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Obtaining healthcare data such as magnetic resonance imaging data for medical 

diagnosis is expensive and time-consuming. In this thesis, a method using 

generative adversarial networks is explored for synthesizing data of brain gliomas 

to improve the performance of image segmentation algorithms. The network was 

trained to create subjects with gliomas from a given label, and the network is able 

to synthesize visible tumors. The data was evaluated using DeepMedic, an image 

segmentation convolutional neural network. The performance of the model on the 

augmented dataset was benchmarked against the unaugmented dataset, and its 

performance was not improved. An analysis on the data is presented, and a future 

direction is given for how the generative adversarial network can be improved. 
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List of abbreviations 

BraTS Brain Tumor Segmentation, a challenge for 

benchmarking automated segmentation algorithms 

CT Computerized Tomography, a medical imaging 

technique 

DL Deep Learning, a class of machine learning algorithms 

DSC Dice Similarity Coefficient, a metric to determine 

similarity between two samples 

GAN Generative Adversarial Networks, a deep learning 

framework  

ML Machine Learning, a subfield of artificial intelligence for 

optimizing algorithms automatically 

MRI Magnetic Resonance Imaging, a medical imaging 

technique 

MSE Mean Squared Error, a metric for estimating error 

NIFTI  Neuroimaging Informatics Technology Initiative, an 

open file format 

PET Positron Emission Tomography, a functional imaging 

technique 

ReLU Rectified Linear Unit, an activation function 

SN Spectral Normalization, a normalization method for 

generative adversarial networks 

VRAM Video Random Access Memory 
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1 Introduction 

Being able to segment and diagnose brain tumors early in their development is 

critical for planning treatment and increasing the survival rate of the patients. 

Manual segmentation carried out by an expert radiologist is the most accurate 

method of identifying the tumor tissue in magnetic resonance imaging (MRI). 

Unfortunately, this process is time-consuming and it is not completely perfect, as 

manually segmenting tumors repeatedly can lead to slight variations in the 

identified tissue due to inter-observer and intra-observer errors [1]. Researchers 

have been eager to automate medical image analysis and have successfully 

done so for many tasks using deep learning frameworks [2]. However, such 

frameworks require a great quantity of labeled data which need to be manually 

prepared and segmented [3]. The goal of this thesis is to solve the problem of 

insufficient data for automated medical image analysis by synthesizing new data 

samples to augment existing data sets. To do so, the following questions must 

be answered: 

1) How can label-preserving synthetic MRI data be created to improve the 

performance of segmentation models? 

2) How can realistic brain MRI images (corresponding to a chosen modality) 

be synthesized by a GAN model given abnormal brain tissue (e.g. 

tumor/lesion) information and the corresponding modalities as inputs? 

3) How can the synthetic MRI data be used for the network training and 

validation in such a manner that improves network generalizability and 

accuracy and preserves the underlying properties of real-world data? 

This work investigates the feasibility of synthesizing MRI dataset using generative 

adversarial networks (GANs) [4], by creating realistic looking images of brain 

gliomas. The following hypothesizes are researched: 

1) Synthetic brain MRI data and lesion information can help improve the 

performance of neural network models for lesion segmentation tasks. 

2) Realistic and context-aware synthetic data provide enough radiomic 

information for training deep neural networks. 
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The scope of the work presented here is to determine if: 

• Realistic synthetic data can be generated to provide enough AI-based 

applications in medical imaging. 

• A deep network can be trained on the synthetic and reference data for 

brain lesion segmentation. 

In the upcoming subsections, the relevance of brain tumors and the groundwork 

for technologies used in this thesis will be introduced.  

1.1 Gliomas 

Glioblastoma is the most common type of brain cancer. Glioma tumors make up 

to 80% of all malignant brain tumors [5]. Gliomas have a high morbidity and 

mortality rate - with optimal treatment, the median survival rate is between 12 to 

15 months for patients with glioblastomas, and 2 to 5 years for patients with 

anaplastic gliomas [6]. 

Patients suspected of having glioblastomas are usually subjected to do a 

computed tomography (CT) of the brain. If a mass is identified then further MRI 

scans are ordered, typically these being the following contrast enhanced 

sequences: T2-weighted (t2), T2-fluid-attenuated inversion recovery (flair), T1-

weighted (t1), T1-weighted contrast-enhanced (t1ce). These scans are useful for 

pre-operative surgical planning and post-operative radiotherapy planning [7]. 

