
Timo Myyrä

Improving Digital Asset
Management Search in the Case
Company

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

29 March 2022

Abstract

Author: Timo Myyrä
Title: Improving Digital Asset Management Search in the Case

Company
Number of Pages: 71 pages + 7 appendices
Date: 29 March 2022

Degree: Master of Engineering
Degree Programme: Information Technology
Professional Major:
Supervisors: Sami Sainio, Lecturer

This work was requested by a company modernizing their digital asset management
system. The earlier version of the system was hard to maintain, slow and had many
features which were no longer in use by clients. As the company could not find
suitable existing system, they decided to develop a new system based on the old
one. The new design would only keep features essential to the digital asset
management and dropping others like support for product order handling that existed
in the old system. After the first customer migrations into the new system, the
general feedback was that the search was not functioning as expected. While the
search was fast, the clients failed to find what they were looking for in some cases.
The company requested for an investigation to be made to find out what problems
current implementation has, what features are needed in the system and if the
current architecture can provide them.

The research was done as a case study on the new system. To identify what search
features are needed the system was examined from different view points. The work
used five view points, interview done with project management, customer survey
from users, log analysis to look at past behavior, examining Google search and a
digital asset management market review. Based on the findings from these view
points a requirement specification was created.

With the requirements defined the last part of the study was dedicated to analyze
whether the current architecture can provide all the identified features. These tests
were done with the PostgreSQL database using various search methods. The test
results indicate that the PostgreSQL can be used to implement all the required
features. The study found several places were the search may be improved and
identified many paths for future work.

Keywords: digital asset management, information retrieval, search,
postgresql

Tiivistelmä

Tekijä: Timo Myyrä
Otsikko: Digitaalisen aineistohallinnan haun parantaminen

tapausyrityksessä
Sivumäärä: 71 sivua + 7 liitettä
Aika: 29.3.2022

Tutkinto: Insinööri (YAMK)
Tutkinto-ohjelma: Tieto–ja viestintätekniikka
Ammatillinen pääaine:
Ohjaajat: Lehtori Sami Sainio

Tämä työ suoritettiin digitaalista aineistohallintaa uudistavan yrityksen pyynnöstä.
Järjestelmän aiempi versio oli työläs ylläpitää, hidas ja sisälsi paljon ominaisuuksia,
joita asiakkaat eivät enää käyttäneet. Koska yritys ei löytänyt sopivaa korvaava
aineistohallintaa, päättivät he kehittää uuden vanhan pohjalta. Uusi järjestelmä
säilytti vain aineistohallinnalle olennaiset ominaisuudet tiputtaen muut, kuten
tilausten käsittelyn. Ensimmäisten asiakasmigraatioiden jälkeen, yleinen palaute
järjestelmästä oli, että haku ei toiminut odotetusti. Vaikka haku oli nopea, se ei
palauttanut odotettuja osumia kaikissa tilanteissa. Yritys pyysi tutkimuksen tekemistä
haun ongelmien ja hakutoimintojen tarpeen selvittämiseen, sekä kartoittamaan, onko
nykyinen arkitehtuuri riittävä tarjoamaan ne.

Tutkimus suoritettiin tapaustutkimuksena uudesta järjestelmästä. Tarpeellisten
hakuominaisuuksien tunnistamista varten uutta järjestelmää tarkasteltiin eri
näkökulmista. Työssä käytettiin viittä näkökulmaa, projektijohdon haastatteluja,
käyttäjille tehtyä asiakaskyselyä, käyttäjien käyttäytymistä vanhojen lokitietojen
pohjalta, Google-hakuun perehtymistä ja digitaalisen aineistohallinnan
markkinakatsausta. Näiden näkökulmien löydösten perusteella luotiin
vaatimusmäärittely.

Vaatimusmäärittelyn perusteella analysoitiin, kykeneekö uusi arkitehtuuri tarjoamaan
kaikki vaaditut ominaisuudet. Nämä testit suoritettiin PostgreSQL-tietokannassa
suoritetuilla erilaisilla hakumetodeilla. Testitulokset osoittivat, että PostgreSQL
kykenee tarjomaan vaaditut ominaisuudet. Tämä työ tunnisti useita kohtia haun
parantamiselle ja mahdollisia jatkotutkimuksen paikkoja.

Avainsanat: digitaalinen aineistohallinta, tiedonhaku, haku, postgresql

Licenses

Improving Digital Asset Management Search in

the Case Company © 2022 by Timo Myyrä is licensed

under Creative Commons Attribution-ShareAlike 4.0

International

That means:

You are free to:

• Share —copy and redistribute the material in any medium or format

• Adapt —remix, transform, and build upon the material

Under the following terms:

• b Attribution —You must give appropriate credit, provide a link to the
license, and indicate if changes were made. You may do so in any
reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

• a ShareAlike —If you remix, transform, or build upon the material,
you must distribute your contributions under the same license as the
original.

• No additional restrictions —You may not apply legal terms or
technological measures that legally restrict others from doing anything
the license permits.

• Any of the above conditions can be waived if you get my permission

I decided to publish my thesis work under the Creative Commons

Attribution-ShareAlike 4.0 International License because I strongly believe that

you as reader deserve the freedom to copy, share and modify this work and if you

do modify it, it is fair to give these same permissions to the others.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Acknowledgement

Thanks to Panu Leppäniemi, Patrik Luoto and Patrick Ausderau for the

LATEX thesis template. This allowed me to finally use and learn LATEXtypesetting.

Besides teaching typesetting the research extended my database knowledge and

gave a glimpse on vast the information retrieval field is. Also, big thanks to my

instructor Sami for providing invaluable suggestions and ideas throughout the

writing process.

And finally I would like to extend a big thank you to my wife and kids for having

patience and listening my endless blabbering about this thesis.

Vantaa, 29 March 2022

Timo Myyrä

Contents

List of Abbreviations

1 Introduction 1

2 Material and Methods 4

3 Theoretical Background 6

3.1 Machine Learning 6

3.2 Natural Language Processing 9

3.2.1 Language Models 10

3.2.2 Stemming and Lemmatization 11

3.3 Data Retrieval 12

3.3.1 Data Retrieval Methods 13

3.4 Information Retrieval 14

3.4.1 Document Preprocessing 16

3.4.2 Information Retrieval Models 16

3.4.3 Query Expansion 20

3.4.4 Evaluation 21

3.5 Data and Information Retrieval Tools 23

3.5.1 Relational Databases 23

3.5.2 Search Engines 25

3.6 Metadata 27

3.7 Digital Asset Management 29

4 Project Specification 33

4.1 System Overview 33

4.1.1 System Search Features 38

4.1.2 Issues in Current Search 40

4.2 Views on the System Search 41

5 The Requirement Specification 45

5.1 Defining the System Requirements 48

6 Search Implementation Analysis 51

6.1 Inspecting Constraints 51

6.2 Keyword Search 52

6.2.1 Keyword Search Analysis 55

6.3 Artificial Intelligence Enhancements 61

6.4 Advanced Search Analysis 62

6.5 Miscellaneous Feature Analysis 62

7 Discussion and Recommendations 64

7.1 Using Search to Fix Known Issues 65

8 Conclusions 67

8.1 Future Work 68

References 69

Appendices

Appendix 1 Interviews

Appendix 2 Interview Results

Appendix 3 Customer survey

Appendix 4 Customer Survey Results

Appendix 5 Digital Asset Management Vendors

Appendix 6 File Metadata Analysis

Appendix 7 Database Analysis

List of Abbreviations

ACID: Atomicity, Consistency, Integrity, Durability.

ACL: Access Control List.

AI: Artificial Intelligence.

API: Application Programming Interface.

B2B: Business-to-Business.

CBIR: Content-Based Image Retrieval.

CLIR: Cross-Language Information Retrieval.

CMS: Content Management System.

CV: Computer Vision.

DAM: Digital Asset Management.

DCMI: Dublin Core Metadata Initiative.

DMS: Document Management System.

DRM: Digital Rights Management.

FTS: Full Text Search.

GIN: General Inverted Index.

GiST: Generalized Search Tree.

HTTP: Hypertext Transfer Protocol.

IR: Information Retrieval.

JSON: Javascript Object Notation.

ML: Machine Learning.

NLP: Natural Language Processing.

OCR: Optical Character Recognition.

PAM: Production Asset Management.

PDF: Portable Document Format.

POS: Part-of-speech.

RBAC: Role-Based Access Control.

RDBMS: Relational Database Management System.

REST-API: Application Programming Interface using Representational State

Transfer.

SaaS: Software as a Service.

SQL: Structured Query Language.

UI: User Interface.

URL: Universal Resource Locator.

UUID: Universally Unique Identifier.

WCM: Web Content Management.

XML: Extensible Markup Language.

1

1 Introduction

This research was done at the behest of a company providing

Business-to-Business (B2B) services who were in the middle of renewing their

digital asset management system as the old system was not keeping up with the

competition. This monolithic system combined features from online ordering and

asset management making it technically complex and costly to develop and

maintain. After reviewing the state of the old Digital Asset Management (DAM) it

was seen that it would not be cost-effective to develop it further, so it was decided

that it would be replaced entirely with new systems, each focusing on single

specific area. This research covers the new system focusing on DAM.

The company initially sought to license an existing system as a base for this new

DAM system but could not find a suitable candidate. The old system included

many customer-specific extensions which were mandatory to have in the new

system as well. To fulfill these requirements would have required extensive

customization done in available DAM offerings, increasing their cost. The

cheapest evaluated DAM providers were not providing significantly better features

than the old system, so choosing them would not have given any edge in the

market compared to the old system. The international DAM offerings would have

provided most of the required features and would have added plenty of other

useful ones on top of those. Problem with them was their licensing policy. To keep

the existing customers it would have meant that the new system would have

required multiple expensive licenses and in addition the instances would have still

required costly customizations. Because of these the company decided that the

replacement system would be developed from scratch. The task was given to

subcontractor handling the maintenance of the existing system as they had

already the insight and knowledge from the previous system.

The design goal for the new system was to produce modern application following

current best practices1. These would include leveraging containerization, so the

1https://12factor.net/

https://12factor.net/

2

application would be running in its own image container which would keep the

environment of the application similar wherever it was deployed. By use of

containers the application would be designed using microservices architecture

where key functionalities are split into separate containers which work together

instead of making a monolithic application. On the code level it would use

functional programming techniques such as static typing to be able to catch

programming errors during the compile-time. Automation would be used in the

project to provide continuous integration and continuous development. This would

mean the development team would make smaller deployments frequently which

would be build and tested and deployed to production faster than was possible

with the old system. The benefit of having an in-house developed DAM system is

that in addition to providing it as a Software as a Service (SaaS) it can be licensed

to customers internal use as well, as well as controlling the development the

company can prioritize which direction the development would focus.

The new digital asset management system was marketed by its fast operations

and familiar “Google-like” search. After first customer migrations were done the

feedback from users was generally positive regarding the search as it was fast but

on some cases the system did not return expected results. After altering the

search, so it worked correctly on problematic queries, it started to exhibit problems

in other search queries. The project management was not satisfied with current

search as it is one of the key features of the DAM.

This research was done as a case study on the new DAM system aimed to

answer three questions; what are the issues in the current search, what features

should it provide and finally, is the current architecture capable in delivering those.

To find out how the search in the new DAM system should be implemented, the

current search implementation was analyzed on how it works and what features it

provides. This is then compared on what the project management want from the

system and what the users of the system need in their work. Finally, the results

are compared on what the current market leaders in DAM are providing for their

customers. Analyzing results from these will allow creation of a requirement

3

specification for improving the system if needed.

This thesis has been divided into eight chapters. The first chapter is intended to

give background information on why the research was done. The next two

chapters present the used research methods and give the necessary background

theory related to search in DAM systems. The fourth chapter describes the current

system details and presents the different view points on how to decide what

features would be needed in the DAM. In the fifth chapter the view points are

analyzed, so an accurate requirement specification can be defined which is then

used as the basis of further system analysis done in the sixth chapter. The

analysis presents more in-depth view on how the current system may be used to

deliver the identified features in requirement specification. The last chapters

present recommendations and discussion on findings followed by concluding

summary.

4

2 Material and Methods

The research done as part of this thesis aims to identify problems in current

search, what features it should provide and is the current DAM architecture

capable on delivering them. The focus of the research is to try to identify what

features are essential to provide sufficient search experience for customers. Other

focus point is to analyze if the existing architecture and tooling is enough for the

current and near-future needs. A case study was chosen as a method to research

this.

The beginning of this study consists of literary review to gain theoretical

background and doing current state analysis on the new system. The current state

analysis is done to understand the new DAM system from different view points.

The first view point is the technical view point, what the system is currently.

Looking at the project documentation and interacting with the system to map out

what kind of architecture the system is using, what tools are used in it, how it is

working. The next view point is from project management by conducting in-depth

interviews on how they view the current search should function. The interviews

were done with qualitative approach to get the overview on what the project

management viewed as important search features to have in the system. The

interview also included questions covering other areas beyond the search features

to get idea about the scope of the project and get estimates on how much

resources would be available for implementing any search changes and to identify

other potential limitations. Following the interviews, a customer survey was done

to gain system users point of view, what search features they need in their work.

The survey questions were based on the interview questions, but they were

changed to only cover search features. The survey was done using quantitative

approach. The users were asked to rate the overall system search in the current

system and to provide ratings on various search features to get their view on what

they saw as useful features. The last view point used in the study is from market

leaders. They have long history on the market making their analysis helpful in

laying road map on what direction the DAM should be heading. As all the market

5

leaders provide proprietary systems the information comes from their

documentation and marketing material making it biased but big themes what kind

of search features are provided by them can be identified from them. Analyzing

the findings of these different view points allows a requirement specification to be

made. The specification is then used to do empirical analysis to test, if the current

architecture and tooling is enough to cover those requirements with the

hypothesis, that the current architecture and tooling is enough to handle current

and near-future customer search needs.

6

3 Theoretical Background

This chapter is presenting the theoretical background needed to understand the

DAM and technologies related to their working. The chapter starts with short

introduction of Machine Learning (ML) as it is powering many Artificial Intelligence

(AI) features included in DAM products. Many of these features are based on

Natural Language Processing (NLP) and use of language models which are

described next. This work focuses on searching so large section of theory is

dedicated for Information Retrieval (IR) to define what is information and how to

search it. The chapter closes on describing metadata and how DAM systems bind

all the above together.

3.1 Machine Learning

ML is subfield of AI that “studies the ability to improve performance based on

experience.” [1, p. 1] ML most useful in cases where there is plenty of example

data available and the problem to be solved is hard or impossible to express

formally. For example, it is very hard to express, if an image contains a cat. ML

can accomplish this by sampling through huge amount of labeled images figuring

out what makes cats stick out from images.

ML works by building a model from data it has available. The model is used to

solve the task and task outcome may be used to further improve the existing

model. [1, p. 651] The model dictates how ML system interprets data it receives.

To create a model it must be trained to work in given problem. Training of a model

requires data. The data should contain enough varied examples of things the

model should be able to recognize. The quality of data affects much on the result

of the model. [2, p. 42] There needs to be enough data for the model to learn from

but with even small collection of data can be used to start the process. ML

methods have become popular recently as increase in amount of available data

and processing power made the ML algorithms suitable for many tasks, allowing

them to outpace previous expert systems. [2, p. 10]

7

There are three main types of learning for ML based on the feedback the model is

given, supervised, unsupervised and reinforcement learning. [1, p. 653] The most

common learning method in ML is the supervised learning. In it the ML algorithm

is given labeled data with aim that the algorithm can figure out an approximation

for a function producing the labels for the data. It is usually used for either in

regressions as shown in Figure 1 or in classification tasks as in Figure 2. In

regression the model is used to predict numeric values based on the input data

and in classification it tries to learn to label given inputs.

11

10

9

8

7

6

5

4

3

2

1

0

Figure 1: Example of Linear Regression.

The unsupervised learning is learning without giving the model any external

feedback. The system is given unlabeled training data and the algorithm attempts

to gain insights from it. The most common task for unsupervised learning is

clustering [1, p. 653].

The third learning model is called the reinforcement learning in which the model is

given feedback on the final outcome of its actions, either a positive (reward) or

negative (punishment). Based on this feedback the model is left to teach itself

how to maximize the rewards. [1, p. 789] This has been used with good results in

game AI like with AlphaZero [3]. The AlphaZero can master games by being given

only the basic rules of the game and then left to train through self-play.

Artificial Neural Networks, also known as Deep learning are next step from ML.

They try to mimic how human brain functions, meaning many simple

Data point
Sample linear regression

0 1 2 3 4 5 6 7 8 9 10 11

8

KMeans Predictions (k = 2)

100

90

80

70

60

50

40

30

20

10

0

Feeding time (minutes)

Figure 2: Example of Clustering of Results.

interconnected processors or nodes which work with input data through layers as

shown in example network in Figure 3.

Input Hidden Ouput

T
im
e

 b
e
tw
e
e
n

 fe
e
d
in
g
s
 (
m
in
u
te
s
)

X

X

0 1 2 3 4 5 6 7 8 9 10

. . .
. . .
. . .

I1

I2

I3

In

H1

Hn

O1

On

layer layer layer

Figure 3: Example of Neural Network.

The nodes in the network have weights and threshold value. Once the input

exceeds the node threshold, it is passed on the next layer on the network. [4]

Where regular ML algorithms are verifiable by human how their predictions came

to be, the deep networks might be so large that its impossible for human to work

out exactly how the network came to its conclusion. Other notable difference is

amount of time and processing power required for training. Where ML algorithm

training can take several hours, typical training period for deep learning network

9

might take a week. Even as it takes a lot longer to train, neural networks allow the

algorithms to scale beyond what regular machine learning algorithms can

provide. [2, p. 11]

3.2 Natural Language Processing

NLP is “a subfield of AI that refers to computational approaches to process,

understand, and generate human language.” [5, Ch. 1] One common task for NLP

is to parse documents. This process starts by parsing input data in useable form

using a parser. These steps may include speech-to-text processing to convert

spoken language into text. Once data is text-based it is tokenized e.g. split into

sequence of words, and they may be further tagged based by their Part-of-speech

(POS) as verbs, nouns etc. to resolve some ambiguities. [6] Depending on task

the tokens are usually normalized. Normalization is a process to reduce the

superficial differences in tokens by use of synonym matching, unifying term casing

and use of diacritics, removing stop words and similar methods. [7, p. 28].

Synonym matching attempts to match token with its synonym to reduce the

amount distinct tokens. The stop words are common and/or irrelevant words in the

given language which will not be needed for accurate search. For English, the list

of stop words might include “the”, “a”, “an” etc.

NLP is vast field, the IR described in upcoming Section 3.4 is a subset of NLP.

Other common tasks where NLP is used include text classification, information

extraction, topic modeling and machine translation. [8, Ch. 1] Text classification

uses NLP to categorize given text based on the content, example use case would

be email spam filtering. Other use for it could be to classify and thus organize

massive amounts of data automatically. [8, Ch. 4] In information extraction text is

parsed in attempt to identify and extract important segments of given problem

domain out of text. The goal is to gather specific bits of information or

ontologies. [9, p. 448] Ontologies describe objects and their features. [10, p. 2]

These are stored in knowledge bases. Other use case would be to automatically

apply tags to documents based on extracted parts of text [8, Ch. 5] Topic modeling

is common method of NLP which is extensively used in document clustering and

10

organizing large collections of text data. [8, Ch. 7]

The traditional heuristic NLP methods are still important building blocks, but the

rise of computational resources has shifted the modern NLP to rely on ML as was

presented Section 3.1. [5, Ch. 1]

3.2.1 Language Models

For NLP to help in above tasks, it needs to understand what it is working with.

Natural languages are vague, ambiguous or cannot be formally defined which

makes working with them hard. One option is to approximate the language with

probabilistic language model. These models are one of the main tools used in

NLP. These models may be used for many tasks. As they allow predicting what

words are most likely to follow when given some input text, they can be used for

text completion. Another common use is grammatical and spelling correction

which can be implemented by calculating probabilities of word alternatives and

pick the most likely. [1, p. 824] If there are models for multiple languages, these

may be used to calculate most probable translation given text.

Simplest model represents language as independent words hence the name

bag-of-words model. These work by examining each word individually without any

extra context. It is a crude method, but it yields good results in tasks such as

classification. [1, p.824]

An n-gram models extend the model to include context in it. Each word depends

on the previous n words in n-gram model. [11, p.50] Simply put the n-gram tells

how many units of history to consider when calculating probabilities. The first few

n-grams are special cased and name unigram for 1-gram, bigram for 2-gram and

trigram for 3-gram model. [1, p.824] N-gram models provide good results on

sentiment analysis, spam detection, author attribution. An n-gram model working

on n characters copes well with unknown words and compound words. It is

particularly good at language identification and can achieve over 99% accuracy for

short sentences.

11

3.2.2 Stemming and Lemmatization

Stemming is process of identifying word stem of given word and algorithms using

stemming are called stemmers. There exists various methods how stemming can

be achieved, the program may strip inflected suffices from words by using

language-specific rules. The process works on most words, but irregular words

will return wrong results. Other alternative is to have dictionary of words where

stemming is just a look-up. The process is fast, but it will not work for unknown

words. As stemming reduces many words to same stem it increases recall of the

search while harming precision. [7, p. 34] Each language have different rules of

stemming, although there are common algorithms which provide results which are

close enough in practice for many languages.

The word stem returned by a stemmer might not be a valid root word in itself. For

example using Snowball stemmer for words “run ran runs running runner” results

in “run ran run run runner”, or by removing duplicates “run ran runner”. Another

example where the stemmed version does not return a root word at all can be

seen with words “categories category” which yields “categori categori”.

Stemming algorithms have two main categories for errors. The algorithm might

incorrectly reduce several words from different contexts into same word stem, this

is called overstemming or a false positive. The second error is the opposite,

multiple words which are related to same concept are not stemmed into same

word stem. This is called understemming or a false negative. [11, p. 84]

There exists various stemming algorithms or stemmers, here are few listed: [11,

p. 83]

Porter stem Popular algorithm which is simple and fast. Downside is that only

supports English language.

KStem Similar to Porter but less aggressive and faster

Snowball stemmer Vastly improved version of the Porter stemmer by the same

author, adds support for other languages in addition to English.

Hunspell A combination of dictionary and rule-based stemmer supporting many

12

languages.

