
Bachelor’s thesis

Information and Communications Technology

2022

Henri Kestiö

WEB APPLICATION
DEVELOPMENT: WHAT DOES
IT CONSIST OF?

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information and Communications Technology

2022 | 34 pages, 26 pages in appendices

Henri Kestiö

WEB APPLICATION DEVELOPMENT:
WHAT DOES IT CONSIST OF?

As technologies evolve and web application requirements grow more complex, it would be more
apt to describe application development as something similar to building an apartment building
where multiple domains of expertise need to be combined. This thesis explores the major domains
of modern web application development and describes the process of building a full-stack
application using current technologies to illustrate the different areas in a more practical way.
Various internet resources about web application development were studied for this purpose. A
full-stack web application was developed, setup online and the source code was stored to a public
GitHub repository.

The main results of this thesis were a summarized overview of each of the major areas of web
application development and a process description of the development of a full-stack web
application. The results show that while web application development can be broken down into a
few major areas, such as frontend and backend development, it is clear that each area requires
a depth of knowledge that also needs to be constantly updated and expanded on as technologies
evolve. This reveals the need for learning resources that are also constantly evolving.

KEYWORDS:

Web development, databases, application architecture, DevOps, full-stack

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tieto- ja viestintätekniikka

2022 | 34 sivua, 26 liitesivua

Henri Kestiö

WEB-SOVELLUSTEN KEHITTÄMINEN: MISTÄ SE
KOOSTUU?

Teknologioiden kehittyessä ja sovellusvaatimusten kasvaessa monimutkaisemmiksi, olisi
sopivampaa kuvata sovelluskehitystä kerrostalon rakentamisen kaltaiseksi projektiksi, jossa on
yhdistettävä useita osaamisalueita. Tämä opinnäytetyö tarkastelee nykyaikaisen web-
sovelluskehityksen pääosa-alueita ja kuvaa full-stack sovelluksen kehittämistä nykyisten
teknologioiden avulla havainnollistaen eri osa-alueita käytännöllisemmin. Tutkittiin erilaisia
internet-resursseja web-sovellusten kehittämisestä. Full-stack verkkosovellus kehitettiin,
julkaistiin verkossa ja lähdekoodi tallennettiin julkiseen GitHubiin-arkistoon.

Tämän opinnäytetyön tärkeimmät tulokset olivat yhteenveto kaikista web-sovelluskehityksen
pääalueista ja prosessikuvaus full-stack web-sovelluksen kehittämisestä. Tulokset osoittavat, että
vaikka sovelluskehitys voidaan jakaa muutamaan pääalueeseen, on selvää, että jokainen alue
vaatii syvällistä tietämystä, jota on myös jatkuvasti päivitettävä ja laajennettava tekniikan
kehittyessä. Tämä paljastaa oppimisresurssien tarpeen, jotka myös kehittyvät jatkuvasti.

ASIASANAT:

Web-ohjelmointi, tietokannat, sovellus arkkitehtuuri, DevOps, full-stack

CONTENTS

LIST OF ABBREVIATIONS 6

1 INTRODUCTION 6

2 WEB APPLICATION DEVELOPMENT OVERVIEW 8

2.1 Databases and backend 8

2.2 UI/UX design and frontend 12

2.3 Testing 14

2.4 Application architecture and development practices 15

3 DEVELOPING A FULL-STACK WEB APPLICATION 18

3.1 Creating the Software Requirements Specification (SRS) Document and planning

the work 21

3.2 Starting development and setting up the project online 22

3.3 Designing UX/UI with Figma and Tailwind UI 26

3.4 Developing the application features 28

4 CONCLUSION 31

REFERENCES 33

APPENDICES

Appendix 1. Software Requirements Specification (SRS) Document

FIGURES

Figure 1. Example of an ER-diagram (Peterson, Richard 2022). 9
Figure 2. An example of a 3-tier application architecture. 16
Figure 3. DevOps model describing some common practices that are included in the
model (AWS). 17
Figure 4. A part of the Improvement application ER-diagram. 22

PICTURES

Picture 1. Tests for registration and authentication API endpoints. The tests start with
test_ prefix and check_access_token_response is a helper function for making test
assertions. 24
Picture 2. Example of how the Trello application looks. Cards include work that was
done for the thesis. 27
Picture 3. Figma mock UIs. 28
Picture 4. Screenshot of the live Improvement app dashboard view with example
projects. 29
Picture 5. Screenshot of the live Improvement app board view with columns and cards.
 30

TABLES

Table 1. A table row describing a single epic. 21

LIST OF ABBREVIATIONS

API Application Programming Interface

CD Continuous Delivery

CI Continuous Integration

CRUD Create Read Update Delete, short that is often used to

describe basic functionality related to data manipulation

CSS Cascading Style Sheets

DBMS Database Management System

E2E End to End

ER Entity Relationship, an ER diagram describes the

relationships of different entities

GUI Graphical User Interface

HTML Hyper Text Markup Language

IDE Integrated Development Environment, an application that for

example enables editing source code, building executables

and debugging

MVP Minimum Viable Product, a simplified version of a product that

allows for a faster release, validation and feedback

NoSQL “Not only SQL”, allows for non-relational large volumes of

changing data

ORM Object-relational-mapping, an ORM can convert between

objects in code and database tables

REST Representational State Transfer, a REST API is simply an API

that has been designed and built with a commonly accepted

standard

SQL Structured Query Language, a language for querying and

manipulating data in a relational database

UI User Interface, the views that the user sees and interacts with

in an application

UX User Experience, how the experience of using an application

is for a user

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

1 INTRODUCTION

Building a web application could be described as something similar to building a house

or an apartment complex. Developing a modern web application with various

functionalities consists of several different areas of technical and design expertise being

put together in a way where everything works together to deliver some kind of value to

the users of the application. When dealing with such projects, it would be important to

have at least a high-level understanding of what such projects include as it can require

a high level of commitment from all the parties that are involved.

Often theses that discuss developing a full-stack application are focused on the specific

technologies that are used to build some kind of specific application and reading them

will not necessarily help someone who is new or outside of the field to understand the

full picture. Yet applications can often be built from the ideas or needs from people

outside the field of software development. For these stakeholders, it would be beneficial

to bring clarity to the whole process of application development so that they can make

better, more informed decisions and also understand the magnitude of such projects.

In a report by an international IT research firm Standish Group, it was reported that on

average only around 30% of IT projects are successful in terms of being on budget, on

time and on target (Standish Group 2015). The percentage is better for smaller projects

but there is a steep drop when project size is moderate or larger. A better shared

understanding of what is required when building applications can help with the

communication between the application developers and other stakeholders.

Communication between these groups is crucial to build trust, set the correct

expectations for a project, turn the ideas of the stakeholders into a useful application and

a successful project.

The purpose of this thesis is to provide a better understanding of the big picture of web

application development, it can give clarity to those who are looking to get into the field

and help to decide which areas might be of the most interest to them. It can also help

someone looking to produce an application through a contractor. It is important that when

buying software development, the key stakeholders in a project would have a better

understanding of what they are buying.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

The current chapter has introduced the need for clarifying what web application

development consists of. Chapter 2 describes the different areas of web application

development and what they contain on a high level to give a good understanding of the

whole without diving too deep into the specific technologies that are currently being used.

The more practical chapter 3 describes the development process of a Kanban style web

application with some of the similar functionalities from other known applications such

as Jira or Trello. This section discusses more about the specific technologies used and

why they were used. The process included:

• planning the application’s user and data requirements

• building an API server using Python, FastAPI framework and PostgreSQL

database

• making some simple designs for the frontend using Figma design tool and

Tailwind UI kit

• building the frontend using React, Typescript, Redux and Tailwind CSS

• both backend and frontend code were setup with a CI pipeline using Github

workflows that run the tests when new code is added into the project master

reporitory

• setting up the project online and a CD pipeline to automatically update the

production application when new code is merged

The final chapter 4 reflects on the findings of this thesis and highlights a need for

developing constantly evolving learning materials for the field of web application

development.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

2 WEB APPLICATION DEVELOPMENT OVERVIEW

In the following sections we will look at the bigger parts of what building a web application

requires. These are the big pieces that are in general always needed. To some extent

these pieces can be similar to mobile, game or other kind of software development as

well.

