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This work was requested by a company modernizing their digital asset management 
system. The earlier version of the system was hard to maintain, slow and had many 
features which were no longer in use by clients. As the company could not find 
suitable existing system, they decided to develop a new system based on the old 
one. The new design would only keep features essential to the digital asset 
management and dropping others like support for product order handling that existed 
in the old system. After the first customer migrations into the new system, the 
general feedback was that the search was not functioning as expected. While the 
search was fast, the clients failed to find what they were looking for in some cases. 
The company requested for an investigation to be made to find out what problems 
current implementation has, what features are needed in the system and if the 
current architecture can provide them. 

The research was done as a case study on the new system. To identify what search 
features are needed the system was examined from different view points. The work 
used five view points, interview done with project management, customer survey 
from users, log analysis to look at past behavior, examining Google search and a 
digital asset management market review. Based on the findings from these view 
points a requirement specification was created. 

With the requirements defined the last part of the study was dedicated to analyze 
whether the current architecture can provide all the identified features. These tests 
were done with the PostgreSQL database using various search methods. The test 
results indicate that the PostgreSQL can be used to implement all the required 
features. The study found several places were the search may be improved and 
identified many paths for future work. 
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Tämä työ suoritettiin digitaalista aineistohallintaa uudistavan yrityksen pyynnöstä. 
Järjestelmän aiempi versio oli työläs ylläpitää, hidas ja sisälsi paljon ominaisuuksia, 
joita asiakkaat eivät enää käyttäneet. Koska yritys ei löytänyt sopivaa korvaava 
aineistohallintaa, päättivät he kehittää uuden vanhan pohjalta. Uusi järjestelmä 
säilytti vain aineistohallinnalle olennaiset ominaisuudet tiputtaen muut, kuten 
tilausten käsittelyn. Ensimmäisten asiakasmigraatioiden jälkeen, yleinen palaute 
järjestelmästä oli, että haku ei toiminut odotetusti. Vaikka haku oli nopea, se ei 
palauttanut odotettuja osumia kaikissa tilanteissa. Yritys pyysi tutkimuksen tekemistä 
haun ongelmien ja hakutoimintojen tarpeen selvittämiseen, sekä kartoittamaan, onko 
nykyinen arkitehtuuri riittävä tarjoamaan ne. 

Tutkimus suoritettiin tapaustutkimuksena uudesta järjestelmästä. Tarpeellisten 
hakuominaisuuksien tunnistamista varten uutta järjestelmää tarkasteltiin eri 
näkökulmista. Työssä käytettiin viittä näkökulmaa, projektijohdon haastatteluja, 
käyttäjille tehtyä asiakaskyselyä, käyttäjien käyttäytymistä vanhojen lokitietojen 
pohjalta, Google-hakuun perehtymistä ja digitaalisen aineistohallinnan 
markkinakatsausta. Näiden näkökulmien löydösten perusteella luotiin 
vaatimusmäärittely. 

Vaatimusmäärittelyn perusteella analysoitiin, kykeneekö uusi arkitehtuuri tarjoamaan 
kaikki vaaditut ominaisuudet. Nämä testit suoritettiin PostgreSQL-tietokannassa 
suoritetuilla erilaisilla hakumetodeilla. Testitulokset osoittivat, että PostgreSQL 
kykenee tarjomaan vaaditut ominaisuudet. Tämä työ tunnisti useita kohtia haun 
parantamiselle ja mahdollisia jatkotutkimuksen paikkoja. 

Avainsanat: digitaalinen aineistohallinta, tiedonhaku, haku, postgresql 
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1 Introduction 

This research was done at the behest of a company providing 

Business-to-Business (B2B) services who were in the middle of renewing their 

digital asset management system as the old system was not keeping up with the 

competition. This monolithic system combined features from online ordering and 

asset management making it technically complex and costly to develop and 

maintain. After reviewing the state of the old Digital Asset Management (DAM) it 

was seen that it would not be cost-effective to develop it further, so it was decided 

that it would be replaced entirely with new systems, each focusing on single 

specific area. This research covers the new system focusing on DAM. 

The company initially sought to license an existing system as a base for this new 

DAM system but could not find a suitable candidate. The old system included 

many customer-specific extensions which were mandatory to have in the new 

system as well. To fulfill these requirements would have required extensive 

customization done in available DAM offerings, increasing their cost. The 

cheapest evaluated DAM providers were not providing significantly better features 

than the old system, so choosing them would not have given any edge in the 

market compared to the old system. The international DAM offerings would have 

provided most of the required features and would have added plenty of other 

useful ones on top of those. Problem with them was their licensing policy. To keep 

the existing customers it would have meant that the new system would have 

required multiple expensive licenses and in addition the instances would have still 

required costly customizations. Because of these the company decided that the 

replacement system would be developed from scratch. The task was given to 

subcontractor handling the maintenance of the existing system as they had 

already the insight and knowledge from the previous system. 

The design goal for the new system was to produce modern application following 

current best practices1. These would include leveraging containerization, so the 

1https://12factor.net/ 

https://12factor.net/
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application would be running in its own image container which would keep the 

environment of the application similar wherever it was deployed. By use of 

containers the application would be designed using microservices architecture 

where key functionalities are split into separate containers which work together 

instead of making a monolithic application. On the code level it would use 

functional programming techniques such as static typing to be able to catch 

programming errors during the compile-time. Automation would be used in the 

project to provide continuous integration and continuous development. This would 

mean the development team would make smaller deployments frequently which 

would be build and tested and deployed to production faster than was possible 

with the old system. The benefit of having an in-house developed DAM system is 

that in addition to providing it as a Software as a Service (SaaS) it can be licensed 

to customers internal use as well, as well as controlling the development the 

company can prioritize which direction the development would focus. 

The new digital asset management system was marketed by its fast operations 

and familiar “Google-like” search. After first customer migrations were done the 

feedback from users was generally positive regarding the search as it was fast but 

on some cases the system did not return expected results. After altering the 

search, so it worked correctly on problematic queries, it started to exhibit problems 

in other search queries. The project management was not satisfied with current 

search as it is one of the key features of the DAM. 

This research was done as a case study on the new DAM system aimed to 

answer three questions; what are the issues in the current search, what features 

should it provide and finally, is the current architecture capable in delivering those. 

To find out how the search in the new DAM system should be implemented, the 

current search implementation was analyzed on how it works and what features it 

provides. This is then compared on what the project management want from the 

system and what the users of the system need in their work. Finally, the results 

are compared on what the current market leaders in DAM are providing for their 

customers. Analyzing results from these will allow creation of a requirement 
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specification for improving the system if needed. 

This thesis has been divided into eight chapters. The first chapter is intended to 

give background information on why the research was done. The next two 

chapters present the used research methods and give the necessary background 

theory related to search in DAM systems. The fourth chapter describes the current 

system details and presents the different view points on how to decide what 

features would be needed in the DAM. In the fifth chapter the view points are 

analyzed, so an accurate requirement specification can be defined which is then 

used as the basis of further system analysis done in the sixth chapter. The 

analysis presents more in-depth view on how the current system may be used to 

deliver the identified features in requirement specification. The last chapters 

present recommendations and discussion on findings followed by concluding 

summary. 
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2 Material and Methods 

The research done as part of this thesis aims to identify problems in current 

search, what features it should provide and is the current DAM architecture 

capable on delivering them. The focus of the research is to try to identify what 

features are essential to provide sufficient search experience for customers. Other 

focus point is to analyze if the existing architecture and tooling is enough for the 

current and near-future needs. A case study was chosen as a method to research 

this. 

The beginning of this study consists of literary review to gain theoretical 

background and doing current state analysis on the new system. The current state 

analysis is done to understand the new DAM system from different view points. 

The first view point is the technical view point, what the system is currently. 

Looking at the project documentation and interacting with the system to map out 

what kind of architecture the system is using, what tools are used in it, how it is 

working. The next view point is from project management by conducting in-depth 

interviews on how they view the current search should function. The interviews 

were done with qualitative approach to get the overview on what the project 

management viewed as important search features to have in the system. The 

interview also included questions covering other areas beyond the search features 

to get idea about the scope of the project and get estimates on how much 

resources would be available for implementing any search changes and to identify 

other potential limitations. Following the interviews, a customer survey was done 

to gain system users point of view, what search features they need in their work. 

The survey questions were based on the interview questions, but they were 

changed to only cover search features. The survey was done using quantitative 

approach. The users were asked to rate the overall system search in the current 

system and to provide ratings on various search features to get their view on what 

they saw as useful features. The last view point used in the study is from market 

leaders. They have long history on the market making their analysis helpful in 

laying road map on what direction the DAM should be heading. As all the market 
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leaders provide proprietary systems the information comes from their 

documentation and marketing material making it biased but big themes what kind 

of search features are provided by them can be identified from them. Analyzing 

the findings of these different view points allows a requirement specification to be 

made. The specification is then used to do empirical analysis to test, if the current 

architecture and tooling is enough to cover those requirements with the 

hypothesis, that the current architecture and tooling is enough to handle current 

and near-future customer search needs. 
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3 Theoretical Background 

This chapter is presenting the theoretical background needed to understand the 

DAM and technologies related to their working. The chapter starts with short 

introduction of Machine Learning (ML) as it is powering many Artificial Intelligence 

(AI) features included in DAM products. Many of these features are based on 

Natural Language Processing (NLP) and use of language models which are 

described next. This work focuses on searching so large section of theory is 

dedicated for Information Retrieval (IR) to define what is information and how to 

search it. The chapter closes on describing metadata and how DAM systems bind 

all the above together. 

3.1 Machine Learning 

ML is subfield of AI that “studies the ability to improve performance based on 

experience.” [1, p. 1] ML most useful in cases where there is plenty of example 

data available and the problem to be solved is hard or impossible to express 

formally. For example, it is very hard to express, if an image contains a cat. ML 

can accomplish this by sampling through huge amount of labeled images figuring 

out what makes cats stick out from images. 

ML works by building a model from data it has available. The model is used to 

solve the task and task outcome may be used to further improve the existing 

model. [1, p. 651] The model dictates how ML system interprets data it receives. 

To create a model it must be trained to work in given problem. Training of a model 

requires data. The data should contain enough varied examples of things the 

model should be able to recognize. The quality of data affects much on the result 

of the model. [2, p. 42] There needs to be enough data for the model to learn from 

but with even small collection of data can be used to start the process. ML 

methods have become popular recently as increase in amount of available data 

and processing power made the ML algorithms suitable for many tasks, allowing 

them to outpace previous expert systems. [2, p. 10] 
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There are three main types of learning for ML based on the feedback the model is 

given, supervised, unsupervised and reinforcement learning. [1, p. 653] The most 

common learning method in ML is the supervised learning. In it the ML algorithm 

is given labeled data with aim that the algorithm can figure out an approximation 

for a function producing the labels for the data. It is usually used for either in 

regressions as shown in Figure 1 or in classification tasks as in Figure 2. In 

regression the model is used to predict numeric values based on the input data 

and in classification it tries to learn to label given inputs. 
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Figure 1: Example of Linear Regression. 

The unsupervised learning is learning without giving the model any external 

feedback. The system is given unlabeled training data and the algorithm attempts 

to gain insights from it. The most common task for unsupervised learning is 

clustering [1, p. 653]. 

The third learning model is called the reinforcement learning in which the model is 

given feedback on the final outcome of its actions, either a positive (reward) or 

negative (punishment). Based on this feedback the model is left to teach itself 

how to maximize the rewards. [1, p. 789] This has been used with good results in 

game AI like with AlphaZero [3]. The AlphaZero can master games by being given 

only the basic rules of the game and then left to train through self-play. 

Artificial Neural Networks, also known as Deep learning are next step from ML. 

They try to mimic how human brain functions, meaning many simple 

Data point 
Sample linear regression 

0 1 2 3 4 5 6 7 8 9 10 11 
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KMeans Predictions (k = 2) 
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Figure 2: Example of Clustering of Results. 

interconnected processors or nodes which work with input data through layers as 

shown in example network in Figure 3. 
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Figure 3: Example of Neural Network. 

The nodes in the network have weights and threshold value. Once the input 

exceeds the node threshold, it is passed on the next layer on the network. [4] 

Where regular ML algorithms are verifiable by human how their predictions came 

to be, the deep networks might be so large that its impossible for human to work 

out exactly how the network came to its conclusion. Other notable difference is 

amount of time and processing power required for training. Where ML algorithm 

training can take several hours, typical training period for deep learning network 
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might take a week. Even as it takes a lot longer to train, neural networks allow the 

algorithms to scale beyond what regular machine learning algorithms can 

provide. [2, p. 11] 

3.2 Natural Language Processing 

NLP is “a subfield of AI that refers to computational approaches to process, 

understand, and generate human language.” [5, Ch. 1] One common task for NLP 

is to parse documents. This process starts by parsing input data in useable form 

using a parser. These steps may include speech-to-text processing to convert 

spoken language into text. Once data is text-based it is tokenized e.g. split into 

sequence of words, and they may be further tagged based by their Part-of-speech 

(POS) as verbs, nouns etc. to resolve some ambiguities. [6] Depending on task 

the tokens are usually normalized. Normalization is a process to reduce the 

superficial differences in tokens by use of synonym matching, unifying term casing 

and use of diacritics, removing stop words and similar methods. [7, p. 28]. 

Synonym matching attempts to match token with its synonym to reduce the 

amount distinct tokens. The stop words are common and/or irrelevant words in the 

given language which will not be needed for accurate search. For English, the list 

of stop words might include “the”, “a”, “an” etc. 

NLP is vast field, the IR described in upcoming Section 3.4 is a subset of NLP. 

Other common tasks where NLP is used include text classification, information 

extraction, topic modeling and machine translation. [8, Ch. 1] Text classification 

uses NLP to categorize given text based on the content, example use case would 

be email spam filtering. Other use for it could be to classify and thus organize 

massive amounts of data automatically. [8, Ch. 4] In information extraction text is 

parsed in attempt to identify and extract important segments of given problem 

domain out of text. The goal is to gather specific bits of information or 

ontologies. [9, p. 448] Ontologies describe objects and their features. [10, p. 2] 

These are stored in knowledge bases. Other use case would be to automatically 

apply tags to documents based on extracted parts of text [8, Ch. 5] Topic modeling 

is common method of NLP which is extensively used in document clustering and 



10 

organizing large collections of text data. [8, Ch. 7] 

The traditional heuristic NLP methods are still important building blocks, but the 

rise of computational resources has shifted the modern NLP to rely on ML as was 

presented Section 3.1. [5, Ch. 1] 

3.2.1 Language Models 

For NLP to help in above tasks, it needs to understand what it is working with. 

Natural languages are vague, ambiguous or cannot be formally defined which 

makes working with them hard. One option is to approximate the language with 

probabilistic language model. These models are one of the main tools used in 

NLP. These models may be used for many tasks. As they allow predicting what 

words are most likely to follow when given some input text, they can be used for 

text completion. Another common use is grammatical and spelling correction 

which can be implemented by calculating probabilities of word alternatives and 

pick the most likely. [1, p. 824] If there are models for multiple languages, these 

may be used to calculate most probable translation given text. 

Simplest model represents language as independent words hence the name 

bag-of-words model. These work by examining each word individually without any 

extra context. It is a crude method, but it yields good results in tasks such as 

classification. [1, p.824] 

An n-gram models extend the model to include context in it. Each word depends 

on the previous n words in n-gram model. [11, p.50] Simply put the n-gram tells 

how many units of history to consider when calculating probabilities. The first few 

n-grams are special cased and name unigram for 1-gram, bigram for 2-gram and 

trigram for 3-gram model. [1, p.824] N-gram models provide good results on 

sentiment analysis, spam detection, author attribution. An n-gram model working 

on n characters copes well with unknown words and compound words. It is 

particularly good at language identification and can achieve over 99% accuracy for 

short sentences. 
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3.2.2 Stemming and Lemmatization 

Stemming is process of identifying word stem of given word and algorithms using 

stemming are called stemmers. There exists various methods how stemming can 

be achieved, the program may strip inflected suffices from words by using 

language-specific rules. The process works on most words, but irregular words 

will return wrong results. Other alternative is to have dictionary of words where 

stemming is just a look-up. The process is fast, but it will not work for unknown 

words. As stemming reduces many words to same stem it increases recall of the 

search while harming precision. [7, p. 34] Each language have different rules of 

stemming, although there are common algorithms which provide results which are 

close enough in practice for many languages. 

The word stem returned by a stemmer might not be a valid root word in itself. For 

example using Snowball stemmer for words “run ran runs running runner” results 

in “run ran run run runner”, or by removing duplicates “run ran runner”. Another 

example where the stemmed version does not return a root word at all can be 

seen with words “categories category” which yields “categori categori”. 

Stemming algorithms have two main categories for errors. The algorithm might 

incorrectly reduce several words from different contexts into same word stem, this 

is called overstemming or a false positive. The second error is the opposite, 

multiple words which are related to same concept are not stemmed into same 

word stem. This is called understemming or a false negative. [11, p. 84] 

There exists various stemming algorithms or stemmers, here are few listed: [11, 

p. 83] 

Porter stem Popular algorithm which is simple and fast. Downside is that only 

supports English language. 

KStem Similar to Porter but less aggressive and faster 

Snowball stemmer Vastly improved version of the Porter stemmer by the same 

author, adds support for other languages in addition to English. 

Hunspell A combination of dictionary and rule-based stemmer supporting many 
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languages. 

Sometimes algorithmic stemming is not enough to get good results and further 

analysis of the text is needed. The Lemmatization is the process of finding the 

lemma for a given word by doing full morphological analysis for the text. [7, p. 33] 

Algorithms implementing it are called lemmatizers [7, p. 34]. This kind of analysis 

is more time-consuming than stemming but usually give more accurate results. 

The benefit of using a stemmer or a lemmatizer varies by language. For English 

language their usage brings quite modest benefit but for languages with more 

complex morphology such as Finnish the results are often better. [7, p. 46] 

3.3 Data Retrieval 

Data and Information retrievals are search methods. The distinction between them 

is vague but Table 1 replicated from Information Retrieval [12, Ch. 1] presents how 

methods on how to tell them apart. 

Table 1: Data Retrieval or Information Retrieval? 

Data Retrieval Information Retrieval 

Matching Exact match Partial match, best match 
Inference Deduction Induction 
Model Deterministic Probabilistic 
Classification Monothetic Polythetic 
Query language Artifial Natural 
Query specification Complete Incomplete 
Items wanted Matching Relevant 
Error response Sensitive Insensitive 

The data retrieval can be thought as fetching data the user already has idea 

where it exists in the system. This means the user may use artificial query 

language to express which records to fetch. Next section covers briefly methods 

of data retrieval before proceeding describing information retrieval in Section 3.4. 
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3.3.1 Data Retrieval Methods 

The methods used in data retrieval work by matches. Simplest methods used are 

equality tests, does the data match exactly the given search query. Problem with 

this kind of search is that the user must give the search term exactly as it is given 

in the data for it to yield a match. This is hard to use when there are multiple fields 

to search and the fields content become larger or user does not recall exactly 

what to search for. The next step up from equality test is to expand the search 

with pattern matching like the wildcard or truncate matching. Wildcard matching 

can specify patterns such as string starts with given prefix, ends with given suffix 

or contains given substring within it. 

To express more complex pattern a regular expressions can be used. Regular 

expressions are textual representation of pattern which is matched against string. 

It has rules such as “match text which begins with letter a and end in letter c”. This 

can be represented as regular expression “^a.*c$”. The “^” and “$” characters are 

anchors that anchor the matching to either start of search space or end of it. The 

“.” character has meaning of match any character and “*” has meaning preceding 

pattern needs to match zero or more times. 

To distinction between data and information retrieval blurs a bit when using 

techniques such as fuzzy matching where instead of given strict match/not match 

the algorithm gives degree of matching. The edit distance [13, p. 211] and n-gram 

algorithms provide good support in to handling typing errors. [11, p. 80] The edit 

distance algorithms compare given input strings by how many single character 

operations are required for the inputs to match each other. For example the 

Levenshtein distance algorithm calculates the metric by allowing insertion, 

deletion and changing of a single character. [13, p. 213] N-gram algorithms break 

the strings to be matched into sets of N characters and compare how many of 

these sets are shared between the input strings. 

Sometimes users know what they want but are unsure how write it down correctly, 

for example names of people and places. In these cases phonetic matching might 
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provide best result. They provide fuzzy matching based on the pronunciation of 

the words. Most well known of these kinds of algorithms is the Soundex [7, p. 63]. 

The algorithm calculates four character length hash code for input string based on 

its English pronunciation. Then different inputs can be compared for similarity by 

looking how many Soundex code characters are shared between the inputs. The 

method is simple and well understood making many other phonetic algorithms 

based on the idea of Soundex but improving it to work on other languages or 

cover more characters. 

3.4 Information Retrieval 

Earlier Section 3.3 covered data retrieval where user uses exact search queries to 

fetch data. The difficulty with such methods is that the user is required to know 

what to search for to succeed. IR is different from the data retrieval in that its 

probabilistic process making use of linguistic knowledge rather than a 

deterministic one. It uses approximate or fuzzy matching and results are ordered 

by how relevant they are for given user query. 