Sometimes algorithmic stemming is not enough to get good results and further

analysis of the text is needed. The Lemmatization is the process of finding the

lemma for a given word by doing full morphological analysis for the text. [7, p. 33]

Algorithms implementing it are called lemmatizers [7, p. 34]. This kind of analysis

is more time-consuming than stemming but usually give more accurate results.

The benefit of using a stemmer or a lemmatizer varies by language. For English

language their usage brings quite modest benefit but for languages with more

complex morphology such as Finnish the results are often better. [7, p. 46]

3.3 Data Retrieval

Data and Information retrievals are search methods. The distinction between them

is vague but Table 1 replicated from Information Retrieval [12, Ch. 1] presents how

methods on how to tell them apart.

Table 1: Data Retrieval or Information Retrieval?

Data Retrieval Information Retrieval

Matching Exact match Partial match, best match
Inference Deduction Induction
Model Deterministic Probabilistic
Classification Monothetic Polythetic
Query language Artifial Natural
Query specification Complete Incomplete
Items wanted Matching Relevant
Error response Sensitive Insensitive

The data retrieval can be thought as fetching data the user already has idea

where it exists in the system. This means the user may use artificial query

language to express which records to fetch. Next section covers briefly methods

of data retrieval before proceeding describing information retrieval in Section 3.4.

13

3.3.1 Data Retrieval Methods

The methods used in data retrieval work by matches. Simplest methods used are

equality tests, does the data match exactly the given search query. Problem with

this kind of search is that the user must give the search term exactly as it is given

in the data for it to yield a match. This is hard to use when there are multiple fields

to search and the fields content become larger or user does not recall exactly

what to search for. The next step up from equality test is to expand the search

with pattern matching like the wildcard or truncate matching. Wildcard matching

can specify patterns such as string starts with given prefix, ends with given suffix

or contains given substring within it.

To express more complex pattern a regular expressions can be used. Regular

expressions are textual representation of pattern which is matched against string.

It has rules such as “match text which begins with letter a and end in letter c”. This

can be represented as regular expression “^a.*c$”. The “^” and “$” characters are

anchors that anchor the matching to either start of search space or end of it. The

“.” character has meaning of match any character and “*” has meaning preceding

pattern needs to match zero or more times.

To distinction between data and information retrieval blurs a bit when using

techniques such as fuzzy matching where instead of given strict match/not match

the algorithm gives degree of matching. The edit distance [13, p. 211] and n-gram

algorithms provide good support in to handling typing errors. [11, p. 80] The edit

distance algorithms compare given input strings by how many single character

operations are required for the inputs to match each other. For example the

Levenshtein distance algorithm calculates the metric by allowing insertion,

deletion and changing of a single character. [13, p. 213] N-gram algorithms break

the strings to be matched into sets of N characters and compare how many of

these sets are shared between the input strings.

Sometimes users know what they want but are unsure how write it down correctly,

for example names of people and places. In these cases phonetic matching might

14

provide best result. They provide fuzzy matching based on the pronunciation of

the words. Most well known of these kinds of algorithms is the Soundex [7, p. 63].

The algorithm calculates four character length hash code for input string based on

its English pronunciation. Then different inputs can be compared for similarity by

looking how many Soundex code characters are shared between the inputs. The

method is simple and well understood making many other phonetic algorithms

based on the idea of Soundex but improving it to work on other languages or

cover more characters.

3.4 Information Retrieval

Earlier Section 3.3 covered data retrieval where user uses exact search queries to

fetch data. The difficulty with such methods is that the user is required to know

what to search for to succeed. IR is different from the data retrieval in that its

probabilistic process making use of linguistic knowledge rather than a

deterministic one. It uses approximate or fuzzy matching and results are ordered

by how relevant they are for given user query.

The goal of information retrieval system is to give its user the relevant information

which is implemented by three main abstractions: [14, p. 2]

• Presentation of documents

• Presentation of user information need

• Comparing the above two presentations for matches.

To present documents the system needs to have them prepared and stored within

its indexes. The second part is the user requesting some information from the

system by formulating a query. The query is matched against the indices of the IR

system to look for matches. The results are presented to the user, who then either

accepts the result or gives feedback about incorrect results in a form new query.

This gives the high-level model of the IR process which is presented in the

Figure 4, the following sections cover each of the above steps in more detail.

The IR system works by units of document. A document might be anything the IR

15

Information Need

Query Formulation

Query

Matching

Retrieved Documents Feedback

Documents

Document Preprocessing

Index

Figure 4: The Overview of the Information Retrieval Process.

system is built to handle, but this thesis covers digital asset management systems

so makes assumption that document is a digital file or part of it. A group of

documents is called a collection or a corpus. [7, p. 4]

Document consists of data which is usually either structured or unstructured.

Structured data is based on some schema [15, p. 14]. The schema defines how

the data is structured, so it is easy for machines to parse and handle as

appropriate. Good example of structured data is simple Extensible Markup

Language (XML) document with sample given in Listing 1.

1 <note>
2 <to>Instructor</to>
3 <from>Me</from>
4 <heading>Reminder</heading>
5 <body>Do not forget to return the thesis!</body>
6 </note>

Listing 1: Sample XML Document Contents.

Unstructured data is raw data, like plain text file which the machine can not parse

without external aid. IR system do not require structured data to be able to work,

16

but it can provide additional context information which can be helpful to have.

3.4.1 Document Preprocessing

The document undergoes a various preprocessing steps before it or part of it gets

stored in the system storage. If the document is a file in file system, the IR system

needs to parse the contents of the file based on the file type and the text content is

further processed. Preprocessing parses documents using NLP [9, p. 446] which

was described in Section 3.2. During the preprocessing for IR the parser may

replace term with a related term or synonym which helps to reduce the number of

indexed terms and thus improve precision. [7, p. 29] Other common task is

removing stop words, as it generally improves the precision of the search. [7,

p. 27] Diacritics may also be removed from the terms so that “café” and “cafe” will

match each other. [7, p. 29]

Once the document has gone through preprocessing steps the results are indexed

in the IR system. The most important indexing method is the inverted index [16,

p. 16]. The inverted index is a kin to index which can be found at the end of the

book. It stores each unique term and maps which document contains the term. In

addition, the index might contain extra information such as weights and term

frequencies [11, p. 47] Indexing in IR systems prepares the document so it can be

later retrieved efficiently. There is two common indexing methods in use [14,

p. 17]. Simplest indexing method is binary indexing were each word is either

associated to the document or not. Other method called weighted indexing adds

numerical weight value indicating how significant the word is for the given

document. More information about weighting will be given in Section 3.4.2.

3.4.2 Information Retrieval Models

How the IR system derives the ranked list of potentially relevant documents from

the given query is called the IR model [15, p. 15]. The model describes how the

query and documents are represented, matched and how the query results are

ranked. The traditional models are the Boolean, vector space and probabilistic

17

models. [17, p. 11] Though each individual IR system use their own model, they

are usually derived from the traditional models detailed below. [17, p. 11]

A B

A ∩ B

Figure 5: Example Venn Diagram of Boolean Union.

In the Boolean model documents are represented as a set of terms and matching

is done using logical Boolean AND, OR, NOT operators with sample given in

Figure 5. [11, p. 48] Downside of the model is that the AND and OR operators are

totalitarian. The AND operator between multiple search terms is too restrictive as

all terms must exist in the document for it to match. If 3 out of 4 terms match will

not yield a match in this model. Similar but opposite problem is in OR operator as

it will include all documents where any of the terms exists leading to information

overload. Some models provide more relaxed AND and OR operators that they

yield a match when either of the terms matches [18, p. 100]. For example “foo

AND bar” would give match for documents with foo but not having bar in them.

Primary problem with Boolean model is that results are not easily ranked by

relevance. The second traditional IR model called vector space model attempts to

improve this by using vectors and matrices. In Figure 6. In vector space model

documents and the search query are mapped into N -dimensional vector space as

shown in Figure 6. The model returns the matches which are similar enough and

ranks them according to the angle between them and the query vector. [11, p. 49]

Usually each term in a document is represented by single vector in the vector

space. The ranking of vectors may be done using the cosine similarity [7, p. 158]

which ranks based on how closely they point into same direction. The Equation 1

~presents cosine similarity between vectors ~a and b.

��� ���~a · ~b
cos (θ) = (1)

~|~a| b

P (T | D) P (D)
P (D | T) = (2)

P (T)

18

Term 1

Term 2

Query
Document 1

Document 2

Document 3

Term N

Figure 6: Example of Vector Space Model.

The last of traditional models is called probabilistic model which uses probabilities

to calculate what is the probability that given document is relevant to given search

term. [19, p. 5] The most basic method to achieve this is to use Bayes’ Theorem

presented in Equation 2 to calculate the probability that document D is relevant for

search term T : [15, p. 18]

These are only the traditional models of IR. There also exists hybrid models such

as extended boolean model [7, p. 14] which expands the standard boolean model

with capabilities from vector space model allowing it to provide proximity matching

and phrase searches.

Weights

Ranking of search results depends on the model used and the terms in the

document. Boolean model treats all matched terms equally. To have some degree

of relevancy ranking in the results the model may segment each document into

smaller parts called zones [7, p. 110]. Usually document title, abstract and body

19

are treated as different zones. Each zone may use its own index and by using

several zones allows the IR system to do weighted zone scoring. [7, p. 110] The

scoring allows boolean query to rank matching documents based on which zone

the match was found for which the method also called ranked boolean retrieval [7,

p. 112]. These weighs may be given by the user or automatically learned from

examples. This is called machine-learned relevance [7, p.113]. The basics of the

ML were given in Section 3.1.

The above only considers the existence of a search term, but typically it is

beneficial to consider the frequency of a term as well. There are few common

equations when dealing with term frequencies and most basic one is simple count

of term occurrences in a corpus:

NX
Fi = fi,j (3)

j=1

The Equation 3 defines the term frequency Fi of term i as sum of occurrences of

term i in each document in a corpus of N documents. [18, p. 101] This equation

serves as good base, but it has problem that term counts do not directly relate to

increase in relevancy, document with 1000 terms over one with 100 is not

necessarily ten times more relevant.

NX
TFi = 1 + log fi,j (4)

j=1

Equation 4 uses logarithm to smooth out the score. This effectively changes the

document into a bag of words and does ranking based solely on how many terms

match the search query. [7, p. 117] Problem with above matching is that treats

each term equally, but some terms are not really important for relevance such as

stop words and other frequent terms within the corpus. If the all documents

contain the term “medicine” it does not really add value as query term. To cope

with these a helpful metric is document frequency dfi, a number of documents

N
IDFi = log (5)

dfi

20

which contain term i [7, p. 118] which may be used to give more weight to search

terms which occur less frequently in the corpus. This is called the inverse

document frequency IDFi:

Equation 5 shows inverse document frequency IDFi where N is the number of

documents in the corpus and dfi number of documents containing term i. The idea

in inverse document frequency is that terms which occur on fewer documents

would give more relevant results. [20, p. 5] The term frequency and inverse

document frequency are commonly combined and used as weights in vector

space models. [18, p. 101]

T F IDFi,j = TFi,j ∗ IDFi (6)

3.4.3 Query Expansion

Challenge in the information retrieval is that queries given by users leave room for

interpretation. This makes the information retrieval system unsure what the user

has meant by the given query, situations where search term exits in two sets of

documents with vastly different meanings. For example when given search term

“bank”, does the user want to have information on river banks and financial

institutions. Users of IR system can remedy this by refining their queries manually

but the system itself can help to find the correct results by method of query

expansion [14, p. 28]. There exists either global or local methods for achieve

this. [7, p. 214] In global methods the system may reformulate or expand the

query terms automatically without knowing the result. The local methods use

iterative method with access to the result set and may include user in helping to

hone on the target documents. The basic local methods are:

• relevancy feedback

21

• pseudo relevance feedback (blind feedback)

• indirect relevancy feedback.

Relevancy feedback is most commonly used method. [7, p. 177] It is used after

the user has given search query and receives initial results. From the results the

user marks relevant and non-relevant matches which gives system feedback it

can use to find similar documents and repeat the feedback gathering. This

process can take multiple iterations. The method is most suitable in cases where

the user does not know the system documents well. Relevancy feedback allows

user to slowly work towards the goal and gain better understanding of the data.

The pseudo relevance feedback is automatic process which drops the user out of

the feedback loop, the system gets the initial result set but instead of asking user

feedback the system blindly assumes that some count of top-most documents are

relevant and uses these to refine the search automatically. This works most of the

time but might skew the results in wrong direction if the initial query was not very

accurate. Indirect relevancy feedback is another automatic process which uses

some indirect method of gathering the feedback. For example in a web search

engine the engine might use how many times user has clicked the document or

web page to rank those higher in results.

3.4.4 Evaluation

To retrieve information the user of the system needs to provide a query on what

information to get. After the information is retrieved we can measure quality and

quantity of the process. The documents in a result set returned the search query

may be classified into four groups as follows: [12, p. 114]

• retrieved and relevant (true positive)

• not retrieved but relevant (false negative)

• retrieved but irrelevant (false positive)

• not retrieved and irrelevant (true negative).

The IR process uses binary classification to determine if the document it is

processing is relevant or not. The results of the classification can then be

(β2 + 1) PR
Fβ = (9)

β2P + R

tp
precision = (7)

tp + fp

tp
recall = (8)

tp + fn

22

collected into an 2 × 2 confusion matrix as shown in Table 2, on one axis list the

expected results and other lists actual results.

Table 2: 2 × 2 Confusion Matrix.

Expected positive Expected negative

Actual positive True positive False negative
Actual negative False negative True negative

The main performance measurements in information retrieval are precision and

recall of the search query results. The precision represents the quality of the

information retrieval, e.g. what fraction of the results were relevant for the query. It

is calculated as a percentage comparing how many true positive tp matches we

got out of all positive, either true positive tp or false positive fp matches. [7, p. 5]

The another main measurement is quantity of the search results or recall which is

the fraction of relevant documents from all documents were returned by query. [7,

p. 5]. It is calculated as a percentage of correctly identified documents tp out of all

true positives and false negatives tp + fn in the returned documents.

Sometimes it is easier to use single measurement for the information retrieval

which combines both precision P and recall R. One option is to define F-measure

for it:

The β parameter allows adjusting which of the recall or precision is weighted

more. β values larger than one weight the recall more, while β values less than

one weight precision more. Having the β as 1 weights the precision and recall

2PR
F1 = (10)

P + R

23

equally and its most used metric and is called F1 score:

While these equations allow to measure the effectiveness of an information

retrieval system they are hard to use in practice as their use require the

knowledge of total amount of relevant items in the system. [18, p. 103]

3.5 Data and Information Retrieval Tools

There are many tools which implement data and information retrieval features. For

this thesis the two most significant tools are relational databases and search

engines to gain understanding of their basic principles and how they may be used

for implementing searches.

3.5.1 Relational Databases

Relational databases or Relational Database Management System (RDBMS) are

systems which store and index data and allow users to query it using relational

operations. [21] The default query method in relational databases is using

declarative language called Structured Query Language (SQL) [21, p. 111] The

use of declarative, artificial query language and use of exact matching makes

databases primarily use data retrieval methods for accessing data. The databases

are commonly used as primary data stores of DAM systems because of their

Atomicity, Consistency, Integrity, Durability (ACID) transaction properties offer

good guarantees that data stored in them is kept safe: [22, Ch. 13]

Atomicity

All modifications in a database transaction must either happen or be

reverted as a whole. It is critical that there will not be any half-applied

transactions on any error situation.

Consistency

24

Actions in a database transaction which violate the database consistency

rules must be prevented from executing and whole transaction to rolled back

to previous state. This ensures that each database state follows consistency

rules set in the database.

Isolation

When multiple transactions are executing they must not prevent others from

executing. Also, the transactions should not see the intermediate changes of

other transactions. This does not specify in which order the transactions

should be applied to the database, only that they do not interfere with one

another.

Durability

Database must ensure that transactions committed to database are not lost.

This is usually achieved by using transaction logs. The transactions are

written into the log before actually storing the transaction to the database.

The database writing might be slow process so if some error happens during

the database writing, the database can be rolled back to previous stable

state and the missed transactions replayed from the transaction log in to the

database.

The RDBMS represent data using the relational data model. In it a collection of

tables is used to represent data and relationships among the data. The relational

model is a combination of three components: [21, p. 67]

Structural Part The database is defined as a collection of relations.

Integrity Part The integrity is maintained by using primary and foreign keys.

Manipulative Part The database is manipulated by relational algebra and

calculus.

Relational database systems use various indexing methods to improve the query

execution time. Indexes are used similar to as table of contents in a book. Instead

of going through the whole book to find out section about a specific topic, the

reader can look at the table of contents where the section is and skip to the right

place. These kinds of indexes are called forward indexes. [11, p. 47]

25

Although relational databases use data retrieval methods most modern database

systems allow the use of Full Text Search (FTS) bringing some IR functionality in

them. [7, p. 195]

3.5.2 Search Engines

“Search engines are one of the most widely used implementations of IR

systems.” [11, p. 40] They aim to satisfy user information needs by retrieving

relevant documents from their index to satisfy user search queries. The search

engines may be broadly categorized into following groups: [11, p. 40]

Web search Search engine focused on indexing web content and content therein.

Vertical search Search engine dedicated on searching specific domain, such as

finance or healthcare. Very specialized to their own domain.

Desktop search Search engine to indexing contents of files in users computer.

Others Search engines focusing of search beyond texts, like image, audio

fingerprints or speech recognition.

The exact features a search engine provides vary but common features in them

may contain following features: [23]

Indexing

They offer many types of indices, but the most common one is the inverted

index. Indices are used to improve the response times of the system.

Search-As-You-Type

Search-as-you-type or “instant search” automatically run search while the

user is typing in the search query, thus interactively filtering results.

Fuzzy search

They provide various methods for approximate matching of search terms.

These are done to cope with user making typing mistakes or not knowing

the exact written form of the result.

Truncation

Truncation allows the matching to skip parts of the text, for example so that

the end of the search term is ignored when searching, effectively doing

26

prefix-only matching. This helps searches were user knows some part of

wanted result but not the whole entry.

Normalization

They normalize the search documents so that the key terms are easier to

search offering many alternatives such as down casing, Unicode

normalization etc.

Match highlighting

Search engines might offer methods to see where in the document a match

for user query was found. This is for providing good user experience, so the

user of the system can visually see where the match occurred.

The above lists quite basic features in search engines, but they commonly have

many features and options to fine-tune them for each search case. Some of more

advanced search features supported might contain following: [11, p. 209]

Sponsored search

Aim is to boost given documents so they appear on the top of search results

or alternatively exclude some matches from results. This can be used for

quickly applying fixes for production issues as well by hiding the wrong

results until a proper fix is implemented.

Spell-checking

After user has typed a search term, the system might automatically offer to

autocorrect it. For example mistyped word is automatically replaced by a

correct term if found in the indexes.

Autocomplete

also known as type-ahead search where the search engine offers possible

completions for the search term user is typing and the list of offers is refined

after each new character. Benefit of using autocomplete is that it avoids

spelling mistakes and reduce the effort to use the system as users will not

need to type full search terms themselves. This also allows implementing

system provided recommendations by offering better search terms.

Document similarity

27

They can offer “More-like this” documents in addition to regular search

results.

3.6 Metadata

A document may contain additional information besides its content. This is called

metadata which may be defined as “data about data”. [18, p. 9] Metadata is

commonly used to give document creation times, author, perhaps the program

name used in creation of the document. This data may be embedded in the

document itself or stored separately from it. [18, p. 7] Working with metadata is

made difficult by the lack of unified standard which makes interoperability between

programs working with document harder. The rise of Internet in mid-1990s gave a

need to have language- and discipline agnostic metadata standard to categorize

and enhance an information retrieval for web content [18, p. 7]. Metadata standard

called Dublin Core Metadata Initiative (DCMI) was created to improve search and

discoverability of digital information resources. [18, p. 95] The DCMI may be

extended to cover the needs of specific domain by creating custom profiles. The

use of well-established standard allows easier data exchange of data and aids

making the conventions and intentions used with metadata clearer [18, p. 49].

There are many purposes for the need of metadata and the Haynes used

following six key points in his book Metadata for Information Management and

Retrieval: [18, p. 15]

1. Resource identification and description

2. Retrieving information

3. Managing information resources

4. Managing intellectual property rights

5. Supporting e-commerce and e-goverment

6. Information governance

In context of DAM the first four points are most relevant so the last two are

omitted. Any information management system requires a method to accurately

identify things. [18, p. 78] This usually means adding some uniquely identifying

28

metadata field for the resource such as Universally Unique Identifier (UUID) or

similar entry. Another important role with metadata is to provide accurate

description for the information resource, who made it (author/creator), when it was

made (date of creation), what it’s called (title) and any additional information

(description). [18, p. 78]

Accurate metadata is also essential in providing adequate search for

resources. [18, p. 96] Metadata may be used for adding semantic context for

resource which can be used by search engine and application and use of

metadata standards such as DCMI aids in this process. [18, p. 104]

One problem area for search is multimedia records, such as images and videos as

they are not composed of text. [18, p. 108] One method for having information

retrieval on multimedia would be adding face recognition, speech recognition and

similar processes to enrich the metadata.[18, p. 109] This would allow use of IR

methods described further in Section 3.4 to retrieve records based on the

keywords. Alternative would be to use methods such as Content-Based Image

Retrieval (CBIR) [24] which analyzes query image to find visually similar

content. [24, p.2]. Both of these require ML which was described in Section 3.1.

Metadata should be utilized at each step of the record lifecycle. Haynes presents

simplified information record lifecycle consisting of following steps: [18, p. 115]

Creation of information The step when record is created, essentially capturing

the content and attached metadata.

Distribution and use The created records are used for their purpose, either

internally or by distributing them publicly to users.

Review Information contained in a record may become stale, so it needs to be

reviewed to keep it accurate.

Preserve and store The record needs to be stored securely even as the

technology changes.

Dispose Once record becomes obsolete it should be disposed from active use,

either by deleting or archiving it to long-term storage.

29

Transform Old records may be used as base on creating a new record, starting

the lifecycle from the beginning.

To manage intellectual property rights the record metadata should contain
following fields at minimum: [18, p. 128]

• Name of the author

• Time of creation

• Copyright associated with the work

• publication status

• Date that rights research was done

As demonstrated above, metadata has huge impact on providing accurate

information retrieval methods in a system.