This thesis focuses mainly on the general technical aspects of building an application. It

is worth mentioning that there are also other important aspects. As an example these

could be things such as user interface and user experience design, clarifying the idea of

the application from something abstract to a concrete idea, coming up with a plan for a

minimum viable product (MVP) and planning use cases which are then used to define

the technical needs for the application. While these different things might be only briefly

touched, they are still an important part to keep in mind as it is very difficult to build

anything without a clear idea of what is needed and how it should look and feel like.

Another topic that is too big to go into deeply in this thesis but needs a mention is

application security. This is something that a developer needs to think about while

developing the backend and frontend features. It is also a big part of the application

infrastructure and monitoring.

2.1 Databases and backend

Any kind of popular applications tend to deal with storing, manipulating, displaying or in

other ways dealing with data. Often in these cases the application needs to store data to

be accessed for later use so it will require a database where the data can be stored.

However there are various different use cases as well that aren’t related to storing user

data but instead for example storing data that is used to improving application

performance or storing application logs for monitoring purposes.

A database is an organized collection of structured information, or data, typically stored

electronically in a computer system. A database is usually controlled by a database

management system (DBMS). Together, the data and the DBMS, along with the

applications that are associated with them, are referred to as a database system, often

shortened to just database. (Oracle Cloud Infrasctructure.)

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

There are many different kind of options for storing data depending on the use case of

the application. Deciding on database needs is often one of the bigger decisions to make

when building an application. It could be very difficult to change the underlying database

systems after an application has already been in use for a while. This is why it is

important to think about what kind of use cases the application has and what data the

application is going to need. How should the data be structured? Will the data be clearly

defined or is there going to be a need to store large amounts of unstructured data? Does

the data have to be stored for a long time? Is there a need to combine or query the data

in complex ways? These are just some examples of questions that need answers when

making a decision.

There are many different database technologies and on a high level most options can be

split into two categories which are SQL and NoSQL databases.

SQL based database technologies can require more careful planning beforehand.

They’re a good option when there are clear relationships between the different kind of

data the application needs. The data in this kind of databases is usually organized in

tables that contain multiple rows of data with columns that contain different types of data.

This kind of data can be described with entity-relationship (ER) models that show how

the data is related to each other as can be seen in Figure 1.

Figure 1. Example of an ER-diagram (Peterson, Richard 2022).

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

NoSQL based database technologies can allow for a faster start in development in a way

that it isn’t necessarily needed to have a clear idea of what kind of data and in what

format or shape (data model) you want to store it. The format of the data can be much

more simpler such as simply having a key-value pair where the key is unique and the

value contains the data. When data is queried by the key, it returns everything that is

stored as a value which could be data that is formatted in any way. This can be beneficial

if in the beginning of development it is unclear what kind of data is required in the future

or if you know that you will need to handle large amounts of data that possibly changes

over time.

Specific database technologies are focused on different use cases. When the data has

a clear model and can be organized into relations then a good option is to choose a

relational database such as MySQL or PostgreSQL which are examples of SQL

databases. If there’s a need for less rigidity and constraints then a good option might be

graph, document, key-value pair or wide-column based databases such as MongoDB

which is a NoSQL document database or Redis that is a simple key-value pair NoSQL

database. (Anderson, Benjamin – Nicholson, Brad 2021.)

There are also databases that have more specific use cases than just storing data. Such

use cases are for example search and analytics of data, time series data and event

streams data. Databases such as Elasticsearch or Opensearch enable search and

analytics of large varied datasets. Databases like M3 or InfluxDB are time series

databases that can be useful for storing for example application metrics and logs or other

kinds of data that needs to be stored in pairs of time and value (Influxdata). Apache Kafka

is an event stream platform that captures data in real-time from event sources like

databases, sensors, mobile devices, cloud services, and software applications in the

form of streams of events; storing these event streams durably for later retrieval;

manipulating, processing, and reacting to the event streams in real-time as well as

retrospectively; and routing the event streams to different destination technologies as

needed (Apache Kafka).

When choosing between different database technologies, it also needs to be considered

where the actual database with the chosen technology will be hosted. Will it be hosted

on-premise which gives physical control over the hardware and software? Or will it be

hosted on cloud or a third party provider? On-premise can provide more control but it

might also be expensive as it requires handling all the hardware, handling licensing and

having support personnel. Some technologies might be a proprietary solution that are

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

only available through a certain company. This binds the application quite tightly to that

solution and if there ever rises a need to decouple, it might be a very difficult process.

These are just some questions that also need to be considered.

When an application for example needs to store, fetch or update data and then possibly

manipulate or format the data in different ways for displaying the data in a certain way in

the application, these are all actions and logic that can be referred to as backend

development. The data can either be accessed in a database or then through an

application programming interface (API) that handles fetching the data from the database

and provides it when requested. One way to think about it is that if a user interface (UI)

connects a user to a device then an API connects pieces of software together.

An API defines a set of rules that describe how computers or applications can

communicate between each other. An API can expose data and functionality in a specific

way that allows others to use it easily through a documented interface. An API hides the

implementation details of the functionality so it isn’t necessary for the user of an API to

know how it works internally. This means a properly implemented API can change the

internal implementation details drastically but it doesn’t matter for the user of the API as

long as the way it is used and the data/functionality it provides stays the same. (IBM

Cloud Education 2020.)

As an example one could build an API that serves the same data and functionality to a

web application and a separate mobile application. This allows separation of concerns

where the backend API handles all the business logic and data manipulation while the

web and mobile application are separate applications only focused on representing the

data and providing ways for the user to interact with the functionality provided by the API.

This can allow easier scalability and also it can allow for different parties to use the same

documented interface as well.

There’s a variety of different types of APIs, for example public APIs providing data that

might not need any credentials to use or internal APIs that are only for a specific

application that they have been built for (IBM Cloud Education 2020). One common

ruleset for building an API is called REST which is a short for representational state

transfer. It is a specific set of rules that define how applications or devices can connect

to and communicate with each other (IBM Cloud Education 2021). When an API has

been built following these standards it can be referred to as a RESTful API.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

There are a variety of programming languages that can be chosen for backend

development and when choosing the language there are a few things that should be

considered. What language might fit the application requirements the best? What kind of

talent is currently available on the market and how much can be spent on acquiring

talent? How much time is available for the development work? Is it acceptable to rely on

programming language frameworks that speed up development work or is there a need

to control every aspect of the application by developing everything from scratch which

can take more time and resources? How good is the documentation for the language?

Often the language can be narrowed by answering these questions and sometimes

compromises might be needed in one aspect or another.

2.2 UI/UX design and frontend

User interface (UI), user experience (UX) and frontend development are often tied

together and while they can be thought of as parts of a bigger domain that focuses

around what a user sees on an application and how they interact with it, the work these

areas contain is very different. Usually if there is a bigger team building an application,

each of these areas have their own specialist(s) working on it.

User interface design is the process designers use to build interfaces in software or

computerized devices, focusing on looks or style. Designers aim to create interfaces

which users find easy to use and pleasurable. UI design refers to graphical user

interfaces and other forms—e.g., voice-controlled interfaces. In web and mobile

application UI design often refers to specifically graphical user interfaces (GUI), meaning

the visual controls on an application. There can however be voice-controlled interfaces

(VUI) or gesture-based interfaces as well. (Interaction Design Foundation.)

User experience (UX) design is the process design teams use to create products that

provide meaningful and relevant experiences to users. This involves the design of the

entire process of acquiring and integrating the product, including aspects of branding,

design, usability and function. While UI design is more concerned with the surface and

overall feel of a design, a UX designer is concerned with the entire process of acquiring

and integrating a product. (Interaction Design Foundation.)