The goal of information retrieval system is to give its user the relevant information 

which is implemented by three main abstractions: [14, p. 2] 

• Presentation of documents 

• Presentation of user information need 

• Comparing the above two presentations for matches. 

To present documents the system needs to have them prepared and stored within 

its indexes. The second part is the user requesting some information from the 

system by formulating a query. The query is matched against the indices of the IR 

system to look for matches. The results are presented to the user, who then either 

accepts the result or gives feedback about incorrect results in a form new query. 

This gives the high-level model of the IR process which is presented in the 

Figure 4, the following sections cover each of the above steps in more detail. 

The IR system works by units of document. A document might be anything the IR 
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Figure 4: The Overview of the Information Retrieval Process. 

system is built to handle, but this thesis covers digital asset management systems 

so makes assumption that document is a digital file or part of it. A group of 

documents is called a collection or a corpus. [7, p. 4] 

Document consists of data which is usually either structured or unstructured. 

Structured data is based on some schema [15, p. 14]. The schema defines how 

the data is structured, so it is easy for machines to parse and handle as 

appropriate. Good example of structured data is simple Extensible Markup 

Language (XML) document with sample given in Listing 1. 

1 <note> 
2 <to>Instructor</to> 
3 <from>Me</from> 
4 <heading>Reminder</heading> 
5 <body>Do not forget to return the thesis!</body> 
6 </note> 

Listing 1: Sample XML Document Contents. 

Unstructured data is raw data, like plain text file which the machine can not parse 

without external aid. IR system do not require structured data to be able to work, 
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but it can provide additional context information which can be helpful to have. 

3.4.1 Document Preprocessing 

The document undergoes a various preprocessing steps before it or part of it gets 

stored in the system storage. If the document is a file in file system, the IR system 

needs to parse the contents of the file based on the file type and the text content is 

further processed. Preprocessing parses documents using NLP [9, p. 446] which 

was described in Section 3.2. During the preprocessing for IR the parser may 

replace term with a related term or synonym which helps to reduce the number of 

indexed terms and thus improve precision. [7, p. 29] Other common task is 

removing stop words, as it generally improves the precision of the search. [7, 

p. 27] Diacritics may also be removed from the terms so that “café” and “cafe” will 

match each other. [7, p. 29] 

Once the document has gone through preprocessing steps the results are indexed 

in the IR system. The most important indexing method is the inverted index [16, 

p. 16]. The inverted index is a kin to index which can be found at the end of the 

book. It stores each unique term and maps which document contains the term. In 

addition, the index might contain extra information such as weights and term 

frequencies [11, p. 47] Indexing in IR systems prepares the document so it can be 

later retrieved efficiently. There is two common indexing methods in use [14, 

p. 17]. Simplest indexing method is binary indexing were each word is either 

associated to the document or not. Other method called weighted indexing adds 

numerical weight value indicating how significant the word is for the given 

document. More information about weighting will be given in Section 3.4.2. 

3.4.2 Information Retrieval Models 

How the IR system derives the ranked list of potentially relevant documents from 

the given query is called the IR model [15, p. 15]. The model describes how the 

query and documents are represented, matched and how the query results are 

ranked. The traditional models are the Boolean, vector space and probabilistic 
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models. [17, p. 11] Though each individual IR system use their own model, they 

are usually derived from the traditional models detailed below. [17, p. 11] 

A B 

A ∩ B 

Figure 5: Example Venn Diagram of Boolean Union. 

In the Boolean model documents are represented as a set of terms and matching 

is done using logical Boolean AND, OR, NOT operators with sample given in 

Figure 5. [11, p. 48] Downside of the model is that the AND and OR operators are 

totalitarian. The AND operator between multiple search terms is too restrictive as 

all terms must exist in the document for it to match. If 3 out of 4 terms match will 

not yield a match in this model. Similar but opposite problem is in OR operator as 

it will include all documents where any of the terms exists leading to information 

overload. Some models provide more relaxed AND and OR operators that they 

yield a match when either of the terms matches [18, p. 100]. For example “foo 

AND bar” would give match for documents with foo but not having bar in them. 

Primary problem with Boolean model is that results are not easily ranked by 

relevance. The second traditional IR model called vector space model attempts to 

improve this by using vectors and matrices. In Figure 6. In vector space model 

documents and the search query are mapped into N -dimensional vector space as 

shown in Figure 6. The model returns the matches which are similar enough and 

ranks them according to the angle between them and the query vector. [11, p. 49] 

Usually each term in a document is represented by single vector in the vector 

space. The ranking of vectors may be done using the cosine similarity [7, p. 158] 

which ranks based on how closely they point into same direction. The Equation 1 

~presents cosine similarity between vectors ~a and b. 
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Figure 6: Example of Vector Space Model. 

The last of traditional models is called probabilistic model which uses probabilities 

to calculate what is the probability that given document is relevant to given search 

term. [19, p. 5] The most basic method to achieve this is to use Bayes’ Theorem 

presented in Equation 2 to calculate the probability that document D is relevant for 

search term T : [15, p. 18] 

These are only the traditional models of IR. There also exists hybrid models such 

as extended boolean model [7, p. 14] which expands the standard boolean model 

with capabilities from vector space model allowing it to provide proximity matching 

and phrase searches. 

Weights 

Ranking of search results depends on the model used and the terms in the 

document. Boolean model treats all matched terms equally. To have some degree 

of relevancy ranking in the results the model may segment each document into 

smaller parts called zones [7, p. 110]. Usually document title, abstract and body 
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are treated as different zones. Each zone may use its own index and by using 

several zones allows the IR system to do weighted zone scoring. [7, p. 110] The 

scoring allows boolean query to rank matching documents based on which zone 

the match was found for which the method also called ranked boolean retrieval [7, 

p. 112]. These weighs may be given by the user or automatically learned from 

examples. This is called machine-learned relevance [7, p.113]. The basics of the 

ML were given in Section 3.1. 

The above only considers the existence of a search term, but typically it is 

beneficial to consider the frequency of a term as well. There are few common 

equations when dealing with term frequencies and most basic one is simple count 

of term occurrences in a corpus: 

NX 
Fi = fi,j (3) 

j=1 

The Equation 3 defines the term frequency Fi of term i as sum of occurrences of 

term i in each document in a corpus of N documents. [18, p. 101] This equation 

serves as good base, but it has problem that term counts do not directly relate to 

increase in relevancy, document with 1000 terms over one with 100 is not 

necessarily ten times more relevant. 

NX 
TFi = 1 + log fi,j (4) 

j=1 

Equation 4 uses logarithm to smooth out the score. This effectively changes the 

document into a bag of words and does ranking based solely on how many terms 

match the search query. [7, p. 117] Problem with above matching is that treats 

each term equally, but some terms are not really important for relevance such as 

stop words and other frequent terms within the corpus. If the all documents 

contain the term “medicine” it does not really add value as query term. To cope 

with these a helpful metric is document frequency dfi, a number of documents 
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which contain term i [7, p. 118] which may be used to give more weight to search 

terms which occur less frequently in the corpus. This is called the inverse 

document frequency IDFi: 

Equation 5 shows inverse document frequency IDFi where N is the number of 

documents in the corpus and dfi number of documents containing term i. The idea 

in inverse document frequency is that terms which occur on fewer documents 

would give more relevant results. [20, p. 5] The term frequency and inverse 

document frequency are commonly combined and used as weights in vector 

space models. [18, p. 101] 

T F IDFi,j = TFi,j ∗ IDFi (6) 

3.4.3 Query Expansion 

Challenge in the information retrieval is that queries given by users leave room for 

interpretation. This makes the information retrieval system unsure what the user 

has meant by the given query, situations where search term exits in two sets of 

documents with vastly different meanings. For example when given search term 

“bank”, does the user want to have information on river banks and financial 

institutions. Users of IR system can remedy this by refining their queries manually 

but the system itself can help to find the correct results by method of query 

expansion [14, p. 28]. There exists either global or local methods for achieve 

this. [7, p. 214] In global methods the system may reformulate or expand the 

query terms automatically without knowing the result. The local methods use 

iterative method with access to the result set and may include user in helping to 

hone on the target documents. The basic local methods are: 

• relevancy feedback 
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• pseudo relevance feedback (blind feedback) 

• indirect relevancy feedback. 

Relevancy feedback is most commonly used method. [7, p. 177] It is used after 

the user has given search query and receives initial results. From the results the 

user marks relevant and non-relevant matches which gives system feedback it 

can use to find similar documents and repeat the feedback gathering. This 

process can take multiple iterations. The method is most suitable in cases where 

the user does not know the system documents well. Relevancy feedback allows 

user to slowly work towards the goal and gain better understanding of the data. 

The pseudo relevance feedback is automatic process which drops the user out of 

the feedback loop, the system gets the initial result set but instead of asking user 

feedback the system blindly assumes that some count of top-most documents are 

relevant and uses these to refine the search automatically. This works most of the 

time but might skew the results in wrong direction if the initial query was not very 

accurate. Indirect relevancy feedback is another automatic process which uses 

some indirect method of gathering the feedback. For example in a web search 

engine the engine might use how many times user has clicked the document or 

web page to rank those higher in results. 

3.4.4 Evaluation 

To retrieve information the user of the system needs to provide a query on what 

information to get. After the information is retrieved we can measure quality and 

quantity of the process. The documents in a result set returned the search query 

may be classified into four groups as follows: [12, p. 114] 

• retrieved and relevant (true positive) 

• not retrieved but relevant (false negative) 

• retrieved but irrelevant (false positive) 

• not retrieved and irrelevant (true negative). 

The IR process uses binary classification to determine if the document it is 

processing is relevant or not. The results of the classification can then be 
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collected into an 2 × 2 confusion matrix as shown in Table 2, on one axis list the 

expected results and other lists actual results. 

Table 2: 2 × 2 Confusion Matrix. 

Expected positive Expected negative 

Actual positive True positive False negative 
Actual negative False negative True negative 

The main performance measurements in information retrieval are precision and 

recall of the search query results. The precision represents the quality of the 

information retrieval, e.g. what fraction of the results were relevant for the query. It 

is calculated as a percentage comparing how many true positive tp matches we 

got out of all positive, either true positive tp or false positive fp matches. [7, p. 5] 

The another main measurement is quantity of the search results or recall which is 

the fraction of relevant documents from all documents were returned by query. [7, 

p. 5]. It is calculated as a percentage of correctly identified documents tp out of all 

true positives and false negatives tp + fn in the returned documents. 

Sometimes it is easier to use single measurement for the information retrieval 

which combines both precision P and recall R. One option is to define F-measure 

for it: 
 

The β parameter allows adjusting which of the recall or precision is weighted 

more. β values larger than one weight the recall more, while β values less than 

one weight precision more. Having the β as 1 weights the precision and recall 
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equally and its most used metric and is called F1 score: 

While these equations allow to measure the effectiveness of an information 

retrieval system they are hard to use in practice as their use require the 

knowledge of total amount of relevant items in the system. [18, p. 103] 

3.5 Data and Information Retrieval Tools 

There are many tools which implement data and information retrieval features. For 

this thesis the two most significant tools are relational databases and search 

engines to gain understanding of their basic principles and how they may be used 

for implementing searches. 

3.5.1 Relational Databases 

Relational databases or Relational Database Management System (RDBMS) are 

systems which store and index data and allow users to query it using relational 

operations. [21] The default query method in relational databases is using 

declarative language called Structured Query Language (SQL) [21, p. 111] The 

use of declarative, artificial query language and use of exact matching makes 

databases primarily use data retrieval methods for accessing data. The databases 

are commonly used as primary data stores of DAM systems because of their 

Atomicity, Consistency, Integrity, Durability (ACID) transaction properties offer 

good guarantees that data stored in them is kept safe: [22, Ch. 13] 

Atomicity 

All modifications in a database transaction must either happen or be 

reverted as a whole. It is critical that there will not be any half-applied 

transactions on any error situation. 

Consistency 
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Actions in a database transaction which violate the database consistency 

rules must be prevented from executing and whole transaction to rolled back 

to previous state. This ensures that each database state follows consistency 

rules set in the database. 

Isolation 

When multiple transactions are executing they must not prevent others from 

executing. Also, the transactions should not see the intermediate changes of 

other transactions. This does not specify in which order the transactions 

should be applied to the database, only that they do not interfere with one 

another. 

Durability 

Database must ensure that transactions committed to database are not lost. 

This is usually achieved by using transaction logs. The transactions are 

written into the log before actually storing the transaction to the database. 

The database writing might be slow process so if some error happens during 

the database writing, the database can be rolled back to previous stable 

state and the missed transactions replayed from the transaction log in to the 

database. 

The RDBMS represent data using the relational data model. In it a collection of 

tables is used to represent data and relationships among the data. The relational 

model is a combination of three components: [21, p. 67] 

Structural Part The database is defined as a collection of relations. 

Integrity Part The integrity is maintained by using primary and foreign keys. 

Manipulative Part The database is manipulated by relational algebra and 

calculus. 

Relational database systems use various indexing methods to improve the query 

execution time. Indexes are used similar to as table of contents in a book. Instead 

of going through the whole book to find out section about a specific topic, the 

reader can look at the table of contents where the section is and skip to the right 

place. These kinds of indexes are called forward indexes. [11, p. 47] 
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Although relational databases use data retrieval methods most modern database 

systems allow the use of Full Text Search (FTS) bringing some IR functionality in 

them. [7, p. 195] 

3.5.2 Search Engines 

“Search engines are one of the most widely used implementations of IR 

systems.” [11, p. 40] They aim to satisfy user information needs by retrieving 

relevant documents from their index to satisfy user search queries. The search 

engines may be broadly categorized into following groups: [11, p. 40] 

Web search Search engine focused on indexing web content and content therein. 

Vertical search Search engine dedicated on searching specific domain, such as 

finance or healthcare. Very specialized to their own domain. 

Desktop search Search engine to indexing contents of files in users computer. 

Others Search engines focusing of search beyond texts, like image, audio 

fingerprints or speech recognition. 

The exact features a search engine provides vary but common features in them 

may contain following features: [23] 

Indexing 

They offer many types of indices, but the most common one is the inverted 

index. Indices are used to improve the response times of the system. 

Search-As-You-Type 

Search-as-you-type or “instant search” automatically run search while the 

user is typing in the search query, thus interactively filtering results. 

Fuzzy search 

They provide various methods for approximate matching of search terms. 

These are done to cope with user making typing mistakes or not knowing 

the exact written form of the result. 

Truncation 

Truncation allows the matching to skip parts of the text, for example so that 

the end of the search term is ignored when searching, effectively doing 
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prefix-only matching. This helps searches were user knows some part of 

wanted result but not the whole entry. 

Normalization 

They normalize the search documents so that the key terms are easier to 

search offering many alternatives such as down casing, Unicode 

normalization etc. 

Match highlighting 

Search engines might offer methods to see where in the document a match 

for user query was found. This is for providing good user experience, so the 

user of the system can visually see where the match occurred. 

The above lists quite basic features in search engines, but they commonly have 

many features and options to fine-tune them for each search case. Some of more 

advanced search features supported might contain following: [11, p. 209] 

Sponsored search 

Aim is to boost given documents so they appear on the top of search results 

or alternatively exclude some matches from results. This can be used for 

quickly applying fixes for production issues as well by hiding the wrong 

results until a proper fix is implemented. 

Spell-checking 

After user has typed a search term, the system might automatically offer to 

autocorrect it. For example mistyped word is automatically replaced by a 

correct term if found in the indexes. 

Autocomplete 

also known as type-ahead search where the search engine offers possible 

completions for the search term user is typing and the list of offers is refined 

after each new character. Benefit of using autocomplete is that it avoids 

spelling mistakes and reduce the effort to use the system as users will not 

need to type full search terms themselves. This also allows implementing 

system provided recommendations by offering better search terms. 

Document similarity 
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They can offer “More-like this” documents in addition to regular search 

results. 

3.6 Metadata 

A document may contain additional information besides its content. This is called 

metadata which may be defined as “data about data”. [18, p. 9] Metadata is 

commonly used to give document creation times, author, perhaps the program 

name used in creation of the document. This data may be embedded in the 

document itself or stored separately from it. [18, p. 7] Working with metadata is 

made difficult by the lack of unified standard which makes interoperability between 

programs working with document harder. The rise of Internet in mid-1990s gave a 

need to have language- and discipline agnostic metadata standard to categorize 

and enhance an information retrieval for web content [18, p. 7]. Metadata standard 

called Dublin Core Metadata Initiative (DCMI) was created to improve search and 

discoverability of digital information resources. [18, p. 95] The DCMI may be 

extended to cover the needs of specific domain by creating custom profiles. The 

use of well-established standard allows easier data exchange of data and aids 

making the conventions and intentions used with metadata clearer [18, p. 49]. 

There are many purposes for the need of metadata and the Haynes used 

following six key points in his book Metadata for Information Management and 

Retrieval: [18, p. 15] 

1. Resource identification and description 

2. Retrieving information 

3. Managing information resources 

4. Managing intellectual property rights 

5. Supporting e-commerce and e-goverment 

6. Information governance 

In context of DAM the first four points are most relevant so the last two are 

omitted. Any information management system requires a method to accurately 

identify things. [18, p. 78] This usually means adding some uniquely identifying 



28 

metadata field for the resource such as Universally Unique Identifier (UUID) or 

similar entry. Another important role with metadata is to provide accurate 

description for the information resource, who made it (author/creator), when it was 

made (date of creation), what it’s called (title) and any additional information 

(description). [18, p. 78] 

Accurate metadata is also essential in providing adequate search for 

resources. [18, p. 96] Metadata may be used for adding semantic context for 

resource which can be used by search engine and application and use of 

metadata standards such as DCMI aids in this process. [18, p. 104] 

One problem area for search is multimedia records, such as images and videos as 

they are not composed of text. [18, p. 108] One method for having information 

retrieval on multimedia would be adding face recognition, speech recognition and 

similar processes to enrich the metadata.[18, p. 109] This would allow use of IR 

methods described further in Section 3.4 to retrieve records based on the 

keywords. Alternative would be to use methods such as Content-Based Image 

Retrieval (CBIR) [24] which analyzes query image to find visually similar 

content. [24, p.2]. Both of these require ML which was described in Section 3.1. 

Metadata should be utilized at each step of the record lifecycle. Haynes presents 

simplified information record lifecycle consisting of following steps: [18, p. 115] 

Creation of information The step when record is created, essentially capturing 

the content and attached metadata. 

Distribution and use The created records are used for their purpose, either 

internally or by distributing them publicly to users. 

Review Information contained in a record may become stale, so it needs to be 

reviewed to keep it accurate. 

Preserve and store The record needs to be stored securely even as the 

technology changes. 

Dispose Once record becomes obsolete it should be disposed from active use, 

either by deleting or archiving it to long-term storage. 
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Transform Old records may be used as base on creating a new record, starting 

the lifecycle from the beginning. 

To manage intellectual property rights the record metadata should contain 
following fields at minimum: [18, p. 128] 

• Name of the author 

• Time of creation 

• Copyright associated with the work 

• publication status 

• Date that rights research was done 

As demonstrated above, metadata has huge impact on providing accurate 

information retrieval methods in a system. 

3.7 Digital Asset Management 

DAM is a system that stores, manages and distributes digital assets in a controlled 

way. They may do this as single system or in combination with other systems. [25, 

Ch. 1] DAM aid in reducing search cost and digital preservation of assets [25, 

Ch. 2]. A digital asset is any digital data which has rights to use attached to it [22, 

Intro]. Public data without any usage restrictions is not considered an asset. 

Different organization teams might each have their own system to manage their 

assets creating information silos[25, Ch. 2]. These silos make it hard to figure out 

which version of assets to use and causes organization to use many redundant 

systems for asset management. [25, Ch. 2] They also increase effort for locating 

wanted assets, each system needs to be known and searched separately. DAM 

aid in this by providing centralized system to ease finding the relevant 

information. [22, Ch. 9] 

The DAM systems do not seek to replace other tools used in enterprises, rather 

the aim is to have the DAM system to glue different applications together. [22, 

Ch. 6] The typical components included in a DAM system include following: 

• Content repository 
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• Digital asset management application 

• Databases 

• Search engine 

• Indexing workstations 

• Rights management application 

• Web portal 

The content repository is place to store the asset files, be it local file system, 

network share, or cloud storage. One commonly used option for storing the asset 

metadata is to keep them in relational databases. [22, Ch. 13] They are mature 

and stable systems so provide operational safety. The original relational model 

was extended with object-oriented approach creating object-relational databases 

allowing them to store object which allow storing mark-up files such as XML data 

directly to database [22, Ch. 13]. The XML is commonly used when working with 

metadata so to be able to directly store it into database works well for DAM use 

case. [18, p. 19] Search engine is used to index the asset metadata and contents 

for providing accurate search. Indexing workstations might be required if the 

storing of asset requires considerable processing, in cases like transferring analog 

film content into digital form. Rights management would be used to have Digital 

Rights Management (DRM) features for the assets. These could be utilized to 

while distributing assets so that once they expire they would no longer be 

available. The web portal is used for providing access to system functionalities 

and finally the DAM application itself would be in the background managing all 

these components. 

The DAM systems can be categorized based on what kind of assets they are 

managing. Common subsets of DAM systems may include following: [25, Ch. 1] 

Brand Asset Management (BAM) tailored help company branding, what are the 

latest brand images to use etc. 

