get());

 }

 public function getView($id) {

 return View::make('store.view')->with('product', Product::find($id));

 }

 public function getCategory($cat_id) {

 return View::make('store.category')

 ->with('products', Product::where('category_id', '=', $cat_id)->paginate(6))

 ->with('category', Category::find($cat_id));

 }

 public function getSearch() {

 $keyword = Input::get('keyword');

 return View::make('store.search')

 ->with('products', Product::where('title', 'LIKE', '%'.$keyword.'%')->get())

 ->with('keyword', $keyword);

 }

 public function postAddtocart() {

 $product = Product::find(Input::get('id'));

 $quantity = Input::get('quantity');

 Cart::insert(array(

 'id'=>$product->id,

 'name'=>$product->title,

 'price'=>$product->price,

 'quantity'=>$quantity,

 'image'=>$product->image

));

 return Redirect::to('store/cart');

 }

 public function getCart() {

 return View::make('store.cart')->with('products', Cart::contents());

 }

 public function getRemoveitem($identifier) {

 $item = Cart::item($identifier);

 $item->remove();

 return Redirect::to('store/cart');

 }

 public function getContact() {

 return View::make('store.contact');

 }

}

37

 Base Controller

To be able to view our products by category. We will start by updating the dropdown

menu so that it actually uses our categories from the database instead of the static links

that our layout is using. Our entire web application uses that categories dropdown menu

so that means that when we go to populate it, all our Views need to have access to that

categories data. In order to do this, we need to set up a before filter in our Base Control-

ler’s constructor to ensure that all of our Controllers inherit it and thus all the Views site

wide will share that same categories data. [21]

Figure 27. Base Controller

Now we need to update all our controllers to instead of overwriting the Base Controller’s

constructor they just append to it. We add the following highlighted line to all our control-

lers:

38

Figure 28. Appending to the Base Controller

 Users controller

The making of this Controller will be covered in full details in the “Authenticating users”

section.

4.2.5 Creating the views

As was explained before in this work, Views receive data from a Controller (or Router)

and inject it into a template, therefore, helping us to separate the business logic from the

presentation layer in your web application.

 Categories View

To add our first View, that is, the categories view, we simply create a file called in-

dex.blade.php inside app/views/categories and add the following content to it:

This is the View used by the admin to manage the categories:

39

 Products View

This is the View used by the admin to manage the products.

@extends('layouts.main')

@section('content')

 <div id="admin">

 <h1>Categories Admin Panel</h1><hr>

 <p>Here you can view, delete, and create new categories.</p>

 <h2>Categories</h2><hr>

 @foreach($categories as $category)

 {{ $category->name }} -

 {{ Form::open(array('url'=>'admin/categories/destroy',

'class'=>'form-inline')) }}

 {{ Form::hidden('id', $category->id) }}

 {{ Form::submit('delete') }}

 {{ Form::close() }}

 @endforeach

 <h2>Create New Category</h2><hr>

 @if($errors->has())

 <div id="form-errors">

 <p>The following errors have occurred:</p>

 @foreach($errors->all() as $error)

 {{ $error }}

 @endforeach

 </div><!-- end form-errors -->

 @endif

 {{ Form::open(array('url'=>'admin/categories/create')) }}

 <p>

 {{ Form::label('name') }}

 {{ Form::text('name') }}

 </p>

 {{ Form::submit('Create Category', array('class'=>'secondary-cart-

btn')) }}

 {{ Form::close() }}

 </div><!-- end admin -->

@stop

40

 Store Views

@extends('layouts.main')

@section('content')

 <div id="admin">

 <h1>Products Admin Panel</h1><hr>

 <p>Here you can view, delete, and create new products.</p>

 <h2>Products</h2><hr>

 @foreach($products as $product)