While this thesis is more focused on the technical aspects of full-stack development, it is

important to have some understanding of UI and UX design in the context of application

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

development. When planning development work, there is often a need for UI/UX

designers to work together with the developers to get a shared understanding of what is

needed from the user’s perspective, what is technically feasible to do in

backend/frontend and where compromises might be needed depending on available

resources.

Frontend development is about building everything a user sees on an application and

what needs to be built might be based on the work of the UI/UX designer(s). This consists

for example of building the page layout, colors, buttons, sections, links, animations and

in general all the different options for interacting with the application. The basic building

blocks for these are HTML, CSS and the JavaScript programming language.

HTML is the basic block of web and it is a markup language that defines the meaning

and structure of web content (MDN Web Docs). It could be thought of as the very basic

blocks that are needed for building a web page. CSS is needed for styling the page. It

is is a stylesheet language used to describe the presentation of a document written in

HTML (MDN Web Docs). Finally building the interactivity on a web application requires

JavaScript. It is a lightweight, interpreted, or just-in-time compiled programming

language with first-class functions (MDN Web Docs). These three are the basics that

are required for building web applications and have been staples for a long time. It

should be mentioned that at the time of writing there is also a new type of code called

WebAssembly that is a low-level assembly-like language with a compact binary format

that runs with near-native performance and provides languages such as C/C++, C#

and Rust with a compilation target so that they can run on the web (MDN Web Docs).

However this is a new technology that is still at early stages (at the time of writing)

while the previously mentioned basic blocks have been in use for around two decades.

While the basic building blocks for building web application frontends have been fairly

consistent for some time, this is not the case with JavaScript frameworks. Programming

frameworks help speed up development by providing easy to use APIs for doing common

things that are often needed when building applications. They can abstract away a lot of

code so there is less need for writing it and provide building blocks with good

performance and good practices in mind. However there are a lot of JavaScript frontend

frameworks, new ones come up very often and the existing ones can also change

quickly. This can make it challenging to choose one and keeping up with the latest

changes requires constant learning which can be tiresome for developers.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

While JavaScript frameworks are not necessary for frontend development, they have

grown in popularity for many years and the trend seems to be growing according to

surveys such as Stack Overflow Developer Survey (Stack Overflow 2021) and the State

of JavaScript survey (State of JavaScript survey 2021). The 2021 State of JavaScript

survey conclusion notes that frameworks such as React and Vue have been dominant

for 6 years so it seems that some frameworks have become more common than others.

Again when choosing a frontend JavaScript framework for an application, questions need

to be answered related to the available resources and what fits the application

requirements – in a similar fashion as mentioned in the previous chapter when choosing

a backend programming language. It should also be considered that since frameworks

will very likely change over time and if the application uses a framework and it is expected

to be running for a long time then it will also likely need steady updates.

2.3 Testing

Why would an application require testing? We write tests to be confident that our

application will work when the user uses them (Kent C. Dodds 2019). It is essential to

have good confidence in your application working as intended as it gets more and more

features, grows in popularity and the application code grows in size. It would be very

difficult to keep testing manually as new features are added and also making sure that

when new things are added or functionality is changed that it doesn’t accidently break

something else. Having tests in place also gives more confidence when the code gets

refactored.

Refactoring is a disciplined technique for restructuring an existing body of code, altering

its internal structure without changing its external behavior (Martin Fowler). Refactoring

is something that happens almost daily when developing an application. Existing code

gets improved in various small ways usually with a goal of either improving

quality/performance, updating the code to use new technology or simply to make the

code more readable for other developers. Since refactoring doesn’t change the

behaviour of the code and if there are tests in place, we can have better confidence that

the application continues working as intended even after the refactoring.

What should be tested? Tests should avoid testing code implementation details and

instead focus on covering the different use cases that the application has and they should

also include cases for handling errors or so called unhappy paths. This means testing

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

the cases when the application is used correctly and also when it is used incorrectly or

there is an unexpected error in the application.

Tests can in general be divided into four different types which are static, unit, integration

and end to end tests. Static tests include things that catch typos and type errors as code

is being written. Unit tests verify that individual isolated parts of the application code work

as expected. Integration tests verify that several units of the application work together in

harmony. End to end tests (E2E tests) include tests that click around the application and

test all the different critical paths in the application at once in a similar manner as a real

user would. (Kent C. Dodds 2021.)

Static tests should be very simple and easy to add. Unit and integration tests require a

little bit more effort to add compared to static tests but they should still be fairly easy to

add as most programming languages have frameworks that make it easy to write these

kind of tests. E2E tests usually require more effort to setup and they can also possibly

be more difficult to write and maintain. E2E tests also tend to take more time to run. Thus

developers such as Martin Fowler and Kent C. Dodds recommend in general to have a

base of static tests, biggest focus on unit and integration tests and then have a few e2e

tests to cover some critical funtionalities (Martin Fowler 2019, Kent C. Dodds 2021). This

kind of focus would essentially give the most bang for your buck in terms of time and

resources spent on writing tests.

Lastly there’s testing performed by real users. This kind of testing could be divided into

two categories that are called hallway or corridor testing and user experience testing.

Corridor testing refers to picking random individuals or for example a co-worker for

testing the application. This is a quick and easy way to get feedback and improve quality.

User experience testing would be specifically setting up a testing process for a more

thorough testing by real users that are the application’s target group. (Techopedia 2017,

Järvenpää, Jarkko – Kovanen, Pasi.)

2.4 Application architecture and development practices

How can the previously discussed pieces of application development be put together to

form the full application infrastructure and how does the development of such an

application happen in practice? This chapter discusses designing the application

architecture and how modern applications are developed and maintained.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Figure 2. An example of a 3-tier application architecture.

The architecture of applications can vary widely depending on the use cases. It is also

something that can possibly morph over time when for example the application becomes

more popular and it needs to scale up to a larger user group all around the world. Figure

2 shows an example of a common three tier architecture of a web application. The figure

shows some examples of what each tier might contain as an example but it should be

noted that depending on the application, each tier might contain a large amount of

different entities focused on specific things. A more detailed application architecture

diagram might thus be much more complex. The main thing to note however is that each

tier is concerned about specific main areas of the application (separation of concerns).

This allows for easier scaling of the application.

When a complex application is developed and released for wide access, the work

requires a host of different infrastructure and software to manage. This includes hosting

the code in some manner for accessing the application. The example arcitechture shown

in Figure 2 would require at least three instances for hosting the code (i.e. frontend code,

application code and a database). Additionally the development and maintenance of the

application requires storing the code (version control e.g. tools/services like Git and

Github), systems for continuously updating the live application as code gets updated,

monitoring the application for logs/analytics/security and possibly also systems for

deploying different live environments of the application for only developer/testing

purposes. For managing all of the previously mentioned things (infrastructure,

monitoring, updates etc.), there is a commonly used model called DevOps.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Figure 3. DevOps model describing some common practices that are included in the
model (AWS).

Figure 3 shows the process of developing an application iteratively with the practice of

DevOps. DevOps is the combination of cultural philosophies, practices, and tools that

increases an organization’s ability to deliver applications and services at high velocity.

DevOps includes practices that aim to automate processes that might otherwise be

manual and slow. Different tools are used to deploy code and provision infrastructure

which in the past might’ve needed help from another team. (AWS.) In a way DevOps can

be thought of as finding repetitive things or inefficiencies in a system that can be

automated or otherwise made easier and faster. Some DevOps best practices include

for example Continuous Integration (CI), Continuous Delivery (CD), Infrastructure as

Code (IaC), monitoring and logging.

CI is a practice where changes to the application source code are merged regularly and

tests are automatically run against the changes. This allows for finding possible issues

faster and improves software quality. CD expands on CI in a way that if the previous

checks in the CI pipeline have passed, then the CD pipeline will handle deploying the

changes to a testing and/or a production environment. Together these practices are used

to build an automated CI/CD pipeline that allows delivering incremental and reliable

changes to an application very fast. IaC is a practice of using code to interact and

configure infrastructure instead of doing it manually. For example system and hosting

configurations can be automatically configured through code. Monitoring and logging are

used to see how an application and related infrastructure is performing. This can be used

to for example identify possible problems, possibilities for improvement and creating

alerts if something unexpected happens. (AWS.)