Production Asset Management (PAM) is tailored to tracking frequently 

changing assets. 

Library Asset Management (LAM) tailored to cataloging fairly static set of 

assets such as videos or documents. 
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Media Asset Management (MAM) tailored to handling media files; images and 

videos. 

Document Management (DM) System optimized for handling of documents and 

to some extent media files, for example the needs of a legal and human 

resources. 

Enterprise Content Management (ECM) DAM system containing links to many 

other systems to form larger system. 

To make matters more complicated there exists systems that offer similar features 

as DAM but not being part of it [25, Intro]. These are Content Management 

System (CMS) and Web Content Management (WCM). These tools are meant 

intended for web page creation and management, and they do provide long-term 

asset storage and sophisticated search features even though they otherwise are 

similar to DAM applications. [25, Intro] 

The DAM Foundation as cited in [26, p.15] define following features which are 

exhibited by DAM systems: 

Asset Ingestion Assets may be added into system individually or en masse. The 

system handles identification of an asset by use of unique identifiers. 

Asset Security DAM system employ Access Control List (ACL) to control which 

users may access assets within the system. 

Metadata Assets are stored as data files containing the asset contents along with 

the metadata defining additional information. The system helps to manage 

the metadata. 

Transformation The system allows transforming assets to various formats in 

automatic methods, such as creating thumbnails or converting images to 

different common formats. 

Enrichment The system help enrich the asset metadata by collecting statistics on 

their use throughout asset lifecycle. 

Versioning The DAM systems commonly include versioning support to track how 

the original asset has evolved in the system. 
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Workflows The systems may define workflows to aid users in creating, managing 

and process assets in the system. 

Search DAM systems employ powerful search methods to increase 

discoverability of assets. 

Previews Previews are used to increase productivity, users may quickly scan 

search results for the correct version instead of downloading full version of 

each compared asset. 

Publishing The assets stored within a DAM may be shared to users outside the 

DAM in controlled manner. 

The users of a DAM are commonly using one of three kinds of search methods, 

navigational, direct or faceted search. The navigational search is the most basic 

one where user browse categories and click through assets to see what they 

might contain. In direct search the user is executing a search query and 

examining the query results. The faceted search extends the direct search by 

having the user using facets or groups to further limit the results by those by facets 

such as color or file type. [25, Ch. 8] 
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4 Project Specification 

This chapter describes the details of the new DAM application. From technical 

perspective it presents the system’s current architecture, how it is built and what 

kind of features it has. After examining the new system the chapter moves on to 

describing view points which are to be used to analyze the system starting with 

the results of project management interviews. These define project management’s 

views on how the search features of the system should be improved and what 

would be the initial scope for them. The next view point is from the users of the 

system. A customer survey was conducted to gather data on what search features 

would be most needed in their work. Next the view point is from past user 

behavior by analyzing server logs from old system to see what kind of searches 

are used in it. As the design goal of the search feature was to be “simple as 

Google” this research includes a brief analysis on what this could mean by looking 

at the features in Google search. Finally, the chapter includes a review of the 

search related features present in the major DAM providers, what others have 

found to be beneficial features on asset searching. 

4.1 System Overview 

The DAM application in this case study is a new system developed to replace old, 

more complex system. The new application architecture follows the microservice 

design where the system consists of many individual components which 

communicate with each other through some predefined protocol, in this case, by 

using Application Programming Interface using Representational State Transfer 

(REST-API) over Hypertext Transfer Protocol (HTTP). The benefit from design 

over traditional monolithic design is the loose coupling which allows each part to 

be worked on separately, possibly by separate teams. Communication between 

instances is done through the Application Programming Interface (API), so any 

internal changes do not need to synced between the teams. This separation also 

allows redesigning part of the application without huge refactoring of the whole 

system. The DAM service is self-hosted using Kubernetes, an open-source tool 
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for automating the management of containers originally developed at Google2. 

The system was designed using self-hosted solutions as various customer 

agreements at the design time prevented from hosting the system on an external 

cloud providers. 

The system is developed using TypeScript3 programming language which is a 

typed superset of JavaScript. The language adds strong typing support with aim 

to help developers avoid many runtime issues with the applications as these are 

caught during the build process by the type system. 

The overall architecture is presented in Figure 7. It follows that of the multitier 

design where the system has a presentation tier to offering User Interface (UI) for 

user interaction, application tier handling the business logic and controlling 

accesses and finally the data tier where the actual system data is stored. [22, 

Ch. 6] 

Frontend Publishing 

APIInternal utilities 

Database File System 

Figure 7: Overview of New DAM System Application Architecture. 

The presentation tier consists of a frontend and publishing applications. The 

frontend is a React-based application which runs on the client browser and 

provides users with easy-to-use interface to work with the DAM presented in the 

Figure 8. A sample of The frontend passes user actions to the backend API to 

make changes in the system. 

Other component on the presentation tier component is the publishing application. 

The application is used by the DAM to publish or share access to any give asset. 

2https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/ 
3https://www.typescriptlang.org/ 

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.typescriptlang.org/
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Figure 8: Product Search on the New DAM System Frontend. 

This is done to give unauthenticated users limited access to some specific version 

of an asset. Each publishing application is tailored individually to each customer, 

but they share same general principle. 

The main functionality and business logic of the system is done on the application 

tier. The tier is centered on the backend application which provides the system 

REST-API for the frontend and any other connecting services. The application tier 

also includes many internal components which are only accessible by the API. 

The application tier is the only one which has access to the system data. The data 

tier is split between shared network drive storing the asset files and a RDBMS 

storing the asset metadata. The RDBMS used by the new system is PostgreSQL4 

which offers several extensions to the standard SQL which are leveraged by the 

new system, particularly the FTS [27, p. 441]. 

The DAM system in under study can be classified as a mix of a Production Asset 

Management (PAM) and Document Management System (DMS) as it offers 

4https://www.postgresql.org/ 

https://www.postgresql.org/
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following features: 

Role-Base Access Control Access to assets and system functionality is 

controlled by Role-Based Access Control (RBAC). 

Workflow Users of the system may collaborate in drafting a new asset. 

Versioning Assets stored in the system are automatically versioned. 

Change history The system tracks change history for each asset. 

Grouping Assets can be manually placed into groups. 

Searching Assets can be searched using free-text search and/or filtered by 

group, type or language. 

Distribution Assets can be published immediately or scheduled for later 

publishing. 

Metadata management system allows users define templates for metadata for 

each asset type. 

The system is targeted to domestic B2B market, which means it needs to support 

three languages: Finnish, Swedish and English. The system is offered as a SaaS 

application for the customers. The system multi-tenant meaning a single instance 

is providing service for multiple customers. 

The data amounts handled by the system have been quite small, staying in the 

gigabyte range, but this is expected to grow rapidly into hundreds of gigabytes in 

the near future. From production asset management side the application offers 

workflows. The workflows allow users to collaborate in drafting a new asset. 

These drafts can be started from scratch or by using existing asset as a template. 

Currently, the assets managed by the system include mostly text documents and 

some image files. The assets in new system are represented by products and 

renditions. A product represents a single top-level asset information and each 

product has the following information: 

name the name of the product. 

type the type of the product, which is used to set the metadata fields of the 

product. 
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description free-text description of the product. 

product code user specified product code identifying the product, may be 

auto-generated by the system. 

content language the product content language. 

metadata Data giving out product type specific metadata, publishing unit, these 

use customer given rules. 

created by who created the product in the system. 

The above lists the shared properties present in each product. Each product also 

has type which defines template for what kind of metadata may be set for given 

product. The template defines which additional fields of metadata are mandatory 

and optional on each product using this type. In addition, each product may have 

renditions. A rendition or version represent the file asset managed by the system. 

Renditions store similar kind of metadata as products. The renditions use 

rendition type which specifies what metadata is available for given rendition. 

rendition type type of rendition, sets the allowed metadata. 

product id which product this rendition belongs to. 

created by who created the rendition in the system. 

version id user given version identifier. 

published timestamp when the rendition was published. 

expired timestamp when the rendition was expired. 

version num internal version number to track the latest renditions. 

file path internal file path where rendition data is found. 

file size size of the rendition file. 

external filename the external name for the rendition file. 

metadata the rendition metadata, determined by the rendition type. 

Certain rendition types allow distributing the rendition asset in process called 

publishing which allows giving access to the given rendition within some 

publishing channel. These are tailored for each customer as each of them have 

different publishing needs, although the general process is similar in each case. 

The user is prompted to give time range for when the rendition status should be 
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public when saving a rendition into the system. These are controlled by setting 

published and expire date fields when saving a new rendition. The system will use 

these dates to handle the technical side of publishing when the time is due. The 

default method for the publishing is to mark the rendition public and have the 

systems publishing component to access the rendition. 

There exists two methods on making assets public in the system. The first one is 

simple link-based publishing where the backend API component generates a link 

leading to the publishing component. Accessing the link allows anonymous user to 

download the asset file while the link is marked public by the system. The system 

may generate two kinds of these links, either direct links to specific rendition or a 

floating link which always returns the latest public version of rendition. 

Some customers use more customized publishing methods where public assets 

are instead transferred to customer intranet application for their own internal 

processing pipelines. For others the publishing component offers simple web 

application providing form-based UI where external users may access, browse 

and search through public renditions. 

4.1.1 System Search Features 

The main search methods of the system are provided by two API endpoints: 

• /search/products 

• /search/productsWithRenditions 

Difference between the endpoints is that first one searches for matches from all 

products in the system. The latter limits the search to only those products which 

have at least a single rendition. It also extends the search options by allowing to 

limit the results by rendition status which allows free text search for products 

which have published renditions. Both of the endpoints offer following search 

options to limit the results: 

keywords Filter search by given free text query. 
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product type id Filter search to specific product types. 

language Filter search to specific languages. 

product groups Filter search to given product groups. 

parent group Filter search to those products belonging to given group or any of 

its subgroups. 

owner Filter search to products owned by given user. 

The user of the DAM system may trigger the asset search process from three 

places: the search bar in frontend application, same in publishing application and 

accessing the system REST-API directly. 

The search query transformation is happening on two parts of the system. The 

first one is done by the frontend which transforms the user’s frontend component 

manipulations into a REST-API call on the backend component. The second 

query transformation is done when the backend transforms the REST-API call 

parameters into a SQL query to get the information the user has requested from 

the database. 

The current search uses mix of information and data retrieval methods. The 

free-text query entered in search bar triggers a full text search in the database and 

various filters use data retrieval options to restrict the full text search to a known 

subset of system data. 

One of the problems in the system search is that there is single search interface 

but customer use-cases for it are different. The systems history is with document 

management where customers have used the system to version and design their 

internally and externally shared documents. The workflows in this have relied 

heavily on each asset to having their own unique product code which is used to 

sync assets with other systems. Newer customers have more media-oriented 

needs, they use the DAM to store images and video. Their search requirements 

focus more on the content of the assets themselves, for example searching assets 

containing happy people with laptops in them. Difficulty is how to keep the search 

general enough but still able to work with each customer workflows. 
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4.1.2 Issues in Current Search 

The new system exhibited some issues in the implemented search feature at the 

beginning of this study. These were uncovered by actual system users in their 

daily work and were reported to the project management. Most of these were 

inquiries on why the system did not return the expected result for given search 

query. The user reports were analyzed and they could be grouped into five 

different issues in the system. 

The first issue was that the database trigger function indexed wrong terms. The 

trigger handled the username field so that ‘@.+‘ characters in it are replaced by 

space character. The system was designed so that users email address is used 

as usernames, so they are usually given in format 

first_name.last_name@company-domain.fi. The trigger attempted split this into 

separate fields, so search can be done by first or last name. This had the side 

effect that the search using full email address would not return matches anymore 

as the full email address was no longer indexed and the same modification was 

not done on query time. 

The trigger also used “simple” dictionary to parse all fields. Dictionary is a set of 

configuration options which specify what operations are used during parsing the 

field into a tsvector. Using “simple” meant that the system was only doing minimal 

normalization to the input, effectively just lower casing it before storing it to index. 

The search parser was noticed to have few problems. First one was that when 

users gave multiple search terms in the search field the system did not return all 

the expected results. Examining this more closely this was caused by flawed 

implementation shown in Listing 13 which effectively makes the application search 

to do phrase searches by default and use prefix matching only for the last term 

which does not seem what the author has intended. 

Other related issue was identified when searching only product codes where 

giving only part of the code did not return match. By looking at the executed 

search queries and their parsing more closely it was related on the database 

mailto:first_name.last_name@company-domain.fi
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parsing error causing hyphens leading a number to be parsed as a negative 

numbers leading to incorrect results in some cases. 

Final issue in the search is also related to the product code searching which is 

commonly used search term by users. Users need to query product codes such 

as “ABC 2/2.10”, but these are currently not found by the search implementation. 

Table 3: Summary of Known Issues with Current Search. 

Issues 

email searching is not working as intended 
non-optimal indexing using “simple” dictionary 
phrase searches done incorrectly by default 
product code parsing is not consistent 
product code matching with “special characters” 

The Table 3 presents identified issues in the new DAM search at the time of the 

thesis. The search improvements should focus on fixing the above while providing 

the wanted features for improving the user experience for the system users. 

4.2 Views on the System Search 

Besides just fixing existing issues the primary aim of the study was to identify what 

features would be required to be in it. Research was done to gain better 

understanding what features they would be, gathering information from various 

view points. The first view point was from the current project management by 

doing an in-depth interview with them. 

The interview was done using qualitative approach to get wide overview of whole 

system state. The questions covered in the interview are listed in Appendix 1, but 

the discussions spread to other areas besides the listed questions during the 

interview. The aim of the interview was to gain insight on what were the current 

issues and how the management saw that the application would be used in the 

future now that they and customers had some experience on using the new 

system. 
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The search features of the new system were not specified accurately during the 

initial system design. The project management gave rough overview “the search 

must be fast, simple to use and should cover all data” and left the practical 

technical implementation to the subcontractor. The subcontractor did not question 

the description and project management did not think they would have needed to 

specify the minute details of the search. The current system search is based on 

the vague original requirements which has seen some small improvements since. 

In addition to this in-depth interview a user survey was conducted. The survey 

was done using quantitative approach and the survey questions can be found in 

Appendix 3. The customer key users were asked for consent for the survey to be 

done and to get up-to-date user lists who to invite partaking in the survey. The 

invited users were given approximately three weeks to answer the survey. The 

survey was done anonymously unless the user agreed to be interviewed by giving 

an email at the end of the survey. The aim of the survey was to gather users views 

on how well the new systems features worked for them and what kind of search 

features they felt were useful in their work. 

One additional view point was to look up past user search behavior by analyzing 

old DAM system server logs to see what kind of searches have been done in the 

past. Unfortunately the server log rotation had already deleted old logs which 

would have shown past behavior of the customers which were already migrated 

into the new system. But there are few larger customers still using the old system 

waiting for migration. By looking the searches of all remaining customers the 

free-text search query commonly contained only a single term. This was either a 

product code or a single word. These two options seem to cover roughly 90 

percent of the queries seen in the logs. Rest of the queries were divided between 

phrase searches like user has copied and pasted the product name if it is 

composed of multiple words or by using multiple search terms. These search 

terms seemed to be simple words mentioned in the document, for example “form”, 

“cat” etc. There have been studies on user search behavior [28, p.180] on search 

engines showing that most of the time users search queries contain only two 

terms on average. The findings from old system appear to validate the analysis 
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results of the previous studies. 

The next view point was to analyze Google web search as it was one of the 

original design goals of the search. The aim is to define what “Google-like” search 

would mean. The Google web search is minimalist and simple in its design as 

shown in Figure 9. It presents user with “a large search box and the simple, 

uncluttered user interface” [29, p. 62]. Once Google has processed search query 

given by user, the results are listed below the bar. Second distinguished feature is 

the search speed as results for search query are determined in well under one 

second. [29, p. 63] The results themselves are ranked by relevance. The results 

also include small amount of context where the match was found along the 

returned Universal Resource Locator (URL). This simple UI hides the complexities 

of the search mechanics running in the background which today include 

sophisticated NLP and ML technologies. [30] The search engine has the largest 

Figure 9: Example of Google Web Search Page. 

market share5, so making the DAM search work in similar manner would make its 

use familiar to a wide audience. Besides the search bar, the Google’s search may 

also be used with more fine-grained filters when using the advanced search6. This 

simple search interface, keyword search, and separation of quick and advanced 

5https://www.netmarketshare.com/search-engine-market-share 
6https://www.google.com/advanced_search 

https://www.netmarketshare.com/search-engine-market-share
https://www.google.com/advanced_search
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search are directly transferable to DAM system even though they operate in 

different domains. 

Last view point in this study is to look at the current market leaders in the DAM 

market. This was done to help see where market seems to be heading instead of 

just identifying and fixing issues in current search implementation. These larger 

systems show what features have been seen as beneficial in DAM systems, so it 

helps to build a road map for future improvements. 

Table 4: Summary of View Points to System Analysis. 

View Point 

Company requirements in form of project management interview 
Feedback from current users by use of survey 
Analysis of past user behaviour from old system logs 
Defining more accurate definition for original “Google-like” search feature 
Market analysis by examining DAM market leaders products 
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5 The Requirement Specification 

The aim of this chapter is to present the findings of view points in Table 4 and use 

them to generate requirements on what kind of search features the DAM system 

should provide to serve current and future needs. 

The first and most important views for system requirement came from project 

management. They were interviewed using open questions to cover wide range of 

ideas for the DAM search. The results of the interview are presented in the 

Appendix 2. Comparing each interviewee’s views showed that the management 

did not have unified goals for the search improvements. This study focuses on 

features all interviewees agreed were essential to have in the system. The 

interviews covered many topics but the Table 5 collects priorities of the uncovered 

main points. The table omits the column for “wish it had” features as it did not 

have any values. 

Table 5: Summary of Project Management’s Wanted Features. 

Feature Must have Should have Could have 

Sub-second search times x 
File metadata indexing x 
File content indexing x 
Image recognition x 
Speech-to-text x 
Machine translation x 
Extended search scope x 
Free text search x 
Truncate search x 
Multiple search terms x 
Phrase search x 
Relevance ranking x 
Autocomplete x 
Autocorrect x 
Search-as-you-type x 
User search history x 

The Table 5 demonstrates that management roughly want the system to include 
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keyword-based FTS and extend the material that should be searchable. Next 

steps would be to extend the search to multimedia files such as images and 

videos. Once these would have been implemented the search could be extended 

to cover more advanced searches such as autocorrect. 

Based on the interview findings, a customer survey was created and can be found 

as Appendix 3. It was sent to those system users which had been using the new 

system for some time to gather their views on how the search feature should 

function. Based on the prioritization definitions given in Table 17 the required 

features based on the customer survey results are collected in Table 6. 

Table 6: Summary of the Customer Survey Results. 

Feature Priority (total) Priority (positive) 

Wildcard or truncate search Must-have (14) Must-have (14) 
Free text search Must-have (14) Must-have (15) 
Ranking of search results Must-have (10) Must-have (11) 
Inflection support Should-have (7) Should-have (8) 
Search filters Should-have (6) Should-have (10) 
Highlighting Could-have (5) Could-have (8) 
Smart tags Could-have (3) Could-have (7) 
Search-as-you-type - Could-have (6) 

When looking only the positive scores it does not make sense to use same 

prioritization as there are no negative scores, instead the Table 6 positive column 

lists only top features with scores of 5 or higher. As the table shows the scoring 

method did not impact the end result in a meaningful way. As the results in Table 6 

show, customer had quite modest requirements regarding the search. Highest 

priority was to have keyword-based search with some users wanting to have 

smart tagging with AI included. 

Another view point on how to improve the search feature is to look what other 

vendors are doing. This gives information on what is essential to implement to 

stay competitive in the market. For choosing which vendors to focus on an 

intersection was taken from vendors analyzed in market research done by 
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Gartner [31] and Forrester [32]. The reports categorized different DAM providers 

into groups based on their market share which will also be used in this thesis 

giving the vendor list in Table 7. 

Table 7: Classification of Existing DAM Vendor Products. 

Product Classification 

Northplains Telescope Challengers 
Digizuite DAM Contender 
Canto Contender 
Widen Collective Strong Performer 
Nuxeo Platform Strong performer 
CELUM Content Collaboration Cloud Strong performer 
Bynder Flagship Strong performer 
OpenText Media Management Leader 
Aprimo DAM Leader 
Adobe Enterprise Manager Assets Leader 

The details presented here for each DAM product are based their vendors own 

marketing materials and documentation which were available from their website. 

The reviewed systems are proprietary, and they did not offer a live demo 

environment for hands-on testing. The review was done at the 17.10.2021, so the 

exact details might have changed since but the overall themes should be the 

same. The available documentation varied by each vendor, some vendors 

provided very accurate and detailed documentation, others had only marketing 

information available and reserved the documentation for paid customers only. 

This is not a problem for this study, this section is here to list general search 

themes in the largest DAM vendors making exact details not that important. 

The Forrester report [32] lists three main trends which are present in successful 

DAM provider: 

Simple and intuitive user interfaces The systems should be usable by users of 

various technical backgrounds. 

Integrations Instead of keeping the DAM a “data silo”, allow users access the 

assets within from various tools by integrating them with it. 
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Enriching content Instead of keeping static assets, enrich the assets with 

embedded or external AI solutions, adding smart tags or allowing AI guided 

image editions directly creating new assets in the process. 