Gliomas can be classified by type of cell, by grade (severity), and by location – 

all which are important for diagnosis. It is crucial for radiologists to be able to 

correctly classify these tumors and observe their development in time, so that the 

patient can be prescribed a treatment, and be given an accurate survival 

prognosis [8]. While this can be carried out manually by an expert radiologist, it 

is a difficult task prone to errors. As such, it is vital to accurately and automatically 

detect the location and size of the gliomas in patients. 
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1.2 Computer Vision 

Computer vision is a subfield of artificial intelligence, with the goal of automating 

tasks that the human visual system can do and perform them better or in other 

words, it aims to extract meaningful data from images [9]. With computer vision, 

images can be automatically classified into groups [10], autonomous vehicles can 

detect imminent dangers and be navigate their surroundings [11], and cameras 

can detect and even identify human faces [12]. 

A specific task of computer vision is image segmentation. Image segmentation 

deals with categorizing the pixels of an image into classes, making it easier to 

analyse. This can be achieved by using algorithms such as Otsu’s threshold 

method [13], canny edge detection [14], K means clustering [15], and many 

others. However, these algorithms are difficult to optimize, as various parameters 

need to be tested until the user is satisfied with the results. Additionally, user 

analysis is subjective and is in itself not a good metric for optimization. 

1.3 Deep Learning 

The problem of manually optimizing algorithms brings the need to optimize 

algorithms automatically, which is what the discipline of Machine Learning (ML) 

attempts to solve [16]. ML algorithms improve themselves by learning from 

“experience” and data. This process of learning allows them to make predictions 

and decisions without being programmed to do so directly. ML is used for tasks 

that are normally labour intensive, expensive, or challenging. The difficulty of 

these tasks is due to the multidimensionality of data involved, making it very easy 

for humans to make mistakes when determining the relationship between multiple 

features and outcomes. This type of problems where the input is mapped to a 

single correct output can be solved by ML using supervised learning, a method 

of training ML algorithms using labeled data for classification [17] or regression 

[18] problems. 
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Deep Learning (DL), an advanced approach to ML, is used to automatically 

process raw data into features and then output a human-readable result for the 

user [19]. The main component is the artificial neural network (commonly known 

as “model”): a mechanism which is able to learn from data which has not had any 

feature hand-engineering, by learning to extract these features on its own. This 

is also particularly useful when dealing with visual data, as there is not a simple 

way to hand engineer features from pixel arrays. 

Models consist of multiple layers. These layers are formed of neurons, and the 

individual neurons from each layer are connected to neurons in the previous and 

next layers, forming a network. The data (signal) enters the model through the 

input layer, which feeds forward the data to the middle/hidden layers. These 

layers process the data, passing it from one layer to the next, up to the output 

layer which returns the prediction in a human-readable format, as shown in Figure 

1. 

 

Figure 1. A basic neural network consisting of 4 layers. Source - Stanford CS 

course [20]. 

The process of data flowing forward through the network is called feed forward 

propagation. The forward propagation is implemented in three steps. 

 

https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-1/
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First, each input value xi is multiplied by the weight wi, obtaining the dot product 

x.w (Equation 1). 

𝑥. 𝑤 = 𝑥1 × 𝑤1 + 𝑥2 × 𝑤2+. . . +𝑥𝑛 × 𝑤𝑛 

Equation 1. The first step processes the data from the input/previous layers as a 

dot product. 

Second, a bias b is added to offset the activation function in the direction of the 

required output values (Equation 2). 

𝑧 = 𝑥. 𝑤 + 𝑏 

Equation 2. Adding bias to the dot product. 

Finally, it is necessary to use a non-linear activation function, since otherwise the 

neurons would be a simple linear function. Some common activation functions 

are sigmoid, softmax, rectified linear unit (ReLU), LeakyReLU, tanh. The sigmoid 

activation function is computed as shown below (Equation 3). 

𝑦 = 𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

Equation 3. The sigmoid activation function. 