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

3 DEVELOPING A FULL-STACK WEB APPLICATION

This section describes the process of building a full-stack Kanban style web application

with some of the similar functionalities from other known applications such as Jira or

Trello. This part goes into more details of specific technologies and ways of working that

can be used. While the process of developing described here might not be fully

comprehensive and they definitely aren’t descriptive of every company’s way of doing

things, it attempts to cover the general steps that are most likely followed at some level

currently in the majority of companies when developing an application. These can

obviously vary a lot depending on the project size and on the available resources. In

short the following sections describe:

1. The initial planning and creation of a requirement documentation for the

application

2. The initial set up of the project for a fast development cycle

3. Design

4. The general flow of developing the application features

The main goal was to create a web application where the user will be able to register an

account, sign in, create boards that can be thought of as projects, inside the boards the

user can create columns and in the columns the user can create cards that can for

example describe tasks that need to be done. The columns can then as an example

describe the different states of the tasks and as the tasks progress forward, they are

moved to different columns accordingly. There could be a lot of additional features to

make this application more useful but this was the minimum viable product (MVP) goal

for this application. The application consists of a REST API backend and a separate

frontend React application.

The backend tech stack includes (not a full list):

• Python

• FastAPI framework – framework for building fast asynchronous Python APIs

• Pytest – for running tests

• PostgreSQL – a relational SQL database for storing application data

• Redis – an in-memory data structure store, used as a publish-subscribe (pubsub)

messaging system

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

The FastAPI framework is a fairly lightweight framework to build performant APIs very

quick. One of the advantages is that it automatically generates standards-based

OpenAPI documentation for you. This documentation allows others to quickly see what

your API provides and how to use it. Additionally it provides an OpenAPI specification

file in JSON format that describes the API. This was useful as it allowed generating client

code (code for making requests to the API) out of the spec file for use in the frontend

React application. This allowed for the backend and frontend applications to play

together nicely while also lessening the need to write a lot of code by hand.

PostgreSQL was chosen for the database mainly as a learning experience and also

because the relations between the data in this application seemed fairly straight forward.

The SQL query functions were written by hand and a python async database interface

library called asyncpg was used for accessing and making the queries to the database.

An ORM tool such as SQLAlchemy was also considered to speed up development but

writing SQL by hand was chosen for a better learning experience. Writing your own SQL

also allows for full control, possibility for fine tuning speed of the queries and it is one

less dependency on a third party package.

The frontend stack includes (not a full list):

• Typescript – a “superset” of Javascript, adds static typing to the language

• React – one of the most popular frontend development frameworks for

Javascript/Typescript

• Redux Toolkit / React Redux – Redux is one of the most known JavaScript state

management libraries

• Tailwind CSS – a “utility-first” CSS framework for styling

• Tailwind UI kit – provides ready made professionally designed UI components

built with Tailwind

• React Testing Library – for running tests on single components/screens

• Cypress – for bigger integration and E2E tests

Typescript requires using types for your variables (for example is the variable a string, a

number or an object of a certain shape) and function return types, though through

configuration you can adjust the requirements to be more or less strict. In small projects

this might seem bothersome but when projects grow bigger, it becomes difficult and time

consuming to navigate the code, understand the different variables and what they are

supposed to contain. Typescript used together with an IDE provides great advantages

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

to help in development and lessens the chances of making errors in the code. In bigger

projects this can lead to time saved because of less bugs in the code and better quality

code. A type system works as a form of static tests and it could also be considered as a

self documenting tool since the defined types describe what kind of data the application

is handling. This can also be useful for other developers that join to work on the project.

The other technologies used will be discussed more in the following sections.

There are some points worth mentioning about choosing third party packages developed

by others. As a developer there are often many pros and cons to consider when selecting

different technologies and packages to use. On one hand developers are often looking

for speed or ease of development and some packages might offer this by for example

reducing the amount of code and logic that you have to write. On the other hand relying

on too many third party solutions might lead to problems down the line if for example

your application relies heavily on some package and there is a bug or a security issue in

the said package. It might take time for these issues to be fixed and you might have to

make a temporary solution that is not ideal or perhaps the package you use isn’t actively

updated anymore and you need to switch to using something else. Another issue could

be that your application uses tech that was previously under some free to use open

source license and for some reason the license is changed to a more restrictive license.

The examples mentioned above are just a few among others that will have to be weighed

when developing larger applications for commercial or general use. These

considerations are also affected by how much resources are available for a project. A

single freelancer coder or a small group of developers with limited resources will make

different kinds of decisions than a large company. In this case the application was

developed by the author alone. The guiding mindset for the selection of technologies

was to avoid using too many packages but choose things that are currently quite popular

and common to see in for example job requirements.

The application was named as Improvement. The source code is public and available in

Github.

Source code for the Python REST API:

https://github.com/BadassHenkka/improvement-api

Source code for the frontend React application:

https://github.com/BadassHenkka/improvement

https://github.com/BadassHenkka/improvement-api
https://github.com/BadassHenkka/improvement

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

3.1 Creating the Software Requirements Specification (SRS) Document and planning

the work

The project started by thinking about the user requirements and creating an SRS

document for the application (Appendix 1). The user requirements were first written as

epics. Epics describe some bigger piece of work that is broken down into smaller user

stories. An example might be that a user wants to manage their project boards in the

application. As seen in Table 1, this epic can include user stories such as the user

wanting to create a new board. It can also include a story for editing or deleting a board.

Table 1. A table row describing a single epic.

USER

EPIC ID
AS A I WANT TO

USER STORY ID 1 USER STORY ID 2

1 As a user,

I want to

manage my

project boards

I want to create a

new project board

I want to edit or

delete a board

These stories together form the bigger functionality of the application and from these

stories it was also easy to create the functional and non-functional requirements for the

features in the SRS document.

These user stories and the requirements defined in the SRS document together formed

the tasks that needed to be done to create the application. Planning and writing the

requirements in this specific way can take some time but it takes away a lot of the guess

work later on as it should be clear how the application should behave when writing the

implementation code. The user stories can also help when writing tests for the application

as they describe the way things should work from the user’s perspective without going

into detail of how the functionality is implemented.

As the plan was to first start with creating some parts of the application functionality in

the REST API, the final step before starting the actual development work was to think

about what kind of data the application will need based on the requirements and define

some simple ER diagrams that describe the data tables and their relations in the

PostgreSQL database. These diagrams can evolve over time as development of the

application progresses but they help to visualize the different relations of the data. An

example of a part of the Improvement application ER-diagram can be seen in Figure 4.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Figure 4. A part of the Improvement application ER-diagram.

3.2 Starting development and setting up the project online

The initial goal for the development work was to do a single application feature from start

to finish, setup the backend and frontend code in Github with some CI/CD automation

and also get the REST API and React application online. The idea here was to first build

a base that would later on allow building full features one at a time by first building the

backend portion of a feature, then the matching frontend functionality and to confirm it

works well in a live environment as quickly as possible.

When developing a feature on your machine, a feature might seem to work great and

fast but when it is deployed online, there might be unexpected issues or the application

performs slower than expected due to latency introduced by for example database

connections and chosen hosting providers. Developing a full feature, having it

automatically tested and deployed online and being able to test it live quickly is very

important for a fast feedback loop that allows for quick iteration and improvements.

The very first steps on the backend was to setup the project folder structure in a sensible

way that separates concerns and helps navigating the code as the code base keeps

growing. There’s a lot of ways to do this and there’s no one right way. Sometimes the

programming language and possible frameworks that are used might dictate some

specific way. One might also use a specific programming paradigm like object oriented

programming or functional programming that might affect your decisions. However in

general this just means trying to separate different parts of functionality into their own

folders and files. As an example files including functionality that is related to REST API

endpoints can be in one folder and the folder could contain files that are focused on

specific endpoints providing specific functionality.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Additionally in the beginning a tool was setup called pre-commit. This tool allows setting

up something called git hooks that can trigger actions when code is for example

committed locally or when attempting to push to a remote repository. In this project it was

used for automatic code formatting, checking the code style and types. This type of tool

becomes handy when the project grows larger and you want to make sure that the code

for example follows a specific style and good practices. It makes it easier to follow certain

rules without having to think about them while coding and it is especially useful when a

group of people are working on the same project.