 {{ HTML::image($product->image, $product->title, array('width'=>'50')) }}

 {{ $product->title }} -

 {{ Form::open(array('url'=>'admin/products/destroy', 'class'=>'form-in-

line')) }}

 {{ Form::hidden('id', $product->id) }}

 {{ Form::submit('delete') }}

 {{ Form::close() }} -

 {{ Form::open(array('url'=>'admin/products/toggle-availability',

'class'=>'form-inline'))}}

 {{ Form::hidden('id', $product->id) }}

 {{ Form::select('availability', array('1'=>'In Stock', '0'=>'Out of Stock'),

$product->availability) }}

 {{ Form::submit('Update') }}

 {{ Form::close() }}

 @endforeach

 <h2>Create New Product</h2><hr>

 @if($errors->has())

 <div id="form-errors">

 <p>The following errors have occurred:</p>

 @foreach($errors->all() as $error)

 {{ $error }}

 @endforeach

 </div><!-- end form-errors -->

 @endif

 {{ Form::open(array('url'=>'admin/products/create', 'files'=>true)) }}

 <p>

 {{ Form::label('category_id', 'Category') }}

 {{ Form::select('category_id', $categories) }}

 </p>

 <p>

 {{ Form::label('title') }}

 {{ Form::text('title') }}

 </p>

 <p>

 {{ Form::label('description') }}

 {{ Form::textarea('description') }}

 </p>

 <p>

 {{ Form::label('price') }}

 {{ Form::text('price', null, array('class'=>'form-price')) }}

 </p>

 <p>

 {{ Form::label('image', 'Choose an image') }}

 {{ Form::file('image') }}

 </p>

 {{ Form::submit('Create Product', array('class'=>'secondary-cart-btn')) }}

 {{ Form::close() }}

 </div><!-- end admin -->

@stop

41

All the Store Views listed here are those Views that a non-admin user can View and

interact with. The following code for the Index View is used as the basis for the following

Views.

@extends('layouts.main')

@section('promo')

 <section id="promo">

 <div id="promo-details">

 <h1>Today's Deals</h1>

 <p>Checkout this section of

 products at a discounted price.</p>

 Shop Now

 </div><!-- end promo-details -->

 {{ HTML::image('img/promo.png', 'Promotional Ad')}}

 </section><!-- promo -->

@stop

@section('content')

 <h2>New Products</h2>

 <hr>

 <div id="products">

 @foreach($products as $product)

 <div class="product">

 id }}">

 {{ HTML::image($product->image, $product->title, ar-

ray('class'=>'feature', 'width'=>'240', 'height'=>'127')) }}

 <h3>id }}">{{ $product->title

}}</h3>

 <p>{{ $product->description }}</p>

 <h5>

 Availability:

 availabil-

ity) }}">

 {{ Availability::display($product->availability) }}

 </h5>

 <p>

 {{ Form::open(array('url'=>'store/addtocart')) }}

 {{ Form::hidden('quantity', 1) }}

 {{ Form::hidden('id', $product->id) }}

 <button type="submit" class="cart-btn">

 {{ $product->price }}

 {{ HTML::image('img/white-cart.gif', 'Add to Cart') }}

 ADD TO CART

 </button>

 {{ Form::close() }}

 </p>

 </div>

 @endforeach

 </div><!-- end products -->

@stop

42

For the “Availability” class which can be inStock or outOfStock. Our availability filed value

in the database is either 0 or 1. So we need to write two helper methods, one which will

return either the inStock or outOfStock class name and another one which will return the

value In Stock or Out of Stock which we can use to display inside this View. We create

a new folder named libs inside the app directory to hold our personal libraries. And we

add this Availability file: [21]

Figure 29. Availability class with the helper methods

Then we need to make sure that Laravel downloads it for us. To do so we go to

app/start/global.php file and we add the following highlighted line:

43

Figure 30. Adding a path to our libraries folder

And similarly, we add the other Views for the Store which include:

 Category: Where the user can view the products by category.

 View: Where the user can view products individually.

 Search: Where the user can search the whole website using a keyword.