However, in order for the model to learn, it also needs feedback - which is 

provided by a loss function (cost function). The loss function adds a cost to the 

prediction, which is then fed back through the model using the backpropagation 

algorithm [21] which computes the gradient of the loss function and then adapts 

the weights of the network layers to properly “fit” the desired result – known as 

“training the model”.  

1.4 Data Augmentation 

ML approaches, including DL, require a huge amount of data. If the training 

dataset is small, a complex model can learn the correct outputs for each data 

point and over fit, known as overfitting [22]. One of the methods of avoiding this 
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problem is data augmentation [23]. In visual datasets, augmentation methods 

represent flipping, rotation, cropping, etc. Having more quality data leads to better 

model performances, so an automatic augmentation method which provides 

useful data is essential for use-cases when getting labeled data is expensive. 

1.5 Generative Adversarial Networks 

Data augmentation can also be achieved with the help of GANs [4], a framework 

which is able to train models capable of generating realistic images. Two agents 

compete against each other in a zero-sum game: the generator and the 

discriminator. The generator attempts to replicate images found in the dataset, 

without being able to see them directly. The discriminator receives real samples 

from the dataset, and synthesized (fake) samples made by the generator. It 

makes its prediction on which samples are real and fake, after which it receives 

the true labels (real or fake) and learns from them. The generator further gets 

information from the discriminator’s predictions on how well the fake data 

performed through the backpropagation algorithm, learning how to create more 

realistic data afterwards, as shown in Figure 2. 

 

Figure 2. The base idea for the generative adversarial network framework. The 

generator G takes a latent noise vector z as input, generates fake data G(z) which 

gets fed to the discriminator D along real data X. The discriminator makes a 

prediction on whether the input images are real or fake, and then the 

backpropagation algorithm updates the model weights. Source paper [24]. 

https://www.researchgate.net/publication/340481789_Generative_Adversarial_Networks_Based_on_Collaborative_Learning_and_Attention_Mechanism_for_Hyperspectral_Image_Classification
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1.6 Conditional GANs  

While the initial GANs were generating images from random noise, more 

advanced GANs were able to separate the noise in a way that the user would be 

able to “control” the generated output using a condition [25]. Pix2Pix is a GAN 

that controls the output with an input image, thus translating the input image to a 

desired output/style [26]. Upon this, a new algorithm for unpair cycle consistent 

image-to-image translation can be completed with CycleGAN, which allows 

translations such as from a satellite view to a map view, creating art from sketches 

or visualizing or creating a night-time scenery from a daytime picture [27]. The 

network follows the U-Net model [28], and it makes use of the encoder-decoder 

architecture to extract low-level features, while also adding skip connections to 

maintain the positional information from the high-level features during decoding. 

1.7 GANs for Medical Image Analysis 

Despite GANs being a relatively new concept, it has quickly found its way in 

medical imaging, with many researchers finding promising applications for them 

[29] [30]. For example, GANs can be trained for image reconstruction: since doing 

CT and positron emission tomography (PET) scans is potentially hazardous to 

the health of the patient due to the radiation required for acquiring these images, 

it is necessary to reduce the amount of radiation during these examinations at 

the trade-off of lower quality / increased noise in images. GANs have been used 

to denoise these low-dose radiation CT and PET scans, and it has been shown 

they are feasible for this application [31] [32]. 

Considering that it is necessary to reduce the number of scans carried out in 

order to reduce radiation dosage, GANs have been shown to aid this as well [33]: 

by having PET scans done, it is useful to implement image translation to a CT 

scan which means less harm done to the subjects – and vice versa. In the case 

of MRIs, carrying out scans of multiple sequences (flair, t1, t2) is time-consuming 

and difficult. As such, translating from one sequence to the others while 
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maintaining the core information of the scan, is a useful application of GANs [34] 

[35]. 