The first application feature chosen for development was the possibility of a user to sign

up and sign in to the application by typing in their username and password. The first

steps were to write the backend parts. This work essentially consisted of creating the

SQL, the endpoint with the functionality for registering a new user and an endpoint for

getting an authentication token that the frontend application could store and use for

authenticating API requests once a user is signed in to the application.

In this case it was fairly clear what needed to be done and a practice called test-driven

development (TDD) was used for this initial work. This meant first writing tests that test

the functionality that is needed before it even exists. This can create a nice workflow of

thinking about what exactly is needed and then it makes it easier to focus on actually

writing the implementation code.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Picture 1. Tests for registration and authentication API endpoints. The tests start with
test_ prefix and check_access_token_response is a helper function for making test
assertions.

As can be seen in Picture 1, the test names describe what is expected, in this case they

are very simple and we can’t say much about the implementation details other than that

the endpoints should return a response with data that includes an access token that can

be decoded or a message. It is a good practice to have tests that don’t test any specific

implementation details that are used in the code. This allows for freely refactoring the

code and the tests should pass as long as the expected end result stays the same.

After the initial version of the functionality in the backend was done, a Github Actions

workflow file was created. Github Actions automate and execute software development

workflows in your application repository. This allowed the creation of a workflow that

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

specified that everytime a pull request is opened in the project repository then the tests

are run automatically. If everything works, the PR can be merged and that triggers

another part of the workflow which is an automatic deployment to Heroku which is a cloud

platform that allows running applications on virtual computers. They support a variety of

programming languages and they provide a free tier for using their platform. Additionally

they provide resources like PostgreSQL which was initially used as the application

database. Later on during the development work, the database was moved over to a

service called Aiven that provides fully managed open source data infrastructure.

After the backend portion of the work was done, some UX/UI mock ups were created of

the sign up and sign in which is described more in the following section. The frontend

part of the sign up and sign in functionality was then built and as it was the start of the

project, that work also meant similar preparation work as with the backend. This included

defining some basic folder structure for the application and adding some base

configurations for linting/style with tools like ESLint and Prettier which help with keeping

the code formatted nicely.

Again the practice of TDD was followed by first writing some simple tests for the

functionality that was needed and then the actual components and functionality was

coded. In this case it also worked nicely as there was a fairly good idea of what was

needed and how it should be done. It should be noted that this is not always the case

though. Quite often when working on something new, you might not have any experience

of how to do something, it will require some research, trying things and possibly re-writing

the initial solution even a few times after realizing there is a better way. In these cases it

might be difficult to come up with sensible test cases beforehand if you don’t have a clear

idea of how something should be done. However in these cases it can help to stop and

think about what is needed. Writing down thoughts or even explaining them out loud can

help to clarify things, that can help to bring out the solution and the tests can then be

written afterwards.

After the sign up / sign in features were done, a tool called husky was added that is

similar to the pre-commit tool that was used in the backend project. In this case git hooks

were added that automatically handle linting on commits and run the basic

unit/integration tests (using libraries like jest and react testing library) and the browser

end to end tests (using cypress framework) when pushing to Github. The frontend was

then deployed to a service called Vercel that is specifically meant for hosting frontend

applications that are built with different JavaScript frameworks like React, Vue or Angular

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

for example. Vercel offers a way to easily connect to the Github repository of the

application, it creates a preview deployment on pull requests that are opened and

automatically deploys a new version to production when the code in the main branch

gets updated.

At this point the first full features of sign up / sign in were both done (initial versions) for

the backend Python FastAPI application and for the frontend React application. Both

applications were online (in “production”) and both had some very basic CI/CD

automation that ran tests and handled updating online production applications after the

code was updated in the Github repositories. After this first initial work, adding new

features was much easier as the base was built where adding new features would follow

similar flow of first adding the backend functionality, then frontend UI parts and updates

were handled automatically so it was easy to confirm how they work in live environment

to get a fast feedback loop.

3.3 Designing UX/UI with Figma and Tailwind UI

The UX and UI design that was done in this case was pretty minimal since the idea was

to mimic similar functionality and user experience from an application called Trello. An

example view from the Trello application can be seen in Picture 2. However in reality this

kind of work can take a considerable amount of time especially when creating something

completely new. A part of design work can be to make ideas that are still fairly abstract

into something more concrete and then find the parts that are especially relevant for a

great user experience and make the application compelling. This kind of work can often

happen after a SRS document has been created (or possibly during the creation) and

before anything is even coded.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Picture 2. Example of how the Trello application looks. Cards include work that was done

for the thesis.

For the Improvement application the work started by drawing some rough sketches on

paper and writing down ideas. After this the ideas on paper were honed by creating some

mock UIs in a tool called Figma. Figma is a web-based design and prototyping tool that

also allows for collaborative work. As Tailwind CSS had already been chosen for styling

in the planning phase, it was also decided to use a ready made UI package product

called Tailwind UI. It provides ready made UI components for React that look great, are

accessible and fully responsive for multiple different screen sizes. Additionally it provided

Figma files containing the designs for the components. These could be then easily used

to quickly create some mock ups such as shown in Picture 3.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Picture 3. Figma mock UIs.

In frontend development it is fairly common to use ready made UI components. These

components can be used to piece together different pages and can for example come

from third party libraries (e.g. for React there are libraries like Material UI or Chakra UI)

or in some cases companies might have their own internal design system that contains

internally developed components that have a specific style that follows company

guidelines.

3.4 Developing the application features

After the initial work was done, there was some refactoring done to improve some

solutions and to clean up the initial work. Then it was time to start building rest of the

functionality. As mentioned earlier, the MVP goals for the application functionality was to

build the following:

- user sign up / sign in

- creation of boards that can represent for example a project

- in a board, a user can create columns with a name, change the column name,

delete a column and change the column order horizontally

- inside the columns a user can add cards that for example describe a task and

have the same functionality as with the columns except that additionally cards

can be moved vertically inside a column and also they can be moved from one

column to another

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

The plan was that the backend API would consist of HTTP endpoints and then a single

websocket endpoint. The HTTP endpoints handle actions related to registration,

authentication, fetching current user info and handling the board CRUD functionality. The

websocket endpoint handles CRUD functions related to columns and cards. A user can

edit columns and cards when they have navigated to a single board view. The reason

for choosing to use websocket for these instead of HTTP was that it would better enable

real-time updates when a user is on a board. The idea was that later on if a feature is

added that enables multiple users to collaborate on a single project board, then everyone

could see updates to the columns and cards in real-time. This collaboration feature was

not part of the planned MVP goal for this thesis project but it would be built in a way that

would allow adding it later on.

After the first feature of user sign up / sign in was done, it was fairly straight forward to

continue adding new features and the workflow for a single feature generally consisted

of the following:

- writing the SQL that adds a new database table and the required SQL functions

that were needed for the particular feature

- writing the Python functions that call these database SQL functions to fetch the

data and handle possible errors

- add a new API endpoint that uses the previously created functions

- add tests for the backend (if not created as a first step)

- create functions in frontend React app to use the new API endpoint

- create the UI components to add the required functionality and for displaying the

data from the backend

- add tests for the frontend (if not created as a first step)

Picture 4. Screenshot of the live Improvement app dashboard view with example

projects.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Picture 5. Screenshot of the live Improvement app board view with columns and cards.

Screenshots of the Improvement application at the MVP state can be seen in Picture 4

and Picture 5. Time spent on the development work wasn’t recorded. Based on the

commit history from Github, a rough estimate was made that the MVP goals were

reached in around three months of work total. However it should be pointed out that

commit history isn’t great for measuring time spent, at times there were breaks of several

weeks between the work, there were a few times that refactoring was done simply to try

to learn new things and the estimate does not include creating the SRS document and

designs.