 Cart: Where the user can view and edit the details of her/his order before check-

ing out (through moltin package and using class Cart).

 Contact: Where the user can find the details for contacting the business.

44

 Users View

The making of this View will be covered in full details in the “Authenticating users” sec-

tion.

4.3 Authentication and security

4.3.1 Authenticating users

Now we will work on our authentication system. In order for the customers to place orders

and review their previous order history they will need to have an account. First we are

going to need a table to store our users’ data in.

We create a new migration file by issuing the following command in our terminal:

$ php artisan migrate:make create_users_table

Then we build our users Model schema by editing the created migration.

45

Figure 31. Schema for the users table

As was mentioned earlier in this work, by default users are not administrators (default).

We run the migration to create the table in our database using the following command:

$ php artisan migrate

Since we do not have any backend data yet, we are going to use a Seeder to populate

it with some data. We issue the following command:

46

Figure 32. Seeding the database

We then create under app/database/seeds directory the Users Table Seeder file con-

taining the following code:

Figure 33. Adding an admin through the Seeder

Then we make our Categories and Products admin panels accessible only to the logged-

in admins. We do so by adding the following highlighted line to both files:

47

Figure 34. An admin before filter

Then we need to go to the app/filters.php file to add the admin filter’s route.

Figure 35. Adding the admin filter.

After all the above steps only the logged-in admin can access the categories and prod-

ucts panels. Other users will be redirected to the Store view.

48

4.3.2 Securing the application

Our web application in its present form has a number of vulnerable endpoints. And they

cannot be addressed all in this work but the most serious one will be fixed here. Attacks

are conducted by targeting a URL that has side-effects (that is, it is performing an action

and not just displaying information). First of all, all the URLs that handle user input are

not checking this CSRF token.

To address this Cross-site request forgery (CSRF) we add the following highlighted line

to all our Controllers: [3, 58]

Figure 36. Adding a CSRF before filter

Then we need to go to the app/filters.php file to add the CSRF filter’s route.

49

Figure 37. The CSRF filter

And that concludes our process of building an eCommerce web application using Laravel

4 framework.

50

5 Conclusion

Working on this project I faced a typical PHP developer problem, which is to be able to

build a descent looking and feature rich web application in a few days. I needed to find

a modern PHP framework that would let rapid developing, while also providing options

for expandability on a large scale. After examining different PHP frameworks and com-

paring their abilities at handling an MVC architecture pattern I came up with the ideal

choice for a PHP MVC framework, which is Laravel. At first, learning a new framework

might seem an overwhelming task, but it was it was not the case with Laravel, thanks to

its clear and concise documentation, and its developers that make a lively active com-

munity. Furthermore, I found a good CRUD web application on GitHub which appeared

to be a good introduction to Laravel’s world. The said application uses twitter’s Bootstrap

as well and it was a great help while developing this project. [20]

Early on in the development process with Laravel, one would feel at ease with its sim-

plicity and ease of use. My own experience with another big framework, that is, .NET

framework is that one ends up investing an important amount of time struggling with

incomprehensible XAML configuration settings, complex syntax, unfinished documenta-

tion, and a feeling in the end that the framework’s purpose of saving time and effort was

not truly achieved. It is the other way around with Laravel, which is actually one of its

major strengths. My own experience with Laravel is that it made my development pro-

cess a more enjoyable experience.

Laravel is lightweight enough not to undermine the project’s planning and development

process yet it does still offer an adequate structure and balanced amount of built-in fea-

tures which let one pay more attention to the business logic part of their web application

rather than waste too much time with the tedious basics and reinventing the wheel each

time when starting a new project. Among these features, we can mention Laravel’s very

own ORM, named Eloquent which is a simple implementation of PHP ActiveRecord,

which works in a simple yet effective way. Indeed, the schema for our project was not

very complex but not very basic either and yet no problems were encountered. Laravel

is also Composer ready which comes in handy in managing the dependency of our pro-

ject’s dependencies. Other features worth mentioning are Artisan, Blade, authentication

and security.