However, that requires carrying out scans of a subject and then converting them 

to different modalities or MRI sequences. An interesting application for GANs is 

generating new subjects that do not exist, in order to augment datasets used for 

developing segmentation algorithms. It has been shown that poor-performing 

models can highly benefit from GAN-based data augmentation, however, as the 

quality of models increases it is more difficult to observe an improvement in their 

performance [36]. TumorGAN is a model that was developed to generate 2D 

slices of MRI images of certain modalities through the use of a conditional label, 

to provide annotations that can be used for supervised learning [37]. MM-GAN 

has been implemented to generate 3D MRI images of brain tumors and liver 

lesions by providing a deformed label to produce abundant of data [38]. 
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2 Data Preparation and Network Training 

2.1 Brain Tumor Segmentation Dataset 

The Brain Tumor Segmentation Challenge 2020 (BraTS2020) training dataset 

consists of 369 subjects, each subject having five 3D images: four scanned MRI 

sequences (flair, t1, t1ce, t2) and the ground truth (tumor segmentation), with 

each 3D image having the resolution 155x240x240. Each ground truth 

segmentation followed a thorough procedure, being manually annotated by a 

team of neuroradiologists [39][40]. The dataset is used to identify the best 

machine learning algorithm for brain tumor segmentation [41]. The data uses the 

Neuroimaging Informatics Technology Initiative (NIFTI) file format. 

Building such a dataset uses many resources across multiple institutions, and it 

is difficult to develop a big enough dataset to train an efficient segmentation 

model for every serious disease affecting people, even though various projects 

have been created for specific diseases already [42]. Therefore, it is critical to be 

able to extrapolate patterns from a smaller dataset for augmentation purposes, 

to improve the performance of DL models. 

2.2 Data Preprocessing 

MRI images are obtained using various protocols and machines, which often 

leads to inconsistent intensity scales. Consequently, an important pre-processing 

step is normalizing the data, which improves the performance of image 

processing methods [43]. It has been noted that bounded output activation 

functions allow generators to learn quicker [44], so the output function of the 

generator used is the Tanh function. Since the generator can only output values 

between -1 and 1 with Tanh, the images were rescaled to the range [-1,1] to allow 

the generator to recreate images of the same values as the real ones. 

The size of each image is 155x240x240 pixels. Using full images for training 

requires more video random access memory (VRAM) than available, thus 30 
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slices were cut from both the top and the bottom of the 3D image for a total of 60 

slices, bringing the image size down to 95x240x240. The edges of the images 

are mostly background pixels without brain tissue, so cropping them out do not 

cause serious information loss. Unfortunately, the VRAM problem was not 

completely solved. Cropping more slices out would cut out a significant amount 

of brain tissue, so instead of cropping, images were downsampled from 

95x240x240 down to 64x240x240. 

The purpose of the generated images and conditions is to aid the training of a 

segmentation (classification) model. For segmentation tasks, it is undesirable to 

create new digital values during image preprocessing, and as such nearest 

neighbour interpolation was preferred over other downsampling (interpolation) 

methods [45].  

During training, the axial view has been used for visual inspection as it provided 

a better idea on the quality of the image, which is why it was preferred to not apply 

changes to the axial view. The process of cropping and downsampling is 

visualized in Figure 3. 

 

Figure 3. Cropping and resizing a sample image (flair sequence) from resolution 

155x240x240 down to 64x240x240, shown from all (coronal, axial, sagittal) 

views. 
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2.3 Condition 

In order to train a segmentation model on the generated data, it is necessary to 

have the ground truths for the data. In the BraTS2020 dataset, this has been done 

with manual segmentation, meaning that tumors have been annotated by expert 

radiologists. When generating new data, it is possible to control the ground truth 

by using a condition, as done in Pix2Pix [26]. For the current training pipeline, the 

condition is represented by a semantic label image, similar to the one used in 

TumorGAN [37]. 

The goal of the semantic label is to mix the data from two patients (A and B), or 

in other words: apply the tumor of patient A onto the brain of patient B. This is 

done by summing together the ground truth label of subject A with the brain mask 

of subject B. In some cases, the newly generated label has the tumor bigger than 

the new brain – to solve this, after transferring the tumor to patient B the brain 

mask B was applied to the new label to remove the tumor outside of it, thus fitting 

the new brain shape. The process is described in Figure 4. 

 

Figure 4. Creating the semantic label image of the tumor of patient A and brain 

shape of patient B, and then removing the external part of the tumor in the new 

brain. 

This way, in a train dataset of 296 subjects it is possible to create 43660 

(combination of 296 subjects taken 2 at a time) pairs of tumor/brain subjects, 

which is much more data than that which had been gathered and labeled 
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manually. The impact of having a very large amount of data is questionable due 

to diminishing returns of data [46]. However, it is important to note that for smaller 

datasets, this type of pairing would yield significant improvements. 