What kind of future work could be done for this application? At this MVP stage, the

feature set is very minimal and it would not gain any proper traction from real users. For

example some key features from Trello that could be added are editable card names and

descriptions, card labels, setting a time for finishing a task in a card, filtering/sorting of

project boards/columns/cards, adding members to a board, real-time collaboration

features and many more. Additionally there should be some features that would separate

the application from Trello and other similar applications to make it a more compelling

option for potential users. Lastly this MVP version didn’t include any logging or monitoring

of the application.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

4 CONCLUSION

As mentioned in the beginning, the goals of this thesis were to explore the major areas

of web application development on a higher level and give a general overview of what

these contain. While each of the areas could have a thesis of its own and not everything

could be covered exhaustively, the major areas of frontend development, backend

development, testing and application architecture/infrastructure were covered that can

then be used as a base for further studies depending on interests. Additionally the

practical section shows how one might build a web application with some of the best

practices in mind.

Even with this kind of high level overview of application development that should in theory

stay fairly accurate for some time, it is still difficult to predict the future and to know if

some parts and practices that were mentioned are out of date in just a few years.

Constant change and learning is a part of software engineering. Further development

based on this thesis could be carried out to better identify the concepts of each area of

application development mentioned in this thesis (and more) and how they could be

taught and studied in a way that also keeps evolving as technologies and practices do.

The internet provides an immense amount of ever growing resources for this but it can

be very difficult to filter out the necessary information for a level that a specific learner is

at and combine that in a way that builds on top of their previous knowledge. Additionally,

this kind of learning is not necessarily needed only for students that are in the field of

software engineering. It might also be useful to have something similar for people who

are outside of the field but who might still be involved in application development in some

capacity such as decision-makers or clients buying development work.

From this overview, it is already clear that developing modern web applications requires

a fairly large knowledge base that needs to be constantly updated and expanded on as

technologies evolve and new ones emerge. New applications are constantly developed

and they are more and more part of our everyday - not only for regular users but for

example in business and organization settings as well. As the goal of applications is to

provide some kind of value to their users, it means the development of applications

usually also involve people outside the field of software engineering but who are experts

on their own field that provide some insight to the application requirements. It is always

better if the involved parties have a better shared understanding. Thus having an idea of

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

what the development of an application requires on high level such as described in this

thesis can be very useful and additionally it is important for software engineers to be able

to convey some of the technical aspects of development in an understandable manner.

In this manner expectations are managed in a better way and trust can be built between

the stakeholders. Any larger application project requires commitment from all the

stakeholders and that will also continue after the application is initially ready as needs

for new features arise and the application continues to be iterated on. As it can be with

building and living in a house, an application is hardly ever fully quite ready either after

the initial release. It needs some work and care afterwards as well.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

REFERENCES

Anderson, Benjamin – Nicholson, Brad 2021: SQL vs. NoSQL Databases: What's the

Difference? https://www.ibm.com/cloud/blog/sql-vs-nosql Referenced 19.2.2022.

Apache Kafka: Introduction. https://kafka.apache.org/intro Referenced 19.2.2022.

AWS. What is DevOps? https://aws.amazon.com/devops/what-is-devops/ Referenced

13.3.2022.

IBM Cloud Education 2020: Application Programming Interface (API) .

https://www.ibm.com/cloud/learn/api Referenced 7.11.2021.

IBM Cloud Education 2021: REST APIs. https://www.ibm.com/cloud/learn/rest-apis

Referenced 21.2.2022.

Influxdata: Time series database (TSDB) explained. https://www.influxdata.com/time-

series-database/ Referenced 19.2.2022.

Interaction Design Foundation: User Experience (UX) Design https://www.interaction-

design.org/literature/topics/ux-design Referenced 21.2.2022.

Interaction Design Foundation: User Interface Design https://www.interaction-

design.org/literature/topics/ui-design Referenced 21.2.2022.

Järvenpää, Jarkko – Kovanen, Pasi: Software Development Buyer’s Guide 2.0

https://vincit-com-media.s3-us-west-1.amazonaws.com/vincit-buyers-guide.pdf

Referenced 28.2.2022.

Kent C. Dodds 2019: How to know what to test https://kentcdodds.com/blog/how-to-

know-what-to-test Referenced 28.2.2022.

Kent C. Dodds 2021: Static vs Unit vs Integration vs E2E Testing for Frontend Apps

https://kentcdodds.com/blog/static-vs-unit-vs-integration-vs-e2e-tests Referenced

28.2.2022.

Martin Fowler 2019: Software Testing Guide https://martinfowler.com/testing/

Referenced 28.2.2022.

Martin Fowler https://refactoring.com/ Referenced 28.2.2022.

https://www.ibm.com/cloud/blog/sql-vs-nosql%20Referenced%2019.2.2022
https://kafka.apache.org/intro
https://aws.amazon.com/devops/what-is-devops/
https://www.ibm.com/cloud/learn/api
https://www.ibm.com/cloud/learn/rest-apis
https://www.influxdata.com/time-series-database/
https://www.influxdata.com/time-series-database/
https://www.interaction-design.org/literature/topics/ux-design
https://www.interaction-design.org/literature/topics/ux-design
https://www.interaction-design.org/literature/topics/ui-design
https://www.interaction-design.org/literature/topics/ui-design
https://vincit-com-media.s3-us-west-1.amazonaws.com/vincit-buyers-guide.pdf
https://kentcdodds.com/blog/how-to-know-what-to-test
https://kentcdodds.com/blog/how-to-know-what-to-test
https://kentcdodds.com/blog/static-vs-unit-vs-integration-vs-e2e-tests
https://martinfowler.com/testing/
https://refactoring.com/

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

MDN Web Docs: CSS: Cascading Style Sheets https://developer.mozilla.org/en-

US/docs/Web/CSS Referenced 27.2.2022.

MDN Web Docs: HTML: HyperText Markup Language https://developer.mozilla.org/en-

US/docs/Web/HTML Referenced 27.2.2022.

MDN Web Docs: JavaScript https://developer.mozilla.org/en-US/docs/Web/JavaScript

Referenced 27.2.2022.

MDN Web Docs: WebAssembly https://developer.mozilla.org/en-

US/docs/WebAssembly Referenced 27.2.2022.

Oracle Cloud Infrasctructure: What Is a Database?

https://www.oracle.com/database/what-is-database/ Referenced 19.2.2022.

Peterson, Richard 2022: ER Diagram: Entity Relationship Diagram Model | DBMS

Example https://www.guru99.com/er-diagram-tutorial-dbms.html Referenced 13.3.2022.

Stack Overflow 2021: 2021 Developer Survey

https://insights.stackoverflow.com/survey/2021 Referenced 27.2.2022.

Standish Group 2015: CHAOS Report 2015.

https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf

Referenced 7.11.2021.

State of JavaScript survey 2021: State of JS 2021 https://2021.stateofjs.com/

Referenced 27.2.2022.

Techopedia 2017: Hallway Usability Testing

https://www.techopedia.com/definition/30678/hallway-usability-testing Referenced

28.2.2022.

https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/JavaScript%20Referenced%2027.2.2022
https://developer.mozilla.org/en-US/docs/Web/JavaScript%20Referenced%2027.2.2022
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://www.oracle.com/database/what-is-database/
https://www.guru99.com/er-diagram-tutorial-dbms.html
https://insights.stackoverflow.com/survey/2021
https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf%20Referenced%207.11.2021
https://2021.stateofjs.com/
https://www.techopedia.com/definition/30678/hallway-usability-testing

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Software Requirements Specification (SRS) Document

SOFWTARE REQUIREMENTS

SPECIFICATION

(SRS) DOCUMENT

Project name: Improvement Web Application

Date: 19.5.2021

Version: 1.0

By: Henri Kestiö

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Revisions

Version Primary

Author(s)
Description of Version Date

Completed

1.0 Henri Kestiö Initial requirements done 19.5.2021

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

 Table of Contents

1. Introduction ... 4

2. General Description .. 5

3. Functional and Non-functional requirements.. 7

4. User and Software Interface Requirements ... 23

4.1 User Interfaces ... 23

4.2 Software Interfaces .. 23

5. Additional Software Requirements ... 25

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

1. Introduction

1.1 Purpose

The main goal of the project is to produce a web application named Improvement which

is an application for creating Kanban style boards in which the user can create columns

and cards that can for example describe tasks that need to be done. Once the project is

finished, the application will be available online for users to register to and use freely.