3.7 Digital Asset Management

DAM is a system that stores, manages and distributes digital assets in a controlled

way. They may do this as single system or in combination with other systems. [25,

Ch. 1] DAM aid in reducing search cost and digital preservation of assets [25,

Ch. 2]. A digital asset is any digital data which has rights to use attached to it [22,

Intro]. Public data without any usage restrictions is not considered an asset.

Different organization teams might each have their own system to manage their

assets creating information silos[25, Ch. 2]. These silos make it hard to figure out

which version of assets to use and causes organization to use many redundant

systems for asset management. [25, Ch. 2] They also increase effort for locating

wanted assets, each system needs to be known and searched separately. DAM

aid in this by providing centralized system to ease finding the relevant

information. [22, Ch. 9]

The DAM systems do not seek to replace other tools used in enterprises, rather

the aim is to have the DAM system to glue different applications together. [22,

Ch. 6] The typical components included in a DAM system include following:

• Content repository

30

• Digital asset management application

• Databases

• Search engine

• Indexing workstations

• Rights management application

• Web portal

The content repository is place to store the asset files, be it local file system,

network share, or cloud storage. One commonly used option for storing the asset

metadata is to keep them in relational databases. [22, Ch. 13] They are mature

and stable systems so provide operational safety. The original relational model

was extended with object-oriented approach creating object-relational databases

allowing them to store object which allow storing mark-up files such as XML data

directly to database [22, Ch. 13]. The XML is commonly used when working with

metadata so to be able to directly store it into database works well for DAM use

case. [18, p. 19] Search engine is used to index the asset metadata and contents

for providing accurate search. Indexing workstations might be required if the

storing of asset requires considerable processing, in cases like transferring analog

film content into digital form. Rights management would be used to have Digital

Rights Management (DRM) features for the assets. These could be utilized to

while distributing assets so that once they expire they would no longer be

available. The web portal is used for providing access to system functionalities

and finally the DAM application itself would be in the background managing all

these components.

The DAM systems can be categorized based on what kind of assets they are

managing. Common subsets of DAM systems may include following: [25, Ch. 1]

Brand Asset Management (BAM) tailored help company branding, what are the

latest brand images to use etc.

Production Asset Management (PAM) is tailored to tracking frequently

changing assets.

Library Asset Management (LAM) tailored to cataloging fairly static set of

assets such as videos or documents.

31

Media Asset Management (MAM) tailored to handling media files; images and

videos.

Document Management (DM) System optimized for handling of documents and

to some extent media files, for example the needs of a legal and human

resources.

Enterprise Content Management (ECM) DAM system containing links to many

other systems to form larger system.

To make matters more complicated there exists systems that offer similar features

as DAM but not being part of it [25, Intro]. These are Content Management

System (CMS) and Web Content Management (WCM). These tools are meant

intended for web page creation and management, and they do provide long-term

asset storage and sophisticated search features even though they otherwise are

similar to DAM applications. [25, Intro]

The DAM Foundation as cited in [26, p.15] define following features which are

exhibited by DAM systems:

Asset Ingestion Assets may be added into system individually or en masse. The

system handles identification of an asset by use of unique identifiers.

Asset Security DAM system employ Access Control List (ACL) to control which

users may access assets within the system.

Metadata Assets are stored as data files containing the asset contents along with

the metadata defining additional information. The system helps to manage

the metadata.

Transformation The system allows transforming assets to various formats in

automatic methods, such as creating thumbnails or converting images to

different common formats.

Enrichment The system help enrich the asset metadata by collecting statistics on

their use throughout asset lifecycle.

Versioning The DAM systems commonly include versioning support to track how

the original asset has evolved in the system.

32

Workflows The systems may define workflows to aid users in creating, managing

and process assets in the system.

Search DAM systems employ powerful search methods to increase

discoverability of assets.

Previews Previews are used to increase productivity, users may quickly scan

search results for the correct version instead of downloading full version of

each compared asset.

Publishing The assets stored within a DAM may be shared to users outside the

DAM in controlled manner.

The users of a DAM are commonly using one of three kinds of search methods,

navigational, direct or faceted search. The navigational search is the most basic

one where user browse categories and click through assets to see what they

might contain. In direct search the user is executing a search query and

examining the query results. The faceted search extends the direct search by

having the user using facets or groups to further limit the results by those by facets

such as color or file type. [25, Ch. 8]

33

4 Project Specification

This chapter describes the details of the new DAM application. From technical

perspective it presents the system’s current architecture, how it is built and what

kind of features it has. After examining the new system the chapter moves on to

describing view points which are to be used to analyze the system starting with

the results of project management interviews. These define project management’s

views on how the search features of the system should be improved and what

would be the initial scope for them. The next view point is from the users of the

system. A customer survey was conducted to gather data on what search features

would be most needed in their work. Next the view point is from past user

behavior by analyzing server logs from old system to see what kind of searches

are used in it. As the design goal of the search feature was to be “simple as

Google” this research includes a brief analysis on what this could mean by looking

at the features in Google search. Finally, the chapter includes a review of the

search related features present in the major DAM providers, what others have

found to be beneficial features on asset searching.

4.1 System Overview

The DAM application in this case study is a new system developed to replace old,

more complex system. The new application architecture follows the microservice

design where the system consists of many individual components which

communicate with each other through some predefined protocol, in this case, by

using Application Programming Interface using Representational State Transfer

(REST-API) over Hypertext Transfer Protocol (HTTP). The benefit from design

over traditional monolithic design is the loose coupling which allows each part to

be worked on separately, possibly by separate teams. Communication between

instances is done through the Application Programming Interface (API), so any

internal changes do not need to synced between the teams. This separation also

allows redesigning part of the application without huge refactoring of the whole

system. The DAM service is self-hosted using Kubernetes, an open-source tool

34

for automating the management of containers originally developed at Google2.

The system was designed using self-hosted solutions as various customer

agreements at the design time prevented from hosting the system on an external

cloud providers.

The system is developed using TypeScript3 programming language which is a

typed superset of JavaScript. The language adds strong typing support with aim

to help developers avoid many runtime issues with the applications as these are

caught during the build process by the type system.

The overall architecture is presented in Figure 7. It follows that of the multitier

design where the system has a presentation tier to offering User Interface (UI) for

user interaction, application tier handling the business logic and controlling

accesses and finally the data tier where the actual system data is stored. [22,

Ch. 6]

Frontend Publishing

APIInternal utilities

Database File System

Figure 7: Overview of New DAM System Application Architecture.

The presentation tier consists of a frontend and publishing applications. The

frontend is a React-based application which runs on the client browser and

provides users with easy-to-use interface to work with the DAM presented in the

Figure 8. A sample of The frontend passes user actions to the backend API to

make changes in the system.

Other component on the presentation tier component is the publishing application.

The application is used by the DAM to publish or share access to any give asset.

2https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
3https://www.typescriptlang.org/

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.typescriptlang.org/

35

Figure 8: Product Search on the New DAM System Frontend.

This is done to give unauthenticated users limited access to some specific version

of an asset. Each publishing application is tailored individually to each customer,

but they share same general principle.

The main functionality and business logic of the system is done on the application

tier. The tier is centered on the backend application which provides the system

REST-API for the frontend and any other connecting services. The application tier

also includes many internal components which are only accessible by the API.

The application tier is the only one which has access to the system data. The data

tier is split between shared network drive storing the asset files and a RDBMS

storing the asset metadata. The RDBMS used by the new system is PostgreSQL4

which offers several extensions to the standard SQL which are leveraged by the

new system, particularly the FTS [27, p. 441].

The DAM system in under study can be classified as a mix of a Production Asset

Management (PAM) and Document Management System (DMS) as it offers

4https://www.postgresql.org/

https://www.postgresql.org/

36

following features:

Role-Base Access Control Access to assets and system functionality is

controlled by Role-Based Access Control (RBAC).

Workflow Users of the system may collaborate in drafting a new asset.

Versioning Assets stored in the system are automatically versioned.

Change history The system tracks change history for each asset.

Grouping Assets can be manually placed into groups.

Searching Assets can be searched using free-text search and/or filtered by

group, type or language.

Distribution Assets can be published immediately or scheduled for later

publishing.

Metadata management system allows users define templates for metadata for

each asset type.

The system is targeted to domestic B2B market, which means it needs to support

three languages: Finnish, Swedish and English. The system is offered as a SaaS

application for the customers. The system multi-tenant meaning a single instance

is providing service for multiple customers.

The data amounts handled by the system have been quite small, staying in the

gigabyte range, but this is expected to grow rapidly into hundreds of gigabytes in

the near future. From production asset management side the application offers

workflows. The workflows allow users to collaborate in drafting a new asset.

These drafts can be started from scratch or by using existing asset as a template.

Currently, the assets managed by the system include mostly text documents and

some image files. The assets in new system are represented by products and

renditions. A product represents a single top-level asset information and each

product has the following information:

name the name of the product.

type the type of the product, which is used to set the metadata fields of the

product.

37

description free-text description of the product.

product code user specified product code identifying the product, may be

auto-generated by the system.

content language the product content language.

metadata Data giving out product type specific metadata, publishing unit, these

use customer given rules.

created by who created the product in the system.

The above lists the shared properties present in each product. Each product also

has type which defines template for what kind of metadata may be set for given

product. The template defines which additional fields of metadata are mandatory

and optional on each product using this type. In addition, each product may have

renditions. A rendition or version represent the file asset managed by the system.

Renditions store similar kind of metadata as products. The renditions use

rendition type which specifies what metadata is available for given rendition.

rendition type type of rendition, sets the allowed metadata.

product id which product this rendition belongs to.

created by who created the rendition in the system.

version id user given version identifier.

published timestamp when the rendition was published.

expired timestamp when the rendition was expired.

version num internal version number to track the latest renditions.

file path internal file path where rendition data is found.

file size size of the rendition file.

external filename the external name for the rendition file.

metadata the rendition metadata, determined by the rendition type.

Certain rendition types allow distributing the rendition asset in process called

publishing which allows giving access to the given rendition within some

publishing channel. These are tailored for each customer as each of them have

different publishing needs, although the general process is similar in each case.

The user is prompted to give time range for when the rendition status should be

38

public when saving a rendition into the system. These are controlled by setting

published and expire date fields when saving a new rendition. The system will use

these dates to handle the technical side of publishing when the time is due. The

default method for the publishing is to mark the rendition public and have the

systems publishing component to access the rendition.

There exists two methods on making assets public in the system. The first one is

simple link-based publishing where the backend API component generates a link

leading to the publishing component. Accessing the link allows anonymous user to

download the asset file while the link is marked public by the system. The system

may generate two kinds of these links, either direct links to specific rendition or a

floating link which always returns the latest public version of rendition.

Some customers use more customized publishing methods where public assets

are instead transferred to customer intranet application for their own internal

processing pipelines. For others the publishing component offers simple web

application providing form-based UI where external users may access, browse

and search through public renditions.

4.1.1 System Search Features

The main search methods of the system are provided by two API endpoints:

• /search/products

• /search/productsWithRenditions

Difference between the endpoints is that first one searches for matches from all

products in the system. The latter limits the search to only those products which

have at least a single rendition. It also extends the search options by allowing to

limit the results by rendition status which allows free text search for products

which have published renditions. Both of the endpoints offer following search

options to limit the results:

keywords Filter search by given free text query.

39

product type id Filter search to specific product types.

language Filter search to specific languages.

product groups Filter search to given product groups.

parent group Filter search to those products belonging to given group or any of

its subgroups.

owner Filter search to products owned by given user.

The user of the DAM system may trigger the asset search process from three

places: the search bar in frontend application, same in publishing application and

accessing the system REST-API directly.

The search query transformation is happening on two parts of the system. The

first one is done by the frontend which transforms the user’s frontend component

manipulations into a REST-API call on the backend component. The second

query transformation is done when the backend transforms the REST-API call

parameters into a SQL query to get the information the user has requested from

the database.

The current search uses mix of information and data retrieval methods. The

free-text query entered in search bar triggers a full text search in the database and

various filters use data retrieval options to restrict the full text search to a known

subset of system data.

One of the problems in the system search is that there is single search interface

but customer use-cases for it are different. The systems history is with document

management where customers have used the system to version and design their

internally and externally shared documents. The workflows in this have relied

heavily on each asset to having their own unique product code which is used to

sync assets with other systems. Newer customers have more media-oriented

needs, they use the DAM to store images and video. Their search requirements

focus more on the content of the assets themselves, for example searching assets

containing happy people with laptops in them. Difficulty is how to keep the search

general enough but still able to work with each customer workflows.

40

4.1.2 Issues in Current Search

The new system exhibited some issues in the implemented search feature at the

beginning of this study. These were uncovered by actual system users in their

daily work and were reported to the project management. Most of these were

inquiries on why the system did not return the expected result for given search

query. The user reports were analyzed and they could be grouped into five

different issues in the system.

The first issue was that the database trigger function indexed wrong terms. The

trigger handled the username field so that ‘@.+‘ characters in it are replaced by

space character. The system was designed so that users email address is used

as usernames, so they are usually given in format

first_name.last_name@company-domain.fi. The trigger attempted split this into

separate fields, so search can be done by first or last name. This had the side

effect that the search using full email address would not return matches anymore

as the full email address was no longer indexed and the same modification was

not done on query time.

The trigger also used “simple” dictionary to parse all fields. Dictionary is a set of

configuration options which specify what operations are used during parsing the

field into a tsvector. Using “simple” meant that the system was only doing minimal

normalization to the input, effectively just lower casing it before storing it to index.

The search parser was noticed to have few problems. First one was that when

users gave multiple search terms in the search field the system did not return all

the expected results. Examining this more closely this was caused by flawed

implementation shown in Listing 13 which effectively makes the application search

to do phrase searches by default and use prefix matching only for the last term

which does not seem what the author has intended.

Other related issue was identified when searching only product codes where

giving only part of the code did not return match. By looking at the executed

search queries and their parsing more closely it was related on the database

mailto:first_name.last_name@company-domain.fi

41

parsing error causing hyphens leading a number to be parsed as a negative

numbers leading to incorrect results in some cases.

Final issue in the search is also related to the product code searching which is

commonly used search term by users. Users need to query product codes such

as “ABC 2/2.10”, but these are currently not found by the search implementation.

Table 3: Summary of Known Issues with Current Search.

Issues

email searching is not working as intended
non-optimal indexing using “simple” dictionary
phrase searches done incorrectly by default
product code parsing is not consistent
product code matching with “special characters”

The Table 3 presents identified issues in the new DAM search at the time of the

thesis. The search improvements should focus on fixing the above while providing

the wanted features for improving the user experience for the system users.

4.2 Views on the System Search

Besides just fixing existing issues the primary aim of the study was to identify what

features would be required to be in it. Research was done to gain better

understanding what features they would be, gathering information from various

view points. The first view point was from the current project management by

doing an in-depth interview with them.

The interview was done using qualitative approach to get wide overview of whole

system state. The questions covered in the interview are listed in Appendix 1, but

the discussions spread to other areas besides the listed questions during the

interview. The aim of the interview was to gain insight on what were the current

issues and how the management saw that the application would be used in the

future now that they and customers had some experience on using the new

system.

42

The search features of the new system were not specified accurately during the

initial system design. The project management gave rough overview “the search

must be fast, simple to use and should cover all data” and left the practical

technical implementation to the subcontractor. The subcontractor did not question

the description and project management did not think they would have needed to

specify the minute details of the search. The current system search is based on

the vague original requirements which has seen some small improvements since.

In addition to this in-depth interview a user survey was conducted. The survey

was done using quantitative approach and the survey questions can be found in

Appendix 3. The customer key users were asked for consent for the survey to be

done and to get up-to-date user lists who to invite partaking in the survey. The

invited users were given approximately three weeks to answer the survey. The

survey was done anonymously unless the user agreed to be interviewed by giving

an email at the end of the survey. The aim of the survey was to gather users views

on how well the new systems features worked for them and what kind of search

features they felt were useful in their work.

One additional view point was to look up past user search behavior by analyzing

old DAM system server logs to see what kind of searches have been done in the

past. Unfortunately the server log rotation had already deleted old logs which

would have shown past behavior of the customers which were already migrated

into the new system. But there are few larger customers still using the old system

waiting for migration. By looking the searches of all remaining customers the

free-text search query commonly contained only a single term. This was either a

product code or a single word. These two options seem to cover roughly 90

percent of the queries seen in the logs. Rest of the queries were divided between

phrase searches like user has copied and pasted the product name if it is

composed of multiple words or by using multiple search terms. These search

terms seemed to be simple words mentioned in the document, for example “form”,

“cat” etc. There have been studies on user search behavior [28, p.180] on search

engines showing that most of the time users search queries contain only two

terms on average. The findings from old system appear to validate the analysis

43

results of the previous studies.

The next view point was to analyze Google web search as it was one of the

original design goals of the search. The aim is to define what “Google-like” search

would mean. The Google web search is minimalist and simple in its design as

shown in Figure 9. It presents user with “a large search box and the simple,

uncluttered user interface” [29, p. 62]. Once Google has processed search query

given by user, the results are listed below the bar. Second distinguished feature is

the search speed as results for search query are determined in well under one

second. [29, p. 63] The results themselves are ranked by relevance. The results

also include small amount of context where the match was found along the

returned Universal Resource Locator (URL). This simple UI hides the complexities

of the search mechanics running in the background which today include

sophisticated NLP and ML technologies. [30] The search engine has the largest

Figure 9: Example of Google Web Search Page.

market share5, so making the DAM search work in similar manner would make its

use familiar to a wide audience. Besides the search bar, the Google’s search may

also be used with more fine-grained filters when using the advanced search6. This

simple search interface, keyword search, and separation of quick and advanced

5https://www.netmarketshare.com/search-engine-market-share
6https://www.google.com/advanced_search

https://www.netmarketshare.com/search-engine-market-share
https://www.google.com/advanced_search

44

search are directly transferable to DAM system even though they operate in

different domains.

Last view point in this study is to look at the current market leaders in the DAM

market. This was done to help see where market seems to be heading instead of

just identifying and fixing issues in current search implementation. These larger

systems show what features have been seen as beneficial in DAM systems, so it

helps to build a road map for future improvements.

Table 4: Summary of View Points to System Analysis.

View Point

Company requirements in form of project management interview
Feedback from current users by use of survey
Analysis of past user behaviour from old system logs
Defining more accurate definition for original “Google-like” search feature
Market analysis by examining DAM market leaders products

45

5 The Requirement Specification

The aim of this chapter is to present the findings of view points in Table 4 and use

them to generate requirements on what kind of search features the DAM system

should provide to serve current and future needs.

The first and most important views for system requirement came from project

management. They were interviewed using open questions to cover wide range of

ideas for the DAM search. The results of the interview are presented in the

Appendix 2. Comparing each interviewee’s views showed that the management

did not have unified goals for the search improvements. This study focuses on

features all interviewees agreed were essential to have in the system. The

interviews covered many topics but the Table 5 collects priorities of the uncovered

main points. The table omits the column for “wish it had” features as it did not

have any values.

Table 5: Summary of Project Management’s Wanted Features.

Feature Must have Should have Could have

Sub-second search times x
File metadata indexing x
File content indexing x
Image recognition x
Speech-to-text x
Machine translation x
Extended search scope x
Free text search x
Truncate search x
Multiple search terms x
Phrase search x
Relevance ranking x
Autocomplete x
Autocorrect x
Search-as-you-type x
User search history x

The Table 5 demonstrates that management roughly want the system to include

46

keyword-based FTS and extend the material that should be searchable. Next

steps would be to extend the search to multimedia files such as images and

videos. Once these would have been implemented the search could be extended

to cover more advanced searches such as autocorrect.

Based on the interview findings, a customer survey was created and can be found

as Appendix 3. It was sent to those system users which had been using the new

system for some time to gather their views on how the search feature should

function. Based on the prioritization definitions given in Table 17 the required

features based on the customer survey results are collected in Table 6.

Table 6: Summary of the Customer Survey Results.

Feature Priority (total) Priority (positive)

Wildcard or truncate search Must-have (14) Must-have (14)
Free text search Must-have (14) Must-have (15)
Ranking of search results Must-have (10) Must-have (11)
Inflection support Should-have (7) Should-have (8)
Search filters Should-have (6) Should-have (10)
Highlighting Could-have (5) Could-have (8)
Smart tags Could-have (3) Could-have (7)
Search-as-you-type - Could-have (6)

When looking only the positive scores it does not make sense to use same

prioritization as there are no negative scores, instead the Table 6 positive column

lists only top features with scores of 5 or higher. As the table shows the scoring

method did not impact the end result in a meaningful way. As the results in Table 6

show, customer had quite modest requirements regarding the search. Highest

priority was to have keyword-based search with some users wanting to have

smart tagging with AI included.

Another view point on how to improve the search feature is to look what other

vendors are doing. This gives information on what is essential to implement to

stay competitive in the market. For choosing which vendors to focus on an

intersection was taken from vendors analyzed in market research done by

47

Gartner [31] and Forrester [32]. The reports categorized different DAM providers

into groups based on their market share which will also be used in this thesis

giving the vendor list in Table 7.

Table 7: Classification of Existing DAM Vendor Products.

Product Classification

Northplains Telescope Challengers
Digizuite DAM Contender
Canto Contender
Widen Collective Strong Performer
Nuxeo Platform Strong performer
CELUM Content Collaboration Cloud Strong performer
Bynder Flagship Strong performer
OpenText Media Management Leader
Aprimo DAM Leader
Adobe Enterprise Manager Assets Leader

The details presented here for each DAM product are based their vendors own

marketing materials and documentation which were available from their website.

The reviewed systems are proprietary, and they did not offer a live demo

environment for hands-on testing. The review was done at the 17.10.2021, so the

exact details might have changed since but the overall themes should be the

same. The available documentation varied by each vendor, some vendors

provided very accurate and detailed documentation, others had only marketing

information available and reserved the documentation for paid customers only.

This is not a problem for this study, this section is here to list general search

themes in the largest DAM vendors making exact details not that important.

The Forrester report [32] lists three main trends which are present in successful

DAM provider:

Simple and intuitive user interfaces The systems should be usable by users of

various technical backgrounds.

Integrations Instead of keeping the DAM a “data silo”, allow users access the

assets within from various tools by integrating them with it.

48

Enriching content Instead of keeping static assets, enrich the assets with

embedded or external AI solutions, adding smart tags or allowing AI guided

image editions directly creating new assets in the process.

All the above give good guidelines on where the DAM solutions should be

heading. Details of the vendor analysis are provided in the Appendix 5.