2.4 Model architecture 

The network architecture is similar to Pix2Pix [26], except that it uses a U-Net 

with 3D convolutions instead of 2D convolutions [47]. The U-Net architecture is 

able to process images and also generate images, allowing the creation of new 

subjects from visual conditions. Even though the intended use of the U-Net was 

to segment an image, in this GAN the architecture is used for the opposite task – 

from a segmented condition, generate a subject’s image. This is exactly the task 

of this GAN, which is why the U-Net architecture works well for it. 

While the usual U-Net uses 2D convolutional layers, the U-Net3D is adapted to 

be able to process 3D volumes by using 3D convolutional layers. This allows the 

network to get spatial awareness and have a better understanding of the brain 

texture. The network is 4 levels deep, with an encoder-decoder structure as 

shown in Figure 5. Each level on the encoder path decreases the image shapes 

by half, and doubles the convolutional filter count. The images are decreased in 

size using max-pooling 3D layers. On the decoding side, the images are 

upsampled using nearest neighbour interpolation, and the filter count is halved at 

each level. The model also employs skip connections from the encoder to the 

decoder of the same image sizes – at a given decoding layer, the inputs from the 

previous layer and the encoder are concatenated together as input. 

The discriminator follows the PatchGAN [26] architecture which is the same as 

the 3D U-Net, except that there is no decoder – the last layer of the discriminator 

is connected to the output of the encoder Figure 6. 
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Figure 5. The architecture of the 3D U-Net generator. Code reference [48]. The 

input is a semantic label 3D image. Created with PlotNeuralNet [49].  

 

Figure 6. The architecture of the 3D PatchGAN discriminator. The input consists 

of the 4 MRI modalities and the semantic label. Created with PlotNeuralNet [49]. 

https://github.com/wolny/pytorch-3dunet
https://github.com/HarisIqbal88/PlotNeuralNet
https://github.com/HarisIqbal88/PlotNeuralNet
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2.5 Training experiment 

The objective function (loss function) is the mean squared error (MSE) loss, which 

has been shown to be efficient for GANs in the Least Squares Generative 

Adversarial Network [50]. Equation 4 and Equation 5 show the objective functions 

of the two agents, where D represents the discriminator, G represents the 

generator, and x represents a series of images (input). The discriminator has to 

predict real images as 1 (label real), and synthesized images as 0 (label 

fake/synthetic). The generator, on the other hand, has to synthesize images that 

the discriminator would predict as 1. This is implemented as a minimax game [4], 

where both agents compete against each other. The generator loss gets lower 

(better generator) by learning how to synthesize samples which make the 

discriminator perform worse. As described previously, the generator does not aim 

to affect the discriminator’s predictions on the real dataset – the generator never 

gets direct feedback from the real images.  

𝐿𝐷 =
1

2
[𝐷(𝑥𝑟𝑒𝑎𝑙) − 1]2 +  

1

2
𝐷(𝑥𝑓𝑎𝑘𝑒)2 

Equation 4. The loss function (MSE) of the discriminator. It can be described as 

trying to minimise the loss the discriminator’s predictions compared to the true 

labels. 

𝐿𝐺 = [𝐷(𝑥𝑓𝑎𝑘𝑒) − 1]2 

Equation 5. The loss function of the generator. The goal is to get the discriminator 

to predict the generated images as real. In other words, the generator wants to 

maximise the discriminator’s loss when predicting the label of the generated 

images. 

The backpropagation gradient is computing using the Adam optimizer [51] for 

both agents, and the step-size parameter (learning rate) for both agents is set to 

1e-4.  
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Stabilization is a difficult problem in GANs, where the discriminator learns much 

faster than the generator, preventing the latter from being trained further. To 

balance each agent’s training, spectral normalization (SN) [52] is used for each 

convolutional block. 

Due to the high memory demands of the network and computing power 

constraints, the input batch size to the GAN is 1 (two patients are used for each 

subject synthesis, but only one subject is processed at a time). As such, instance 

normalization is used, as it has been shown to perform better than batch 

normalization for small batch sizes [53].  