1.2 Document conventions

Improvement — The name of the web application that is to be developed, stylized in italic

application — in this document, this will refer to the web application that is being

developed during this project (named Improvements)

Kanban — a system for lean and just-in-time (JIT) manufacturing, the system takes it

name from the cards that track production within a factory¹

TDD — Test Driven Development, a method of writing tests first for a new feature,

building the feature so that the tests pass and then possibly refactoring the code

BDD — Behavioral Driven Development, a sub method of TDD in where the tests focus

on testing the behaviour of a feature/application and not the implementation details

CI — Continuous Integration, a system for automatically checking your code when new

features are implemented, for example running code formatting checks and running the

tests

CD — Continous Delivery, a system that automatically deploys code updates to the

production site

UI – User Interface

UX – User Experience

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

1.3 Intended audience

This document is mainly for the sole developer of the application and it is intended to

help clarifying the project scope and requirements.

1.4 References

¹ Description from https://en.wikipedia.org/wiki/Kanban

4.1 2. General Description

2.1 Product perspective

As mentioned in the project purpose, the product will be a web application named

Improvement and it will take inspiration from other existing products such as Trello and

try to improve on those.

2.2 Product features

The user will be able to register an account, create boards and inside them the user can

create columns and cards that can for example describe tasks that need to be done. The

user can invite other registered users to their created board, the users can assign

themselves to a card and other board members can see who has been attached to a

card.

2.3 User class and characteristics

The Ideal User – A user who has a project or a goal that needs to be broken down and

categorized into several smaller tasks in a simple and visual way

Probable user examples based on occupation:

• Software Engineers

• Project Managers

• Coaches

• Athletes

• Teachers

• Students

https://en.wikipedia.org/wiki/Kanban

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Other possible user examples:

• High performers, people who in general are very goal oriented and want to

organize their tasks

Regular people, people who have some big personal project or a goal they want to

manage

2.4 Operating environment

The application itself will be used in a modern browser on a desktop or a mobile phone.

This includes for example at least Chrome, Mozilla Firefox and Safari. Internet Explorer

won’t be supported.

The application’s backend and frontend will most likely be hosted on Heroku. It’s free to

use for a set amount of hours in a month and it can also provide a Postgres database for

the backend application. It also provides infrastructure for a CD pipeline which allows

automatic building of the application code when new code is pushed to Heroku. There

might be some other options to consider for the frontend but Heroku will be used as the

starting point.

2.5 Constraints

There are no major limitations on the application implementation wise. Design wise, more

careful thought will have to be put into the mobile user interface and user experience.

Other than that is the free hosting services from Heroku which might be a bit slow

sometimes. There are ways to improve it but this can impose some constraints when

considering the performance requirements for the live application.

2.6 Assumptions and dependencies

On the backend API side, the application will rely heavily on the FastAPI framework

which is currently about 3 years old and it itself relies a lot on Python’s newer async

functionality. While the framework is said to be production ready and it has some users

from big companies (Microsoft, Uber, Netflix) it is hard to predict if some unforeseen

issues might arise during development since it is fairly new. This is why the goal should

be to try and get the API online as soon as possible so that it can prove its functionality

and any problems that might surface can be fixed sooner.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Frontend will be done with React, Redux for state management and Tailwind CSS for

styling. All are very well known and used frameworks/libraries that have been used a lot

in production websites for a long time except for Tailwind. However the framework is very

simple in the way it works so it is unlikely that there’ll be any big issues with it.

CI/CD pipeline will rely on Github Actions and Heroku.

4.2 3. Functional and Non-functional requirements

3.1 Functional and non-functional requirements

The requirements here will be laid out based on user epics and user stories.

An epic describes a bigger functionality in the application and it can be broken down into

smaller user stories. As an example one epic can be the application’s user registration

and authentication system. This is a single bigger functionality that is then broken down

into smaller user stories that describe one small part of the bigger functionality. A user

story is a simple statement that describes what a user wants to do in the application.

Functional requirements describe the user story in greater detail ie. what is the user’s

input and the expected result? Non-functional requirements can be related to things such

as performance or looks ie. things that aren’t related to the user’s input or are perhaps

more related to the implementation requirements.

Each epic (big functionality) contains a few different user stories. The epics are colored

differently to make it easier to notice when the epic changes.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 1 (authentication), Story 1

I want to sign up for the application easily.

Functional Non-Functional

The user inputs their username and

password (password twice), presses a

button and it results in the user being

automatically logged in and seeing the

dashboard.

A successful sign up should log the user in

to the app ideally in under 1s. This might be

somewhat affected by the hosting platform

of the application but 1 second should be

more than doable.

If the user input’s a username that is already

taken, the sign up will fail and they’ll get an

error message informing them to use

another username.

If the given passwords don’t match, the sign

up will fail and they’ll get an error message

informing them to type the same password

twice.

The username will be required to have no

spaces and it needs to have at least 3 letters.

Epic 1, Story 2

I want to sign in to the application.

Functional Non-Functional

The user inputs their username and

password, presses a button and it results in

the user being logged in and seeing the

dashboard.

A successful sign in should log the user in to

the app ideally in under 1s.

If the user inputs wrong credentials, they will

get an error message informing them about

it.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 1, Story 3

I want to be able to renew my password if I forget it.

Functional Non-Functional

The user should be able to add their email in

the application’s user settings if they want to

use this feature.

It should be clear that the email is required

for this feature.

The user should be able to reset their

password through a “Forgot my password”

flow, assuming that the user has added their

email in the settings.

The email should be sent out in less than 5

minutes.

Epic 2 (project boards), Story 1

I want to create a new project board

Functional Non-Functional

The user clicks a button to create a new

board, it opens a modal where the user can

name the board and create it.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 2, Story 2

I want to edit or delete a board

Functional Non-Functional

The user should be able to rename a board.

The user should be able to delete a board

after one warning prompt.

The board should have some kind of settings

where the user can do the above things and

possibly other things such as

adding/removing board members.

Epic 2, Story 3

I want to use search to find a board

Functional Non-Functional

The user should be able to search for their

boards by name using a search bar input.

The search should quickly filter out boards

that don’t match the search.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 2, Story 4

I want to sort my boards by the board creation time, last edited time or alphabetically.

Functional Non-Functional

There should be a sort bar which indicates

the possiblity for sorting by creation time, last

edited time or sorting alphabetically.

The sorting should work near instantly.

Epic 3 (columns / task lists), Story 1

I want to create a new column in a board

Functional Non-Functional

The user presses a button to create a new

column, they can name it and then create it.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 3, Story 2

I want to edit or delete a column

Functional Non-Functional

The user should be able to change the

column name easily and possibly have some

other options for editing the column.

The user should have a way to delete

existing columns where it gives them one

warning prompt first.

If the column is empty, it can be deleted

without any prompts.

Epic 3, Story 3

I want to reorder columns

Functional Non-Functional

The user should be able to move a column

sideways from one spot to another and

immediately back if they want to.

This should be fast and smooth even with

several columns (15+)

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 4 (cards / tasks), Story 1

I want to create a new task card

Functional Non-Functional

The user presses a button to create a new

card inside a column, they can name it and

then create it.

The new tasks should appear quick inside

the column even with several existing tasks

(300+)

Epic 4, Story 2

I want to edit or delete a task card

Functional Non-Functional

The user should be able to edit the card

name, task description inside it, labels and

other possible card settings.

The user should be able to delete the card

easily.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 4, Story 3

I want to use search to find a task in a board

Functional Non-Functional

The user should be able to user search input

to find the task card they are looking for by

name.