All the above give good guidelines on where the DAM solutions should be 

heading. Details of the vendor analysis are provided in the Appendix 5. 

The feature list in Table 18 is the same which was used in the customer survey. To 

narrow the features to more manageable list a summary presented in Table 8 

containing only features which were present at least on half of vendor products. 

Table 8: Summary of Most Common DAM Features in the Top 10 Vendor Products. 

Feature 

Truncate search 
Search filters 
Free text search 
Support multiple terms 
Phrase search 
Word inflection support 
Result ranking 
Dynamic search facets 
Smart tags 
Search should include file contents 
Quick and advanced search 

The summary supports the views on the project management and customers that 

keyword-based FTS appears to be the most used feature. In addition to keyword 

search the vendor products provided advanced search features such as dynamic 

faceting, smart tagging. Search was able to look at file contents as well as system 

metadata supporting the wishes of project management in Table 5. 

5.1 Defining the System Requirements 

To specify the requirements all view points should be considered. The user survey 

should indicate that the users are interested in keyword searching with pattern 
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matching and ranking of results. The next wanted feature was to have the system 

accept close enough search terms to give matches. This could be interpreted as 

fuzzy matching or stemming. Simple search filters are already provided by the 

system which seems to be enough. Some users expressed their need to have 

highlighting where the match was found, as the indexed data increases this might 

be harder to implement and would require more detailed specification. Last 

feature for which users expressed interest on having was AI-powered asset 

tagging. This would be used to reduce manual work done in the system. 

Table 9: Requirement Specification for the New DAM System. 

Feature Priority 

Sub-second search times Must-have 
File metadata indexing Must-have 
File content indexing Must-have 
Extended search scope Must-have 
Free text search Must-have 
Truncate search Must-have 
Multiple search terms Must-have 
Relevance ranking Must-have 
Search filters Must-have 
Phrase search Must-have 
Machine translation Should-have 
User search history Should-have 
Image recognition Should-have 
Speech-to-text Should-have 
Inflection support Should-have 
Smart tags Should-have 
Dynamic search facets Should-have 
Autocomplete Could-have 
Autocorrect Could-have 
Search-as-you-type Could-have 
Highlighting Could-have 
Quick and advanced search Could-have 

These seem to align with the project management wishes and customer survey 

results. The most common features are FTS which can cover file contents, 

sometimes split into separate quick and advanced searches to skip file content 

searches by default and using advanced search to cover the contents. Many 
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provided automatic asset tagging and dynamic search facets on the results. 

Collecting all these findings together we get the required features listed in Table 9. 

To make it easier to work with the features from Table 9 this study categorizes 

them into few groups presented in the Table 10. 

Table 10: Classification of DAM Requirements. 

Grouping Search Features 

Constraints fast search times, metadata and content indexing, 
extended scope 

Keyword Search free-text search, multiple terms, truncation, 
ranking, phrase search, inflection, highlighting 

AI Enhancements Machine translation, image recognition, 
speech-to-text, smart tags 

Advanced Searches Dynamic facets, autocomplete, autocorrect, 
search-as-you-type 

Miscellaneous Features Search filters and history, quick/advanced search 

The first group of are not features themselves but set constraints mostly coming 

from project management to keep in mind while implementing new functionalities. 

The other groups specify more concrete feature sets, keyword search is the most 

important group of features to implement in the DAM so most of the analysis in 

Chapter 6 is focusing on this. The AI features group has the features which build 

upon AI and ML to enhance the user experience of the system. Advanced search 

group lists common functionality found in search engines which might be tricky to 

implement with just a relational database such as PostgreSQL. These were not 

strictly needed, but each improve the user experience of the system. The last 

group is the miscellaneous features of which search filters are already provided by 

the system. 
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6 Search Implementation Analysis 

The goal of this chapter is to analyze if and how the current architecture using the 

PostgreSQL database can fulfill the requirements listed in Table 9. There are few 

points in favor to keep using the existing database for implementing the 

application search. First is avoiding the need for installing and maintaining extra 

software unless there is compelling reasons to use alternatives. [22, Ch. 13] The 

second point is that the application can keep using the same interface for search 

as before, which is currently SQL. Last point in favor is that by using single data 

store gives the data a single source of truth. Using external tools would require 

syncing the indexable data between the database and search tool which leaves 

opportunity to them to go out of sync. The databases ACID properties help keep 

unified view on data but this does not extend to data stored outside of it. The use 

of external system along the database would require to keep user permissions in 

sync between them, so that users with limited data access cannot access data 

their permissions normally would not access to, through the use of external search 

engine. 

6.1 Inspecting Constraints 

The project management defined few high-level constraints which greatly affect 

what kind of search solutions may be used in the new system. One of the features 

the project management wished the system to handle was to store and index the 

file metadata and content in addition to system provided metadata. As noted in 

earlier Section 3.6 metadata plays huge part of search implementation making this 

high priority task. One way to achieve this is to use Apache Tika7 to parse files 

when adding them to the system. Tika is a Java-based tool which can parse 

several file types and extract metadata and file content from them. 

The available metadata in files varies by file type. For example a plain Javascript 

Object Notation (JSON) file does not provide anything particularly interesting 

7https://tika.apache.org/ 

https://tika.apache.org/
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metadata shown in Listing 3, just a content encoding and content length. More 

complex file types such as Portable Document Format (PDF) provide a great deal 

of metadata which contain many fields relevant for searching as detailed in 

Listing 4. Problem with this sample is that it contains numerous fields which are 

not relevant for searching, for example fields detailing how many characters are in 

the page 30 of given PDF document. Other commonly used file types in the DAM 

are documents used with Office family of tools. These are the most common file 

types in the new system after PDF, so it needs to have good support. These files 

appear to provide less metadata than PDF files as shown in Listing 5. The 

metadata fields of office document seem to be more relevant for a text search. 

Current customers are using PDF files by large margin in the new system as 

shown in Table 11. 

Table 11: File Counts for Different File Types. 

File type Count 

pdf 
docx 
doc 
zip 

17074 
550 
395 
75 

The Table 11 lists the count of different file types in the sample database. The 

results are filtered to show only file types of which there were more than 50. As 

shown the most common file by great margin is the PDF file type, rest are mostly 

covered by Office files. These were also commonly supported by DAM vendors as 

pointed out in Table 8, so system should focus on having good support for these 

file types. 

6.2 Keyword Search 

This section covers detailed analysis related to keyword search which was 

identified as key feature in Table 9. The PostgreSQL database includes many 

options for searching, from simple equality tests, to pattern matching and more 

advanced options such as fuzzy matching and FTS. 
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PostgreSQL has extensions which allow more advanced searches to be done, 

such as phonetic match algorithms [27, Appx. F. 15] but these are not really suited 

for implementing keyword search as the algorithms are intended on matching 

short strings such as peoples names. [7, p. 63] These might not be helpful for 

keyword searches but may be used to aid other searches or providing options 

such as autocompletion for product owners. The extensions most suited for 

implementing keyword search would be either the fuzzy matching provided by 

pg_trgm contrib [27, Appx. F. 31] or the FTS [27, Ch. 12]. 

The pg_trgm contrib module provides methods on using n-gram matching, more 

accurately trigram matching for inputs. It would fit in customer requirements of 

having keyword search with ranking. The added benefit of this method is that it 

would allow making small typing errors in the input which was seen as nice 

addition by project management in Appendix 2. The trigram matching provides 

utility methods for using it to match longer texts instead of single words making it 

usable in keyword search. In the previous DAM system the users were commonly 

searching by using single search term as presented in Section 4.2 which would 

make fuzzy search a viable alternative for the more complex FTS. 

The PostgreSQL database extends the default relational model by providing a 

FTS which is useful in cases when full set of search engine features are not 

required. It was developed by Oleg Bartunov and Teodor Sigaev in order to handle 

“online updates with access to metadata from the database” [33, p. 11]. The 

implementation is managed with SQL and comes with extensive set of 

configuration options and stemmers to aid setting it up. [33, p. 12] The FTS 

processes the user search query, finds matching documents and returns them to 

the user ranked by relevance. It does this by using two data types, tsvector for 

representing stored documents and tsquery for search queries. [27, p.168] The 

tsvector type is a “sorted list of distinct lexemes, which are words that have been 

normalized to merge different variants of the same word.” [27, p. 168] Dictionaries 

are language-specific and PostgreSQL provides them for many of the most 

commonly used languages including Finnish, Swedish and English. Typical 

normalization steps include down casing words, removal of stop words and 
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stemming. The document in this context is the fields we want to search from the 

database which might be from a single database table or combination of fields 

from several tables. The terms in tsvector may be attached with optional positional 

information to specify where in the document it can be found. The implementation 

is using ranked boolean retrieval as the terms may include different weights which 

affect the ranking of search results. The tsquery represents user search query and 

accepts set of terms to be queried joined by one of boolean AND,OR,NOT or 

FOLLOWED BY operator. The FOLLOWED BY operator allows tsquery to do 

proximity matching. Each search term may include :* suffix to specify 

prefix-matching for given term. These features implicate the FTS uses the 

extended Boolean model which was detailed in Section 3.4.2. 

The tsvector contents may be indexed with GIN and GiST index types. This is 

based on the RD-trees presented in paper “The RD-tree: An index structure for 

sets” [34]. The indexing changes the representation of the tsvector to use a single 

bit-signature, a so-called superimposed signature is based on the index structures 

defined in article “‘Index structures for databases containing data items with 

set-valued attributes’” [35] essentially turning the set of words into single bit 

signature. 

The database documentation [27, p. 451] lists some limitations in the 

implementation. The implementation is sufficient on most parts but the 1 

megabyte limit on the length of tsvector may be problematic when indexing large 

documents with many unique terms. 

One problem in fully utilizing FTS is caused by the complex morphology of the 

Finnish language which uses small core vocabulary which is extended by using 

many inflectional forms [36, p. 2]. Other problematic aspect is the languages 

heavy use of compound words which makes information retrieval hard as user 

would need to match all preceding word components when searching. The 

Snowball stemmer algorithm which is used in the PostgreSQL does not support 

word separation for compound words which would increase matching in 

queries. [36, p. 2] There exists a library to implement morphological analysis for 
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Finnish language called “libvoikko” as part of the Voikko project8. This was 

originally part of the Hunspell spellchecker, but the features needed to make it 

work well with Finnish language were not good match for Hunspell project so 

Voikko was forked as separate project to provide morphological utilities for working 

with Finnish language. [37] Actual extension providing Voikko lemmatization and 

compound word separation support for PostgreSQL is called dict_voikko9. 

The available search methods in the default installation of PostgreSQL database 

are summarized in the Table 12. 

Table 12: Summary of the Available Search Methods in the PostgreSQL Database. 

Search Method Matching Method Indexable Language dependent 

= (equality comparison) exact - yes no 
LIKE, ILIKE exact pattern no* no 
SIMILAR TO exact regexp no* no 
POSIX Regexp exact regexp no* no 
Levenshtein fuzzy edit distance no no 
Soundex fuzzy phonetic no yes 
Metaphone fuzzy phonetic no yes 
Double Metaphone fuzzy phonetic no yes 
Trigrams fuzzy n-gram yes no 
Full text search fuzzy Full-text search yes yes 

LIKE, ILIKE and regexp operations can be indexed using pg_trgm contrib 

6.2.1 Keyword Search Analysis 

The database analysis was done on PostgreSQL version 13.3 with default 

configuration. The database was filled with database dump from new DAM 

systems staging environment dated 20210701. The test queries are run on single 

customers’ database schema. The sample database schema contained 5279 

product entries and 18120 rendition entries in it. Before running analysis queries a 

few preliminary steps were done to check limits and prepare the tables to perform 

well. 

For testing the limits of FTS the PostgreSQL manual [27] for version 12.4 was 

8https://voikko.puimula.org 
9https://github.com/Houston-Inc/dict_voikko 

https://voikko.puimula.org
https://github.com/Houston-Inc/dict_voikko
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used. Its text content was extracted with Tika and stored into tsvector column. The 

manual has file size of 12.4Mb, and it was chosen as a test document as it 

contains 2742 pages of mostly textual content. Larger PDF documents will likely 

have embedded images and such raising the file size but which will not affect the 

indexing process. Indexing of almost 3000 pages worth of text is considered as 

sufficient for current indexing needs. 

One factor on designing proper search method is to know what kind of data it 

needs to operate on. By looking at the indexed tsvector contents there appears to 

be a great deal of indexed terms which are not that easy to use when using 

keyword search: 

'-01':38C,39C '00':41C '00.000':42C '04313':7A '2020':37... 

These exist in the tsvector as the whole metadata JSON entry is indexed. The 

field might contain date entries which are not that useful on FTS. Same issue 

exists with enum entries are stored only by their index key as the value is looked 

later from different table. 

{"owner": 13, "ownerUnit": 14, "containsConnectionInfo": 1} 

The “owner 13” is the index key and the actual value for key “13” is read from 

product type metadata constraint table which list all possible string values an 

owner metadata field may specify. To increase the precision of results the 

metadata indexing could be limited to include only the string type fields from the 

metadata as shown in Listing 14 and change the indexing of enum fields to use 

the actual metadata value instead of the key. 

To execute the queries within the given time constraints a proper use of indexing 

is required. All the sample queries were run with indexed fields to get optimal 

performance. The use of indexes will not alter the result of a query, but they 

provide significant performance benefit when they can be utilized by the database. 

For downsides, the use of an index adds a small amount of overhead to the 

queries, and they consume disk space. The PostgreSQL database supports many 

index types [27, Ch. 11.2] which can be used to speed up the searches. The most 
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important indexes are the Generalized Search Tree (GiST) and General Inverted 

Index (GIN) as these can be used with the FTS. The database required a helper 

function given in Listing 17 for indexing fields for the trigram and pattern matching 

queries. 

The details of database query analysis is found in Appendix 7 Section 7.4. The 

first analyzed query was to see how well the database could return matches for 

term “kissa” which is cat for Finnish by using various search methods, starting with 

pattern matching, then with trigram matching and finally with FTS. 

Searching the products with simple pattern matching query for “kissa” shown in 

Listing 18 returned 45 matching records but out of those 39 were true positive 

matches while 6 were false positives. In the false positives the “kissa” is part of 

other words like “pankissa” or “at the bank” which has nothing to do with felines. 

The problem is that the pattern matching does not consider word boundaries, so it 

returns extra results in addition to correct matches. This could be remedied by 

adding whitespace in the query term ’ kissa ’ but then it would not match text within 

words. 

The same search query using trigram matching in Listing 19 returned 60 rows as a 

result containing 21 false positives and 17 false negatives. The fuzzy query is 

looking for similar words within the fields, so it gives matches for words such as 

“kassa”. The trigram matching is by default using rule that 60% of trigrams 

matched will yield a match. This value can be change and after modest increase 

to 70% the query results were much better. With the changed similarity score the 

query returned 40 matches with 39 true positives and only one false positive which 

shows significant improvement. 

The sample query gives accurate results when using the FTS with default 

configuration as shown in Listing 20. All returned rows were correct, but the query 

failed to return 17 matches which were present when using other matching 

methods. The default FTS configuration for term “kissa” does not make use of 

prefix matching which leaves for example compound words starting with “kissa” 



58 

outside of matches such as “kissatiedote”. Changing the above query to use 

prefix-matching as in Listing 21 for search terms gave the best result getting 

perfect precision and recall on this simple query. The Table 13 provides summary 

of the calculated scores and execution speeds of the various tested search 

methods. The existing research [6] seems to support that stemming with 

compound splitting yields similar results as n-gram matching but it notes that 

stemming has smaller memory requirements. 

Table 13: Summary of the PostgreSOL Search Query Results. 

Search technique Results TP FP FN Precision Recall F1 Exec time 

ILIKE matching 45 39 6 0 0.867 1 0.929 ≈ 5.5ms 
TRGM - defaults 60 22 21 17 0.512 0.564 0.537 ≈ 35ms 
TRGM - with 0.7 40 39 1 0 0.975 1 0.987 ≈ 35ms 
FTS - defaults 22 22 0 17 1 0.564 0.721 ≈ 5ms 
FTS - with prefix 39 39 0 0 1 1 1 ≈ 5ms 

All search methods yielded acceptable results for free-text search using single 

search term but requirements in Table 9 had other features which will limit the 

options. The search method must allow multiple search terms, prefix-matching, 

ranking, phrase search and inflection support as well. Some users of survey listed 

interest on having the search results highlighted but implementing said feature 

would require more accurate specification how precisely this should be done, so 

that requirement is omitted from this analysis. 

The pattern matching queries are left out as they will not provide method for 

ranking of the results nor any inflection support. Inflection support in this context 

meaning that user does not need to type in the search term accurately for match 

to occur. This can be implemented either by stemming from FTS or fuzzy 

matching from pg_trgm. Phonetic matching could be used but these do not scale 

to longer texts for phrase searches. The above results show that trigram matching 

with increased word_similarity score gave a slower performance than FTS but 

similar results. At this point the pattern matching can be dropped as an alternative. 
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One key difference between the remaining methods is that FTS query can cope 

with multiple search terms with same kind of performance as single query term. 

The fuzzy trigram search would need to be repeated multiple times and the results 

be combined to get same end result. 

Indexing multiple fields for the fuzzy search requires more work than using FTS. 

Another problem is ranking of the results. Where plain pattern matching does not 

offer any direct method for ranking the results the fuzzy matching has function to 

return similarity score for matches which can used to implement ranking based on 

the similarity of matched terms. Adding multiple query terms using weighted zone 

ranking using trigrams is possible, but it makes the generated queries complicated 

as illustrated in Listing 22. For comparison the FTS matching version in Listing 23 

is easier to understand. 

The trigram searching showed good results when working with small amounts of 

text but the performance of fuzzy matching dramatically drops when trying to 

search file contents as shown in Listing 24. Another downside on using fuzzy 

search for file content is that it requires the full contents to be fully stored in the 

database. Even when proper index the fuzzy search on it would be too slow for 

any web applications to use. Using simpler pattern matching for file content 

search is slightly faster than trigram search in Listing 25, but even it does not 

return responses within the time constraints set in requirements so only search 

method which fits the requirements is the FTS which copes well even when the 

text sizes grow significantly as in file content searches shown in Listing 26. To 

ensure the performance of FTS will not degrade too fast when more products are 

added into system it was tested with sample data containing one million records of 

random words in Appendix 7 Section 7.2. The Listing 10 shows that the search is 

still fast enough even when searching one million records, so the search scales 

well enough for expected near future growth. 

The FTS has plenty of features but it is not without downsides. It does not provide 

other kind of truncation besides prefix truncation, so it can not be used to match 

words within other words. This may be remedied by use of lexical analysis. The 
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PostgreSQL uses the Snowball algorithm for stemming in the default configuration 

which includes support for all required languages in the new system. The default 

stemming can be extended by using external contributions such as the dict_voikko 

to include morphological analysis for Finnish language. The results from various 

stemming dictionaries in Table 20 in Appendix 7 Section 7.5 for string “Koira- ja 

kissavakuutushakemus” show that voikko dictionary gives great results as almost 

all words are in base forms. In addition, it separates compound word 

“kissavakuutushakemus” into separate words “kissa”, “vakuutus” and “hakemus”. 

The separation of compound words is the major benefit from lemmatization in this 

case as with it searching with just term “vakuutus” would give match from above 

when neither “simple” nor “finnish” configuration would provide a match. This 

benefit increases if the indexable data has longer compound words. Prior 

research notes that the “net benefit of compound splitting is usually positive.” [6] 

The Appendix 7 Section 7.5 shows comparison results on how the stemming 

algorithm works on words in sample data in Listing 30. The sample omits the row 

ID 7 because for some unknown reason it causes the voikko dictionary to crash 

the database server. This is major issue with the dict_voikko and makes it 

unusable in production systems until the root cause is identified and fixed, but the 

project does not seem to be maintained anymore as the latest changes to it were 

done several years ago. 

The PostgreSQL documentation contains sample implementation [27, p. 2624] on 

how to integrate pg_trgm with FTS by using FTS to generate static word list and 

checking this smaller list for mistyped words. The project management interviews 

in Appendix 2 included wish that the search bar would be able to cope with one or 

two letter mistyping which this would be potential solution. As pointed out by the 

manual the word list is static and would need to be refreshed from time to time for 

it to give accurate results. 
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6.3 Artificial Intelligence Enhancements 

The project management and some customers in the survey expressed interest on 

having AI features in the system as shown in Table 9. These features are 

commonly used when the amount of data is so large that a manually doing the 

necessary steps is too much for human operators. Common place where AI is 

used is to do preprocessing steps for new assets, particularly if the system 

provides “bulk-loading” i.e. storing numerous assets with one command. The AI 

could be used to automatically generate metadata tags specific for each asset 

instead of someone manually typing them in. This kind of feature is commonly 

called “smart tags” and is available from many DAM vendors. 

Other common use of AI is multimedia searches, like searching by images. If given 

one image, user may ask system to list similar images. These kinds of searches 

were not listed on the requirements so are not considered in this analysis. 

The smart tags are possible to implement, and they may be done before storing 

the asset into database. This way the choice of data store does not affect the 

implementation greatly. The other DAM vendors detailed in Appendix 5 mostly 

used external providers for adding AI features such as Google Vision AI10 and 

Amazon Rekognition11 and the DAM system should initially follow similar path if 

possible. 