This setup requires a minimum of 30 GB VRAM for training. The training was 

done on the DGX server of the Turku University of Applied Sciences, and the 

graphical processing unit (GPU) used has been NVIDIA Tesla V100. The training 

is done using a single GPU (no parallel computing). The training takes 240 hours. 

The data preparation, semantic label, model architecture and training of the GAN 

are implemented using PyTorch 1.9.0 [54].  

Both the generator and the discriminator are trained for 94720 iterations each, for 

a total of 1280 epochs. The train dataset contains 296 subjects, and as such an 

epoch consists of 148 iterations, where two unique subjects (A, B) are chosen at 

each step for a total of 296 training subjects each epoch.  

The generator receives a semantic label as input, after which it creates a 

synthetic subject with 4 MRI sequences. The discriminator predicts whether the 

4 sequences, together with the semantic label represent a real or a synthetic 

subject.  

The discriminator and the generator are trained in an alternating order with each 

iteration, where the first iteration the discriminator is trained, then the generator 

is trained in the next iteration, and the process repeats until the last iteration. 

During the generator update, subject AB is synthesized using a semantic label 

image created from tumor of subject A and brain mask of subject B, after which 

the discriminator makes its prediction on the true label of the subject, and then 

the loss is backpropagated to the generator (Figure 7). During the discriminator 
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update, the generator synthesizes a new subject AB, after which the discriminator 

makes its predictions on whether subject B with the corresponding label and 

synthetic subject AB are real or synthetic (Figure 8).  

 

 

Figure 7. Generator (G) training pipeline. From the dataset, two different random 

patients A and B are chosen. The semantic label is created and then fed to the 

generator. The generator creates fake MRI images, which together with the 

semantic label make up the fake input to the discriminator. The discriminator (D) 

predicts whether the images are real or not, and the goal of the generator is to 

get the discriminator to predict them as “real”. Based on these predictions the 

weights of the generator are updated. 
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Figure 8. Discriminator (D) training pipeline. The generator (G) pipeline is 

identical to Figure 7, which creates the fake input to the discriminator. The real 

input is created by building a semantic label using the tumor and the MRI images 

from the same patient B. The fake and real inputs are fed to the discriminator, 

which makes its predictions with the goal of predicting “real” for the real input, 

and “synthetic” for the synthetic input. These predictions are used to update the 

discriminator . 
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3 Results 

3.1 Visual inspection 

The model has been trained to generate images which follow the input condition 

successfully, having brains with the given masks, and tumors in the appropriate 

locations with the tumor tissues being clearly different by the labeled stages. The 

synthesized images show the content to be slightly blurry. The brain regions are 

not properly replicated, with the finer details lacking. Whereas the images cannot 

be characterised as realistic-looking, the contrast between tumor tissue and brain 

tissue is evident (Figure 9). 

 

Figure 9. Two synthetic subject samples of all four MRI sequences, synthesized 

by the generator, from the axial view. Sequences: top left – flair, top right – t1, 

bottom left – t1ce, bottom right – t2. More samples available in Appendix 1 – 

Synthetic Samples (Figure 11). 

One of the main problems with GANs is mode collapse, which happens when the 

generator learns to synthesize the same type of data repeatedly, with small (or 

no) variance between each sample [55]. It has been observed that the 

synthesized tumors generally are less diverse than their real counterparts, which 

suggests that a subtle mode collapse is happening during the training of the GAN. 
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3.2 Evaluation using a Segmentation Model 

DeepMedic [56] is a convolutional neural network used to process biomedical 3D 

NIFTI data and detect structures, such as tumors, within it. The model makes use 

of a parallel processing architecture with two pathways: a normal resolution and 

a low-resolution pathway. The normal resolution pathway processes local tissue, 

and the low-resolution pathway processes a downsampled wider volume of data, 

allowing the model to distinguish the texture difference in otherwise locally-similar 

data by providing contextual information (Figure 10). The performance of 

DeepMedic is assessed by training the model on a train dataset, and then 

segmenting a test dataset with the trained model. The predicted segmentations 

are compared with the ground truth labels using the Dice similarity coefficient 

(DSC) (Equation 6) [57]. 

 

Figure 10. An example of a double-pathway architecture for multi-scale 

processing [56].  

𝐷𝑆𝐶 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Equation 6. The equation for the DSC. TP - true positives, FP - false positives, 

FN - false negatives. This is the same equation as the F1 score. 