The feature list in Table 18 is the same which was used in the customer survey. To

narrow the features to more manageable list a summary presented in Table 8

containing only features which were present at least on half of vendor products.

Table 8: Summary of Most Common DAM Features in the Top 10 Vendor Products.

Feature

Truncate search
Search filters
Free text search
Support multiple terms
Phrase search
Word inflection support
Result ranking
Dynamic search facets
Smart tags
Search should include file contents
Quick and advanced search

The summary supports the views on the project management and customers that

keyword-based FTS appears to be the most used feature. In addition to keyword

search the vendor products provided advanced search features such as dynamic

faceting, smart tagging. Search was able to look at file contents as well as system

metadata supporting the wishes of project management in Table 5.

5.1 Defining the System Requirements

To specify the requirements all view points should be considered. The user survey

should indicate that the users are interested in keyword searching with pattern

49

matching and ranking of results. The next wanted feature was to have the system

accept close enough search terms to give matches. This could be interpreted as

fuzzy matching or stemming. Simple search filters are already provided by the

system which seems to be enough. Some users expressed their need to have

highlighting where the match was found, as the indexed data increases this might

be harder to implement and would require more detailed specification. Last

feature for which users expressed interest on having was AI-powered asset

tagging. This would be used to reduce manual work done in the system.

Table 9: Requirement Specification for the New DAM System.

Feature Priority

Sub-second search times Must-have
File metadata indexing Must-have
File content indexing Must-have
Extended search scope Must-have
Free text search Must-have
Truncate search Must-have
Multiple search terms Must-have
Relevance ranking Must-have
Search filters Must-have
Phrase search Must-have
Machine translation Should-have
User search history Should-have
Image recognition Should-have
Speech-to-text Should-have
Inflection support Should-have
Smart tags Should-have
Dynamic search facets Should-have
Autocomplete Could-have
Autocorrect Could-have
Search-as-you-type Could-have
Highlighting Could-have
Quick and advanced search Could-have

These seem to align with the project management wishes and customer survey

results. The most common features are FTS which can cover file contents,

sometimes split into separate quick and advanced searches to skip file content

searches by default and using advanced search to cover the contents. Many

50

provided automatic asset tagging and dynamic search facets on the results.

Collecting all these findings together we get the required features listed in Table 9.

To make it easier to work with the features from Table 9 this study categorizes

them into few groups presented in the Table 10.

Table 10: Classification of DAM Requirements.

Grouping Search Features

Constraints fast search times, metadata and content indexing,
extended scope

Keyword Search free-text search, multiple terms, truncation,
ranking, phrase search, inflection, highlighting

AI Enhancements Machine translation, image recognition,
speech-to-text, smart tags

Advanced Searches Dynamic facets, autocomplete, autocorrect,
search-as-you-type

Miscellaneous Features Search filters and history, quick/advanced search

The first group of are not features themselves but set constraints mostly coming

from project management to keep in mind while implementing new functionalities.

The other groups specify more concrete feature sets, keyword search is the most

important group of features to implement in the DAM so most of the analysis in

Chapter 6 is focusing on this. The AI features group has the features which build

upon AI and ML to enhance the user experience of the system. Advanced search

group lists common functionality found in search engines which might be tricky to

implement with just a relational database such as PostgreSQL. These were not

strictly needed, but each improve the user experience of the system. The last

group is the miscellaneous features of which search filters are already provided by

the system.

51

6 Search Implementation Analysis

The goal of this chapter is to analyze if and how the current architecture using the

PostgreSQL database can fulfill the requirements listed in Table 9. There are few

points in favor to keep using the existing database for implementing the

application search. First is avoiding the need for installing and maintaining extra

software unless there is compelling reasons to use alternatives. [22, Ch. 13] The

second point is that the application can keep using the same interface for search

as before, which is currently SQL. Last point in favor is that by using single data

store gives the data a single source of truth. Using external tools would require

syncing the indexable data between the database and search tool which leaves

opportunity to them to go out of sync. The databases ACID properties help keep

unified view on data but this does not extend to data stored outside of it. The use

of external system along the database would require to keep user permissions in

sync between them, so that users with limited data access cannot access data

their permissions normally would not access to, through the use of external search

engine.

6.1 Inspecting Constraints

The project management defined few high-level constraints which greatly affect

what kind of search solutions may be used in the new system. One of the features

the project management wished the system to handle was to store and index the

file metadata and content in addition to system provided metadata. As noted in

earlier Section 3.6 metadata plays huge part of search implementation making this

high priority task. One way to achieve this is to use Apache Tika7 to parse files

when adding them to the system. Tika is a Java-based tool which can parse

several file types and extract metadata and file content from them.

The available metadata in files varies by file type. For example a plain Javascript

Object Notation (JSON) file does not provide anything particularly interesting

7https://tika.apache.org/

https://tika.apache.org/

52

metadata shown in Listing 3, just a content encoding and content length. More

complex file types such as Portable Document Format (PDF) provide a great deal

of metadata which contain many fields relevant for searching as detailed in

Listing 4. Problem with this sample is that it contains numerous fields which are

not relevant for searching, for example fields detailing how many characters are in

the page 30 of given PDF document. Other commonly used file types in the DAM

are documents used with Office family of tools. These are the most common file

types in the new system after PDF, so it needs to have good support. These files

appear to provide less metadata than PDF files as shown in Listing 5. The

metadata fields of office document seem to be more relevant for a text search.

Current customers are using PDF files by large margin in the new system as

shown in Table 11.

Table 11: File Counts for Different File Types.

File type Count

pdf
docx
doc
zip

17074
550
395
75

The Table 11 lists the count of different file types in the sample database. The

results are filtered to show only file types of which there were more than 50. As

shown the most common file by great margin is the PDF file type, rest are mostly

covered by Office files. These were also commonly supported by DAM vendors as

pointed out in Table 8, so system should focus on having good support for these

file types.

6.2 Keyword Search

This section covers detailed analysis related to keyword search which was

identified as key feature in Table 9. The PostgreSQL database includes many

options for searching, from simple equality tests, to pattern matching and more

advanced options such as fuzzy matching and FTS.

53

PostgreSQL has extensions which allow more advanced searches to be done,

such as phonetic match algorithms [27, Appx. F. 15] but these are not really suited

for implementing keyword search as the algorithms are intended on matching

short strings such as peoples names. [7, p. 63] These might not be helpful for

keyword searches but may be used to aid other searches or providing options

such as autocompletion for product owners. The extensions most suited for

implementing keyword search would be either the fuzzy matching provided by

pg_trgm contrib [27, Appx. F. 31] or the FTS [27, Ch. 12].

The pg_trgm contrib module provides methods on using n-gram matching, more

accurately trigram matching for inputs. It would fit in customer requirements of

having keyword search with ranking. The added benefit of this method is that it

would allow making small typing errors in the input which was seen as nice

addition by project management in Appendix 2. The trigram matching provides

utility methods for using it to match longer texts instead of single words making it

usable in keyword search. In the previous DAM system the users were commonly

searching by using single search term as presented in Section 4.2 which would

make fuzzy search a viable alternative for the more complex FTS.

The PostgreSQL database extends the default relational model by providing a

FTS which is useful in cases when full set of search engine features are not

required. It was developed by Oleg Bartunov and Teodor Sigaev in order to handle

“online updates with access to metadata from the database” [33, p. 11]. The

implementation is managed with SQL and comes with extensive set of

configuration options and stemmers to aid setting it up. [33, p. 12] The FTS

processes the user search query, finds matching documents and returns them to

the user ranked by relevance. It does this by using two data types, tsvector for

representing stored documents and tsquery for search queries. [27, p.168] The

tsvector type is a “sorted list of distinct lexemes, which are words that have been

normalized to merge different variants of the same word.” [27, p. 168] Dictionaries

are language-specific and PostgreSQL provides them for many of the most

commonly used languages including Finnish, Swedish and English. Typical

normalization steps include down casing words, removal of stop words and

54

stemming. The document in this context is the fields we want to search from the

database which might be from a single database table or combination of fields

from several tables. The terms in tsvector may be attached with optional positional

information to specify where in the document it can be found. The implementation

is using ranked boolean retrieval as the terms may include different weights which

affect the ranking of search results. The tsquery represents user search query and

accepts set of terms to be queried joined by one of boolean AND,OR,NOT or

FOLLOWED BY operator. The FOLLOWED BY operator allows tsquery to do

proximity matching. Each search term may include :* suffix to specify

prefix-matching for given term. These features implicate the FTS uses the

extended Boolean model which was detailed in Section 3.4.2.

The tsvector contents may be indexed with GIN and GiST index types. This is

based on the RD-trees presented in paper “The RD-tree: An index structure for

sets” [34]. The indexing changes the representation of the tsvector to use a single

bit-signature, a so-called superimposed signature is based on the index structures

defined in article “‘Index structures for databases containing data items with

set-valued attributes’” [35] essentially turning the set of words into single bit

signature.

The database documentation [27, p. 451] lists some limitations in the

implementation. The implementation is sufficient on most parts but the 1

megabyte limit on the length of tsvector may be problematic when indexing large

documents with many unique terms.

One problem in fully utilizing FTS is caused by the complex morphology of the

Finnish language which uses small core vocabulary which is extended by using

many inflectional forms [36, p. 2]. Other problematic aspect is the languages

heavy use of compound words which makes information retrieval hard as user

would need to match all preceding word components when searching. The

Snowball stemmer algorithm which is used in the PostgreSQL does not support

word separation for compound words which would increase matching in

queries. [36, p. 2] There exists a library to implement morphological analysis for

55

Finnish language called “libvoikko” as part of the Voikko project8. This was

originally part of the Hunspell spellchecker, but the features needed to make it

work well with Finnish language were not good match for Hunspell project so

Voikko was forked as separate project to provide morphological utilities for working

with Finnish language. [37] Actual extension providing Voikko lemmatization and

compound word separation support for PostgreSQL is called dict_voikko9.

The available search methods in the default installation of PostgreSQL database

are summarized in the Table 12.

Table 12: Summary of the Available Search Methods in the PostgreSQL Database.

Search Method Matching Method Indexable Language dependent

= (equality comparison) exact - yes no
LIKE, ILIKE exact pattern no* no
SIMILAR TO exact regexp no* no
POSIX Regexp exact regexp no* no
Levenshtein fuzzy edit distance no no
Soundex fuzzy phonetic no yes
Metaphone fuzzy phonetic no yes
Double Metaphone fuzzy phonetic no yes
Trigrams fuzzy n-gram yes no
Full text search fuzzy Full-text search yes yes

LIKE, ILIKE and regexp operations can be indexed using pg_trgm contrib

6.2.1 Keyword Search Analysis

The database analysis was done on PostgreSQL version 13.3 with default

configuration. The database was filled with database dump from new DAM

systems staging environment dated 20210701. The test queries are run on single

customers’ database schema. The sample database schema contained 5279

product entries and 18120 rendition entries in it. Before running analysis queries a

few preliminary steps were done to check limits and prepare the tables to perform

well.

For testing the limits of FTS the PostgreSQL manual [27] for version 12.4 was

8https://voikko.puimula.org
9https://github.com/Houston-Inc/dict_voikko

https://voikko.puimula.org
https://github.com/Houston-Inc/dict_voikko

56

used. Its text content was extracted with Tika and stored into tsvector column. The

manual has file size of 12.4Mb, and it was chosen as a test document as it

contains 2742 pages of mostly textual content. Larger PDF documents will likely

have embedded images and such raising the file size but which will not affect the

indexing process. Indexing of almost 3000 pages worth of text is considered as

sufficient for current indexing needs.

One factor on designing proper search method is to know what kind of data it

needs to operate on. By looking at the indexed tsvector contents there appears to

be a great deal of indexed terms which are not that easy to use when using

keyword search:

'-01':38C,39C '00':41C '00.000':42C '04313':7A '2020':37...

These exist in the tsvector as the whole metadata JSON entry is indexed. The

field might contain date entries which are not that useful on FTS. Same issue

exists with enum entries are stored only by their index key as the value is looked

later from different table.

{"owner": 13, "ownerUnit": 14, "containsConnectionInfo": 1}

The “owner 13” is the index key and the actual value for key “13” is read from

product type metadata constraint table which list all possible string values an

owner metadata field may specify. To increase the precision of results the

metadata indexing could be limited to include only the string type fields from the

metadata as shown in Listing 14 and change the indexing of enum fields to use

the actual metadata value instead of the key.

To execute the queries within the given time constraints a proper use of indexing

is required. All the sample queries were run with indexed fields to get optimal

performance. The use of indexes will not alter the result of a query, but they

provide significant performance benefit when they can be utilized by the database.

For downsides, the use of an index adds a small amount of overhead to the

queries, and they consume disk space. The PostgreSQL database supports many

index types [27, Ch. 11.2] which can be used to speed up the searches. The most

57

important indexes are the Generalized Search Tree (GiST) and General Inverted

Index (GIN) as these can be used with the FTS. The database required a helper

function given in Listing 17 for indexing fields for the trigram and pattern matching

queries.

The details of database query analysis is found in Appendix 7 Section 7.4. The

first analyzed query was to see how well the database could return matches for

term “kissa” which is cat for Finnish by using various search methods, starting with

pattern matching, then with trigram matching and finally with FTS.

Searching the products with simple pattern matching query for “kissa” shown in

Listing 18 returned 45 matching records but out of those 39 were true positive

matches while 6 were false positives. In the false positives the “kissa” is part of

other words like “pankissa” or “at the bank” which has nothing to do with felines.

The problem is that the pattern matching does not consider word boundaries, so it

returns extra results in addition to correct matches. This could be remedied by

adding whitespace in the query term ’ kissa ’ but then it would not match text within

words.

The same search query using trigram matching in Listing 19 returned 60 rows as a

result containing 21 false positives and 17 false negatives. The fuzzy query is

looking for similar words within the fields, so it gives matches for words such as

“kassa”. The trigram matching is by default using rule that 60% of trigrams

matched will yield a match. This value can be change and after modest increase

to 70% the query results were much better. With the changed similarity score the

query returned 40 matches with 39 true positives and only one false positive which

shows significant improvement.

The sample query gives accurate results when using the FTS with default

configuration as shown in Listing 20. All returned rows were correct, but the query

failed to return 17 matches which were present when using other matching

methods. The default FTS configuration for term “kissa” does not make use of

prefix matching which leaves for example compound words starting with “kissa”

58

outside of matches such as “kissatiedote”. Changing the above query to use

prefix-matching as in Listing 21 for search terms gave the best result getting

perfect precision and recall on this simple query. The Table 13 provides summary

of the calculated scores and execution speeds of the various tested search

methods. The existing research [6] seems to support that stemming with

compound splitting yields similar results as n-gram matching but it notes that

stemming has smaller memory requirements.

Table 13: Summary of the PostgreSOL Search Query Results.

Search technique Results TP FP FN Precision Recall F1 Exec time

ILIKE matching 45 39 6 0 0.867 1 0.929 ≈ 5.5ms
TRGM - defaults 60 22 21 17 0.512 0.564 0.537 ≈ 35ms
TRGM - with 0.7 40 39 1 0 0.975 1 0.987 ≈ 35ms
FTS - defaults 22 22 0 17 1 0.564 0.721 ≈ 5ms
FTS - with prefix 39 39 0 0 1 1 1 ≈ 5ms

All search methods yielded acceptable results for free-text search using single

search term but requirements in Table 9 had other features which will limit the

options. The search method must allow multiple search terms, prefix-matching,

ranking, phrase search and inflection support as well. Some users of survey listed

interest on having the search results highlighted but implementing said feature

would require more accurate specification how precisely this should be done, so

that requirement is omitted from this analysis.

The pattern matching queries are left out as they will not provide method for

ranking of the results nor any inflection support. Inflection support in this context

meaning that user does not need to type in the search term accurately for match

to occur. This can be implemented either by stemming from FTS or fuzzy

matching from pg_trgm. Phonetic matching could be used but these do not scale

to longer texts for phrase searches. The above results show that trigram matching

with increased word_similarity score gave a slower performance than FTS but

similar results. At this point the pattern matching can be dropped as an alternative.

59

One key difference between the remaining methods is that FTS query can cope

with multiple search terms with same kind of performance as single query term.

The fuzzy trigram search would need to be repeated multiple times and the results

be combined to get same end result.

Indexing multiple fields for the fuzzy search requires more work than using FTS.

Another problem is ranking of the results. Where plain pattern matching does not

offer any direct method for ranking the results the fuzzy matching has function to

return similarity score for matches which can used to implement ranking based on

the similarity of matched terms. Adding multiple query terms using weighted zone

ranking using trigrams is possible, but it makes the generated queries complicated

as illustrated in Listing 22. For comparison the FTS matching version in Listing 23

is easier to understand.

The trigram searching showed good results when working with small amounts of

text but the performance of fuzzy matching dramatically drops when trying to

search file contents as shown in Listing 24. Another downside on using fuzzy

search for file content is that it requires the full contents to be fully stored in the

database. Even when proper index the fuzzy search on it would be too slow for

any web applications to use. Using simpler pattern matching for file content

search is slightly faster than trigram search in Listing 25, but even it does not

return responses within the time constraints set in requirements so only search

method which fits the requirements is the FTS which copes well even when the

text sizes grow significantly as in file content searches shown in Listing 26. To

ensure the performance of FTS will not degrade too fast when more products are

added into system it was tested with sample data containing one million records of

random words in Appendix 7 Section 7.2. The Listing 10 shows that the search is

still fast enough even when searching one million records, so the search scales

well enough for expected near future growth.

The FTS has plenty of features but it is not without downsides. It does not provide

other kind of truncation besides prefix truncation, so it can not be used to match

words within other words. This may be remedied by use of lexical analysis. The

60

PostgreSQL uses the Snowball algorithm for stemming in the default configuration

which includes support for all required languages in the new system. The default

stemming can be extended by using external contributions such as the dict_voikko

to include morphological analysis for Finnish language. The results from various

stemming dictionaries in Table 20 in Appendix 7 Section 7.5 for string “Koira- ja

kissavakuutushakemus” show that voikko dictionary gives great results as almost

all words are in base forms. In addition, it separates compound word

“kissavakuutushakemus” into separate words “kissa”, “vakuutus” and “hakemus”.

The separation of compound words is the major benefit from lemmatization in this

case as with it searching with just term “vakuutus” would give match from above

when neither “simple” nor “finnish” configuration would provide a match. This

benefit increases if the indexable data has longer compound words. Prior

research notes that the “net benefit of compound splitting is usually positive.” [6]

The Appendix 7 Section 7.5 shows comparison results on how the stemming

algorithm works on words in sample data in Listing 30. The sample omits the row

ID 7 because for some unknown reason it causes the voikko dictionary to crash

the database server. This is major issue with the dict_voikko and makes it

unusable in production systems until the root cause is identified and fixed, but the

project does not seem to be maintained anymore as the latest changes to it were

done several years ago.

The PostgreSQL documentation contains sample implementation [27, p. 2624] on

how to integrate pg_trgm with FTS by using FTS to generate static word list and

checking this smaller list for mistyped words. The project management interviews

in Appendix 2 included wish that the search bar would be able to cope with one or

two letter mistyping which this would be potential solution. As pointed out by the

manual the word list is static and would need to be refreshed from time to time for

it to give accurate results.

61

6.3 Artificial Intelligence Enhancements

The project management and some customers in the survey expressed interest on

having AI features in the system as shown in Table 9. These features are

commonly used when the amount of data is so large that a manually doing the

necessary steps is too much for human operators. Common place where AI is

used is to do preprocessing steps for new assets, particularly if the system

provides “bulk-loading” i.e. storing numerous assets with one command. The AI

could be used to automatically generate metadata tags specific for each asset

instead of someone manually typing them in. This kind of feature is commonly

called “smart tags” and is available from many DAM vendors.

Other common use of AI is multimedia searches, like searching by images. If given

one image, user may ask system to list similar images. These kinds of searches

were not listed on the requirements so are not considered in this analysis.

The smart tags are possible to implement, and they may be done before storing

the asset into database. This way the choice of data store does not affect the

implementation greatly. The other DAM vendors detailed in Appendix 5 mostly

used external providers for adding AI features such as Google Vision AI10 and

Amazon Rekognition11 and the DAM system should initially follow similar path if

possible.

Machine translation or rather the more focused Cross-Language Information

Retrieval (CLIR) would be good addition to DAM. As DAM stores metadata it might

be in any language user is using. One user stores information in Finnish and other

user queries this using English ensures these will not match unless some sort of

translation is happening. Research indicate that CLIR has almost same accuracy

as monolingual IR. [9, p. 448]

10https://cloud.google.com/vision
11https://aws.amazon.com/rekognition/

https://cloud.google.com/vision
https://aws.amazon.com/rekognition/

62

6.4 Advanced Search Analysis

Some new systems users wished the system would provide advanced searches

commonly available in search engines but not available from relational databases

which were discussed in Section 3.5. Some of these features may be added

manually using relational databases as well.

Faceted search is a specialized variant of search that allows the user to navigate

in a streamlined way with search filters which are presented depending on the

searched object. [8, Ch. 9] Many search engines such as Apache Solr provide

faceting by default. Relational databases do not directly provide faceting feature

but similar effect for simple faceting needs may be achieved by using window and

JSON functions as shown in Listing 31 of Appendix 7 Section 7.6.

Autocomplete makes the system give out better search terms for the user while

typing the search query. There are few alternatives how to find the “correct terms”

from incomplete search input. First is by parsing the system logs for successful

search queries, storing the used search terms in the database and using those to

suggest better search terms. The suggestion could be done with fuzzy matching

so small typos still lead to match and system can use results to autocorrect user

query.

Search-as-you-type or predictive search where users search results are narrowed

by each key press. Problem in this is to get the searches as lightweight as

possible, so they can be executed after each key press without overloading the

service. The FTS is only search option fast enough for this task, but it requires

custom tokenizer shown in Listing 32.

6.5 Miscellaneous Feature Analysis

The PostgreSQL database already provides search filter features, so there is no

need for further work in that regard. The search history for each user is also quite

trivial to implement with the current system. The user searches come in the

63

system from two REST-API calls, so the system could be changed to just storing

these searches in their own database table as JSON data. The UI can then query

this table and re-execute previous searches.

The quick and advanced search feature would need a more thorough specification

before evaluating its implementation. The DAM vendor review summary in Table 8

points out that several products had quick and advanced search, but many did not

provide accurate documentation on how it was implemented. Google web search

provides separate page12 with advanced filter controls if the search bar was not

sufficient and similar design could be implemented in the new DAM as well.