Machine translation or rather the more focused Cross-Language Information 

Retrieval (CLIR) would be good addition to DAM. As DAM stores metadata it might 

be in any language user is using. One user stores information in Finnish and other 

user queries this using English ensures these will not match unless some sort of 

translation is happening. Research indicate that CLIR has almost same accuracy 

as monolingual IR. [9, p. 448] 

10https://cloud.google.com/vision 
11https://aws.amazon.com/rekognition/ 

https://cloud.google.com/vision
https://aws.amazon.com/rekognition/
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6.4 Advanced Search Analysis 

Some new systems users wished the system would provide advanced searches 

commonly available in search engines but not available from relational databases 

which were discussed in Section 3.5. Some of these features may be added 

manually using relational databases as well. 

Faceted search is a specialized variant of search that allows the user to navigate 

in a streamlined way with search filters which are presented depending on the 

searched object. [8, Ch. 9] Many search engines such as Apache Solr provide 

faceting by default. Relational databases do not directly provide faceting feature 

but similar effect for simple faceting needs may be achieved by using window and 

JSON functions as shown in Listing 31 of Appendix 7 Section 7.6. 

Autocomplete makes the system give out better search terms for the user while 

typing the search query. There are few alternatives how to find the “correct terms” 

from incomplete search input. First is by parsing the system logs for successful 

search queries, storing the used search terms in the database and using those to 

suggest better search terms. The suggestion could be done with fuzzy matching 

so small typos still lead to match and system can use results to autocorrect user 

query. 

Search-as-you-type or predictive search where users search results are narrowed 

by each key press. Problem in this is to get the searches as lightweight as 

possible, so they can be executed after each key press without overloading the 

service. The FTS is only search option fast enough for this task, but it requires 

custom tokenizer shown in Listing 32. 

6.5 Miscellaneous Feature Analysis 

The PostgreSQL database already provides search filter features, so there is no 

need for further work in that regard. The search history for each user is also quite 

trivial to implement with the current system. The user searches come in the 
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system from two REST-API calls, so the system could be changed to just storing 

these searches in their own database table as JSON data. The UI can then query 

this table and re-execute previous searches. 

The quick and advanced search feature would need a more thorough specification 

before evaluating its implementation. The DAM vendor review summary in Table 8 

points out that several products had quick and advanced search, but many did not 

provide accurate documentation on how it was implemented. Google web search 

provides separate page12 with advanced filter controls if the search bar was not 

sufficient and similar design could be implemented in the new DAM as well. 

12https://www.google.com/advanced_search 

https://www.google.com/advanced_search
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7 Discussion and Recommendations 

The customer survey search rating suggest that the users are quite satisfied by 

the current search using FTS and the results seem to support this as users mostly 

rated keyword search features as a must-have. The current FTS use may be 

improved with few simple ways to make it achieve better results. First the indexing 

could be tweaked to be language-specific for each document bringing stemming 

support. Current system does not have information on how this language is to be 

selected, but this is a task which may be done by agreeing with the systems users 

on how to proceed. One method would be to type all information in one language 

and use that for indexing or use pre-existing content language field to select it, or 

by having separate field for product/rendition metadata language. With this 

change the search accuracy can be increase by utilizing stemming and possibly 

lemmatization. 

The Finnish language grammar is hard for stemming algorithms, but it could be 

improved by using lexical analysis provided by tools such as the Voikko13. This 

would also reduce the need for having pattern matching as Voikko would provide 

separation of compound words to individual words to help to match single words. 

The use of Voikko library would require extra effort in identifying and fixing the root 

cause of the exhibited database crashes while evaluating its use. 

For improving the search accuracy indexed fields could be limited to only relevant 

ones. Currently, the whole customer product metadata field is indexed which index 

numeric fields which are not easily searched by keywords. They should be either 

dropped from indexing or the value strings pointed by metadata key fields should 

be indexed instead. To get file contents in the database require small extension to 

the current architecture detailed in Figure 7. When storing a new asset file the API 

would not store the file directly but only register the saving request into internal job 

queue. The microservice architecture would be extended by having a separate 

indexer component which would read the job queue and do necessary 

13https://voikko.puimula.org 

https://voikko.puimula.org
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preprocessing steps before saving the assets into the data store. This would allow 

the frontend to resume other work immediately after registering asset saving and 

long-running asset processing could be done in indexer. First preprocessing step 

for the indexer would be to parse the file content and index them into the database 

allowing users do file content searches. Later this step could be extended to cover 

other tasks as well, perhaps using AI to implement smart tagging etc. 

One possible implementation would be to make the current system search as the 

quick search and implement it by using trigram matching. The quick search would 

only search product and rendition metadata but not the file contents. For 

advanced search the search would switch to using FTS and search could be 

extended to cover file contents as well. Trigram searching would be skipped with 

advanced search as it does not work well when processing file contents as shown 

in Listing 24. This two combination of two search methods might be confusing for 

the clients to use, so it should be tested and implemented carefully. 

7.1 Using Search to Fix Known Issues 

While the search improvements are important it is essential that the existing 

issues in it are fixed as well. The following lists possible solutions for the issues 

listed in Table 3. 

To improve the matching process the trigger updating the indexable tsvector 

should be changed to incorporate above changes as listed in the Appendix 27 

which improves the original trigger definition in three ways. Firstly, it tweaks the 

indexing of username or user’s email field to use plain “simple” configuration. This 

keeps the email as single field instead of trying to split email into separate fields 

based on some rules. This works in this case as most common email format used 

by the system is “firstname.lastname@companyName.domainName”. The users 

name is stored separately, and full email is added to index so matching should 

work with any of them. Keeping email company name or top-level domain do not 

seem to add additional value as index terms as these are effectively good 

candidates for stop words. Secondly, it is the using different dictionaries based on 

mailto:firstname.lastname@companyName.domainName
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the content language of the product row. This makes assumption that the name 

and description fields are given in same language as the product content 

language setting. This might not be the case for every customer and needs to be 

verified when setting up each customer’s environment and configured accordingly. 

Lastly, instead of indexing whole metadata it selects only fields from metadata 

which contain text data which can be used for keyword matching. The precise list 

of fields to index varies by each customer. Alternatively the system could look up 

the indexed field contents and index that instead of the numeric value. 

To fix the query parsing a new parser would be needed. Evaluation should be 

done to see if any existing parser such as pg-tsquery14 would be enough or should 

new one be developed for this purpose. The main issue to fix is parsing of quoted 

text, otherwise the existing solution should be enough. The parser should also 

handle the special characters such as “ABC 2/2.10” correctly. 

The default configuration of the database has inconsistencies when parsing 

hyphen separated values where the hyphen is sometimes parsed as negative sign 

for following number as shown in Listing 28. This affects especially most common 

search using the product codes which consists mostly of hyphen separated 

numbers and characters. The precise root cause for this is unknown, but the 

problem can be mitigated by upgrading the database software version and 

tweaking the FTS indexing options shown in Listing 29. 

14https://github.com/caub/pg-tsquery 

https://github.com/caub/pg-tsquery
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8 Conclusions 

The information retrieval or search is seemingly simple thing, but it quickly 

becomes quite complex topic. There exists multiple ways to achieve searching, 

each with their own trade-offs. This makes each implementation unique for the 

given project, a perfect solution for one project might not fit to another project at all. 

The aim of this work was to find out problems in current system search, does it 

provide the wanted features and is the system architecture capable on providing 

adequate search. The system was using FTS but exhibited some issues which 

caused users the get unexpected or missing results as pointed in Table 3, but 

these may be fixed with little effort as detailed in Section 7. The wanted features 

for the new DAM system were done by examining the new system from several 

view points collected in Table 4. Each view point gave a new perspective on what 

the system should provide. Analyzing the view points lead to creation of 

requirement specification in Table 9 which presents the list of search constraints 

and features the system should provide along with priority for each. These were 

summarized in Table 10 into four groups sorted by priority. The results show that 

keyword-based search is enough for the new system as long as it abides by the 

constraints given. The next expansion of search features should be adding of AI 

enhancements into the system. After these the design should focus on providing 

advanced searches common in search engines and list of smaller miscellaneous 

features. The analysis done on Chapter 6 shows that the current architecture 

using FTS search is capable of handling most requirements with adequate 

performance even when the amount of entries searched is increased. Most 

difficult part for the new system is expanding it to provide the advanced search 

features. These may be implemented using current architecture, but it requires 

considerable effort. 
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8.1 Future Work 

This work was focused on testing the limits of the current tools used by the new 

DAM system. This leaves a lot of potential good candidates for future research. 

Primary target would be to examine how a search engine would handle the 

searches and integrate with the new system. Good candidates for search engines 

would be the Apache Solr15 and Elasticsearch16 as these very often used by other 

DAM vendors and both of them are based on the Apache Lucene17 and provide 

plenty of features. Most of the concerns using them come from increased 

maintenance and the need to keep the indexed data in sync between the primary 

data source and search engine. One potential solution to mitigate this would be to 

evaluate projects such as ZomboDB18 which allow PostgreSQL database to use 

Elasticsearch engine transparently from within the database. 

Other potential research point would be the use of AI features in DAM. Some 

users wished to have AI features in the current system and the trend seems to be 

moving towards using AI more and more it would be best to identify how it could 

be utilized in the new DAM system as well. There are numerous SaaS options 

providing AI enhancements giving potential research targets on analyzing how big 

improvements they could provide in the system. These could be initially used to 

improve the quality of asset metadata and then be extended in providing more 

advanced searches such as providing semantic search. 

Finally, this work mostly settles on keyword-based search but new customers 

starting to use the new DAM are already defining more multimedia types in their 

installations than in previous system. Multimedia files are not directly composed of 

text making them harder to use with keyword-based search. This area of IR on 

multimedia content seems to be under active research at the moment, so there 

would be plenty of opportunities for future work. 

15https://solr.apache.org/ 
16https://www.elastic.co/elasticsearch/ 
17https://lucene.apache.org/ 
18https://www.zombodb.com/ 

https://solr.apache.org/
https://www.elastic.co/elasticsearch/
https://lucene.apache.org/
https://www.zombodb.com/
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1 Interviews 

This appendix lists the questions asked in project member interviews. The aim of 

the interview was to get overview on how the search should function. Each 

interview was done one on one, so we get individual views on the issue. 

1.1 Information Retrieval Design 

Term: a single search term used in search 

The interview used simple priority system called MoSCoW to set priorities for 
features: 

1. Must 

2. Should 

3. Could 

4. Wish 

How many years of experience in using DAM systems? 

How much data and what kind of data should be search cover? 

What kind of material should be searched? 

How much of data should the system handle? 

How fast the system should yield search response? 

How fast the system should index the data? 

How long delays are permitted into indexing, should it be real-time, near real-time, 

or can it be delayed further to every 5 minutes etc. 

What is the architectural scope for the improvements? 

The question had choices to scope how large changes can be made into the 
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system. The options were: 

• Search features must use current architecture and tools 

• Search features must use current architecture and can extend it with 
new tools 

• The current architecture can be totally redesigned 

How large budget is given for the search improvements? 

Idea is to scope out how much money can be used in the search feature, can it 

use commercial tools or stick with free solutions like open source software. Also 

the idea is not to get accurate limits, just general theme of things like is it free tools 

only, tens of euros per month, hundreds euros per month and so forth 

Can the search use cloud service providers? 

Should the search bar be customizable to each customer? 

How quickly the search improvements should be placed into production? 

Idea is the gauge once the search improvement is presented, how large project it 

can be, can the process take days, months or even years. 

What the search should yield as a result, products? renditions? 

What fields should be indexed for searching? 

Should the search cover file contents as well? 

Should the search be implemented just as a search bar? 

Should the search bar be separated as Quick search and Advanced search? 

UI design suggestions? 

Where the search term should match? 
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Should the search term match word prefix, suffix or anywhere? 

Should the search support multiple search terms? 

If multiple terms, How to combine them by default, AND? 

If multiple terms, What operations should be supported? AND, OR, NOT? 

Operator precedence, should parenthesis be supported as well? 

Should the search support phrase search? 

Should the search be exact or fuzzy? 

If fuzzy, any preference how to implement it? 

Levenshtein, Soundex, trigram 

Should the search work on multiple languages, which ones? 

If using fuzzy search, what features should it cover? 

• Stemming? 

• Lemmatization? 

• Compound word handling? 

• Stop words? 

• Synonyms? 

Should the system support field-restricted search queries? 

For example queries such as: code:F200 AND auto So that string “F200” is only 

matched in code field and word “auto” in any field. 

Should the search provide auto-complete? 

Should the search provide suggestion? 
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Should the search provide spellchecking? 

Should the search provide correction? 

Should the search provide search-as-you-type? 

Should the search results be ranked based on relevance? 

Should the search highlight where the match was found in the results? 

Should the search support machine translation? 

For example if keywords are indexed in English but user types in Finnish keyword, 

should it automatically translate the keywords into English. 

Should the search implement image recognition? 

When giving keyword it tries to match it based on where it appears in the images. 

Should the search be able to seek within the audio or video content? 

Giving search term, should it try to match it from spoken words in audio or visuals 

from video feed. 

Should the system support stored searches? 

If stored searches, should they be organization-wide or personal? 

Can the system default searches be customizable? 

Can the user for example set some default search when going to product page. 
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2 Interview Results 

This appendix presents the results of the project management interviews done as 

part of the thesis. 

The interviewees agreed in that the new system must cope with managing assets 

for the current small-scale customer deployments, but it should be easily scaled 

for bigger deployments. Initial minimum requirements for the search feature is to 

be able to handle tens of thousands assets, some rough guidelines on asset file 

sizes were tens of megabytes for images, hundreds of megabytes for documents 

and gigabytes and larger for video files. The priority between these are that text 

document support must be done first and foremost followed by image support. 

The current platform does not have much video support yet, but it was seen as 

essential feature to have in near future. The search feature should be fast, it 

should yield responses within a second or two at maximum. If the system is 

searching through file contents as well, it can use few more seconds to come up 

with answer. 

The interviewees agreed on that the current system architecture may not be 

replaced entirely as the budget does not allow for full system redesign at this 

point. The current architecture may be extended with new tools, provided that they 

work together with the current design. The tools used may include proprietary 

solutions as long as those are not too expensive to use. The implementation for 

the improvements may not take too long, they should be finished in months or at 

maximum within a year. 

One of the mandatory features to have in the system is the indexing of file 

contents and metadata. The priorities in file content indexing is that the text 

content indexing must be done first, followed by the indexing of file metadata. 

Once those are done the system can be extended to analyze file contents more 

thoroughly such as using AI to recognize concepts from images. And finally focus 

on video and audio by analyzing the content for language, speech-to-text and 
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such features if a feasible method is found to achieve those. These features would 

allow the limit search to return all video files with spoken Finnish talking about car 

sales and similar searches. 

The interviewees did not agree on what would be exactly the scope of the search 

but were unanimous that all product information must be indexed for the search. 

In the DAM system a product can have multiple renditions. These renditions 

represent a single physical file and its metadata. Interviewees did not agree 

should the search also query rendition data as well as product data by default. 

They saw it might make the system too slow to use if the search scope would be 

set to be too large. 

Interviewees wanted the search query to match patterns on any part of the 

document words and if that would not be possible at least use prefix-matching. 

Search bar should also support multiple search terms which would be joined 

together with boolean AND condition. Interviewees did not see immediate need for 

rest of boolean search options such as “OR” or “NOT”, neither for ability to setting 

search term precedence with parenthesis. Phrase search was required once file 

contents would be indexed. The search feature should support Finnish, English 

and Swedish languages as those are the main languages used in the market area. 

Ranking the search results by relevance was one required feature in the interview. 

Having field-restricted search was not seen as an important feature by the 

interviewees. This feature would limit the searching to a single field of the 

document, similar to Google web search site:metropolia.fi courses were 

system would match “courses” search term only on metropolia.fi domain. Same 

feature in DAM context could be to limit the search to only product names, product 

codes or some other field. This was considered to be confusing for the systems 

users and feature might not be useful to have. 

The auto-complete, correction, suggestion and search-as-you-type kind of 

features were not seen as necessary at this point. They could be useful features 

to have but research and development focus should be on getting the more critical 

https://metropolia.fi
https://site:metropolia.fi
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features implemented before looking at these. 

Using AI to enhance the search was not seen as first priority but something to be 

added into the system later on. One of the immediate need for AI enhancements 

would be indexing of image file contents by using image recognition. This would 

allow users to search by image concepts. 

And lastly, it was seen useful to store the user’s search history. It would seem 

useful to keep record of, for example the last five search queries, but this was not 

seen as something of a high priority. Saving of user search queries or changing 

the system default searches was not seen as critical at this point. 

The interview provided good framework on how the search should work and what 

areas require more thorough analysis. The combining of search terms with 

boolean terms and fast response times seems to indicate that the full text search 

would be a good fit. Problem with full text search is that it does not allow pattern 

matching besides prefix-matching with PostgreSQL. Part of interviewees 

expressed their wish that search bar would allow user to make one or two typing 

errors in search term and the system would still return the wanted result. 

Something like when typing product code but miss-typing single letter would still 

return some results including the intended product code by using similarity search. 
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3 Customer survey 

This appendix lists the questions asked in the customer survey. The aim of the 

survey was to get gather quick overview on how good users of the system feel the 

search is and to rate which features are most important to have in their workflows. 

The survey is short and quick to fill so more users would incline to answer to it. 

Main idea is to gather user rating before starting to rework the system and redo 

the survey once the features are ready and users have had time to use them to 

see if the user view of system improves. 

3.1 Core Survey - Search 

Core search feature customer survey is meant to gather info about the current 

state of search in Core. It also tries to identify most important search features. 

The survey is split into several sections, of which 5 includes the questions. The 

survey is done anonymously unless participant chooses to give consent for 

interview. The consent is asked at the end of the survey. 

It takes approximately 15 to 20 minutes to fill out this survey. 

Rate current search features in Core 

On scale of 1 to 10, how would you rate the current search implementation. 

Higher scores the better. 

3.1.1 Basic Search Features 

This section asks you to rate, how important the basic search features are to your 

work. The scale of answers go from 1 to 5, so that 1 = not at all important, 3 = 

can’t say, 5 = mandatory. 
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Truncate search 

Truncate search means the ability to truncate the search term at given point to 

increase its accuracy. For example “form*” would return all documents were exists 

word starting with string “form”. 

Field-specific search 

Field-specific search means ability to restrict text search to specific fields. For 

example typing “code:200L” would return all documents where code-field would 

contain string “200L”. 

Search filters 

Search filters mean combo boxes, which allow to filter search to specific language, 

product group etc. 

3.1.2 Free Text Search 

This section asks you to rate, how important various text search features are to 

your work. The scale of answers go from 1 to 5, so that 1 = not at all important, 3 = 

can’t say, 5 = mandatory. 

Free text search 

Free text search means search bar which allows free form text to be typed which 

is used to search documents. 

Support multiple search terms 

The system search bar should allow to give multiple search terms and allow to 

combine them with operators AND, OR and NOT. For example search query “form 

AND cat AND NOT dog” would return all documents which contain words “form” 

and “cat” but don’t have word “dog” in them. 

Phrase search 

Phrase search means ability to search longer text phrases. For example “Mat’s 

car dealership” would return documents which contain exactly “Mat’s” followed by 

“car” followed by “dealership”. Search would exclude documents were only one 
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term term matches or where all terms exist but are not in same arrangement. 

Proximity search 

Proximity search means ability to limit search by word proximity. It allows queries 

like: return all hits were word “dog” exists within 5 words of word “hotel”. 

Word inflection support in search 

Should the search know how to match search terms all word inflections 

automatically? For example when searching with term “dog” the system would 

return all documents where there exists any inflection of word “dog” like “dog”, 

“dogs” etc.? 

Result ranking 

The system should rank the results by where match was found. For example 

search results where query term was matched in name should be ranked higher 

than those where match was in description text. 

Match highlightning 

The search results should highlight were match was found? 

Similarity search 

Search should also return matches on similar search terms, for example when 

searching term “1004N” it should give results also for terms “2004N”, “1003N” etc. 

allowing few typing errors in search query. 

3.1.3 Advanced Search 

This section asks you to rate, how important various advanced search features 

are to your work. The scale of answers go from 1 to 5, so that 1 = not at all 

important, 3 = can’t say, 5 = mandatory. 

Autocorrect 

The system should automatically offer to correct mistyped terms while typing the 

search query? 
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Search autocomplete 

System should offer to autocomplete search terms while typing them? 

Search suggestions 

System should automatically suggest the next search term while typing the query? 

Did-you-mean search 

The system should offer better search terms when showing search results if those 

would return more results? 

Search-as-you-type 

The system should run the search automatically after each key press? 

Dynamic search facets 

After showing results of query the system should offer dynamically generated 

facets to limit search results. Once results are filtered any filter component not 

able to filter results further gets removed so only relevant controls remain. 

Smart tags 

System should add tags to products and renditions automatically using AI? 

Machine translation in search 

System should use automatic machine translation to convert asset metadata into 

unified language and translate the search query to matching language. 

3.1.4 Scope of Search 

This section asks you to rate, how important given search scope is to your work. 