51

The requirements of our project were to create a CRUD eCommerce web application for

the Armel Solutions freelance start-up. It required also admin panels for the creation and

deletion of new categories and products. Authenticating users and accepting their orders.

I succeeded in building a browsable web application that fulfils all the requirements in a

relatively short period of time. The majority of that time was in fact spent on planning the

business logic of the application and its data modelling. Minimal time was allocated for

the development process itself.

Although developing with Laravel was a great experience, there is still room for improve-

ment for example, when having a closer look at the documentation, the transition be-

tween the introductory “getting started” section and the documentation for the API itself

is quite abrupt.

Another problem faced is the rarity of academic references for Laravel 4, which might

improve with time especially if we take into account the fact that Laravel is a relatively

young framework.

52

References

1 Intoduction to Laravel [online].
URL: http://laravel.com/docs/introduction
Accessed: 3 April 2014.

2 Architecture of Laravel Applications [online].
URL: http://laravelbook.com/laravel-architecture/
Accessed: 3 April 2014.

3 Raphaël S. Getting Started with Laravel 4. Packt Publishing Limited, Birmingham 2014.

4 Hardik D. Learning Laravel 4 application development. Packt Publishing Limited, Bir-
mingham 2013.

5 Eloquent [online]
URL: http://laravel.com/docs/eloquent
Accessed: 3 April 2014.

6 Schema Builder [online]
URL: http://laravel.com/docs/schema
Accessed: 3 April 2014.

7 The PHP package archivist [online]
URL: https://packagist.org/
Accessed: 3 April 2014.

8 Getting started with Composer [online].
URL: https://getcomposer.org/doc/00-intro.md
Accessed: 3 April 2014.

9 Cygwin [online]
URL: http://www.redhat.com/services/custom/cygwin/
Accessed: 3 April 2014.

10 David C, Ian W. Bootstrap site blueprints. Packt Publishing Limited, Birmingham
2014.

11 Initializr [online]
URL: http://www.initializr.com
Accessed: 4 April 2014.

http://laravel.com/docs/introduction
http://laravelbook.com/laravel-architecture/
http://laravel.com/docs/eloquent
http://laravel.com/docs/schema
https://packagist.org/
https://getcomposer.org/doc/00-intro.md
http://www.redhat.com/services/custom/cygwin/

53

12 Getting started with Bootstrap [online]
URL: http://getbootstrap.com/getting-started/
Accessed: 4 April 2014.

13 What is MySQL? [online]
URL: http://dev.mysql.com/doc/refman/5.6/en/what-is-mysql.html
Accessed: 4 April 2014.

14 WAMPserver [online]
URL: http://www.wampserver.com/en/
Accessed: 4 April 2014.

15 Laravel installation [online]
URL: http://laravel.com/docs/installation
Accessed: 5 April 2014.

16 Helper functions [online]
URL: http://laravel.com/docs/helpers
Accessed: 5 April 2014.

17 Templates [online]
URL: http://laravel.com/docs/templates
Accessed: 5 April 2014.

18 Routing [online]
URL: http://laravel.com/docs/routing
Accessed: 5 April 2014.

18 Facades [online]
URL: http://laravel.com/docs/facades
Accessed: 6 April 2014.

20 Laravel 4 E-Commerce [online]
URL: https://medium.com/laravel-4/c5afca925f28
Accessed: 6 April 2014.

21 Build an eCommerce App in Laravel [online]
URL: https://tutsplus.com/course/laravel-ecommerce-application/
Accessed: 6 April 2014.

http://getbootstrap.com/getting-started/
http://dev.mysql.com/doc/refman/5.6/en/what-is-mysql.html
http://www.wampserver.com/en/
http://laravel.com/docs/helpers
http://laravel.com/docs/templates
http://laravel.com/docs/routing
https://medium.com/laravel-4/c5afca925f28