12https://www.google.com/advanced_search

https://www.google.com/advanced_search

64

7 Discussion and Recommendations

The customer survey search rating suggest that the users are quite satisfied by

the current search using FTS and the results seem to support this as users mostly

rated keyword search features as a must-have. The current FTS use may be

improved with few simple ways to make it achieve better results. First the indexing

could be tweaked to be language-specific for each document bringing stemming

support. Current system does not have information on how this language is to be

selected, but this is a task which may be done by agreeing with the systems users

on how to proceed. One method would be to type all information in one language

and use that for indexing or use pre-existing content language field to select it, or

by having separate field for product/rendition metadata language. With this

change the search accuracy can be increase by utilizing stemming and possibly

lemmatization.

The Finnish language grammar is hard for stemming algorithms, but it could be

improved by using lexical analysis provided by tools such as the Voikko13. This

would also reduce the need for having pattern matching as Voikko would provide

separation of compound words to individual words to help to match single words.

The use of Voikko library would require extra effort in identifying and fixing the root

cause of the exhibited database crashes while evaluating its use.

For improving the search accuracy indexed fields could be limited to only relevant

ones. Currently, the whole customer product metadata field is indexed which index

numeric fields which are not easily searched by keywords. They should be either

dropped from indexing or the value strings pointed by metadata key fields should

be indexed instead. To get file contents in the database require small extension to

the current architecture detailed in Figure 7. When storing a new asset file the API

would not store the file directly but only register the saving request into internal job

queue. The microservice architecture would be extended by having a separate

indexer component which would read the job queue and do necessary

13https://voikko.puimula.org

https://voikko.puimula.org

65

preprocessing steps before saving the assets into the data store. This would allow

the frontend to resume other work immediately after registering asset saving and

long-running asset processing could be done in indexer. First preprocessing step

for the indexer would be to parse the file content and index them into the database

allowing users do file content searches. Later this step could be extended to cover

other tasks as well, perhaps using AI to implement smart tagging etc.

One possible implementation would be to make the current system search as the

quick search and implement it by using trigram matching. The quick search would

only search product and rendition metadata but not the file contents. For

advanced search the search would switch to using FTS and search could be

extended to cover file contents as well. Trigram searching would be skipped with

advanced search as it does not work well when processing file contents as shown

in Listing 24. This two combination of two search methods might be confusing for

the clients to use, so it should be tested and implemented carefully.

7.1 Using Search to Fix Known Issues

While the search improvements are important it is essential that the existing

issues in it are fixed as well. The following lists possible solutions for the issues

listed in Table 3.

To improve the matching process the trigger updating the indexable tsvector

should be changed to incorporate above changes as listed in the Appendix 27

which improves the original trigger definition in three ways. Firstly, it tweaks the

indexing of username or user’s email field to use plain “simple” configuration. This

keeps the email as single field instead of trying to split email into separate fields

based on some rules. This works in this case as most common email format used

by the system is “firstname.lastname@companyName.domainName”. The users

name is stored separately, and full email is added to index so matching should

work with any of them. Keeping email company name or top-level domain do not

seem to add additional value as index terms as these are effectively good

candidates for stop words. Secondly, it is the using different dictionaries based on

mailto:firstname.lastname@companyName.domainName

66

the content language of the product row. This makes assumption that the name

and description fields are given in same language as the product content

language setting. This might not be the case for every customer and needs to be

verified when setting up each customer’s environment and configured accordingly.

Lastly, instead of indexing whole metadata it selects only fields from metadata

which contain text data which can be used for keyword matching. The precise list

of fields to index varies by each customer. Alternatively the system could look up

the indexed field contents and index that instead of the numeric value.

To fix the query parsing a new parser would be needed. Evaluation should be

done to see if any existing parser such as pg-tsquery14 would be enough or should

new one be developed for this purpose. The main issue to fix is parsing of quoted

text, otherwise the existing solution should be enough. The parser should also

handle the special characters such as “ABC 2/2.10” correctly.

The default configuration of the database has inconsistencies when parsing

hyphen separated values where the hyphen is sometimes parsed as negative sign

for following number as shown in Listing 28. This affects especially most common

search using the product codes which consists mostly of hyphen separated

numbers and characters. The precise root cause for this is unknown, but the

problem can be mitigated by upgrading the database software version and

tweaking the FTS indexing options shown in Listing 29.

14https://github.com/caub/pg-tsquery

https://github.com/caub/pg-tsquery

67

8 Conclusions

The information retrieval or search is seemingly simple thing, but it quickly

becomes quite complex topic. There exists multiple ways to achieve searching,

each with their own trade-offs. This makes each implementation unique for the

given project, a perfect solution for one project might not fit to another project at all.

The aim of this work was to find out problems in current system search, does it

provide the wanted features and is the system architecture capable on providing

adequate search. The system was using FTS but exhibited some issues which

caused users the get unexpected or missing results as pointed in Table 3, but

these may be fixed with little effort as detailed in Section 7. The wanted features

for the new DAM system were done by examining the new system from several

view points collected in Table 4. Each view point gave a new perspective on what

the system should provide. Analyzing the view points lead to creation of

requirement specification in Table 9 which presents the list of search constraints

and features the system should provide along with priority for each. These were

summarized in Table 10 into four groups sorted by priority. The results show that

keyword-based search is enough for the new system as long as it abides by the

constraints given. The next expansion of search features should be adding of AI

enhancements into the system. After these the design should focus on providing

advanced searches common in search engines and list of smaller miscellaneous

features. The analysis done on Chapter 6 shows that the current architecture

using FTS search is capable of handling most requirements with adequate

performance even when the amount of entries searched is increased. Most

difficult part for the new system is expanding it to provide the advanced search

features. These may be implemented using current architecture, but it requires

considerable effort.

68

8.1 Future Work

This work was focused on testing the limits of the current tools used by the new

DAM system. This leaves a lot of potential good candidates for future research.

Primary target would be to examine how a search engine would handle the

searches and integrate with the new system. Good candidates for search engines

would be the Apache Solr15 and Elasticsearch16 as these very often used by other

DAM vendors and both of them are based on the Apache Lucene17 and provide

plenty of features. Most of the concerns using them come from increased

maintenance and the need to keep the indexed data in sync between the primary

data source and search engine. One potential solution to mitigate this would be to

evaluate projects such as ZomboDB18 which allow PostgreSQL database to use

Elasticsearch engine transparently from within the database.

Other potential research point would be the use of AI features in DAM. Some

users wished to have AI features in the current system and the trend seems to be

moving towards using AI more and more it would be best to identify how it could

be utilized in the new DAM system as well. There are numerous SaaS options

providing AI enhancements giving potential research targets on analyzing how big

improvements they could provide in the system. These could be initially used to

improve the quality of asset metadata and then be extended in providing more

advanced searches such as providing semantic search.

Finally, this work mostly settles on keyword-based search but new customers

starting to use the new DAM are already defining more multimedia types in their

installations than in previous system. Multimedia files are not directly composed of

text making them harder to use with keyword-based search. This area of IR on

multimedia content seems to be under active research at the moment, so there

would be plenty of opportunities for future work.

15https://solr.apache.org/
16https://www.elastic.co/elasticsearch/
17https://lucene.apache.org/
18https://www.zombodb.com/

https://solr.apache.org/
https://www.elastic.co/elasticsearch/
https://lucene.apache.org/
https://www.zombodb.com/

69

References

1 Russell, Stuart J. & Norvig, Peter. 2020. Artificial Intelligence - A Modern
Approach. Fourth International Edition. Pearson Education.

2 Ng, Andrew. 2018. “Machine Learning Yearning: Technical Strategy of AI
Engineers, In the Era of Deep Learning”. Draft.
<https://www.deeplearning.ai/wp-content/uploads/2021/01/andrew-ng-

machine-learning-yearning.pdf>.

3 Silver, David; Hubert, Thomas, et al. 2018. “A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play”.
In: Science 362.6419, pp. 1140–1144. eprint:
https://www.science.org/doi/pdf/10.1126/science.aar6404.
<https://www.science.org/doi/abs/10.1126/science.aar6404>.

4 Penttilä, Jeremias. 2015. “Koneoppiminen”. Bachelor’s Thesis. University
of Jyväskylä. <http://urn.fi/URN:NBN:fi:jyu-201603211906>.

5 Hagiwara, Masato. 2021. Real-World Natural Language Processing -
Practical applications with deep learning. Manning Publishing.

6 Brants, Thorsten. 2003. “Natural Language Processing in Information
Retrieval.” In: CLIN 111.

7 Christopher D. Manning Prabhakar Raghavan, Hinrich Schütze. 2009. An
Introduction to Information Retrieval. Online. Cambridge University Press.
<https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf>.

8 Gupta, Anuj; Majumder, Bodhisattwa, et al. 2020. Practical Natural
Language Processing. 1st Edition. O’Reilly Media, Inc.

9 Baeza-Yates, Ricardo. 2004. “Challenges in the interaction of information
retrieval and natural language processing”. In: International Conference
on Intelligent Text Processing and Computational Linguistics. Springer,
pp. 445–456.

10 Guarino, Nicola. Jan. 1995. “Ontologies and knowledge bases: towards a
terminological clarification”. In: pp. 25–32.

11 Shahi, Dikshant. 2015. Apache Solr: A Practical Approach to Enterprise
Search. 1st Edition. Apress.

12 Van Rijsbergen, C.J. & Van Rijsbergen, C.J.K. 1979. Information
Retrieval. 2nd Edition. Butterworths.

13 Gusfield, D.; Press, Cambridge University & Fund, John D. &
Phyllis S. Harrah Library. 1997. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational Biology.
EBL-Schweitzer. Cambridge University Press.

https://www.deeplearning.ai/wp-content/uploads/2021/01/andrew-ng-machine-learning-yearning.pdf
https://www.deeplearning.ai/wp-content/uploads/2021/01/andrew-ng-machine-learning-yearning.pdf
https://www.science.org/doi/pdf/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
http://urn.fi/URN:NBN:fi:jyu-201603211906
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf

70

14 Bates, Marcia J. 2011. Understanding Information Retrieval Systems. 1st
Edition. Auerbach Publishers.

15 Heini, Jari-Pekka. 2010. “Organisaation tiedonhaku - tarkastelussa
avoimen lähdekoodin ratkaisut”. MA thesis. University of Jyväskylä.
<http://urn.fi/URN:NBN:fi:jyu-201008272500>.

16 Valkonen, Juho. 2015. “Document management for small business”.
MA thesis. Turku University of Applied Sciences.
<http://urn.fi/URN:NBN:fi:amk-2015092814956>.

17 Paananen, Anna. 2012. “Comparative Analysis of Yandex and Google
Search Engines”. MA thesis. Metropolia University of Applied Sciences.
<http://urn.fi/URN:NBN:fi:amk-2015092814956>.

18 Haynes, David. 2017. Metadata for Information Management and
Retrieval. Ed. by Haynes, David. 2nd. Facet Publishing.

19 Spärck Jones, K.; Walker, S. & Robertson, S.E. Aug. 1998. A probabilistic
model of information and retrieval: development and status. Tech. rep.
UCAM-CL-TR-446. University of Cambridge, Computer Laboratory.
<https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-446.ps.gz>.

20 Robertson, S.E. & Spärck Jones, K. Dec. 1994. Simple, proven
approaches to text retrieval. Tech. rep. UCAM-CL-TR-356. University of
Cambridge, Computer Laboratory.
<https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-356.pdf>.

21 Sumathi, S. 2007. Fundamentals of Relational Database Management
Systems. Ed. by Esakkirajan, S. Springer Berlin Heidelberg.

22 Austerberry, David. 2012. Digital Asset Management. 2nd Edition. Taylor &
Francis.

23 Saareks, Jani. 2019. “Tehokkaan tekstihaun toteuttaminen käyttöoikeudet
huomioiden”. MA thesis. University of Jyväskylä.
<http://urn.fi/URN:NBN:fi:jyu-201906073064>.

24 Latif, Afshan; Rasheed, Aqsa, et al. 2019. “Content-Based Image
Retrieval and Feature Extraction: A Comprehensive Review”. In:
Mathematical Problems in Engineering 2019. Ed. by Lefik, Marek, p. 21.

25 Keathley, Elizabeth Ferguson & Gyor, Henril De. 2014. Digital Asset
Management: Content Architectures, Project Management, and Creating
Order out of Media Chaos. 1st Edition. Apress.

26 Leppänen, Sandra. 2017. “Leveraging Digital Asset Management (DAM)
in a Finnish retail corporation”. MA thesis. Yrkeshögskolan Arcada.
<http://urn.fi/URN:NBN:fi:amk-201704104499>.

http://urn.fi/URN:NBN:fi:jyu-201008272500
http://urn.fi/URN:NBN:fi:amk-2015092814956
http://urn.fi/URN:NBN:fi:amk-2015092814956
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-446.ps.gz
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-356.pdf
http://urn.fi/URN:NBN:fi:jyu-201906073064
http://urn.fi/URN:NBN:fi:amk-201704104499

71

27 Group, The PostgreSQL Global Development. 2021. PostgreSQL 12
Documentation. ver. 6. Accessed: 2021-06-27. The PostgreSQL Global
Development Group. <https:
//www.postgresql.org/files/documentation/pdf/12/postgresql-12-A4.pdf>.

28 Göker, A. & Davies, J. 2009. Information Retrieval: Searching in the 21st
Century. 1st Edition. Wiley.

29 Levene, Mark. 2011. An Introduction to Search Engines and Web
Navigation. 2nd ed. Wiley.

30 Google. 2020. Trillions of Questions, No Easy Answers: A (home) movie
about how Google Search works.
<https://www.youtube.com/watch?v=tFq6Q_muwG0>. Visited on
01/16/2022.

31 Colin Reid, Mike McGuire. Dec. 2020. Market Guide for Digital Asset
Management. Tech. rep. Accessed: 2021-02-04. Gartner.
<https://www.nuxeo.com/resources/gartner-market-guide-dam>.

32 Barber, Nick. Nov. 2019. The Forrester Wave: Digital Asset Management
For Customer Experience, Q4 2019. Tech. rep. Accessed: 2021-02-06.
Forrester.
<https://reprints.forrester.com/#/assets/2/376/RES146956/reports>.

33 Bartunov, Oleg & Sigaev, Teodor. 2007. Full-Text Search in PostgreSQL: A
Gentle Indroduction. Tech. rep. Moscow University.
<https://www.pgcon.org/2007/schedule/attachments/12-fts.pdf>.

34 Hellerstein, Joseph M & Pfeffer, Avi. 1994. The RD-tree: An index
structure for sets. Tech. rep. University of Wisconsin-Madison Department
of Computer Sciences.

35 Helmer, Sven. 1997. “Index structures for databases containing data items
with set-valued attributes”. In: Technical Reports 97.

36 Korenius, Tuomo; Laurikkala, Jorma; Järvelin, Kalervo & Juhola, Martti.
Jan. 2004. “Stemming and lemmatization in the clustering of Finnish text
documents”. In: Proceedings of the thirteenth ACM international
conference on Information and knowledge management, CIKM’04,
pp. 625–633.

37 Voikko. 2021. Voikko - General architecture. Internet. Accessed:
2021-08-14. <https://voikko.puimula.org/architecture.html>.

https://www.postgresql.org/files/documentation/pdf/12/postgresql-12-A4.pdf
https://www.postgresql.org/files/documentation/pdf/12/postgresql-12-A4.pdf
https://www.youtube.com/watch?v=tFq6Q_muwG0
https://www.nuxeo.com/resources/gartner-market-guide-dam
https://reprints.forrester.com/#/assets/2/376/RES146956/reports
https://www.pgcon.org/2007/schedule/attachments/12-fts.pdf
https://voikko.puimula.org/architecture.html

Appendix 1
1 (4)

1 Interviews

This appendix lists the questions asked in project member interviews. The aim of

the interview was to get overview on how the search should function. Each

interview was done one on one, so we get individual views on the issue.

1.1 Information Retrieval Design

Term: a single search term used in search

The interview used simple priority system called MoSCoW to set priorities for
features:

1. Must

2. Should

3. Could

4. Wish

How many years of experience in using DAM systems?

How much data and what kind of data should be search cover?

What kind of material should be searched?

How much of data should the system handle?

How fast the system should yield search response?

How fast the system should index the data?

How long delays are permitted into indexing, should it be real-time, near real-time,

or can it be delayed further to every 5 minutes etc.

What is the architectural scope for the improvements?

The question had choices to scope how large changes can be made into the

Appendix 1
2 (4)

system. The options were:

• Search features must use current architecture and tools

• Search features must use current architecture and can extend it with
new tools

• The current architecture can be totally redesigned

How large budget is given for the search improvements?

Idea is to scope out how much money can be used in the search feature, can it

use commercial tools or stick with free solutions like open source software. Also

the idea is not to get accurate limits, just general theme of things like is it free tools

only, tens of euros per month, hundreds euros per month and so forth

Can the search use cloud service providers?

Should the search bar be customizable to each customer?

How quickly the search improvements should be placed into production?

Idea is the gauge once the search improvement is presented, how large project it

can be, can the process take days, months or even years.

What the search should yield as a result, products? renditions?

What fields should be indexed for searching?

Should the search cover file contents as well?

Should the search be implemented just as a search bar?

Should the search bar be separated as Quick search and Advanced search?

UI design suggestions?

Where the search term should match?

Appendix 1
3 (4)

Should the search term match word prefix, suffix or anywhere?

Should the search support multiple search terms?

If multiple terms, How to combine them by default, AND?

If multiple terms, What operations should be supported? AND, OR, NOT?

Operator precedence, should parenthesis be supported as well?

Should the search support phrase search?

Should the search be exact or fuzzy?

If fuzzy, any preference how to implement it?

Levenshtein, Soundex, trigram

Should the search work on multiple languages, which ones?

If using fuzzy search, what features should it cover?

• Stemming?

• Lemmatization?

• Compound word handling?

• Stop words?

• Synonyms?

Should the system support field-restricted search queries?

For example queries such as: code:F200 AND auto So that string “F200” is only

matched in code field and word “auto” in any field.

Should the search provide auto-complete?

Should the search provide suggestion?

Appendix 1
4 (4)

Should the search provide spellchecking?

Should the search provide correction?

Should the search provide search-as-you-type?

Should the search results be ranked based on relevance?

Should the search highlight where the match was found in the results?

Should the search support machine translation?

For example if keywords are indexed in English but user types in Finnish keyword,

should it automatically translate the keywords into English.

Should the search implement image recognition?

When giving keyword it tries to match it based on where it appears in the images.

Should the search be able to seek within the audio or video content?

Giving search term, should it try to match it from spoken words in audio or visuals

from video feed.

Should the system support stored searches?

If stored searches, should they be organization-wide or personal?

Can the system default searches be customizable?

Can the user for example set some default search when going to product page.

Appendix 2
1 (3)

2 Interview Results

This appendix presents the results of the project management interviews done as

part of the thesis.

The interviewees agreed in that the new system must cope with managing assets

for the current small-scale customer deployments, but it should be easily scaled

for bigger deployments. Initial minimum requirements for the search feature is to

be able to handle tens of thousands assets, some rough guidelines on asset file

sizes were tens of megabytes for images, hundreds of megabytes for documents

and gigabytes and larger for video files. The priority between these are that text

document support must be done first and foremost followed by image support.

The current platform does not have much video support yet, but it was seen as

essential feature to have in near future. The search feature should be fast, it

should yield responses within a second or two at maximum. If the system is

searching through file contents as well, it can use few more seconds to come up

with answer.

The interviewees agreed on that the current system architecture may not be

replaced entirely as the budget does not allow for full system redesign at this

point. The current architecture may be extended with new tools, provided that they

work together with the current design. The tools used may include proprietary

solutions as long as those are not too expensive to use. The implementation for

the improvements may not take too long, they should be finished in months or at

maximum within a year.

One of the mandatory features to have in the system is the indexing of file

contents and metadata. The priorities in file content indexing is that the text

content indexing must be done first, followed by the indexing of file metadata.

Once those are done the system can be extended to analyze file contents more

thoroughly such as using AI to recognize concepts from images. And finally focus

on video and audio by analyzing the content for language, speech-to-text and

Appendix 2
2 (3)

such features if a feasible method is found to achieve those. These features would

allow the limit search to return all video files with spoken Finnish talking about car

sales and similar searches.

The interviewees did not agree on what would be exactly the scope of the search

but were unanimous that all product information must be indexed for the search.

In the DAM system a product can have multiple renditions. These renditions

represent a single physical file and its metadata. Interviewees did not agree

should the search also query rendition data as well as product data by default.

They saw it might make the system too slow to use if the search scope would be

set to be too large.

Interviewees wanted the search query to match patterns on any part of the

document words and if that would not be possible at least use prefix-matching.

Search bar should also support multiple search terms which would be joined

together with boolean AND condition. Interviewees did not see immediate need for

rest of boolean search options such as “OR” or “NOT”, neither for ability to setting

search term precedence with parenthesis. Phrase search was required once file

contents would be indexed. The search feature should support Finnish, English

and Swedish languages as those are the main languages used in the market area.

Ranking the search results by relevance was one required feature in the interview.

Having field-restricted search was not seen as an important feature by the

interviewees. This feature would limit the searching to a single field of the

document, similar to Google web search site:metropolia.fi courses were

system would match “courses” search term only on metropolia.fi domain. Same

feature in DAM context could be to limit the search to only product names, product

codes or some other field. This was considered to be confusing for the systems

users and feature might not be useful to have.

The auto-complete, correction, suggestion and search-as-you-type kind of

features were not seen as necessary at this point. They could be useful features

to have but research and development focus should be on getting the more critical

https://metropolia.fi
https://site:metropolia.fi

Appendix 2
3 (3)

features implemented before looking at these.

Using AI to enhance the search was not seen as first priority but something to be

added into the system later on. One of the immediate need for AI enhancements

would be indexing of image file contents by using image recognition. This would

allow users to search by image concepts.

And lastly, it was seen useful to store the user’s search history. It would seem

useful to keep record of, for example the last five search queries, but this was not

seen as something of a high priority. Saving of user search queries or changing

the system default searches was not seen as critical at this point.

The interview provided good framework on how the search should work and what

areas require more thorough analysis. The combining of search terms with

boolean terms and fast response times seems to indicate that the full text search

would be a good fit. Problem with full text search is that it does not allow pattern

matching besides prefix-matching with PostgreSQL. Part of interviewees

expressed their wish that search bar would allow user to make one or two typing

errors in search term and the system would still return the wanted result.