Epic 4, Story 4

I want to move tasks from one place to another and between different columns

Functional Non-Functional

The user should be able to move a card

sideways from one column to another and

immediately back if they want to.

Moving the cards should happen quick and

smooth even with several cards in the board

(300+)

The user should be able to move cards up

and down inside a column.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 5 (card labels), Story 1

I want to create a new card label

Functional Non-Functional

The user should be able to create new

colored + named (optional) card labels that

can be attached to a card.

The user should be able to pick the label

color from a few existing colors or use a color

picker tool.

There should be a few (5) default labels that

can be used.

Epic 5, Story 2

I want to add card labels to cards

Functional Non-Functional

The user should be able to add card labels

to their cards on the board and the label

color should be clearly displayed on the

cards.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 5, Story 4

I want to edit and delete labels

Functional Non-Functional

The user should be able to edit the existing

labels – either color or name.

The user should be able to delete the labels

they’ve created but not the default labels.

Epic 6 (project board members), Story 1

I want to invite other application users to my board by username or email

Functional Non-Functional

The user can press a button and use some

kind of input to invite other app users to join

their board by username.

The user should be able to invite others to

their board by email if they’re not already

using the app.

The app should recognize if the email exists

in the app’s database and invite the correct

user to the board, otherwise send an email.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 6, Story 2

I want to remove myself from a board where I've been added

Functional Non-Functional

A user should be able to remove themselves

from a board easily.

Epic 7 (card assignment), Story 1

I want to assign myself to a task card

Functional Non-Functional

The user should be able to click a card and

add themselves as a member of that card.

Epic 7, Story 2

I want to remove myself from a task card

Functional Non-Functional

If the user is attached to a card as a member,

they should also be able to remove

themselves from the card.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 7, Story 3

I want to assign someone else to a task card

Functional Non-Functional

A user should be able to assign other

members of the board to a task card.

Epic 7, Story 4

I want to remove someone from a task card

Functional Non-Functional

A user should be able to remove someone

from a task card so that someone else can

be assigned to it instead.

Epic 7, Story 5

I want to quickly see who is attached to a task card

Functional Non-Functional

All the members who have been attached to

some task card should be displayed on the

card clearly.

This should also work with multiple members

(5+) attached to a card.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 8 (card checkbox), Story 1

I want to create a checkbox list inside a task

Functional Non-Functional

A user should be able to add some kind of

checkbox list with a name inside a task card.

The user should be able to add multiple

checkbox items inside the list that are

essentially smaller sub tasks of the container

task.

Epic 8, Story 2

I want to edit or remove the checkbox list inside a task

Functional Non-Functional

A user should be able to rename the

checkboxlist they’ve added to a task.

A user should be able to remove the

checkbox list easily if they want to. This

would not have any warning prompts.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 8, Story 4

I want to reorder the tasks inside a checkbox list

Functional Non-Functional

A user should be able to vertically reorder

the task items inside a checkbox list.

Epic 8, Story 5

I want to see a progression bar on the checkbox list

Functional Non-Functional

The checkbox list should have some kind of

progression bar or indicator attached to it

which would show progression when the

task items are marked as done.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 9 (card/task groups), Story 1

I want to select certain tasks to be grouped together

Functional Non-Functional

A user should be able to create a task

grouping and give it a name.

The user could move tasks inside the task

grouping or remove them from it.

Epic 9, Story 2

I want to edit a task group

Functional Non-Functional

A user should be able to rename the task

group.

A user should be able to add/remove

members to a task group and they’d be

displayed on the task group.

A user should be able to add/remove labels

to a task group.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Epic 9, Story 3

I want to mark a task done inside a task group and see a progress bar for the task group

Functional Non-Functional

A user can mark tasks “done” that are inside

a task group and users should be able to see

the progression of a task group.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

4.3 4. User and Software Interface Requirements

4.1 User Interfaces

UI and UX Design

TailwindUI - https://tailwindui.com/

- Provides good looking ready-made Figma design assets and React

components that are responsive

- Tailwind CSS together with their UI kit provides a system to build good looking

UIs faster while still allowing to also tweak them as much as needed

Figma - https://www.figma.com/

- Figma is a popular design tool that can be used on a browser

- Together with the TailwinUI kit, it’ll be used to make the designs of the

application user interface and plan out the user experience

4.2 Software Interfaces

Database

PostgreSQL - https://www.postgresql.org/

- An open-source relational database system that uses the tried and true SQL

syntax

- Initially released in 1996, a popular database that is very reliable

Backend

FastAPI - https://fastapi.tiangolo.com/

- A python micro framework for building REST APIs fast which also includes auto

generated API documentation

- Relies on Python’s newer async functionality and can achieve very high

performance that is on par with Nodejs APIs

https://tailwindui.com/
https://www.figma.com/
https://www.postgresql.org/
https://fastapi.tiangolo.com/

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

Asyncpg - https://pypi.org/project/asyncpg/

- A python (async) database interface library for PostgreSQL, to be used to

access and make queries to the database

- Based on the package developer’s tests, it is on average 3x faster than the

more commonly known psycopg2 (and its asyncio variant – aiopg)

Passlib - https://passlib.readthedocs.io/en/stable/

- Passlib will be used with argon2 hashing to hash & verify passwords that are

stored to the database

Frontend

React - https://reactjs.org/

- Currently the most popular Javascript frontend framework

Redux Toolkit - https://redux-toolkit.js.org/

React Redux - https://react-redux.js.org/

- Probably the most known library for state management

- Has been around for a long time and has been proven to be reliable

Tailwind CSS - https://tailwindcss.com/

- A utility-first CSS framework that provides simple CSS utilities that can be used

directly in the markup, builds into very small sized files and thus keeps the

website’s performance very high while still providing possibilities for building

good looking websites with unique style

React Beautiful DnD - https://www.npmjs.com/package/react-beautiful-dnd

- This package will be used for creating the drag and drop functionality for the

application’s columns and cards

- A very popular, good looking and performant drag and drop library for React

https://pypi.org/project/asyncpg/
https://passlib.readthedocs.io/en/stable/
https://reactjs.org/
https://redux-toolkit.js.org/
https://react-redux.js.org/
https://tailwindcss.com/
https://www.npmjs.com/package/react-beautiful-dnd

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

4.4 5. Additional Software Requirements

5.1 Performance requirements

The application is intended to work and perform well with heavy daily use. The

performance and speed of backend as well as the frontend is of great importance.

5.2 Security requirements

Data collection in the application will be kept to a minimum. The only thing that will be

required from the user is a username and a password.

Username can be anything so it is not necessary to use a real name. If the user wants a

possibility for resetting their password after forgetting it, then they can add their email in

the application settings. If they do not wish to add it, then they will simply have to

remember their password.

Even though data collection is kept to a minimum, security will be kept in mind when

developing the application especially on the backend so that only the intended actions

will pass. The application will also have SSL certificates to provide secure encrypted

HTTPS connections.

5.3 Software quality attributes

The application will be developed using methods of TDD/BDD to produce a reliable

application that works as intended. This means that when developing a feature for the

application, a test will be written first that is going to test with the intended user input and

the test will expect the result to be the inteded output. A test can also be written that

expects a certain result when the user input is something that is wrong is not expected.

The tests will first fail as no code has been done. After this a solution will be coded to

make the tests pass and afterwards it will be considered if the code can be refactored to

be more efficient or reliable. Only then can the feature be considered done. The tests

will focus on the user behaviour (thus the BDD method) meaning that the tests shouldn’t

test the exact method of implementation. This means that if a feature’s implementation

in code is changed afterwards, the tests should still pass as they don’t care about the

way the expected result is produced.

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Henri Kestiö

A CI/CD pipeline will be setup to insure that any updates to the product will be tested

before being updated to the production site. In essence, everytime updates are made to

the code, a set of checks will run to first check the code style and then run the tests that

have been written. This is the CI part. If these checks and tests pass, then an automatic

CD system will run and update the code in the production site. At this point a staging

phase will be left out.