The scale of answers go from 1 to 5, so that 1 = not at all important, 3 = can’t say, 

5 = mandatory. 

Include version information to search 

The system should include product version information in addition to product 

information when searching? 
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Search should contain version file contents in search 

Search should also try to find matches from version file text contents? 

Search should include file’s metadata Search should include version file’s own 

metadata as well as system provided metadata in search? 

Visual search 

The system should include image and video files in text search? For example 

when searching term “cat”, a pictures of cats or videos of cats should also be 

returned as matches 

Audio search 

The system should search also seek within audio files and video soundtrack for 

matching speech. Text search should return match if any file’s speech matches 

the search term. 

Content similarity search? 

The system search should be able to provide similar file results? For example 

from image product there would be option to list similar images? 

Location search 

System search should be able to search by location information? When searching 

term “paris” it should return all images taken in Paris etc. Or the version page 

would allow to search for files from same location. 

3.1.5 Personalisation of Search 

This section asks you to rate, how important given search personalization is to 

your work. The scale of answers go from 1 to 5, so that 1 = not at all important, 3 = 

can’t say, 5 = mandatory. 

Saved searches, personal 

User should be able to save searches for later execution? 
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Saved searches, organisation-wide 

User should be able to save searches for later execution and share them to others 

in organisation? 

Custom default searches 

User should be able customize the default search run when going for example 

products page, it would show only products owned by user etc. 

Organisation-wide synonyms 

Organisation users should be able to add synonyms to search terms to improve 

accuracy. For example “tv”, “telly” would be stored as “television” internally. 

Quick and Advanced search 

Current search controls should be separated to Quick search (just search bar) and 

advanced search (adds filter boxes, checkbox to include file contents to search 

etc.)? 

3.1.6 Conclusion 

Thank you for your answers so far. We still have few open optional questions left 

before you can send the answers. 

Open feedback about the survey? 

Consent for interview? 

If you’re willing to participate in a about hour long interview based on the answers 

given so far, type in your email address in the field below. Participation is not 

mandatory and not all volunteers will be interviewed. You can leave the field 

empty if you don’t wish to participate in the interview. 



(8 + 6 + 5 + 8 + 8 + 3 + 8 + 2 + 9 + 8 + 8 + 8 + 5) 
x = 

11 
= 7.818182 
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Listing 2: Calculation of Average for Customer Survey Search Ratings. 

4 Customer Survey Results 

This appendix contains the customer survey results. The survey was implemented 

as a Google Forms survey and was sent to 56 recipients. The users were given 

three weeks to answer the questions and survey received total of 13 responses 

during that time. The responses appeared to contain valid input except for two 

answers which stood out from the others. In both answers the core system overall 

rating was given as average to low and all the search feature questions were 

answered by score of 1, not at all important. Finally, in the open feedback the user 

had given almost same response in the both answers by saying paraphrasing “I 

have not been able to log in the system” which would indicate that both answers 

came from the same person. The first question was to rate the system search 

features which require user to be able to log into the system, so these two 

responses seem invalid. This study is done without those answers. With 

remaining answers the survey response percentage is 20% overall, which gives 

enough results for this analysis. 

After the survey had been completed, it was noticed that the answer option for the 

“Field-specific search” question was not present in the questionnaire, so it does 

not have any answers. 

The first question in the survey was to rate how well new systems search 

functionality is working, and the average score is presented in Listing 2. The users 

of the system seemed to value the current features already quite high with 

average score of 7.8. This would indicate the users generally like the features, but 

there is still room for improvement. 
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Table 14: The Scores Given in Customer Survey. 

Feature Ratings 

Truncate 3 5 4 4 5 5 3 5 5 5 3 
Filters 2 4 4 2 4 4 5 4 1 5 4 
Free-text 2 5 4 4 5 5 5 5 3 5 4 
Multiple terms 3 1 3 3 1 4 4 5 3 1 3 
Phrase 1 1 1 3 4 4 4 2 3 1 2 
Proximity 1 1 1 1 1 2 3 3 4 1 2 
Inflection 2 5 4 3 4 4 4 5 3 3 3 
Ranking 4 4 2 4 5 5 4 4 5 3 3 
Highlighting 3 2 4 4 4 5 3 4 4 1 4 
Similarity 2 2 2 3 2 3 1 2 1 4 3 
Autocorrect 2 1 1 3 2 5 2 4 1 4 4 
Autocomplete 2 2 1 3 1 4 1 4 1 1 4 
Suggestions 2 4 2 3 1 4 3 3 1 4 4 
Did-you-mean 2 2 2 2 2 4 2 3 1 2 4 
Search-as-you-type 2 2 4 2 2 4 1 4 3 5 4 
Facets 2 2 2 3 3 3 1 4 1 4 4 
Smart tags 2 4 2 4 4 4 3 4 1 4 4 
Machine translations 2 1 2 3 2 3 4 4 4 1 4 
Version info 2 2 2 3 3 3 3 4 1 1 4 
File contents 2 3 2 3 2 3 2 4 1 1 4 
File metadata 3 4 5 4 1 2 2 3 1 1 3 
Visual 1 2 4 2 1 3 1 3 1 1 2 
Audio 2 2 4 2 2 3 1 3 1 1 3 
Content similarity 2 2 2 2 2 2 3 3 2 1 3 
Location 2 2 1 2 1 3 1 4 1 1 3 
Personal Saved 2 4 3 4 3 3 1 4 3 1 3 
Org-wide saved 1 1 3 3 2 3 1 4 1 1 3 
Custom searches 2 2 3 4 3 3 4 4 3 1 3 
Synonyms 2 2 1 2 3 3 1 4 1 1 3 
Quick/Advanced 3 4 3 4 1 3 1 4 1 4 4 

To analyze which features users want to use in a DAM the answers were scored 

using two methods with scores detailed in Table 15. The first method is looking at 

how majority thought about features, giving each feature either positive or 

negative score based on the rating and summing the total of all scores. The 

another method used was to ignore negative responses and only focus on the 

positive responses. This makes the assumption that addition of the feature that is 

not wanted by all would not affect negatively on all users. 
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Table 15: Scoring Methods for Customer Survey Results. 

Score First method (total) Second method (positive) 

5 +2 +2 
4 +1 +1 
3 0 0 
2 -1 0 
1 -2 0 

For analysis sum of scores was calculated for each answer, both from all answers 

and filtered answers where the two responses described above have been 

dropped. The results of scores are collected in Table 16. Features which had only 

negative scores are not listed here as those are not interesting for this study. 

The sum of answer scores are then transformed into MoSCoW priorities where 

tasks are put into one of following categories: must-have, should-have, 

could-have, and will-not-have. This analysis uses following scale for assigning the 

priorities: 
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Table 16: The Scoring of Search Features from Customer Survey. 

Feature All scores Only positive scores 

Truncate search 14 14 
Search filters 6 10 
Free text search 14 15 
Support multiple terms -2 4 
Phrase search -7 3 
Proximity search -13 1 
Word inflection support 7 8 
Result ranking 10 11 
Match highlighting 5 8 
Similarity search -8 1 
Autocorrect -4 5 
Search autocomplete -9 3 
Search suggestions -2 4 
Did-you-mean search -7 2 
Search-as-you-type 0 6 
Dynamic search facets -4 3 
Smart tags 3 7 
Machine translation in search -3 4 
Include version information in search -5 2 
Search should include file contents -6 2 
Search should include file metadata -4 4 
Visual search -12 1 
Audio search -9 1 
Content similarity search -9 0 
Location search -12 1 
Saved searches, personal -2 3 
Saved searches, organization-wide -10 1 
Custom default searches -1 3 
Organization-specific synonyms -10 1 
Quick and advanced search -1 5 

Table 17: Customer Survey Priority Assignments. 

Priority Score 

Must-have 
Should-have 
Could-have 
Will-not-have 

Score of 10 or above 
Score of 5 or above 
Score of 0 or above 
Scores less than 0 
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5 Digital Asset Management Vendors 

The ten leading DAM vendor products were reviewed as part of this thesis. This 

appendix lists each tool in bit more detail starting from challengers and moving up. 

The Northplains Telescope19 was listed as the only challenger has since been 

re-branded20 as a modular Northplains NEXT platform in which the Xinet seems to 

provide the DAM features. The Northplains review is based on the Xinet 

documentation21. The Xinet seems to provide pretty good coverage on keyword 

search options. This seems to be due to possible integration with Apache Solr. 

The administrator of the system may choose which search engine to use with the 

Xinet, either full-text search or external Apache Solr. The features of Xinet search 

include either quick or use more advanced search filter using keywords or free text 

search. The search handles multiple terms, offers phrase search with proximity 

matching, restricting search to specific field and is capable of showing the results 

with dynamic facets. Complex searches may be saved for further execution. 

The next DAM vendor group was the categorized as the contenders which 

included two solutions, Canto and Digizuite DAM. 

The Canto DAM22 appears to be focused on marketing material handling. It 

provides the basic search features such as keyword search, field-restricted 

search, supports multiple search terms by boolean operators. The search is 

capable of looking for matches in the metadata and also from the body content of 

the asset. It also allows users to save previous searches for easier re-execution. 

It has integrations to Amazon Rekognition AI services which was used for example 

in providing automatic tagging of assets. It for example provides facial recognition 

which allows users later find assets with happy faces in them. 

19https://www.northplains.com/ 
20https://www.northplains.com/content-lifecycle-management-clm-101 
21http://docs.xinet.com/docs/Xinet/19.2.1/AllGuides/ 
22https://www.canto.com/ 

https://www.northplains.com/
https://www.northplains.com/content-lifecycle-management-clm-101
http://docs.xinet.com/docs/Xinet/19.2.1/AllGuides/
https://www.canto.com/
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The Digizuite DAM23 had more options available than the Canto, in above the 

traditional free-text search it had Apache Solr integration for adding more options 

for configuring the search functionality. The administrator is able to choose 

between different styles of search matching, either inflectional, thesaurus or exact. 

The version 5.5 added machine translation of metadata and provided searching of 

asset content. The content search was implemented using Optical Character 

Recognition (OCR) provided by Microsoft Azure Cognitive Services. This kind of 

content search was available for PDF, JPEG, PNG, BMP, TIFF file formats. 

As above lists the contender category products already have quite extensive 

feature set regarding search. Following contenders were the strong performers 

which had multiple vendor solutions listed. 

The Widen Collective24 was listed having two kinds of searches, a quick and file 

content search. The quick search was for searching the asset metadata and gave 

option to do exact, phrase, or field-specific searches, but it did not support 

wildcard matching. The file content searching was supported for Office and PDF 

documents using FTS which supported stemming and substring matching. The 

search also provides predictive search which can be called a search-as-you-type. 

The Nuxeo Platform25 had quite extensive set of search features. It makes use of 

multiple backends for data, a RDBMS solution is used as the primary data store, 

and it is linked with an Elasticsearch search engine for providing advanced asset 

search capabilities. The Nuxeo supports all basic features such as search 

truncation and filters. It provides full-text search with multiple terms with 

stemming, phrase searches, offers suggestions and the search-as-you-type 

feature. The platform also offered to save searches for later use and to share 

these with other users. It also allows searching deleted assets from thrash. 

CELUM Content Collaboration Cloud26 had very little publicly available information 

23https://www.digizuite.com/digital-asset-management 
24https://www.widen.com/solutions/digital-asset-management 
25https://www.nuxeo.com/solutions/dam-digital-asset-management/ 
26https://www.celum.com/en/digital-asset-management-software/ 

https://www.digizuite.com/digital-asset-management
https://www.widen.com/solutions/digital-asset-management
https://www.nuxeo.com/solutions/dam-digital-asset-management/
https://www.celum.com/en/digital-asset-management-software/
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about the platforms search capabilities. Analyzing the latest release notes27 along 

the marketing info gave some information about the systems capabilities. CELUM 

provides full-text searching with ranking, and it is possible to do phrase searches 

as well. Search is using current page context to search, so if user is browsing 

within a category and does quick search it will only search for matches from within 

the category but provides option to expand the search to cover all assets if 

needed. More search engine type feature is the search-as-you-type, and it uses 

some AI model in providing smart tags when saving assets. 

The final member of strong contender group is Bynder Flagship28 which has quite 

an extensive list of search options as it uses Apache Solr as its search engine. It 

provides full-text searching with relevancy ranking and phrase searches. In 

addition to these it allows field-restricted searches and stores search history so 

users can rerun recent searches. The system also indexes the file contents for 

Office and PDF files and offers match highlighting. When working on the UI it has 

“sticky searches” were consecutive search queries filter the previous search 

results further allowing users to zone in the assets. For providing 

search-as-you-type queries the system uses egde n-grams on select fields where 

it indexes the first 20 characters so that word such as “House” is indexed as a 

following set: {'h', 'ho','hou', 'hous', 'house'}. As Bynder is hosted on 

Amazon platform it integrates with the Amazon Rekognition to provide AI features 

which are used for example on providing smart tagging of assets. 

The final group of DAM vendors were the market leaders. These are the largest 

and most featureful vendor offerings with business revenue in hundreds of millions 

or over. The market research identified three operators in this group. 

First market leader is OpenText Media Management29. First thing from OpenText 

is the vast ecosystem it has, it is not just asset management, but it integrates to 

other OpenText offerings to provide plethora of features. This makes analyzing 

27https://www.celum.com/en/blog/celum-contenthub-21-9-release-whats-new/ 
28https://www.bynder.com/en/products/digital-asset-management/ 
29https://www.opentext.com/products-and-solutions/products/customer-experience-management/ 

digital-asset-management/opentext-media-management 

https://www.celum.com/en/blog/celum-contenthub-21-9-release-whats-new/
https://www.bynder.com/en/products/digital-asset-management/
https://www.opentext.com/products-and-solutions/products/customer-experience-management/digital-asset-management/opentext-media-management
https://www.opentext.com/products-and-solutions/products/customer-experience-management/digital-asset-management/opentext-media-management
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what features the platform provides a difficult task as the features are provided by 

different components which might be interconnected or not. For example the 

OpenText Media Management solely provides the DAM features but can it be 

integrated with OpenText Magellan Text Mining for adding ML models to providing 

sentiment analysis and language detection etc. features. This is not covered in the 

materials. For certain the features in Media Management component are keyword 

searching using multiple terms matching asset file metadata and contents. 

Results can be filtered by dynamic facets. For more exotic search features it 

provides AI search by using the Google Vision AI30 and Microsoft Azure Computer 

Vision31. The search allows searches for assets based on the properties of 

images, number of people, facial expression, age, gender, description of image 

content, objects in the image or colors. These searches can be executed on video 

as well to find where the AI is used to make speech-to-text transcripts, it also tags 

known celebrities identified in the video. OCR techniques are used to parse text 

from images and identify known brands and label in them. 

Next listed leader was the Aprimo DAM32. The basic search features present in 

Aprimo did not provide anything noteworthy compared to other vendors. It 

supports truncate search and filtering. Search terms may be combined with 

boolean operators and full-text search can be used in select cases and the results 

may be ranked by relevancy and filtered by dynamic facets. The product also has 

very extensive API for making searches. 

In addition to these there are multiple methods where AI is used to enhance the 

searching. These include the common way of automatically tagging assets but 

Aprimo extends this by offering an option to train a business-specific ML model 

tailor the tagging process for each customer. The search in Aprimo can use AI 

models to index speech on video and visual texts from video sources. Besides 

these the search can be used to find visually similar content. 

30https://cloud.google.com/vision 
31https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/ 
32https://www.aprimo.com/platform/digital-asset-management/ 

https://cloud.google.com/vision
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://www.aprimo.com/platform/digital-asset-management/
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The final vendor was Adobe with their Experience Manager Assets33 which is quite 

large system. Technical side the system is built with Java on Apache Jackrabbit 

Oak project. The default search features of Oak are used by default which can be 

enhanced by using Apache Solr integration. The system basic search capabilities 

are pretty much those of Apache Solr so truncate search with filtering, full-text 

search with multiple terms and ranking, phrase and similarity searches, 

suggestion of search terms. Finding similar content or images. 

Adobe allows searching their own Adobe stock photo archive to enhance existing 

assets or make new assets based on the stock photos. Smart collections where 

users may create new groups from search results. The metadata of assets are 

translated automatically by AI. The Adobe Sensei AI is also used to add smart tags 

to the assets. It also makes possible on searching audio and video content. The 

smart tags feature can also use Smart content service to train a customer specific 

ML model to applying tags to assets. 

Looking through each category of DAM products gives us common themes in 

them. The challenger-level product provides pretty default search options based 

on dedicated search engine. At contender group products the basic search engine 

uses are better integrated and offer more features. With these vendors there 

starts to be little utilization of AI in aiding in asset searching. Mostly in 

automatically tagging assets at creation of time. 

The strong performers of DAM vendors did not really add anything special 

compared to that of contenders. They offered more of the same features which 

were given on the contender-level. The AI features were clearly using external 

systems like Amazon Rekognition and Google Vision instead of offering any 

in-house AI solutions. 

The market leaders were very distinct group were two things are featured 

prominently. One is that the products are big and modular. Instead of getting 

single tool you get a platform you can extend to fit your needs. This makes 

33https://business.adobe.com/products/experience-manager/adobe-experience-manager.html 

https://business.adobe.com/products/experience-manager/adobe-experience-manager.html
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identifying all the possible features difficult just by looking at their documentation 

and materials as they do not make clear which parts can be integrated together 

and how well that actually works. The other identifying aspect from the leader 

group is the use of AI. It was used extensively throughout the vendor platform and 

not just for searching. Possibility that these bigger vendors can hire dedicated 

professionals to create and train the AI models for each task. 

Examples of search features using AI in their tools include: 

Smart tagging Automatically identify characteristics, visual or others and create 

metadata tags. May contain business-specific options if AI can be trained for 

each customer. Usually offered as part of bulk-loading of assets 

Visually similar searches Find images with similar content, Images with same 

model, happy images etc. 

Dynamic facets Create facets automatically based on search results while using 

AI to filter unnecessary facets 

Multilingual search Allow search to use any language but use machine translate 

to convert queries into target language 

Search on Speech in Video search fragments of speech to find matching videos 

Search on Visual Text in Video search visual text in video such as from credits 

or written texts shown on feed 

Sentiment analysis Identify and highlight what people are saying, for example 

social media posts about asset, are they positive or negative 

Text mining, natural language processing and understanding Extract parts of 

text and derive understanding of emotions or intent. The Computer Vision 

(CV) may be used to discover prohibited materials such as use of alcohol, 

drugs and violence or adult content. 

Document digitization Automate classification and entity extraction with aid of 

ML. The captured information is further directed to workflows for 

context-based processing. 

Above lists only some samples of search features where AI was used, there were 

many other areas where AI was also utilized. The material left impression that 
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these use in-house developed AI solutions but looking only at product marketing 

and internal documentation can not verify this. 

A summary of the features present in these vendor systems are given in Table 18. 

The score represents how many DAM products had the said feature, so scores 

are given from 0 (none) to 10 (all of them). 

Table 18: Summary of Provided DAM Features of Top 10 Vendor Products. 

Feature Score 

Truncate search 7 
Search filters 9 
Free text search 9 
Support multiple terms 9 
Phrase search 7 
Proximity search 3 
Word inflection support 5 
Result ranking 5 
Match highlighting 2 
Similarity search 1 
Autocorrect 1 
Search autocomplete 1 
Search suggestions 3 
Did-you-mean search 1 
Search-as-you-type 4 
Dynamic search facets 6 
Smart tags 7 
Machine translation in search 2 
Include version information in search 0 
Search should include file contents 5 
Search should include file metadata 2 
Visual search 4 
Audio search 2 
Content similarity search 2 
Location search 0 
Saved searches, personal 3 
Saved searches, organization-wide 1 
Custom default searches 0 
Organization-specific synonyms 1 
Quick and advanced search 5 
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6 File Metadata Analysis 

This appendix provides a more detailed look on the file metadata relating to the 

new DAM system. 

Apache Tika34 is Java-based tool to parse files for their metadata and content. 

The metadata output varies by file types. Here are some examples of file 

metadata from different file types. The metadata was extracted with command 

java -jar tika-app-1.26.jar -m -j FILEPATH | jq. The jq command is used 

to pretty print the JSON output given by Tika tool. Simple text files such as JSON 

files do not contain much metadata in them as detailed in Listing 3. 

1 { 
2 "Content-Encoding": "ISO-8859-1", 
3 "Content-Length": "4137", 
4 "Content-Type": "application/json; charset=ISO-8859-1", 
5 "X-Parsed-By": [ 
6 "org.apache.tika.parser.DefaultParser", 
7 "org.apache.tika.parser.csv.TextAndCSVParser" 
8 ], 
9 "resourceName": "zmg.json" 
10 } 

Listing 3: Sample of a JSON File Metadata. 

The is vast difference in amount of metadata once looking at more complex file 

such a PDF document. The Listing 4 presents the sample metadata from a PDF 

presentation. There exists many useful fields in it which could be used to enhance 

search capabilities of the DAM. It also provides several fields which are of no 

direct use such as pdf:charsPerPage field. When storing the metadata into the 

DAM system it would not be most efficient to try to index all of the PDF metadata, 

but to pick the most relevant fields for indexing. 

After PDF files the most common file types in the system are the Office files as 

shown in Table 11. A sample from a Microsoft Word document is shown in 

Listing 5 illustrates how the metadata is more limited than the metadata on PDF. 