Something like when typing product code but miss-typing single letter would still

return some results including the intended product code by using similarity search.

Appendix 3
1 (6)

3 Customer survey

This appendix lists the questions asked in the customer survey. The aim of the

survey was to get gather quick overview on how good users of the system feel the

search is and to rate which features are most important to have in their workflows.

The survey is short and quick to fill so more users would incline to answer to it.

Main idea is to gather user rating before starting to rework the system and redo

the survey once the features are ready and users have had time to use them to

see if the user view of system improves.

3.1 Core Survey - Search

Core search feature customer survey is meant to gather info about the current

state of search in Core. It also tries to identify most important search features.

The survey is split into several sections, of which 5 includes the questions. The

survey is done anonymously unless participant chooses to give consent for

interview. The consent is asked at the end of the survey.

It takes approximately 15 to 20 minutes to fill out this survey.

Rate current search features in Core

On scale of 1 to 10, how would you rate the current search implementation.

Higher scores the better.

3.1.1 Basic Search Features

This section asks you to rate, how important the basic search features are to your

work. The scale of answers go from 1 to 5, so that 1 = not at all important, 3 =

can’t say, 5 = mandatory.

Appendix 3
2 (6)

Truncate search

Truncate search means the ability to truncate the search term at given point to

increase its accuracy. For example “form*” would return all documents were exists

word starting with string “form”.

Field-specific search

Field-specific search means ability to restrict text search to specific fields. For

example typing “code:200L” would return all documents where code-field would

contain string “200L”.

Search filters

Search filters mean combo boxes, which allow to filter search to specific language,

product group etc.

3.1.2 Free Text Search

This section asks you to rate, how important various text search features are to

your work. The scale of answers go from 1 to 5, so that 1 = not at all important, 3 =

can’t say, 5 = mandatory.

Free text search

Free text search means search bar which allows free form text to be typed which

is used to search documents.

Support multiple search terms

The system search bar should allow to give multiple search terms and allow to

combine them with operators AND, OR and NOT. For example search query “form

AND cat AND NOT dog” would return all documents which contain words “form”

and “cat” but don’t have word “dog” in them.

Phrase search

Phrase search means ability to search longer text phrases. For example “Mat’s

car dealership” would return documents which contain exactly “Mat’s” followed by

“car” followed by “dealership”. Search would exclude documents were only one

Appendix 3
3 (6)

term term matches or where all terms exist but are not in same arrangement.

Proximity search

Proximity search means ability to limit search by word proximity. It allows queries

like: return all hits were word “dog” exists within 5 words of word “hotel”.

Word inflection support in search

Should the search know how to match search terms all word inflections

automatically? For example when searching with term “dog” the system would

return all documents where there exists any inflection of word “dog” like “dog”,

“dogs” etc.?

Result ranking

The system should rank the results by where match was found. For example

search results where query term was matched in name should be ranked higher

than those where match was in description text.

Match highlightning

The search results should highlight were match was found?

Similarity search

Search should also return matches on similar search terms, for example when

searching term “1004N” it should give results also for terms “2004N”, “1003N” etc.

allowing few typing errors in search query.

3.1.3 Advanced Search

This section asks you to rate, how important various advanced search features

are to your work. The scale of answers go from 1 to 5, so that 1 = not at all

important, 3 = can’t say, 5 = mandatory.

Autocorrect

The system should automatically offer to correct mistyped terms while typing the

search query?

Appendix 3
4 (6)

Search autocomplete

System should offer to autocomplete search terms while typing them?

Search suggestions

System should automatically suggest the next search term while typing the query?

Did-you-mean search

The system should offer better search terms when showing search results if those

would return more results?

Search-as-you-type

The system should run the search automatically after each key press?

Dynamic search facets

After showing results of query the system should offer dynamically generated

facets to limit search results. Once results are filtered any filter component not

able to filter results further gets removed so only relevant controls remain.

Smart tags

System should add tags to products and renditions automatically using AI?

Machine translation in search

System should use automatic machine translation to convert asset metadata into

unified language and translate the search query to matching language.

3.1.4 Scope of Search

This section asks you to rate, how important given search scope is to your work.

The scale of answers go from 1 to 5, so that 1 = not at all important, 3 = can’t say,

5 = mandatory.

Include version information to search

The system should include product version information in addition to product

information when searching?

Appendix 3
5 (6)

Search should contain version file contents in search

Search should also try to find matches from version file text contents?

Search should include file’s metadata Search should include version file’s own

metadata as well as system provided metadata in search?

Visual search

The system should include image and video files in text search? For example

when searching term “cat”, a pictures of cats or videos of cats should also be

returned as matches

Audio search

The system should search also seek within audio files and video soundtrack for

matching speech. Text search should return match if any file’s speech matches

the search term.

Content similarity search?

The system search should be able to provide similar file results? For example

from image product there would be option to list similar images?

Location search

System search should be able to search by location information? When searching

term “paris” it should return all images taken in Paris etc. Or the version page

would allow to search for files from same location.

3.1.5 Personalisation of Search

This section asks you to rate, how important given search personalization is to

your work. The scale of answers go from 1 to 5, so that 1 = not at all important, 3 =

can’t say, 5 = mandatory.

Saved searches, personal

User should be able to save searches for later execution?

Appendix 3
6 (6)

Saved searches, organisation-wide

User should be able to save searches for later execution and share them to others

in organisation?

Custom default searches

User should be able customize the default search run when going for example

products page, it would show only products owned by user etc.

Organisation-wide synonyms

Organisation users should be able to add synonyms to search terms to improve

accuracy. For example “tv”, “telly” would be stored as “television” internally.

Quick and Advanced search

Current search controls should be separated to Quick search (just search bar) and

advanced search (adds filter boxes, checkbox to include file contents to search

etc.)?

3.1.6 Conclusion

Thank you for your answers so far. We still have few open optional questions left

before you can send the answers.

Open feedback about the survey?

Consent for interview?

If you’re willing to participate in a about hour long interview based on the answers

given so far, type in your email address in the field below. Participation is not

mandatory and not all volunteers will be interviewed. You can leave the field

empty if you don’t wish to participate in the interview.

(8 + 6 + 5 + 8 + 8 + 3 + 8 + 2 + 9 + 8 + 8 + 8 + 5)
x =

11
= 7.818182

Appendix 4
1 (4)

Listing 2: Calculation of Average for Customer Survey Search Ratings.

4 Customer Survey Results

This appendix contains the customer survey results. The survey was implemented

as a Google Forms survey and was sent to 56 recipients. The users were given

three weeks to answer the questions and survey received total of 13 responses

during that time. The responses appeared to contain valid input except for two

answers which stood out from the others. In both answers the core system overall

rating was given as average to low and all the search feature questions were

answered by score of 1, not at all important. Finally, in the open feedback the user

had given almost same response in the both answers by saying paraphrasing “I

have not been able to log in the system” which would indicate that both answers

came from the same person. The first question was to rate the system search

features which require user to be able to log into the system, so these two

responses seem invalid. This study is done without those answers. With

remaining answers the survey response percentage is 20% overall, which gives

enough results for this analysis.

After the survey had been completed, it was noticed that the answer option for the

“Field-specific search” question was not present in the questionnaire, so it does

not have any answers.

The first question in the survey was to rate how well new systems search

functionality is working, and the average score is presented in Listing 2. The users

of the system seemed to value the current features already quite high with

average score of 7.8. This would indicate the users generally like the features, but

there is still room for improvement.

Appendix 4
2 (4)

Table 14: The Scores Given in Customer Survey.

Feature Ratings

Truncate 3 5 4 4 5 5 3 5 5 5 3
Filters 2 4 4 2 4 4 5 4 1 5 4
Free-text 2 5 4 4 5 5 5 5 3 5 4
Multiple terms 3 1 3 3 1 4 4 5 3 1 3
Phrase 1 1 1 3 4 4 4 2 3 1 2
Proximity 1 1 1 1 1 2 3 3 4 1 2
Inflection 2 5 4 3 4 4 4 5 3 3 3
Ranking 4 4 2 4 5 5 4 4 5 3 3
Highlighting 3 2 4 4 4 5 3 4 4 1 4
Similarity 2 2 2 3 2 3 1 2 1 4 3
Autocorrect 2 1 1 3 2 5 2 4 1 4 4
Autocomplete 2 2 1 3 1 4 1 4 1 1 4
Suggestions 2 4 2 3 1 4 3 3 1 4 4
Did-you-mean 2 2 2 2 2 4 2 3 1 2 4
Search-as-you-type 2 2 4 2 2 4 1 4 3 5 4
Facets 2 2 2 3 3 3 1 4 1 4 4
Smart tags 2 4 2 4 4 4 3 4 1 4 4
Machine translations 2 1 2 3 2 3 4 4 4 1 4
Version info 2 2 2 3 3 3 3 4 1 1 4
File contents 2 3 2 3 2 3 2 4 1 1 4
File metadata 3 4 5 4 1 2 2 3 1 1 3
Visual 1 2 4 2 1 3 1 3 1 1 2
Audio 2 2 4 2 2 3 1 3 1 1 3
Content similarity 2 2 2 2 2 2 3 3 2 1 3
Location 2 2 1 2 1 3 1 4 1 1 3
Personal Saved 2 4 3 4 3 3 1 4 3 1 3
Org-wide saved 1 1 3 3 2 3 1 4 1 1 3
Custom searches 2 2 3 4 3 3 4 4 3 1 3
Synonyms 2 2 1 2 3 3 1 4 1 1 3
Quick/Advanced 3 4 3 4 1 3 1 4 1 4 4

To analyze which features users want to use in a DAM the answers were scored

using two methods with scores detailed in Table 15. The first method is looking at

how majority thought about features, giving each feature either positive or

negative score based on the rating and summing the total of all scores. The

another method used was to ignore negative responses and only focus on the

positive responses. This makes the assumption that addition of the feature that is

not wanted by all would not affect negatively on all users.

Appendix 4
3 (4)

Table 15: Scoring Methods for Customer Survey Results.

Score First method (total) Second method (positive)

5 +2 +2
4 +1 +1
3 0 0
2 -1 0
1 -2 0

For analysis sum of scores was calculated for each answer, both from all answers

and filtered answers where the two responses described above have been

dropped. The results of scores are collected in Table 16. Features which had only

negative scores are not listed here as those are not interesting for this study.

The sum of answer scores are then transformed into MoSCoW priorities where

tasks are put into one of following categories: must-have, should-have,

could-have, and will-not-have. This analysis uses following scale for assigning the

priorities:

Appendix 4
4 (4)

Table 16: The Scoring of Search Features from Customer Survey.

Feature All scores Only positive scores

Truncate search 14 14
Search filters 6 10
Free text search 14 15
Support multiple terms -2 4
Phrase search -7 3
Proximity search -13 1
Word inflection support 7 8
Result ranking 10 11
Match highlighting 5 8
Similarity search -8 1
Autocorrect -4 5
Search autocomplete -9 3
Search suggestions -2 4
Did-you-mean search -7 2
Search-as-you-type 0 6
Dynamic search facets -4 3
Smart tags 3 7
Machine translation in search -3 4
Include version information in search -5 2
Search should include file contents -6 2
Search should include file metadata -4 4
Visual search -12 1
Audio search -9 1
Content similarity search -9 0
Location search -12 1
Saved searches, personal -2 3
Saved searches, organization-wide -10 1
Custom default searches -1 3
Organization-specific synonyms -10 1
Quick and advanced search -1 5

Table 17: Customer Survey Priority Assignments.

Priority Score

Must-have
Should-have
Could-have
Will-not-have

Score of 10 or above
Score of 5 or above
Score of 0 or above
Scores less than 0

Appendix 5
1 (7)

5 Digital Asset Management Vendors

The ten leading DAM vendor products were reviewed as part of this thesis. This

appendix lists each tool in bit more detail starting from challengers and moving up.

The Northplains Telescope19 was listed as the only challenger has since been

re-branded20 as a modular Northplains NEXT platform in which the Xinet seems to

provide the DAM features. The Northplains review is based on the Xinet

documentation21. The Xinet seems to provide pretty good coverage on keyword

search options. This seems to be due to possible integration with Apache Solr.

The administrator of the system may choose which search engine to use with the

Xinet, either full-text search or external Apache Solr. The features of Xinet search

include either quick or use more advanced search filter using keywords or free text

search. The search handles multiple terms, offers phrase search with proximity

matching, restricting search to specific field and is capable of showing the results

with dynamic facets. Complex searches may be saved for further execution.

The next DAM vendor group was the categorized as the contenders which

included two solutions, Canto and Digizuite DAM.

The Canto DAM22 appears to be focused on marketing material handling. It

provides the basic search features such as keyword search, field-restricted

search, supports multiple search terms by boolean operators. The search is

capable of looking for matches in the metadata and also from the body content of

the asset. It also allows users to save previous searches for easier re-execution.

It has integrations to Amazon Rekognition AI services which was used for example

in providing automatic tagging of assets. It for example provides facial recognition

which allows users later find assets with happy faces in them.

19https://www.northplains.com/
20https://www.northplains.com/content-lifecycle-management-clm-101
21http://docs.xinet.com/docs/Xinet/19.2.1/AllGuides/
22https://www.canto.com/

https://www.northplains.com/
https://www.northplains.com/content-lifecycle-management-clm-101
http://docs.xinet.com/docs/Xinet/19.2.1/AllGuides/
https://www.canto.com/

Appendix 5
2 (7)

The Digizuite DAM23 had more options available than the Canto, in above the

traditional free-text search it had Apache Solr integration for adding more options

for configuring the search functionality. The administrator is able to choose

between different styles of search matching, either inflectional, thesaurus or exact.

The version 5.5 added machine translation of metadata and provided searching of

asset content. The content search was implemented using Optical Character

Recognition (OCR) provided by Microsoft Azure Cognitive Services. This kind of

content search was available for PDF, JPEG, PNG, BMP, TIFF file formats.

As above lists the contender category products already have quite extensive

feature set regarding search. Following contenders were the strong performers

which had multiple vendor solutions listed.

The Widen Collective24 was listed having two kinds of searches, a quick and file

content search. The quick search was for searching the asset metadata and gave

option to do exact, phrase, or field-specific searches, but it did not support

wildcard matching. The file content searching was supported for Office and PDF

documents using FTS which supported stemming and substring matching. The

search also provides predictive search which can be called a search-as-you-type.

The Nuxeo Platform25 had quite extensive set of search features. It makes use of

multiple backends for data, a RDBMS solution is used as the primary data store,

and it is linked with an Elasticsearch search engine for providing advanced asset

search capabilities. The Nuxeo supports all basic features such as search

truncation and filters. It provides full-text search with multiple terms with

stemming, phrase searches, offers suggestions and the search-as-you-type

feature. The platform also offered to save searches for later use and to share

these with other users. It also allows searching deleted assets from thrash.

CELUM Content Collaboration Cloud26 had very little publicly available information

23https://www.digizuite.com/digital-asset-management
24https://www.widen.com/solutions/digital-asset-management
25https://www.nuxeo.com/solutions/dam-digital-asset-management/
26https://www.celum.com/en/digital-asset-management-software/

https://www.digizuite.com/digital-asset-management
https://www.widen.com/solutions/digital-asset-management
https://www.nuxeo.com/solutions/dam-digital-asset-management/
https://www.celum.com/en/digital-asset-management-software/

Appendix 5
3 (7)

about the platforms search capabilities. Analyzing the latest release notes27 along

the marketing info gave some information about the systems capabilities. CELUM

provides full-text searching with ranking, and it is possible to do phrase searches

as well. Search is using current page context to search, so if user is browsing

within a category and does quick search it will only search for matches from within

the category but provides option to expand the search to cover all assets if

needed. More search engine type feature is the search-as-you-type, and it uses

some AI model in providing smart tags when saving assets.

The final member of strong contender group is Bynder Flagship28 which has quite

an extensive list of search options as it uses Apache Solr as its search engine. It

provides full-text searching with relevancy ranking and phrase searches. In

addition to these it allows field-restricted searches and stores search history so

users can rerun recent searches. The system also indexes the file contents for

Office and PDF files and offers match highlighting. When working on the UI it has

“sticky searches” were consecutive search queries filter the previous search

results further allowing users to zone in the assets. For providing

search-as-you-type queries the system uses egde n-grams on select fields where

it indexes the first 20 characters so that word such as “House” is indexed as a

following set: {'h', 'ho','hou', 'hous', 'house'}. As Bynder is hosted on

Amazon platform it integrates with the Amazon Rekognition to provide AI features

which are used for example on providing smart tagging of assets.

The final group of DAM vendors were the market leaders. These are the largest

and most featureful vendor offerings with business revenue in hundreds of millions

or over. The market research identified three operators in this group.

First market leader is OpenText Media Management29. First thing from OpenText

is the vast ecosystem it has, it is not just asset management, but it integrates to

other OpenText offerings to provide plethora of features. This makes analyzing

27https://www.celum.com/en/blog/celum-contenthub-21-9-release-whats-new/
28https://www.bynder.com/en/products/digital-asset-management/
29https://www.opentext.com/products-and-solutions/products/customer-experience-management/

digital-asset-management/opentext-media-management

https://www.celum.com/en/blog/celum-contenthub-21-9-release-whats-new/
https://www.bynder.com/en/products/digital-asset-management/
https://www.opentext.com/products-and-solutions/products/customer-experience-management/digital-asset-management/opentext-media-management
https://www.opentext.com/products-and-solutions/products/customer-experience-management/digital-asset-management/opentext-media-management

Appendix 5
4 (7)

what features the platform provides a difficult task as the features are provided by

different components which might be interconnected or not. For example the

OpenText Media Management solely provides the DAM features but can it be

integrated with OpenText Magellan Text Mining for adding ML models to providing

sentiment analysis and language detection etc. features. This is not covered in the

materials. For certain the features in Media Management component are keyword

searching using multiple terms matching asset file metadata and contents.

Results can be filtered by dynamic facets. For more exotic search features it

provides AI search by using the Google Vision AI30 and Microsoft Azure Computer

Vision31. The search allows searches for assets based on the properties of

images, number of people, facial expression, age, gender, description of image

content, objects in the image or colors. These searches can be executed on video

as well to find where the AI is used to make speech-to-text transcripts, it also tags

known celebrities identified in the video. OCR techniques are used to parse text

from images and identify known brands and label in them.

Next listed leader was the Aprimo DAM32. The basic search features present in

Aprimo did not provide anything noteworthy compared to other vendors. It

supports truncate search and filtering. Search terms may be combined with

boolean operators and full-text search can be used in select cases and the results

may be ranked by relevancy and filtered by dynamic facets. The product also has

very extensive API for making searches.

In addition to these there are multiple methods where AI is used to enhance the

searching. These include the common way of automatically tagging assets but

Aprimo extends this by offering an option to train a business-specific ML model

tailor the tagging process for each customer. The search in Aprimo can use AI

models to index speech on video and visual texts from video sources. Besides

these the search can be used to find visually similar content.

30https://cloud.google.com/vision
31https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
32https://www.aprimo.com/platform/digital-asset-management/

https://cloud.google.com/vision
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://www.aprimo.com/platform/digital-asset-management/

Appendix 5
5 (7)

The final vendor was Adobe with their Experience Manager Assets33 which is quite

large system. Technical side the system is built with Java on Apache Jackrabbit

Oak project. The default search features of Oak are used by default which can be

enhanced by using Apache Solr integration. The system basic search capabilities

are pretty much those of Apache Solr so truncate search with filtering, full-text

search with multiple terms and ranking, phrase and similarity searches,

suggestion of search terms. Finding similar content or images.

Adobe allows searching their own Adobe stock photo archive to enhance existing

assets or make new assets based on the stock photos. Smart collections where

users may create new groups from search results. The metadata of assets are

translated automatically by AI. The Adobe Sensei AI is also used to add smart tags

to the assets. It also makes possible on searching audio and video content. The

smart tags feature can also use Smart content service to train a customer specific

ML model to applying tags to assets.

Looking through each category of DAM products gives us common themes in

them. The challenger-level product provides pretty default search options based

on dedicated search engine. At contender group products the basic search engine

uses are better integrated and offer more features. With these vendors there

starts to be little utilization of AI in aiding in asset searching. Mostly in

automatically tagging assets at creation of time.

The strong performers of DAM vendors did not really add anything special

compared to that of contenders. They offered more of the same features which

were given on the contender-level. The AI features were clearly using external

systems like Amazon Rekognition and Google Vision instead of offering any

in-house AI solutions.

The market leaders were very distinct group were two things are featured

prominently. One is that the products are big and modular. Instead of getting

single tool you get a platform you can extend to fit your needs. This makes

33https://business.adobe.com/products/experience-manager/adobe-experience-manager.html

https://business.adobe.com/products/experience-manager/adobe-experience-manager.html

Appendix 5
6 (7)

identifying all the possible features difficult just by looking at their documentation

and materials as they do not make clear which parts can be integrated together

and how well that actually works. The other identifying aspect from the leader

group is the use of AI. It was used extensively throughout the vendor platform and

not just for searching. Possibility that these bigger vendors can hire dedicated

professionals to create and train the AI models for each task.

Examples of search features using AI in their tools include:

Smart tagging Automatically identify characteristics, visual or others and create

metadata tags. May contain business-specific options if AI can be trained for

each customer. Usually offered as part of bulk-loading of assets

Visually similar searches Find images with similar content, Images with same

model, happy images etc.

Dynamic facets Create facets automatically based on search results while using

AI to filter unnecessary facets

Multilingual search Allow search to use any language but use machine translate

to convert queries into target language

Search on Speech in Video search fragments of speech to find matching videos

Search on Visual Text in Video search visual text in video such as from credits

or written texts shown on feed

Sentiment analysis Identify and highlight what people are saying, for example

social media posts about asset, are they positive or negative

Text mining, natural language processing and understanding Extract parts of

text and derive understanding of emotions or intent. The Computer Vision

(CV) may be used to discover prohibited materials such as use of alcohol,

drugs and violence or adult content.

Document digitization Automate classification and entity extraction with aid of

ML. The captured information is further directed to workflows for

context-based processing.

Above lists only some samples of search features where AI was used, there were

many other areas where AI was also utilized. The material left impression that

Appendix 5
7 (7)

these use in-house developed AI solutions but looking only at product marketing

and internal documentation can not verify this.

A summary of the features present in these vendor systems are given in Table 18.