To evaluate the synthetic data with DeepMedic, augmented datasets and fully 

synthetic datasets must be created for the experiments. Additionally, a GAN is 
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trained without using SN and it is used for creating another synthetic dataset, to 

determine whether the training is improved by the use of SN. 

Synthetic subjects are obtained by choosing random pair of patient A and B from 

the training dataset. For both the GAN trained with and without SN, the following 

datasets are created: 

1. An augmented dataset which includes the real train data of 296 real 

subjects and the synthetic data of 296 synthesized subjects 

2. (1x) A dataset of 296 synthetic subjects 

3. (2x) A dataset of 592 synthetic subjects 

4. (3x) A dataset of 888 synthetic subjects 

The performance of these datasets is compared against a real dataset which 

consists of only the real train data of 296 real subjects. The evaluation of each of 

these datasets is done on the test dataset which consists of 73 real subjects. 

The data pre-processing that is used to train the GAN is also applied to the real 

data on which DeepMedic is trained and evaluated. 

The DeepMedic model trained on each dataset performs the segmentation on the 

test dataset. The segmentation DSC results are shown in Table 1.  
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             Class 

Dataset 

Whole Tumor Tumor Core Enhanced Tumor 

Real 0.611 0.716 0.756 

Real + 1x Synth SN 0.595 0.700 0.744 

Real + 1x Synth 0.601 0.698 0.758 

1x Synth SN 0.028 0.060 0.027 

1x Synth 0.035 0.100 0.106 

2x Synth SN 0.177 0.118 0.120 

2x Synth 0.100 0.140 0.207 

3x Synth SN 0.174 0.095 0.081 

3x Synth 0.100 0.150 0.179 

Table 1. Average Dice scores of the DeepMedic trained on various datasets. 

Synth SN datasets are synthesized by the GAN which is trained using spectral 

normalization. 

3.3 Discussion  

The performance of DeepMedic decreases when the dataset is augmented using 

synthetic data. Training the segmentation model using only synthetic data will 

lead to it performing very poorly. It has been noted that increasing the amount of 

synthetic data slightly increases the performance of the model when no real data 

are included in the dataset, which indicates that despite the poor quality of the 

data, there are some features which can be learnt by having more data. Previous 

experiments in the work have shown that increasing the amount of synthetic data 

in the augmented (real+synthetic) dataset leads to worse performance, so more 

synthetic data are better only when no real data are used. There is little difference 

between training the GAN with SN and without, which suggests that for this 

particular architecture there is no need of stabilizing the training. 

Despite that the quality of the images have a good general structure, the texture 

of the brain is poor which leaves room for improvement. Further development can 

be done into using a local discriminator [58] and/or a perceptual loss [59]. The 

local discriminator would focus on the tumor area, helping the generator learn 
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how to better emulate the real tumors. The perceptual loss would require a model 

such as VGG19 [60] pre-trained on the ImageNet [61] dataset to analyse the 

synthesized images, however, the mentioned network was developed for 

analysing 2D images, and a method for implementing the 2D loss or using a 3D 

model is necessary. 

Both of these improvements would increase the size of the gradient, which is 

already at the limit of the highest performing available GPUs. The computing 

power limit requires a method for reducing the memory requirements of the 

pipeline, without losing data or performance. 
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4 Conclusion 

This thesis has explored a conditional GAN for (image-to-image) translation to 

generate synthetic brain MRI images of multiple sequences, including context 

radiomic features of the real data such as the brain tissue and cancer lesions 

using generative adversarial networks.  

The relevant work in the area has been researched and presented. The network 

was trained on the Brain Tumor Segmentation Challenge 2020 dataset, and the 

training process has been described in detail. The generator can create 

previously inexistent subjects, while providing the annotations for the new 

subjects. The synthetic tumors are clearly differentiated from the healthy tissue. 

The finer structure of the brain is slightly blurry. The data generated by the model 

cannot be used for clinical decision-making procedures, as the synthesized data 

did not show signs of improvement when training segmentation models. The 

network requires fine-tuning, which remains an important task, and improvements 

for future works have been suggested in the discussion section.  
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Synthetic samples 

 

Figure 11. Axial view of 9 synthesized samples. Each sample shows 4 MRI 

sequences. 