34https://tika.apache.org/ 

https://tika.apache.org/
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One noticeable aspect is that many fields are duplicated with different names, 

such as Paragraph-Count and meta:paragraph-count. This might be done to keep 

metadata backwards compatible with older versions. 
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1 { 
2 "Author": "Joe Conway joe.conway@crunchydata.com mail@joeconway.com 

", 
3 "Content-Length": "244110", 
4 "Content-Type": "application/pdf", 

"Creation-Date": "2015-10-28T13:55:15Z", 
6 "Keywords": "", 
7 "Last-Modified": "2015-10-28T13:55:15Z", 
8 "Last-Save-Date": "2015-10-28T13:55:15Z", 
9 "PTEX.Fullbanner": "This is pdfTeX, Version 3.1415926-2.5-1.40.14 

(TeX Live 2013/Debian) kpathsea version 6.1.1", 
"X-Parsed-By": [ 

11 "org.apache.tika.parser.DefaultParser", 
12 "org.apache.tika.parser.pdf.PDFParser" 
13 ], 
14 "access_permission:assemble_document": "true", 

"access_permission:can_modify": "true", 
16 "access_permission:can_print": "true", 
17 "access_permission:can_print_degraded": "true", 
18 "access_permission:extract_content": "true", 
19 "access_permission:extract_for_accessibility": "true", 

"access_permission:fill_in_form": "true", 
21 "access_permission:modify_annotations": "true", 
22 "cp:subject": "Text Search and Pattern Matching", 
23 "created": "2015-10-28T13:55:15Z", 
24 "creator": "Joe Conway joe.conway@crunchydata.com 

mail@joeconway.com ", 
"date": "2015-10-28T13:55:15Z", 

26 "dc:creator": "Joe Conway joe.conway@crunchydata.com 
mail@joeconway.com ", 

27 "dc:format": "application/pdf; version=1.5", 
28 "dc:subject": "", 
29 "dc:title": "Where's Waldo? - Text Search and Pattern Matching in 

PostgreSQL", 
"dcterms:created": "2015-10-28T13:55:15Z", 

31 "dcterms:modified": "2015-10-28T13:55:15Z", 
32 "meta:author": "Joe Conway joe.conway@crunchydata.com 

mail@joeconway.com ", 
33 "meta:creation-date": "2015-10-28T13:55:15Z", 
34 "meta:keyword": "", 

"meta:save-date": "2015-10-28T13:55:15Z", 
36 "modified": "2015-10-28T13:55:15Z", 
37 "pdf:PDFVersion": "1.5", 
38 "pdf:charsPerPage": [ 
39 "195", 

"203", 
41 "144", 
42 "263", 
43 "284", 
44 "276", 

"538", 
46 "473", 
47 "454", 

"451" 
49 "226",
50 "307",
51 "470",
52 "407",
53 "460",
54 "523",
55 "532",
56 "622",
57 "320",
58 "571",
59 "446",
60 "419",
61 "517",
62 "515",
63 "448",
64 "609",
65 "610",
66 "595",
67 "283",
68 "503",
69 "364",
70 "423",
71 "496",
72 "517",
73 "450",
74 "822",
75 "258",
76 "571",
77 "531",
78 "587",
79 "595",
80 "726",
81 "603",
82 "576",
83 "795",
84 "594",
85 "592",
86 "573",
87 "565",
88 "576",
89 "717",
90 "563",
91 "100"
92 ],
93 "pdf:docinfo:created": "2015-10-28T13:55:15Z",
94 "pdf:docinfo:creator": "Joe Conway joe.conway@crunchydata.com

mail@joeconway.com ",
95 "pdf:docinfo:creator_tool": "LaTeX with Beamer class version 3.24",
96 "pdf:docinfo:custom:PTEX.Fullbanner": "This is pdfTeX, Version

3.1415926-2.5-1.40.14 (TeX Live 2013/Debian) kpathsea version
6.1.1",

97 "pdf:docinfo:keywords": "",
98 "pdf:docinfo:modified": "2015-10-28T13:55:15Z",
99 "pdf:docinfo:producer": "pdfTeX-1.40.14",
100 "pdf:docinfo:subject": "Text Search and Pattern Matching",
101 "pdf:docinfo:title": "Where's Waldo? - Text Search and Pattern

Matching in PostgreSQL",
102 "pdf:docinfo:trapped": "False",
103 "pdf:encrypted": "false",
104 "pdf:hasMarkedContent": "false",
105 "pdf:hasXFA": "false",
106 "pdf:hasXMP": "false",
107 "pdf:unmappedUnicodeCharsPerPage": [
108 "0",
109 "0",
110 "0",
111 "0",
112 "0",
113 "0",
114 "0",
115 "0",
116 "0",
117 "0",
118 "0",
119 "0",
120 "0",
121 "0",
122 "0",
123 "0",
124 "0",
125 "0",
126 "0",
127 "0",
128 "0",
129 "0",
130 "0",
131 "0",
132 "0",
133 "0",
134 "0",
135 "0",
136 "0",
137 "0",
138 "0",
139 "0",
140 "0",
141 "0",
142 "0",
143 "0",
144 "0",
145 "0",
146 "0",
147 "0",
148 "0",
149 "0",
150 "0",
151 "0",
152 "0",
153 "0",
154 "0",
155 "1",
156 "0",
157 "0",
158 "0",
159 "0",
160 "0"
161 ],
162 "producer": "pdfTeX-1.40.14",
163 "resourceName": "text_search-pgconfeu2015.pdf",
164 "subject": "Text Search and Pattern Matching",
165 "title": "Where's Waldo? - Text Search and Pattern Matching in

PostgreSQL",
166 "trapped": "False",
167 "xmp:CreatorTool": "LaTeX with Beamer class version 3.24",
168 "xmpTPg:NPages": "53"
169 }

Listing 4: Sample PDF File Metadata.
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1 { 
2 "Application-Name": "Microsoft Office Word", 
3 "Application-Version": "15.0000", 
4 "Character Count": "19253", 
5 "Character-Count-With-Spaces": "22585", 
6 "Content-Length": "302632", 
7 "Content-Type": "application/vnd.openxmlformats-

officedocument.wordprocessingml.document", 
8 "Creation-Date": "2020-08-27T10:15:00Z", 
9 "Last-Modified": "2020-08-27T10:15:00Z", 
10 "Last-Save-Date": "2020-08-27T10:15:00Z", 
11 "Line-Count": "160", 
12 "Page-Count": "23", 
13 "Paragraph-Count": "45", 
14 "Revision-Number": "1", 
15 "Template": "Thesis_2012.dotx", 
16 "Word-Count": "3377", 
17 "X-Parsed-By": [ 
18 "org.apache.tika.parser.DefaultParser", 
19 "org.apache.tika.parser.microsoft.ooxml.OOXMLParser" 
20 ], 
21 "cp:revision": "1", 
22 "date": "2020-08-27T10:15:00Z", 
23 "dcterms:created": "2020-08-27T10:15:00Z", 
24 "dcterms:modified": "2020-08-27T10:15:00Z", 
25 "extended-properties:AppVersion": "15.0000", 
26 "extended-properties:Application": "Microsoft Office Word", 
27 "extended-properties:DocSecurityString": "None", 
28 "extended-properties:Template": "Thesis_2012.dotx", 
29 "meta:character-count": "19253", 
30 "meta:character-count-with-spaces": "22585", 
31 "meta:creation-date": "2020-08-27T10:15:00Z", 
32 "meta:line-count": "160", 
33 "meta:page-count": "23", 
34 "meta:paragraph-count": "45", 
35 "meta:save-date": "2020-08-27T10:15:00Z", 
36 "meta:word-count": "3377", 
37 "modified": "2020-08-27T10:15:00Z", 
38 "resourceName": "Thesis Template 2020 v01.docx", 
39 "xmpTPg:NPages": "23" 
40 } 

Listing 5: Sample DOCX File Metadata. 



Appendix 7 
1 (19) 

7 Database Analysis 

This appendix provides detailed information on database analysis done as part of 

this work. The first section covers the preliminary setup done on the database and 

following sections are dedicated on covering various query samples. Final section 

provides suggested improvements to identified issues. 

7.1 Database Setup 

The database software used in the analysis was PostgreSQL35 version 13.3. The 

software was compiled with options given in Listing 6. Once it was installed, it was 

started and a default database was created to be used in the analysis process. 

1 $ wget -q https://ftp.postgresql.org/pub/source/v13.3/postgresql-
13.3.tar.gz 

2 $ tar xzf postgresql-13.3.tar.gz 
3 $ cd postgresql-13.3 
4 $ CFLAGS=-I/usr/local/include \ 
5 LDFLAGS=-L/usr/local/lib \ 
6 ./configure \ 
7 --prefix=$HOME/testdb/pg13 \ 
8 --with-uuid=bsd 
9 $ gmake && gmake install 
10 $ (cd contrib/dict_int && gmake install) 
11 $ (cd contrib/fuzzystrmatch && gmake install) 
12 $ (cd contrib/pg_trgm && gmake install) 
13 $ (cd contrib/uuid-oosp && gmake install) 
14 $ cd .. 
15 $ ./pg13/bin/initdb -D testdb 
16 $ ./pg13/bin/pg_ctl -D testdb -l logfile start 
17 $ ./pg13/bin/createdb testdb 
18 $ ./pg13/bin/psql testdb 

Listing 6: Compilation of the Database Software. 

For the system data a database dump was taken from the new digital asset 

management systems staging environment dated 8th of June 2021: 

35https://www.postgresql.org 

https://www.postgresql.org
https://postgresql-13.3.tar.gz
https://13.3.tar.gz
https://ftp.postgresql.org/pub/source/v13.3/postgresql
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-rw-r----- 1 tmy tmy 26419058 Jul 11 13:06 core-staging-20210708.sql 

The Voikko36 extension setup required applying a small patch to make it compile 

as detailed in Listing 7. 

1 $ cd postgresql-13.3/contrib 
2 $ git clone https://github.com/Houston-Inc/dict_voikko.git 
3 $ wget https://github.com/zmyrgel/dict_voikko/commit/ea7760.diff 
4 $ patch < ea7760.diff 
5 $ gmake install 

Listing 7: Compilation of the dict_voikko Extension. 

Once the dict_voikko extension was installed the database required few 

commands for adding Voikko support given in Listing 8. 

1 CREATE EXTENSION IF NOT EXISTS dict_voikko; 
2 

3 CREATE TEXT SEARCH DICTIONARY voikko_stopwords ( 
4 TEMPLATE = voikko_template, StopWords = finnish 
5 ); 
6 

7 CREATE TEXT SEARCH CONFIGURATION voikko (COPY = finnish); 
8 

9 ALTER TEXT SEARCH CONFIGURATION voikko 
10 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart, 
11 word, hword, hword_part 
12 WITH voikko_stopwords, finnish_stem; 

Listing 8: Setup Steps for Enabling Voikko Contrib. 

7.2 Database Benchmarks 

The focus on benchmarking is not to get absolute maximum performance, only to 

cover rough estimates on how scalable the various search methods are. 

For benchmarking how well the database FTS search can keep up with increasing 

data the following code was used. 

36https://voikko.puimula.org 

https://voikko.puimula.org
https://github.com/zmyrgel/dict_voikko/commit/ea7760.diff
https://github.com/Houston-Inc/dict_voikko.git
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CREATE TABLE sample_products_1000 ( 
id SERIAL PRIMARY KEY, 
name TEXT, 
description TEXT, 
product_code TEXT, 
metadata JSONB, 
tsv_data TSVECTOR, 
UNIQUE(product_code) 

); 

CREATE TABLE sample_products_10_000 ( 
id SERIAL PRIMARY KEY, 
name TEXT, 
description TEXT, 
product_code TEXT, 
metadata JSONB, 
tsv_data TSVECTOR, 
UNIQUE(product_code) 

); 

CREATE TABLE sample_products_100_000 ( 
id SERIAL PRIMARY KEY, 
name TEXT, 
description TEXT, 
product_code TEXT, 
metadata JSONB, 
tsv_data TSVECTOR, 
UNIQUE(product_code) 

); 

CREATE TABLE sample_products_1_000_000 ( 
id SERIAL PRIMARY KEY, 
name TEXT, 
description TEXT, 
product_code TEXT, 
metadata JSONB, 
tsv_data TSVECTOR, 
UNIQUE(product_code) 

); 

-- Use temporary table to contain system words 
CREATE TABLE words (word TEXT); 
CREATE TABLE names (name TEXT); 

-- Copy data from system dictionary 
COPY words (word) FROM '/usr/share/dict/words'; 
COPY names (name) FROM '/usr/share/dict/propernames'; 
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51 -- Fill tables with random data 
52 INSERT INTO sample_products_1000 (name, description, product_code) 
53 SELECT 
54 (SELECT * FROM words TABLESAMPLE SYSTEM (0.5) 

ORDER BY RANDOM()+_g*0 LIMIT 1), 
56 ARRAY_TO_STRING(ARRAY(SELECT * FROM words 
57 TABLESAMPLE SYSTEM (0.5) 
58 ORDER BY RANDOM()+_g*0 
59 LIMIT CEIL(RANDOM()*10+_g*0)), ' '), 

UUID_GENERATE_V4() 
61 FROM GENERATE_SERIES(1, 1000) AS _g; 
62 

63 INSERT INTO sample_products_10_000 (name, description, product_code) 
64 SELECT 

(SELECT * FROM words TABLESAMPLE SYSTEM (0.5) 
66 ORDER BY RANDOM()+_g*0 LIMIT 1), 
67 ARRAY_TO_STRING(ARRAY(SELECT * FROM words 
68 TABLESAMPLE SYSTEM (0.5) 
69 ORDER BY RANDOM()+_g*0 

LIMIT CEIL(RANDOM()*10)), ' '), 
71 UUID_GENERATE_V4() 
72 FROM GENERATE_SERIES(1, 10000) AS _g; 
73 

74 INSERT INTO sample_products_100_000 (name, description, 
product_code) 

SELECT 
76 (SELECT * FROM words TABLESAMPLE SYSTEM (0.5) 
77 ORDER BY RANDOM()+_g*0 LIMIT 1), 
78 ARRAY_TO_STRING(ARRAY(SELECT * FROM words 
79 TABLESAMPLE SYSTEM (0.5) 

ORDER BY RANDOM()+_g*0 
81 LIMIT CEIL(RANDOM()*10)), ' '), 
82 UUID_GENERATE_V4() 
83 FROM GENERATE_SERIES(1, 100000) AS _g; 
84 

INSERT INTO sample_products_1_000_000 (name, description, 
product_code) 

86 SELECT 
87 (SELECT * FROM words TABLESAMPLE SYSTEM (0.5) 
88 ORDER BY RANDOM()+_g*0 LIMIT 1), 
89 ARRAY_TO_STRING(ARRAY(SELECT * FROM words 

TABLESAMPLE SYSTEM (0.5) 
91 ORDER BY RANDOM()+_g*0 
92 LIMIT CEIL(RANDOM()*10)), ' '), 
93 UUID_GENERATE_V4() 
94 FROM GENERATE_SERIES(1, 1000000) AS _g; 
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95 

96 -- fill in the tsvector data 
97 UPDATE sample_products_1000 
98 SET tsv_data = 
99 setweight(to_tsvector('simple', COALESCE(name, '')), 'A') || 
100 setweight(to_tsvector('simple', COALESCE(product_code, '')), 'A') 

|| 
101 setweight(to_tsvector('simple', COALESCE(description, '')), 'B') || 
102 setweight(to_tsvector('simple', COALESCE(metadata, '{}')), 'C'); 
103 

104 UPDATE sample_products_10_000 
105 SET tsv_data = 
106 setweight(to_tsvector('simple', COALESCE(name, '')), 'A') || 
107 setweight(to_tsvector('simple', COALESCE(product_code, '')), 'A') 

|| 
108 setweight(to_tsvector('simple', COALESCE(description, '')), 'B') || 
109 setweight(to_tsvector('simple', COALESCE(metadata, '{}')), 'C'); 
110 

111 UPDATE sample_products_100_000 
112 SET tsv_data = 
113 setweight(to_tsvector('simple', COALESCE(name, '')), 'A') || 
114 setweight(to_tsvector('simple', COALESCE(product_code, '')), 'A') 

|| 
115 setweight(to_tsvector('simple', COALESCE(description, '')), 'B') || 
116 setweight(to_tsvector('simple', COALESCE(metadata, '{}')), 'C'); 
117 

118 UPDATE sample_products_1_000_000 
119 SET tsv_data = 
120 setweight(to_tsvector('simple', COALESCE(name, '')), 'A') || 
121 setweight(to_tsvector('simple', COALESCE(product_code, '')), 'A') 

|| 
122 setweight(to_tsvector('simple', COALESCE(description, '')), 'B') || 
123 setweight(to_tsvector('simple', COALESCE(metadata, '{}')), 'C'); 
124 

125 -- index tsvector contents 
126 CREATE INDEX tsv_1k_idx ON sample_products_1000 USING GIN 

(tsv_data); 
127 CREATE INDEX tsv_10k_idx ON sample_products_10_000 USING GIN 

(tsv_data); 
128 CREATE INDEX tsv_100k_idx ON sample_products_100_000 USING GIN 

(tsv_data); 
129 CREATE INDEX tsv_1m_idx ON sample_products_1_000_000 USING GIN 

(tsv_data); 
130 

131 -- update statistics 
132 VACUUM ANALYZE; 
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Listing 9: The Benchmark Preliminary Steps 

The index sizes given in Table 19 in the sample benchmark database are 

reasonable and not too large, so the system appears to be able to scale well for 

near-future growth. 

Table 19: Comparison of Benchmark Table Index Sizes. 

Name Table Size 

tsv_1k_idx sample_products_1000 512 kB 
tsv_10k_idx sample_products_10_000 3728 kB 
tsv_100k_idx sample_products_100_000 26 MB 
tsv_1m_idx sample_products_1_000_000 246 MB 

As the Listing 10 displays, the search for data using FTS is fast enough even 

when using it with table of one million entries in it. 

1 core=# select count(*) from sample_products_1_000_000 where 
tsv_data @@ 'porismatic:*&!syne:*&nontrier'; 

2 count 
3 -------
4 44 
5 (1 row) 
6 

7 Time: 113.514 ms 
8 core=# 

Listing 10: Full-Text Search on One Million Row Data. 

For benchmarking if there would be any accute limits on the FTS use the 

PostgreSQL user manual contents were indexed into the database. 

1 $ java -jar ~/Downloads/tika-app-1.26.jar -t postgresql-12-A4.pdf > 
postgresql-12-A4.txt 

2 $ ls -l postgresql-12* 
3 -rw-r--r-- 1 tmy tmy 13025172 Jan 8 09:27 postgresql-12-A4.pdf 
4 -rw-r--r-- 1 tmy tmy 6455797 Jan 8 09:28 postgresql-12-A4.txt 

Listing 11: Extracting PostgreSQL Manual Content. 

After the manual content was extracted into a text file they can be stored in the 

database: 

1 core=# create temp table tsv (id int, content text, tsv tsvector); 
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2 CREATE TABLE 
3 \set content `cat postgresql-12-A4.txt` 
4 core=# INSERT INTO tsv (id, content) VALUES(1, :'content'); 
5 INSERT 0 1 
6 core=# update tsv set tsv = to_tsvector('english', content); 
7 UPDATE 1 
8 core=# CREATE INDEX idx_fts_tsv ON tsv USING gin(tsv); 
9 CREATE INDEX 

Listing 12: Testing Indexing of the PostgreSQL Manual Contents. 

7.3 Database Issues Analysis 

There were some identified issues in the use of database which are detailed in 

this section. Current flawed search term handling done by the DAM application is 

shown in Listing 13. 

1 keywords 
2 .toLowerCase() // lowercase string 
3 .trim() // remove leading/trailing whitespace 
4 .match(/(\b([a-zåäö0-9]+\b))+/g)? // group alphanum sequences 
5 .join('<->') // join groups with FOLLOWED BY operator 
6 .replace(/\s{2,}/g, ' ') // replace consecutive spaces with one 
7 .split(' ') // split on space 
8 .join(':*&') + ':*'; // exclusive join with prefix matching 

Listing 13: Current Search Query. 

The implementation is flawed as it effectively makes the application search to do 

phrase searches by default. Another problem in the code is that it makes use of 

prefix matching only for the last term, which does not seem what the author has 

intended. 

There exists many fields in the product metadata, these vary based on product 

type but full list is given in Listing 14. 

1 select jsonb_object_keys(metadata) from products; 
2 ------------------------
3 containsConnectionInfo 
4 creator 
5 dateIssued 
6 imprint 
7 owner 
8 ownerUnit 
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9 subject 
10 titleAlternatives 
11 uriDescription 
12 (9 rows) 

Listing 14: Sample Metadata Keys in Customer Data. 

To improve the matching only the “creator”, “imprint”, “subject”, “titleAlternatives”, 

“uriDescription” fields should be added to the tsvector as these contain textual 

data. For example “subject” metadata contains product specific keywords which 

could then be weighted more heavily than rest of the metadata by indexing 

metadata field separately. As metadata fields are customer-specific this process 

needs to be done individually for each customer. 