The score represents how many DAM products had the said feature, so scores

are given from 0 (none) to 10 (all of them).

Table 18: Summary of Provided DAM Features of Top 10 Vendor Products.

Feature Score

Truncate search 7
Search filters 9
Free text search 9
Support multiple terms 9
Phrase search 7
Proximity search 3
Word inflection support 5
Result ranking 5
Match highlighting 2
Similarity search 1
Autocorrect 1
Search autocomplete 1
Search suggestions 3
Did-you-mean search 1
Search-as-you-type 4
Dynamic search facets 6
Smart tags 7
Machine translation in search 2
Include version information in search 0
Search should include file contents 5
Search should include file metadata 2
Visual search 4
Audio search 2
Content similarity search 2
Location search 0
Saved searches, personal 3
Saved searches, organization-wide 1
Custom default searches 0
Organization-specific synonyms 1
Quick and advanced search 5

Appendix 6
1 (4)

6 File Metadata Analysis

This appendix provides a more detailed look on the file metadata relating to the

new DAM system.

Apache Tika34 is Java-based tool to parse files for their metadata and content.

The metadata output varies by file types. Here are some examples of file

metadata from different file types. The metadata was extracted with command

java -jar tika-app-1.26.jar -m -j FILEPATH | jq. The jq command is used

to pretty print the JSON output given by Tika tool. Simple text files such as JSON

files do not contain much metadata in them as detailed in Listing 3.

1 {
2 "Content-Encoding": "ISO-8859-1",
3 "Content-Length": "4137",
4 "Content-Type": "application/json; charset=ISO-8859-1",
5 "X-Parsed-By": [
6 "org.apache.tika.parser.DefaultParser",
7 "org.apache.tika.parser.csv.TextAndCSVParser"
8],
9 "resourceName": "zmg.json"
10 }

Listing 3: Sample of a JSON File Metadata.

The is vast difference in amount of metadata once looking at more complex file

such a PDF document. The Listing 4 presents the sample metadata from a PDF

presentation. There exists many useful fields in it which could be used to enhance

search capabilities of the DAM. It also provides several fields which are of no

direct use such as pdf:charsPerPage field. When storing the metadata into the

DAM system it would not be most efficient to try to index all of the PDF metadata,

but to pick the most relevant fields for indexing.

After PDF files the most common file types in the system are the Office files as

shown in Table 11. A sample from a Microsoft Word document is shown in

Listing 5 illustrates how the metadata is more limited than the metadata on PDF.

34https://tika.apache.org/

https://tika.apache.org/

Appendix 6
2 (4)

One noticeable aspect is that many fields are duplicated with different names,

such as Paragraph-Count and meta:paragraph-count. This might be done to keep

metadata backwards compatible with older versions.

48 ,

5

10

15

20

25

30

35

40

45

1 {
2 "Author": "Joe Conway joe.conway@crunchydata.com mail@joeconway.com

",
3 "Content-Length": "244110",
4 "Content-Type": "application/pdf",

"Creation-Date": "2015-10-28T13:55:15Z",
6 "Keywords": "",
7 "Last-Modified": "2015-10-28T13:55:15Z",
8 "Last-Save-Date": "2015-10-28T13:55:15Z",
9 "PTEX.Fullbanner": "This is pdfTeX, Version 3.1415926-2.5-1.40.14

(TeX Live 2013/Debian) kpathsea version 6.1.1",
"X-Parsed-By": [

11 "org.apache.tika.parser.DefaultParser",
12 "org.apache.tika.parser.pdf.PDFParser"
13],
14 "access_permission:assemble_document": "true",

"access_permission:can_modify": "true",
16 "access_permission:can_print": "true",
17 "access_permission:can_print_degraded": "true",
18 "access_permission:extract_content": "true",
19 "access_permission:extract_for_accessibility": "true",

"access_permission:fill_in_form": "true",
21 "access_permission:modify_annotations": "true",
22 "cp:subject": "Text Search and Pattern Matching",
23 "created": "2015-10-28T13:55:15Z",
24 "creator": "Joe Conway joe.conway@crunchydata.com

mail@joeconway.com ",
"date": "2015-10-28T13:55:15Z",

26 "dc:creator": "Joe Conway joe.conway@crunchydata.com
mail@joeconway.com ",

27 "dc:format": "application/pdf; version=1.5",
28 "dc:subject": "",
29 "dc:title": "Where's Waldo? - Text Search and Pattern Matching in

PostgreSQL",
"dcterms:created": "2015-10-28T13:55:15Z",

31 "dcterms:modified": "2015-10-28T13:55:15Z",
32 "meta:author": "Joe Conway joe.conway@crunchydata.com

mail@joeconway.com ",
33 "meta:creation-date": "2015-10-28T13:55:15Z",
34 "meta:keyword": "",

"meta:save-date": "2015-10-28T13:55:15Z",
36 "modified": "2015-10-28T13:55:15Z",
37 "pdf:PDFVersion": "1.5",
38 "pdf:charsPerPage": [
39 "195",

"203",
41 "144",
42 "263",
43 "284",
44 "276",

"538",
46 "473",
47 "454",

"451"
49 "226",
50 "307",
51 "470",
52 "407",
53 "460",
54 "523",
55 "532",
56 "622",
57 "320",
58 "571",
59 "446",
60 "419",
61 "517",
62 "515",
63 "448",
64 "609",
65 "610",
66 "595",
67 "283",
68 "503",
69 "364",
70 "423",
71 "496",
72 "517",
73 "450",
74 "822",
75 "258",
76 "571",
77 "531",
78 "587",
79 "595",
80 "726",
81 "603",
82 "576",
83 "795",
84 "594",
85 "592",
86 "573",
87 "565",
88 "576",
89 "717",
90 "563",
91 "100"
92],
93 "pdf:docinfo:created": "2015-10-28T13:55:15Z",
94 "pdf:docinfo:creator": "Joe Conway joe.conway@crunchydata.com

mail@joeconway.com ",
95 "pdf:docinfo:creator_tool": "LaTeX with Beamer class version 3.24",
96 "pdf:docinfo:custom:PTEX.Fullbanner": "This is pdfTeX, Version

3.1415926-2.5-1.40.14 (TeX Live 2013/Debian) kpathsea version
6.1.1",

97 "pdf:docinfo:keywords": "",
98 "pdf:docinfo:modified": "2015-10-28T13:55:15Z",
99 "pdf:docinfo:producer": "pdfTeX-1.40.14",
100 "pdf:docinfo:subject": "Text Search and Pattern Matching",
101 "pdf:docinfo:title": "Where's Waldo? - Text Search and Pattern

Matching in PostgreSQL",
102 "pdf:docinfo:trapped": "False",
103 "pdf:encrypted": "false",
104 "pdf:hasMarkedContent": "false",
105 "pdf:hasXFA": "false",
106 "pdf:hasXMP": "false",
107 "pdf:unmappedUnicodeCharsPerPage": [
108 "0",
109 "0",
110 "0",
111 "0",
112 "0",
113 "0",
114 "0",
115 "0",
116 "0",
117 "0",
118 "0",
119 "0",
120 "0",
121 "0",
122 "0",
123 "0",
124 "0",
125 "0",
126 "0",
127 "0",
128 "0",
129 "0",
130 "0",
131 "0",
132 "0",
133 "0",
134 "0",
135 "0",
136 "0",
137 "0",
138 "0",
139 "0",
140 "0",
141 "0",
142 "0",
143 "0",
144 "0",
145 "0",
146 "0",
147 "0",
148 "0",
149 "0",
150 "0",
151 "0",
152 "0",
153 "0",
154 "0",
155 "1",
156 "0",
157 "0",
158 "0",
159 "0",
160 "0"
161],
162 "producer": "pdfTeX-1.40.14",
163 "resourceName": "text_search-pgconfeu2015.pdf",
164 "subject": "Text Search and Pattern Matching",
165 "title": "Where's Waldo? - Text Search and Pattern Matching in

PostgreSQL",
166 "trapped": "False",
167 "xmp:CreatorTool": "LaTeX with Beamer class version 3.24",
168 "xmpTPg:NPages": "53"
169 }

Listing 4: Sample PDF File Metadata.

Appendix 6
3 (4)

Appendix 6
4 (4)

1 {
2 "Application-Name": "Microsoft Office Word",
3 "Application-Version": "15.0000",
4 "Character Count": "19253",
5 "Character-Count-With-Spaces": "22585",
6 "Content-Length": "302632",
7 "Content-Type": "application/vnd.openxmlformats-

officedocument.wordprocessingml.document",
8 "Creation-Date": "2020-08-27T10:15:00Z",
9 "Last-Modified": "2020-08-27T10:15:00Z",
10 "Last-Save-Date": "2020-08-27T10:15:00Z",
11 "Line-Count": "160",
12 "Page-Count": "23",
13 "Paragraph-Count": "45",
14 "Revision-Number": "1",
15 "Template": "Thesis_2012.dotx",
16 "Word-Count": "3377",
17 "X-Parsed-By": [
18 "org.apache.tika.parser.DefaultParser",
19 "org.apache.tika.parser.microsoft.ooxml.OOXMLParser"
20],
21 "cp:revision": "1",
22 "date": "2020-08-27T10:15:00Z",
23 "dcterms:created": "2020-08-27T10:15:00Z",
24 "dcterms:modified": "2020-08-27T10:15:00Z",
25 "extended-properties:AppVersion": "15.0000",
26 "extended-properties:Application": "Microsoft Office Word",
27 "extended-properties:DocSecurityString": "None",
28 "extended-properties:Template": "Thesis_2012.dotx",
29 "meta:character-count": "19253",
30 "meta:character-count-with-spaces": "22585",
31 "meta:creation-date": "2020-08-27T10:15:00Z",
32 "meta:line-count": "160",
33 "meta:page-count": "23",
34 "meta:paragraph-count": "45",
35 "meta:save-date": "2020-08-27T10:15:00Z",
36 "meta:word-count": "3377",
37 "modified": "2020-08-27T10:15:00Z",
38 "resourceName": "Thesis Template 2020 v01.docx",
39 "xmpTPg:NPages": "23"
40 }

Listing 5: Sample DOCX File Metadata.

Appendix 7
1 (19)

7 Database Analysis

This appendix provides detailed information on database analysis done as part of

this work. The first section covers the preliminary setup done on the database and

following sections are dedicated on covering various query samples. Final section

provides suggested improvements to identified issues.

7.1 Database Setup

The database software used in the analysis was PostgreSQL35 version 13.3. The

software was compiled with options given in Listing 6. Once it was installed, it was

started and a default database was created to be used in the analysis process.

1 $ wget -q https://ftp.postgresql.org/pub/source/v13.3/postgresql-
13.3.tar.gz

2 $ tar xzf postgresql-13.3.tar.gz
3 $ cd postgresql-13.3
4 $ CFLAGS=-I/usr/local/include \
5 LDFLAGS=-L/usr/local/lib \
6 ./configure \
7 --prefix=$HOME/testdb/pg13 \
8 --with-uuid=bsd
9 $ gmake && gmake install
10 $ (cd contrib/dict_int && gmake install)
11 $ (cd contrib/fuzzystrmatch && gmake install)
12 $ (cd contrib/pg_trgm && gmake install)
13 $ (cd contrib/uuid-oosp && gmake install)
14 $ cd ..
15 $./pg13/bin/initdb -D testdb
16 $./pg13/bin/pg_ctl -D testdb -l logfile start
17 $./pg13/bin/createdb testdb
18 $./pg13/bin/psql testdb

Listing 6: Compilation of the Database Software.

For the system data a database dump was taken from the new digital asset

management systems staging environment dated 8th of June 2021:

35https://www.postgresql.org

https://www.postgresql.org
https://postgresql-13.3.tar.gz
https://13.3.tar.gz
https://ftp.postgresql.org/pub/source/v13.3/postgresql

1 CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
2

Appendix 7
2 (19)

-rw-r----- 1 tmy tmy 26419058 Jul 11 13:06 core-staging-20210708.sql

The Voikko36 extension setup required applying a small patch to make it compile

as detailed in Listing 7.

1 $ cd postgresql-13.3/contrib
2 $ git clone https://github.com/Houston-Inc/dict_voikko.git
3 $ wget https://github.com/zmyrgel/dict_voikko/commit/ea7760.diff
4 $ patch < ea7760.diff
5 $ gmake install

Listing 7: Compilation of the dict_voikko Extension.

Once the dict_voikko extension was installed the database required few

commands for adding Voikko support given in Listing 8.

1 CREATE EXTENSION IF NOT EXISTS dict_voikko;
2

3 CREATE TEXT SEARCH DICTIONARY voikko_stopwords (
4 TEMPLATE = voikko_template, StopWords = finnish
5);
6

7 CREATE TEXT SEARCH CONFIGURATION voikko (COPY = finnish);
8

9 ALTER TEXT SEARCH CONFIGURATION voikko
10 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
11 word, hword, hword_part
12 WITH voikko_stopwords, finnish_stem;

Listing 8: Setup Steps for Enabling Voikko Contrib.

7.2 Database Benchmarks

The focus on benchmarking is not to get absolute maximum performance, only to

cover rough estimates on how scalable the various search methods are.

For benchmarking how well the database FTS search can keep up with increasing

data the following code was used.

36https://voikko.puimula.org

https://voikko.puimula.org
https://github.com/zmyrgel/dict_voikko/commit/ea7760.diff
https://github.com/Houston-Inc/dict_voikko.git

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

CREATE TABLE sample_products_1000 (
id SERIAL PRIMARY KEY,
name TEXT,
description TEXT,
product_code TEXT,
metadata JSONB,
tsv_data TSVECTOR,
UNIQUE(product_code)

);

CREATE TABLE sample_products_10_000 (
id SERIAL PRIMARY KEY,
name TEXT,
description TEXT,
product_code TEXT,
metadata JSONB,
tsv_data TSVECTOR,
UNIQUE(product_code)

);

CREATE TABLE sample_products_100_000 (
id SERIAL PRIMARY KEY,
name TEXT,
description TEXT,
product_code TEXT,
metadata JSONB,
tsv_data TSVECTOR,
UNIQUE(product_code)

);

CREATE TABLE sample_products_1_000_000 (
id SERIAL PRIMARY KEY,
name TEXT,
description TEXT,
product_code TEXT,
metadata JSONB,
tsv_data TSVECTOR,
UNIQUE(product_code)

);

-- Use temporary table to contain system words
CREATE TABLE words (word TEXT);
CREATE TABLE names (name TEXT);

-- Copy data from system dictionary
COPY words (word) FROM '/usr/share/dict/words';
COPY names (name) FROM '/usr/share/dict/propernames';

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

Appendix 7
3 (19)

50

55

60

65

70

75

80

85

90

51 -- Fill tables with random data
52 INSERT INTO sample_products_1000 (name, description, product_code)
53 SELECT
54 (SELECT * FROM words TABLESAMPLE SYSTEM (0.5)

ORDER BY RANDOM()+_g*0 LIMIT 1),
56 ARRAY_TO_STRING(ARRAY(SELECT * FROM words
57 TABLESAMPLE SYSTEM (0.5)
58 ORDER BY RANDOM()+_g*0
59 LIMIT CEIL(RANDOM()*10+_g*0)), ' '),

UUID_GENERATE_V4()
61 FROM GENERATE_SERIES(1, 1000) AS _g;
62

63 INSERT INTO sample_products_10_000 (name, description, product_code)
64 SELECT

(SELECT * FROM words TABLESAMPLE SYSTEM (0.5)
66 ORDER BY RANDOM()+_g*0 LIMIT 1),
67 ARRAY_TO_STRING(ARRAY(SELECT * FROM words
68 TABLESAMPLE SYSTEM (0.5)
69 ORDER BY RANDOM()+_g*0

LIMIT CEIL(RANDOM()*10)), ' '),
71 UUID_GENERATE_V4()
72 FROM GENERATE_SERIES(1, 10000) AS _g;
73

74 INSERT INTO sample_products_100_000 (name, description,
product_code)

SELECT
76 (SELECT * FROM words TABLESAMPLE SYSTEM (0.5)
77 ORDER BY RANDOM()+_g*0 LIMIT 1),
78 ARRAY_TO_STRING(ARRAY(SELECT * FROM words
79 TABLESAMPLE SYSTEM (0.5)

ORDER BY RANDOM()+_g*0
81 LIMIT CEIL(RANDOM()*10)), ' '),
82 UUID_GENERATE_V4()
83 FROM GENERATE_SERIES(1, 100000) AS _g;
84

INSERT INTO sample_products_1_000_000 (name, description,
product_code)

86 SELECT
87 (SELECT * FROM words TABLESAMPLE SYSTEM (0.5)
88 ORDER BY RANDOM()+_g*0 LIMIT 1),
89 ARRAY_TO_STRING(ARRAY(SELECT * FROM words

TABLESAMPLE SYSTEM (0.5)
91 ORDER BY RANDOM()+_g*0
92 LIMIT CEIL(RANDOM()*10)), ' '),
93 UUID_GENERATE_V4()
94 FROM GENERATE_SERIES(1, 1000000) AS _g;

Appendix 7
4 (19)

Appendix 7
5 (19)

95

96 -- fill in the tsvector data
97 UPDATE sample_products_1000
98 SET tsv_data =
99 setweight(to_tsvector('simple', COALESCE(name, '')), 'A') ||
100 setweight(to_tsvector('simple', COALESCE(product_code, '')), 'A')

||
101 setweight(to_tsvector('simple', COALESCE(description, '')), 'B') ||
102 setweight(to_tsvector('simple', COALESCE(metadata, '{}')), 'C');
103

104 UPDATE sample_products_10_000
105 SET tsv_data =
106 setweight(to_tsvector('simple', COALESCE(name, '')), 'A') ||
107 setweight(to_tsvector('simple', COALESCE(product_code, '')), 'A')

||
108 setweight(to_tsvector('simple', COALESCE(description, '')), 'B') ||
109 setweight(to_tsvector('simple', COALESCE(metadata, '{}')), 'C');
110

111 UPDATE sample_products_100_000
112 SET tsv_data =
113 setweight(to_tsvector('simple', COALESCE(name, '')), 'A') ||
114 setweight(to_tsvector('simple', COALESCE(product_code, '')), 'A')

||
115 setweight(to_tsvector('simple', COALESCE(description, '')), 'B') ||
116 setweight(to_tsvector('simple', COALESCE(metadata, '{}')), 'C');
117

118 UPDATE sample_products_1_000_000
119 SET tsv_data =
120 setweight(to_tsvector('simple', COALESCE(name, '')), 'A') ||
121 setweight(to_tsvector('simple', COALESCE(product_code, '')), 'A')

||
122 setweight(to_tsvector('simple', COALESCE(description, '')), 'B') ||
123 setweight(to_tsvector('simple', COALESCE(metadata, '{}')), 'C');
124

125 -- index tsvector contents
126 CREATE INDEX tsv_1k_idx ON sample_products_1000 USING GIN

(tsv_data);
127 CREATE INDEX tsv_10k_idx ON sample_products_10_000 USING GIN

(tsv_data);
128 CREATE INDEX tsv_100k_idx ON sample_products_100_000 USING GIN

(tsv_data);
129 CREATE INDEX tsv_1m_idx ON sample_products_1_000_000 USING GIN

(tsv_data);
130

131 -- update statistics
132 VACUUM ANALYZE;

Appendix 7
6 (19)

Listing 9: The Benchmark Preliminary Steps

The index sizes given in Table 19 in the sample benchmark database are

reasonable and not too large, so the system appears to be able to scale well for

near-future growth.

Table 19: Comparison of Benchmark Table Index Sizes.

Name Table Size

tsv_1k_idx sample_products_1000 512 kB
tsv_10k_idx sample_products_10_000 3728 kB
tsv_100k_idx sample_products_100_000 26 MB
tsv_1m_idx sample_products_1_000_000 246 MB

As the Listing 10 displays, the search for data using FTS is fast enough even

when using it with table of one million entries in it.

1 core=# select count(*) from sample_products_1_000_000 where
tsv_data @@ 'porismatic:*&!syne:*&nontrier';

2 count
3 -------
4 44
5 (1 row)
6

7 Time: 113.514 ms
8 core=#

Listing 10: Full-Text Search on One Million Row Data.

For benchmarking if there would be any accute limits on the FTS use the

PostgreSQL user manual contents were indexed into the database.

1 $ java -jar ~/Downloads/tika-app-1.26.jar -t postgresql-12-A4.pdf >
postgresql-12-A4.txt

2 $ ls -l postgresql-12*
3 -rw-r--r-- 1 tmy tmy 13025172 Jan 8 09:27 postgresql-12-A4.pdf
4 -rw-r--r-- 1 tmy tmy 6455797 Jan 8 09:28 postgresql-12-A4.txt

Listing 11: Extracting PostgreSQL Manual Content.

After the manual content was extracted into a text file they can be stored in the

database:

1 core=# create temp table tsv (id int, content text, tsv tsvector);

Appendix 7
7 (19)

2 CREATE TABLE
3 \set content `cat postgresql-12-A4.txt`
4 core=# INSERT INTO tsv (id, content) VALUES(1, :'content');
5 INSERT 0 1
6 core=# update tsv set tsv = to_tsvector('english', content);
7 UPDATE 1
8 core=# CREATE INDEX idx_fts_tsv ON tsv USING gin(tsv);
9 CREATE INDEX

Listing 12: Testing Indexing of the PostgreSQL Manual Contents.

7.3 Database Issues Analysis

There were some identified issues in the use of database which are detailed in

this section. Current flawed search term handling done by the DAM application is

shown in Listing 13.

1 keywords
2 .toLowerCase() // lowercase string
3 .trim() // remove leading/trailing whitespace
4 .match(/(\b([a-zåäö0-9]+\b))+/g)? // group alphanum sequences
5 .join('<->') // join groups with FOLLOWED BY operator
6 .replace(/\s{2,}/g, ' ') // replace consecutive spaces with one
7 .split(' ') // split on space
8 .join(':*&') + ':*'; // exclusive join with prefix matching

Listing 13: Current Search Query.

The implementation is flawed as it effectively makes the application search to do

phrase searches by default. Another problem in the code is that it makes use of

prefix matching only for the last term, which does not seem what the author has

intended.

There exists many fields in the product metadata, these vary based on product

type but full list is given in Listing 14.

1 select jsonb_object_keys(metadata) from products;
2 ------------------------
3 containsConnectionInfo
4 creator
5 dateIssued
6 imprint
7 owner
8 ownerUnit

Appendix 7
8 (19)

9 subject
10 titleAlternatives
11 uriDescription
12 (9 rows)

Listing 14: Sample Metadata Keys in Customer Data.

To improve the matching only the “creator”, “imprint”, “subject”, “titleAlternatives”,

“uriDescription” fields should be added to the tsvector as these contain textual

data. For example “subject” metadata contains product specific keywords which

could then be weighted more heavily than rest of the metadata by indexing

metadata field separately. As metadata fields are customer-specific this process

needs to be done individually for each customer.

The original database trigger run after each product table change was:

7.4 Database Query Analysis

This section provides detailed analysis on running searches on the PostgreSQL

database focusing on performance and features. For performance analysis the

samples use the simple timing command to give approximate amount of time on

how long it takes to complete the query. The commonly used analysis command

EXPLAIN ANALYZE is not used as its output is very verbose and the additional

details are not required for these simple comparisons. The command was used to

verify that the queries used correct search plans and utilized table indices.

The product table indices used during database analysis are given in Listing 16.

1 Indexes:
2 "products_pkey" PRIMARY KEY, btree (id)
3 "products_product_code_key" UNIQUE CONSTRAINT, btree

(product_code)
4 "products_tsv_data_idx" gist (tsv_data)
5 "trgm_full_idx" gin (immutable_concat_ws(' '::text, VARIADIC

ARRAY[product_code::text, name::text, description, metadata ->>
'subject'::text, metadata ->> 'creator'::text, metadata ->>
'titleAlternatives'::text]) gin_trgm_ops)

Listing 16: Product Table Indexes.

1 CREATE OR REPLACE FUNCTION create_or_update_product_tsv_data()
2 RETURNS trigger
3 AS $create_or_update_product_tsv_data$
4 BEGIN
5 UPDATE products
6 SET tsv_data =
7 setweight(to_tsvector('simple',
8 COALESCE(t.name, '')), 'A') ||
9 setweight(to_tsvector('simple',
10 COALESCE(t.product_code, '')), 'A') ||
11 setweight(to_tsvector('simple',
12 COALESCE(t.description, '')), 'B') ||
13 setweight(to_tsvector('simple',
14 COALESCE(t.metadata, '{}')), 'C') ||
15 setweight(to_tsvector('simple',
16 COALESCE(regexp_replace(t.o_username, \\
17 '\\@|\\+|\\.', ' ', 'gim'), '')), 'A') ||
18 setweight(to_tsvector('simple',
19 COALESCE(t.o_first_name, '')), 'A') ||
20 setweight(to_tsvector('simple',
21 COALESCE(t.o_last_name, '')), 'A')
22 FROM (SELECT p.*,
23 owner.username AS o_username,
24 owner.first_name AS o_first_name,
25 owner.last_name AS o_last_name
26 FROM products p
27 LEFT JOIN public.users owner ON owner.id = p.created_by
28 WHERE CASE TG_TABLE_NAME
29 WHEN 'products'
30 THEN p.id = NEW.id
31 END
32) t
33 WHERE products.id = t.id;
34 RETURN NEW;
35 END;
36 $create_or_update_product_tsv_data$ LANGUAGE plpgsql;

Appendix 7
9 (19)

Listing 15: Original Product TSVector Update Trigger.

In order to index string data for trigram matching the database requires an

immutable version of string concatenation function. Immutable in here means that

the output of the function will not vary based on the user specified locale settings

as is the case with the default concatenation function. The default concatenation

function works with dates as well which output format is heavily dependent on the

locale.

https://products.id
https://owner.id

Appendix 7
10 (19)

1 CREATE OR REPLACE FUNCTION immutable_concat_ws(text, VARIADIC
text[])

2 RETURNS text AS 'text_concat_ws' LANGUAGE internal IMMUTABLE
PARALLEL SAFE;

Listing 17: Sample Concat Utility.

The first query is matching pattern “kissa” from within the searchable fields in

Listing 18.

1 SELECT p.name, p.product_code, p.description, p.metadata,
2 u.username, u.first_name, u.last_name
3 FROM products p
4 INNER JOIN users u ON p.created_by = u.id
5 WHERE concat_ws(p.name, p.product_code, p.description, p.metadata,
6 u.username, u.first_name, u.last_name) ILIKE '%kissa%';

Listing 18: Database Query with Pattern Matching.

A sample of using trigram matching to match documents with term “kissa” in

Listing 19. The query starts to become long as the trigram query requires

concatenating the fields together to big string value to be able to use indexes.

1
2 u.username, u.first_name, u.last_name,
3 word_similarity('kissa', concat_ws(
4 p.name, p.product_code,
5 p.description, p.metadata,
6 u.username, u.first_name, u.last_name)
7) as score
8 FROM products p
9 INNER JOIN users u ON p.created_by = u.id
10 WHERE 'kissa' <% concat_ws(p.name, p.product_code, p.description,
11 p.metadata, u.username, u.first_name, u.last_name)
12 ORDER BY word_similarity('kissa',
13 concat_ws(p.name,p.product_code,p.description,p.metadata,
14 u.username, u.first_name, u.last_name)) DESC;

SELECT p.name, p.product_code, p.description, p.metadata,

Listing 19: Database Query with pg_trgm Extension.

The simple FTS search is presented in Listing 20. The query is just matching the

term “kissa” from the tsvector field containing the pre-calculated document terms.

1
2 p.metadata, u.username, u.first_name, u.last_name
3 FROM products p
4 INNER JOIN users u ON p.created_by = u.id

core=# SELECT p.id, p.name, p.product_code, p.description,

Appendix 7
11 (19)

5 WHERE p.tsv_data @@ 'kissa'
6 22 rows

Listing 20: Database query With Full-Text Search.

The improved FTS in Listing 21 is using prefix-matching to get better results.

1 core=# SELECT p.id, p.name, p.product_code, p.description,
2 p.metadata, u.username, u.first_name, u.last_name
3 FROM products p
4 INNER JOIN users u ON p.created_by = u.id
5 WHERE p.tsv_data @@ 'kissa:*'
6 (39 rows)

Listing 21: Database Query with Full-Text Search with Prefix Matching.

Example of how pg_trgm may be used with multiple terms such as “kissa AND

koira” is given in Listing 22. The query is using weighted scoring to improve

ranking of the results which results in quite complex query.

1 SELECT p.id, p.name,
2 (word_similarity('kissa', p.product_code) +
3 word_similarity('kissa', p.name) +
4 word_similarity('kissa', p.description) * 0.75 +
5 word_similarity('kissa',
6 COALESCE(p.metadata->>'subject', '0')::text) +
7 word_similarity('kissa',
8 COALESCE(p.metadata->>'creator', '0')::text) +
9 word_similarity('kissa',
10 COALESCE(p.metadata->>'titleAlternatives', '0')::text) *

0.75)
11 +
12 (word_similarity('koira', p.product_code) +
13 word_similarity('koira', p.name) +
14 word_similarity('koira', p.description) * 0.75 +
15 word_similarity('koira',
16 COALESCE(p.metadata->>'subject', '0')::text) +
17 word_similarity('koira',
18 COALESCE(p.metadata->>'creator', '0')::text) +
19 word_similarity('koira',
20 COALESCE(p.metadata->>'titleAlternatives', '0')::text) *

0.75) as score
21 FROM products p
22 INNER JOIN users u ON p.created_by = u.id
23 WHERE ('koira' <% p.product_code
24 OR 'koira' <% p.name
25 OR 'koira' <% p.description
26 OR 'koira' <% (p.metadata->>'subject')::text

Appendix 7
12 (19)

27 OR 'koira' <% (p.metadata->>'creator')::text
28 OR 'koira' <% (p.metadata->>'titleAlternatives')::text)
29 AND ('koira' <% p.product_code
30 OR 'koira' <% p.name
31 OR 'koira' <% p.description
32 OR 'koira' <% (p.metadata->>'subject')::text
33 OR 'koira' <% (p.metadata->>'creator')::text
34 OR 'koira' <% (p.metadata->>'titleAlternatives')::text)
35 ORDER BY score DESC;

Listing 22: Sample Multiterm Query Using Trigram Matching with Ranking.

Compared the trigram version in Listing 22 the FTS version shown in Listing23 is

simple.

1 SELECT p.name, p.product_code, p.description, p.metadata,
2 u.username, u.first_name, u.last_name,
3 ts_rank(tsv_data, 'kissa:* & koira:*') as rank
4 FROM products p
5 INNER JOIN users u ON p.created_by = u.id
6 WHERE tsv_data @@ 'kissa:* & koira:*'
7 ORDER BY rank DESC;

Listing 23: Sample Multiterm Query Using Full-Text Search With Ranking.

The searching file contents with trigrams will be very slow as presented in

Listing 24. The primary cause is in trigrams, the search needs to iterate through

each term and calculate their trigrams and then compare them with search term.

These kinds of searches should be reserved for smaller text sizes.

1 core=# create index trgm_content_idx on renditions USING GIN
(file_content gin_trgm_ops);

2 CREATE INDEX
3 Time: 243279.278 ms (04:03.279)
4 core=#
5 core=# select count(id) from renditions where 'kissa' <%

file_content;
6 count
7 -------
8 4248
9 (1 row)
10

11 Time: 298336.125 ms (04:58.336)

Listing 24: Trigram Searching File Content.

Appendix 7
13 (19)

Searching file contents using regular pattern matching query in Listing 25 shows

that it is slightly faster in execution than trgm search in Listing 24 but it is too slow

to fit within the constraints.

1 core=# select count(id) from renditions where file_content ilike
'%kissa%';

2 count
3 -------
4 1839
5 (1 row)
6

7 Time: 14859.720 ms (00:14.860)

Listing 25: Pattern Matching for File Content.

The use of FTS is shown in Listing 26. It starts by extending the table with

tsv_contents field which is then filled with weighted tsvector contents. This allows

each row to store the calculated tsvector contents, so it does not need to be

calculated for each query. The first select query is run without using index and is

too slow to fit within the time constraints. Once the index is added the query

executes well within the time constraints making it the only search option to do so.

7.5 Database Improvements

This section provides details on the suggested improvements for the DAM system.

A suggested improvement for the original database trigger presented in Listing 15

is given in Listing 27. It improves the original by using language-specific dictionary

configurations and indexing the username field as-is.

1 CREATE OR REPLACE FUNCTION create_or_update_product_tsv_data()
RETURNS trigger

2 AS $create_or_update_product_tsv_data$
3 BEGIN
4 UPDATE products SET tsv_data =
5 setweight(to_tsvector(t.trg_dict::regconfig,
6 COALESCE(t.name, '')), 'A') ||
7 setweight(to_tsvector('simple',
8 COALESCE(t.product_code, '')), 'A') ||
9 setweight(to_tsvector(t.trg_dict::regconfig,

COALESCE(t.description, '')), 'B') || 10

15

20

25

30

35

40

45

50

11 setweight(to_tsvector(t.trg_dict::regconfig,
12 COALESCE(t.metadata->>'subject', '')), 'A') ||
13 setweight(to_tsvector(t.trg_dict::regconfig,
14 COALESCE(t.metadata->>'creator', '')), 'A') ||

setweight(to_tsvector(t.trg_dict::regconfig,
16 COALESCE(t.metadata->>'titleAlternatives', '')), 'B') ||
17 setweight(to_tsvector(t.trg_dict::regconfig,
18 COALESCE(t.metadata->>'imprint', '')), 'C') ||
19 setweight(to_tsvector(t.trg_dict::regconfig,

COALESCE(t.metadata->>'uriDescription',
21 setweight(to_tsvector('simple',
22 COALESCE(t.o_username, '')), 'A') ||
23 setweight(to_tsvector('simple',
24 COALESCE(t.o_first_name, '')), 'A') ||

setweight(to_tsvector('simple',
26 COALESCE(t.o_last_name, '')), 'A')
27 FROM (
28 SELECT p.*,
29 owner.username AS o_username,

'')), 'C') ||

owner.first_name AS o_first_name,
31 owner.last_name AS o_last_name,
32 CASE WHEN new.content_lang = 1 THEN 'finnish'
33 WHEN new.content_lang = 2 THEN 'swedish'
34 WHEN new.content_lang = 4 THEN 'english'

ELSE 'simple'
36 END trg_dict
37 FROM products p
38 LEFT JOIN public.users owner ON owner.id = p.created_by
39 WHERE CASE TG_TABLE_NAME

WHEN 'products' THEN p.id = NEW.id
41 END
42) t
43 WHERE products.id = t.id;
44 RETURN NEW;

END;
46 $create_or_update_product_tsv_data$ LANGUAGE plpgsql;
47

48 CREATE TRIGGER create_or_update_tsv_data
49 AFTER INSERT OR UPDATE OF name, description, product_code, metadata

ON products
FOR EACH ROW

51 EXECUTE PROCEDURE create_or_update_product_tsv_data();

Appendix 7
14 (19)

Listing 27: Suggested Improvement for the TSVector Update Trigger.

For looking at the problem of parsing hyphenated strings with the FTS parser in

PostgreSQL returns a bit of varied results regarding numbers in hyphened strings:

https://products.id
https://owner.id

Appendix 7
15 (19)

1 core=# select to_tsvector('simple', 'abc-100');
2 to_tsvector
3 -------------------
4 '-100':2 'abc':1
5 (1 row)
6 core=# select to_tsvector('simple', 'a-abc-100');
7 to_tsvector
8 ---------------------------------
9 '100':4 'a':2 'a-abc':1 'abc':3

Listing 28: Fixing Product Code Hyphenation Parsing.

The fix is simple with later PostgreSQL versions:
1 CREATE TEXT SEARCH DICTIONARY core_product_code_dict (TEMPLATE
2 intdict_template, MAXLEN = 64, REJECTLONG = true, ABSVAL = true);
3 CREATE TEXT SEARCH CONFIGURATION core_product_code (COPY =
4 pg_catalog.simple);
5 ALTER TEXT SEARCH CONFIGURATION core_product_code
6 ALTER MAPPING FOR int, uint WITH core_product_code_dict;
7

8 core=# select * from to_tsvector('simple', 'abc-100');
9 to_tsvector
10 ------------------
11 '-100':2 'abc':1
12 (1 row)
13

14 core=# select * from to_tsvector('core_product_code', 'abc-100');
15 to_tsvector
16 -----------------
17 '100':2 'abc':1
18 (1 row)

Listing 29: Fixing Product Code Hyphenation Parsing.

In the first case parsing “abc-100” the parser assumes the number is negative one

while in the latter where the string has a “a-” prefix the number is parsed as

positive. One of the main search terms used in the DAM system is searching by

product code and those use short hyphen separated characters and numbers in

them by default. When user would search the above code “abc-1000” with just

number “1000” it would not yield match. This particular issue can be fixed by

upgrading the PostgreSQL database version to version 13.0 or newer as those

include “absval” option for dict_int to force tokenization to return absolute values.

This could be used to create separate parser for product codes which would fix

this issue.

Appendix 7
16 (19)

For sampling how stemming works in practice a sample string of “Koira- ja

kissavakuutushakemus” is used as it highlights how various stemming methods

work and these are given in Table 20.

Table 20: Comparison of Stemming Algorithm Results.

Dictionary Tokens

simple ’ja’:2 ’kissavakuutushakemus’:3 ’koira’:1
finnish ’kissavakuutushakemus’:3 ’koira’:1
voikko ’hakemus’:3 ’kissa’:3 ’koira’:1 ’vakuuttaa’:3 ’vakuutus’:3

The FTS use reduces the amount of data needed to be stored in the database as

shown below. The main causes are the removal of stop words which remove

many filler words from the indexed texts. Other is the removal of duplicates, the

FTS only needs to know the place of each indexed term so it only needs to store

one copy of the word. Simple comparison of various stemming algorithms on how

they affect the word counts is given in Table 30.

Use of any stemming reduces the word count from the original text. The voikko

dictionary increases the word count a bit compared to other dictionaries, but this is

expected as voikko separates compound words in to individual search terms.

7.6 Database Advanced Query Analysis

This appendix provides details how the PostgreSQL database may be used to

implement the more advanced queries familiar in search engines.

7.6.1 Facets

An example of using faceted search by leveraging JSON and window functions

modeled after the blog post by Alexander Korotkov 37.

1 WITH all_products AS (
2 SELECT
3 product_code,
4 name,

37https://akorotkov.github.io/blog/2016/06/17/faceted-search/

https://akorotkov.github.io/blog/2016/06/17/faceted-search/

Appendix 7
17 (19)

5 product_type_id,
6 RANK() OVER (
7 PARTITION BY product_type_id
8 ORDER BY ts_rank_cd(tsv_data,

plainto_tsquery('kissa')), id
9) rank,
10 COUNT(*) OVER (PARTITION BY product_type_id) cnt
11 FROM products
12 WHERE tsv_data @@ plainto_tsquery('kissa')
13),
14 lst AS (
15 SELECT
16 product_type_id,
17 jsonb_build_object(
18 'count', cnt,
19 'results', jsonb_agg(
20 jsonb_build_object(
21 'product_code', product_code,
22 'name', name
23))) AS data
24 FROM all_products
25 WHERE rank <= 5
26 GROUP by product_type_id, cnt
27)
28 SELECT jsonb_object_agg(product_type_id, data) FROM lst;

Listing 31: Example Facet Implementation for PostgreSQL.

The above returns by product type how many matching results were found and top

5 results for each group.

7.6.2 Autocomplete

A custom tokenizer for generating edge n-grams was detailed in StackOverflow38

which can be used to generate n-grams for ts_vector:

Once the all the n-grams are stored they can be queried with FTS. One possible

improvement would be to limit the n-gram generation to first 20 characters of each

word as was done in Bynder as shown in Appendix 5.

38https://stackoverflow.com/questions/56894979/edge-ngram-search-in-postgresql

https://stackoverflow.com/questions/56894979/edge-ngram-search-in-postgresql

Appendix 7
18 (19)

1 core=# ALTER TABLE renditions ADD COLUMN tsv_contents tsvector;
2 ALTER TABLE
3 core=# UPDATE renditions r SET tsv_contents =
4 setweight(to_tsvector('simple', COALESCE(r.ext_filename, '')),

'A') ||
5 setweight(to_tsvector('simple', COALESCE(r.version_id, '')),

'A') ||
6 setweight(to_tsvector('simple', COALESCE(r.metadata->>'notes',

'')), 'A') ||
7 setweight(to_tsvector('simple', COALESCE(r.file_content, '')),

'C') ||
8 setweight(to_tsvector('simple', COALESCE(r.file_metadata::text,

'')), 'C');
9 NOTICE: word is too long to be indexed
10 DETAIL: Words longer than 2047 characters are ignored.
11 ... < previous two lines repeated x 16 > ...
12 NOTICE: word is too long to be indexed
13 DETAIL: Words longer than 2047 characters are ignored.
14 UPDATE 18120
15 Time: 925968.930 ms (15:25.969)
16 core=#
17 core=# select count(id) from renditions where tsv_contents @@

'kissa';
18 count
19 -------
20 347
21 (1 row)
22

23 Time: 3150.688 ms (00:03.151)
24 core=# CREATE INDEX tsv_contents_idx ON renditions USING GIN

(tsv_contents);
25 CREATE INDEX
26 Time: 68122.068 ms (01:08.122)
27 core=# select count(id) from renditions where tsv_contents @@

'kissa';
28 count
29 -------
30 347
31 (1 row)
32

33 Time: 5.903 ms
34 core=#

Listing 26: Full-text Search on File Contents.

Appendix 7
19 (19)

1 core=# select id,
array_length(regexp_split_to_array(trim(file_content), E'\\W+'),
1) as words,

2 length(to_tsvector('simple', file_content)) as simple,
3 length(to_tsvector('finnish', file_content)) as finnish,
4 length(to_tsvector('voikko', file_content)) as voikko
5 from renditions
6 where id <> 7 order by id
7 limit 10;
8 id | words | simple | finnish | voikko
9 ----+-------+--------+---------+--------
10 1 | 107 | 89 | 81 | 103
11 2 | 270 | 208 | 175 | 182
12 3 | 1351 | 722 | 660 | 625
13 4 | 2692 | 1162 | 934 | 817
14 5 | 2830 | 1222 | 972 | 836
15 6 | 2749 | 1174 | 935 | 812
16 8 | 1542 | 715 | 687 | 686
17 9 | 3424 | 1106 | 1038 | 1040
18 10 | 3322 | 1070 | 1006 | 1003
19 11 | 7 | 5 | 5 | 5
20 (10 rows)

Listing 30: Comparison of Word Counts With Stemming.

1 CREATE OR REPLACE FUNCTION edge_gram_tsvector(text text) RETURNS
tsvector AS

2 $BODY$
3 BEGIN
4 RETURN (select array_to_tsvector(
5 (select array_agg(distinct substring(lexeme for len))

from unnest(to_tsvector(text)),
6 generate_series(1,length(lexeme)) len)
7));
8 END;
9 $BODY$
10 IMMUTABLE
11 language plpgsql;

Listing 32: Sample Edge N-gram Generator for PostgreSQL.

	List of Abbreviations
	Introduction
	Material and Methods
	Theoretical Background
	Machine Learning
	Natural Language Processing
	Language Models
	Stemming and Lemmatization

	Data Retrieval
	Data Retrieval Methods

	Information Retrieval
	Document Preprocessing
	Information Retrieval Models
	Query Expansion
	Evaluation

	Data and Information Retrieval Tools
	Relational Databases
	Search Engines

	Metadata
	Digital Asset Management

	Project Specification
	System Overview
	System Search Features
	Issues in Current Search

	Views on the System Search

	The Requirement Specification
	Defining the System Requirements

	Search Implementation Analysis
	Inspecting Constraints
	Keyword Search
	Keyword Search Analysis

	Artificial Intelligence Enhancements
	Advanced Search Analysis
	Miscellaneous Feature Analysis

	Discussion and Recommendations
	Using Search to Fix Known Issues

	Conclusions
	Future Work

	References
	Appendices
	Interviews
	Information Retrieval Design

	Interview Results
	Customer survey
	Core Survey - Search
	Basic Search Features
	Free Text Search
	Advanced Search
	Scope of Search
	Personalisation of Search
	Conclusion

	Customer Survey Results
	Digital Asset Management Vendors
	File Metadata Analysis
	Database Analysis
	Database Setup
	Database Benchmarks
	Database Issues Analysis
	Database Query Analysis
	Database Improvements
	Database Advanced Query Analysis
	Facets
	Autocomplete