The original database trigger run after each product table change was: 

7.4 Database Query Analysis 

This section provides detailed analysis on running searches on the PostgreSQL 

database focusing on performance and features. For performance analysis the 

samples use the simple timing command to give approximate amount of time on 

how long it takes to complete the query. The commonly used analysis command 

EXPLAIN ANALYZE is not used as its output is very verbose and the additional 

details are not required for these simple comparisons. The command was used to 

verify that the queries used correct search plans and utilized table indices. 

The product table indices used during database analysis are given in Listing 16. 

1 Indexes: 
2 "products_pkey" PRIMARY KEY, btree (id) 
3 "products_product_code_key" UNIQUE CONSTRAINT, btree 

(product_code) 
4 "products_tsv_data_idx" gist (tsv_data) 
5 "trgm_full_idx" gin (immutable_concat_ws(' '::text, VARIADIC 

ARRAY[product_code::text, name::text, description, metadata ->> 
'subject'::text, metadata ->> 'creator'::text, metadata ->> 
'titleAlternatives'::text]) gin_trgm_ops) 

Listing 16: Product Table Indexes. 



1 CREATE OR REPLACE FUNCTION create_or_update_product_tsv_data() 
2 RETURNS trigger 
3 AS $create_or_update_product_tsv_data$ 
4 BEGIN 
5 UPDATE products 
6 SET tsv_data = 
7 setweight(to_tsvector('simple', 
8 COALESCE(t.name, '')), 'A') || 
9 setweight(to_tsvector('simple', 
10 COALESCE(t.product_code, '')), 'A') || 
11 setweight(to_tsvector('simple', 
12 COALESCE(t.description, '')), 'B') || 
13 setweight(to_tsvector('simple', 
14 COALESCE(t.metadata, '{}')), 'C') || 
15 setweight(to_tsvector('simple', 
16 COALESCE(regexp_replace(t.o_username, \\ 
17 '\\@|\\+|\\.', ' ', 'gim'), '')), 'A') || 
18 setweight(to_tsvector('simple', 
19 COALESCE(t.o_first_name, '')), 'A') || 
20 setweight(to_tsvector('simple', 
21 COALESCE(t.o_last_name, '')), 'A') 
22 FROM ( SELECT p.*, 
23 owner.username AS o_username, 
24 owner.first_name AS o_first_name, 
25 owner.last_name AS o_last_name 
26 FROM products p 
27 LEFT JOIN public.users owner ON owner.id = p.created_by 
28 WHERE CASE TG_TABLE_NAME 
29 WHEN 'products' 
30 THEN p.id = NEW.id 
31 END 
32 ) t 
33 WHERE products.id = t.id; 
34 RETURN NEW; 
35 END; 
36 $create_or_update_product_tsv_data$ LANGUAGE plpgsql; 
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Listing 15: Original Product TSVector Update Trigger. 

In order to index string data for trigram matching the database requires an 

immutable version of string concatenation function. Immutable in here means that 

the output of the function will not vary based on the user specified locale settings 

as is the case with the default concatenation function. The default concatenation 

function works with dates as well which output format is heavily dependent on the 

locale. 

https://products.id
https://owner.id
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1 CREATE OR REPLACE FUNCTION immutable_concat_ws(text, VARIADIC 
text[]) 

2 RETURNS text AS 'text_concat_ws' LANGUAGE internal IMMUTABLE 
PARALLEL SAFE; 

Listing 17: Sample Concat Utility. 

The first query is matching pattern “kissa” from within the searchable fields in 

Listing 18. 

1 SELECT p.name, p.product_code, p.description, p.metadata, 
2 u.username, u.first_name, u.last_name 
3 FROM products p 
4 INNER JOIN users u ON p.created_by = u.id 
5 WHERE concat_ws(p.name, p.product_code, p.description, p.metadata, 
6 u.username, u.first_name, u.last_name) ILIKE '%kissa%'; 

Listing 18: Database Query with Pattern Matching. 

A sample of using trigram matching to match documents with term “kissa” in 

Listing 19. The query starts to become long as the trigram query requires 

concatenating the fields together to big string value to be able to use indexes. 

1      
2 u.username, u.first_name, u.last_name, 
3 word_similarity('kissa', concat_ws( 
4 p.name, p.product_code, 
5 p.description, p.metadata, 
6 u.username, u.first_name, u.last_name) 
7 ) as score 
8 FROM products p 
9 INNER JOIN users u ON p.created_by = u.id 
10 WHERE 'kissa' <% concat_ws(p.name, p.product_code, p.description, 
11 p.metadata, u.username, u.first_name, u.last_name) 
12 ORDER BY word_similarity('kissa', 
13 concat_ws(p.name,p.product_code,p.description,p.metadata, 
14 u.username, u.first_name, u.last_name)) DESC; 

SELECT p.name, p.product_code, p.description, p.metadata,

Listing 19: Database Query with pg_trgm Extension. 

The simple FTS search is presented in Listing 20. The query is just matching the 

term “kissa” from the tsvector field containing the pre-calculated document terms. 

1       
2 p.metadata, u.username, u.first_name, u.last_name 
3 FROM products p 
4 INNER JOIN users u ON p.created_by = u.id 

core=# SELECT p.id, p.name, p.product_code, p.description,
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5 WHERE p.tsv_data @@ 'kissa' 
6 22 rows 

Listing 20: Database query With Full-Text Search. 

The improved FTS in Listing 21 is using prefix-matching to get better results. 

1 core=# SELECT p.id, p.name, p.product_code, p.description, 
2 p.metadata, u.username, u.first_name, u.last_name 
3 FROM products p 
4 INNER JOIN users u ON p.created_by = u.id 
5 WHERE p.tsv_data @@ 'kissa:*' 
6 (39 rows) 

Listing 21: Database Query with Full-Text Search with Prefix Matching. 

Example of how pg_trgm may be used with multiple terms such as “kissa AND 

koira” is given in Listing 22. The query is using weighted scoring to improve 

ranking of the results which results in quite complex query. 

1 SELECT p.id, p.name, 
2 (word_similarity('kissa', p.product_code) + 
3 word_similarity('kissa', p.name) + 
4 word_similarity('kissa', p.description) * 0.75 + 
5 word_similarity('kissa', 
6 COALESCE(p.metadata->>'subject', '0')::text) + 
7 word_similarity('kissa', 
8 COALESCE(p.metadata->>'creator', '0')::text) + 
9 word_similarity('kissa', 
10 COALESCE(p.metadata->>'titleAlternatives', '0')::text) * 

0.75) 
11 + 
12 (word_similarity('koira', p.product_code) + 
13 word_similarity('koira', p.name) + 
14 word_similarity('koira', p.description) * 0.75 + 
15 word_similarity('koira', 
16 COALESCE(p.metadata->>'subject', '0')::text) + 
17 word_similarity('koira', 
18 COALESCE(p.metadata->>'creator', '0')::text) + 
19 word_similarity('koira', 
20 COALESCE(p.metadata->>'titleAlternatives', '0')::text) * 

0.75 ) as score 
21 FROM products p 
22 INNER JOIN users u ON p.created_by = u.id 
23 WHERE ( 'koira' <% p.product_code 
24 OR 'koira' <% p.name 
25 OR 'koira' <% p.description 
26 OR 'koira' <% (p.metadata->>'subject')::text 
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27 OR 'koira' <% (p.metadata->>'creator')::text 
28 OR 'koira' <% (p.metadata->>'titleAlternatives')::text) 
29 AND ( 'koira' <% p.product_code 
30 OR 'koira' <% p.name 
31 OR 'koira' <% p.description 
32 OR 'koira' <% (p.metadata->>'subject')::text 
33 OR 'koira' <% (p.metadata->>'creator')::text 
34 OR 'koira' <% (p.metadata->>'titleAlternatives')::text) 
35 ORDER BY score DESC; 

Listing 22: Sample Multiterm Query Using Trigram Matching with Ranking. 

Compared the trigram version in Listing 22 the FTS version shown in Listing23 is 

simple. 

1 SELECT p.name, p.product_code, p.description, p.metadata, 
2 u.username, u.first_name, u.last_name, 
3 ts_rank(tsv_data, 'kissa:* & koira:*') as rank 
4 FROM products p 
5 INNER JOIN users u ON p.created_by = u.id 
6 WHERE tsv_data @@ 'kissa:* & koira:*' 
7 ORDER BY rank DESC; 

Listing 23: Sample Multiterm Query Using Full-Text Search With Ranking. 

The searching file contents with trigrams will be very slow as presented in 

Listing 24. The primary cause is in trigrams, the search needs to iterate through 

each term and calculate their trigrams and then compare them with search term. 

These kinds of searches should be reserved for smaller text sizes. 

1 core=# create index trgm_content_idx on renditions USING GIN 
(file_content gin_trgm_ops); 

2 CREATE INDEX 
3 Time: 243279.278 ms (04:03.279) 
4 core=# 
5 core=# select count(id) from renditions where 'kissa' <% 

file_content; 
6 count 
7 -------
8 4248 
9 (1 row) 
10 

11 Time: 298336.125 ms (04:58.336) 

Listing 24: Trigram Searching File Content. 



Appendix 7 
13 (19) 

Searching file contents using regular pattern matching query in Listing 25 shows 

that it is slightly faster in execution than trgm search in Listing 24 but it is too slow 

to fit within the constraints. 

1 core=# select count(id) from renditions where file_content ilike 
'%kissa%'; 

2 count 
3 -------
4 1839 
5 (1 row) 
6 

7 Time: 14859.720 ms (00:14.860) 

Listing 25: Pattern Matching for File Content. 

The use of FTS is shown in Listing 26. It starts by extending the table with 

tsv_contents field which is then filled with weighted tsvector contents. This allows 

each row to store the calculated tsvector contents, so it does not need to be 

calculated for each query. The first select query is run without using index and is 

too slow to fit within the time constraints. Once the index is added the query 

executes well within the time constraints making it the only search option to do so. 

7.5 Database Improvements 

This section provides details on the suggested improvements for the DAM system. 

A suggested improvement for the original database trigger presented in Listing 15 

is given in Listing 27. It improves the original by using language-specific dictionary 

configurations and indexing the username field as-is. 

1 CREATE OR REPLACE FUNCTION create_or_update_product_tsv_data() 
RETURNS trigger 

2 AS $create_or_update_product_tsv_data$ 
3 BEGIN 
4 UPDATE products SET tsv_data = 
5 setweight(to_tsvector(t.trg_dict::regconfig, 
6 COALESCE(t.name, '')), 'A') || 
7 setweight(to_tsvector('simple', 
8 COALESCE(t.product_code, '')), 'A') || 
9 setweight(to_tsvector(t.trg_dict::regconfig, 

COALESCE(t.description, '')), 'B') || 10 
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11 setweight(to_tsvector(t.trg_dict::regconfig, 
12 COALESCE(t.metadata->>'subject', '')), 'A') || 
13 setweight(to_tsvector(t.trg_dict::regconfig, 
14 COALESCE(t.metadata->>'creator', '')), 'A') || 

setweight(to_tsvector(t.trg_dict::regconfig, 
16 COALESCE(t.metadata->>'titleAlternatives', '')), 'B') || 
17 setweight(to_tsvector(t.trg_dict::regconfig, 
18 COALESCE(t.metadata->>'imprint', '')), 'C') || 
19 setweight(to_tsvector(t.trg_dict::regconfig, 

COALESCE(t.metadata->>'uriDescription', 
21 setweight(to_tsvector('simple', 
22 COALESCE(t.o_username, '')), 'A') || 
23 setweight(to_tsvector('simple', 
24 COALESCE(t.o_first_name, '')), 'A') || 

setweight(to_tsvector('simple', 
26 COALESCE(t.o_last_name, '')), 'A') 
27 FROM ( 
28 SELECT p.*, 
29 owner.username AS o_username, 

'')), 'C') || 

owner.first_name AS o_first_name, 
31 owner.last_name AS o_last_name, 
32 CASE WHEN new.content_lang = 1 THEN 'finnish' 
33 WHEN new.content_lang = 2 THEN 'swedish' 
34 WHEN new.content_lang = 4 THEN 'english' 

ELSE 'simple' 
36 END trg_dict 
37 FROM products p 
38 LEFT JOIN public.users owner ON owner.id = p.created_by 
39 WHERE CASE TG_TABLE_NAME 

WHEN 'products' THEN p.id = NEW.id 
41 END 
42 ) t 
43 WHERE products.id = t.id; 
44 RETURN NEW; 

END; 
46 $create_or_update_product_tsv_data$ LANGUAGE plpgsql; 
47 

48 CREATE TRIGGER create_or_update_tsv_data 
49 AFTER INSERT OR UPDATE OF name, description, product_code, metadata 

ON products 
FOR EACH ROW 

51 EXECUTE PROCEDURE create_or_update_product_tsv_data(); 
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Listing 27: Suggested Improvement for the TSVector Update Trigger. 

For looking at the problem of parsing hyphenated strings with the FTS parser in 

PostgreSQL returns a bit of varied results regarding numbers in hyphened strings: 

https://products.id
https://owner.id
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1 core=# select to_tsvector('simple', 'abc-100'); 
2 to_tsvector 
3 -------------------
4 '-100':2 'abc':1 
5 (1 row) 
6 core=# select to_tsvector('simple', 'a-abc-100'); 
7 to_tsvector 
8 ---------------------------------
9 '100':4 'a':2 'a-abc':1 'abc':3 

Listing 28: Fixing Product Code Hyphenation Parsing. 

The fix is simple with later PostgreSQL versions: 
1 CREATE TEXT SEARCH DICTIONARY core_product_code_dict (TEMPLATE 
2 intdict_template, MAXLEN = 64, REJECTLONG = true, ABSVAL = true); 
3 CREATE TEXT SEARCH CONFIGURATION core_product_code (COPY = 
4 pg_catalog.simple); 
5 ALTER TEXT SEARCH CONFIGURATION core_product_code 
6 ALTER MAPPING FOR int, uint WITH core_product_code_dict; 
7 

8 core=# select * from to_tsvector('simple', 'abc-100'); 
9 to_tsvector 
10 ------------------
11 '-100':2 'abc':1 
12 (1 row) 
13 

14 core=# select * from to_tsvector('core_product_code', 'abc-100'); 
15 to_tsvector 
16 -----------------
17 '100':2 'abc':1 
18 (1 row) 

Listing 29: Fixing Product Code Hyphenation Parsing. 

In the first case parsing “abc-100” the parser assumes the number is negative one 

while in the latter where the string has a “a-” prefix the number is parsed as 

positive. One of the main search terms used in the DAM system is searching by 

product code and those use short hyphen separated characters and numbers in 

them by default. When user would search the above code “abc-1000” with just 

number “1000” it would not yield match. This particular issue can be fixed by 

upgrading the PostgreSQL database version to version 13.0 or newer as those 

include “absval” option for dict_int to force tokenization to return absolute values. 

This could be used to create separate parser for product codes which would fix 

this issue. 
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For sampling how stemming works in practice a sample string of “Koira- ja 

kissavakuutushakemus” is used as it highlights how various stemming methods 

work and these are given in Table 20. 

Table 20: Comparison of Stemming Algorithm Results. 

Dictionary Tokens 

simple ’ja’:2 ’kissavakuutushakemus’:3 ’koira’:1 
finnish ’kissavakuutushakemus’:3 ’koira’:1 
voikko ’hakemus’:3 ’kissa’:3 ’koira’:1 ’vakuuttaa’:3 ’vakuutus’:3 

The FTS use reduces the amount of data needed to be stored in the database as 

shown below. The main causes are the removal of stop words which remove 

many filler words from the indexed texts. Other is the removal of duplicates, the 

FTS only needs to know the place of each indexed term so it only needs to store 

one copy of the word. Simple comparison of various stemming algorithms on how 

they affect the word counts is given in Table 30. 

Use of any stemming reduces the word count from the original text. The voikko 

dictionary increases the word count a bit compared to other dictionaries, but this is 

expected as voikko separates compound words in to individual search terms. 

7.6 Database Advanced Query Analysis 

This appendix provides details how the PostgreSQL database may be used to 

implement the more advanced queries familiar in search engines. 

7.6.1 Facets 

An example of using faceted search by leveraging JSON and window functions 

modeled after the blog post by Alexander Korotkov 37. 

1 WITH all_products AS ( 
2 SELECT 
3 product_code, 
4 name, 

37https://akorotkov.github.io/blog/2016/06/17/faceted-search/ 

https://akorotkov.github.io/blog/2016/06/17/faceted-search/
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5 product_type_id, 
6 RANK() OVER ( 
7 PARTITION BY product_type_id 
8 ORDER BY ts_rank_cd(tsv_data, 

plainto_tsquery('kissa')), id 
9 ) rank, 
10 COUNT(*) OVER (PARTITION BY product_type_id) cnt 
11 FROM products 
12 WHERE tsv_data @@ plainto_tsquery('kissa') 
13 ), 
14 lst AS ( 
15 SELECT 
16 product_type_id, 
17 jsonb_build_object( 
18 'count', cnt, 
19 'results', jsonb_agg( 
20 jsonb_build_object( 
21 'product_code', product_code, 
22 'name', name 
23 ))) AS data 
24 FROM all_products 
25 WHERE rank <= 5 
26 GROUP by product_type_id, cnt 
27 ) 
28 SELECT jsonb_object_agg(product_type_id, data) FROM lst; 

Listing 31: Example Facet Implementation for PostgreSQL. 

The above returns by product type how many matching results were found and top 

5 results for each group. 

7.6.2 Autocomplete 

A custom tokenizer for generating edge n-grams was detailed in StackOverflow38 

which can be used to generate n-grams for ts_vector: 

Once the all the n-grams are stored they can be queried with FTS. One possible 

improvement would be to limit the n-gram generation to first 20 characters of each 

word as was done in Bynder as shown in Appendix 5. 

38https://stackoverflow.com/questions/56894979/edge-ngram-search-in-postgresql 

https://stackoverflow.com/questions/56894979/edge-ngram-search-in-postgresql
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1 core=# ALTER TABLE renditions ADD COLUMN tsv_contents tsvector; 
2 ALTER TABLE 
3 core=# UPDATE renditions r SET tsv_contents = 
4 setweight(to_tsvector('simple', COALESCE(r.ext_filename, '')), 

'A') || 
5 setweight(to_tsvector('simple', COALESCE(r.version_id, '')), 

'A') || 
6 setweight(to_tsvector('simple', COALESCE(r.metadata->>'notes', 

'')), 'A') || 
7 setweight(to_tsvector('simple', COALESCE(r.file_content, '')), 

'C') || 
8 setweight(to_tsvector('simple', COALESCE(r.file_metadata::text, 

'')), 'C'); 
9 NOTICE: word is too long to be indexed 
10 DETAIL: Words longer than 2047 characters are ignored. 
11 ... < previous two lines repeated x 16 > ... 
12 NOTICE: word is too long to be indexed 
13 DETAIL: Words longer than 2047 characters are ignored. 
14 UPDATE 18120 
15 Time: 925968.930 ms (15:25.969) 
16 core=# 
17 core=# select count(id) from renditions where tsv_contents @@ 

'kissa'; 
18 count 
19 -------
20 347 
21 (1 row) 
22 

23 Time: 3150.688 ms (00:03.151) 
24 core=# CREATE INDEX tsv_contents_idx ON renditions USING GIN 

(tsv_contents); 
25 CREATE INDEX 
26 Time: 68122.068 ms (01:08.122) 
27 core=# select count(id) from renditions where tsv_contents @@ 

'kissa'; 
28 count 
29 -------
30 347 
31 (1 row) 
32 

33 Time: 5.903 ms 
34 core=# 

Listing 26: Full-text Search on File Contents. 
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1 core=# select id, 
array_length(regexp_split_to_array(trim(file_content), E'\\W+'), 
1) as words, 

2 length(to_tsvector('simple', file_content)) as simple, 
3 length(to_tsvector('finnish', file_content)) as finnish, 
4 length(to_tsvector('voikko', file_content)) as voikko 
5 from renditions 
6 where id <> 7 order by id 
7 limit 10; 
8 id | words | simple | finnish | voikko 
9 ----+-------+--------+---------+--------
10 1 | 107 | 89 | 81 | 103 
11 2 | 270 | 208 | 175 | 182 
12 3 | 1351 | 722 | 660 | 625 
13 4 | 2692 | 1162 | 934 | 817 
14 5 | 2830 | 1222 | 972 | 836 
15 6 | 2749 | 1174 | 935 | 812 
16 8 | 1542 | 715 | 687 | 686 
17 9 | 3424 | 1106 | 1038 | 1040 
18 10 | 3322 | 1070 | 1006 | 1003 
19 11 | 7 | 5 | 5 | 5 
20 (10 rows) 

Listing 30: Comparison of Word Counts With Stemming. 

1 CREATE OR REPLACE FUNCTION edge_gram_tsvector(text text) RETURNS 
tsvector AS 

2 $BODY$ 
3 BEGIN 
4 RETURN (select array_to_tsvector( 
5 (select array_agg(distinct substring(lexeme for len)) 

from unnest(to_tsvector(text)), 
6 generate_series(1,length(lexeme)) len) 
7 )); 
8 END; 
9 $BODY$ 
10 IMMUTABLE 
11 language plpgsql; 

Listing 32: Sample Edge N-gram Generator for PostgreSQL. 
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