

Robert Harmaakivi

STREAMLINING THE PDF TRANSLATION

PROCESS WITH A PYTHON APPLICATION

Tekniikka
2022

VAASAN AMMATTIKORKEAKOULU
Tietotekniikka

TIIVISTELMÄ

Tekijä Robert Harmaakivi
Opinnäytetyön nimi Streamlining the PDF Translation Process with a Python Ap-

plication
Vuosi 2022
Kieli englanti
Sivumäärä 44
Ohjaaja Anna-Kaisa Saari

Opinnäytetyön tarkoituksena oli luoda sovellus, joka toimii työkaluna käännöstöi-
den apuna. Sovellukseen voidaan syöttää huonolaatuisia PDF-tiedostoja, ja sovel-
lus käyttää konenäköä apunaan parantaakseen tiedoston laatua. Tämän jälkeen
teksti luetaan tekstintunnistuksen avulla sekä käännetään toiselle kielelle.

Sovellus toteutettiin Python-kielellä, käyttäen useita siihen kuuluvia kirjastoja, ku-
ten OpenCV:tä, PyTesseractia sekä Googletransia. OpenCV:llä parannetaan tiedos-
tojen laatua poistamalla niistä artefakteja sekä lisäämällä kontrastia. Tämä on
olennainen osa PyTesseract-konenäöllä suoritetun tekstintunnistuksen onnistu-
mista. Käännöksen laatu on myös suoraan verrannollinen tekstintunnistuksen on-
nistumiseen. Graafinen käyttöliittymä toteutettiin käyttäen PyQt-kirjastoa sekä
siihen kuuluvaa QtDesigner-sovellusta.

Työn tuloksena on käännöstyötä avustava sovellus, joka helpottaa kääntäjien suo-
rittamaa työtä. Sovellus suorittaa puhdistuksen sekä käännöksen tehokkaasti isoil-
lekin tiedostoille.

Avainsanat konekäännös, konenäkö, PDF, Python, tekstintunnistus

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Tietotekniikka

ABSTRACT

Author Robert Harmaakivi
Title Streamline the PDF translation process with a Python appli-

cation
Year 2022
Language English
Pages 44
Name of Supervisor Anna-Kaisa Saari

The purpose of the thesis was to create an application that works as an assistive
tool for translation work. The user can input poor quality PDF files into the soft-
ware, and the software uses machine vision to improve the quality of the file. The
text is then extracted from the file using Optical Character Recognition and trans-
lated into another language.

The application was made with Python, using multiple libraries, such as OpenCV,
PyTesseract and Googletrans. OpenCV is used to remove artefacts and increase
the contrast of the files. This is an essential part of improving the machine reading
quality done with PyTesseract. There is a direct correlation between the quality of
the machine reading and the degree to which the translation is being rendered in
the target language.

The result is an application that can assist the work of translators. Furthermore,
the application effectively conducts the cleaning and translation of large files.

Keywords machine translation, machine vision, OCR, PDF, Python

CONTENTS

TIIVISTELMÄ

ABSTRACT

1 INTRODUCTION .. 6

2 TECHNOLOGIES ... 7

2.1 Visual Studio Code .. 7

2.2 Python ... 8

2.3 Pillow ... 10

2.4 Pdf2image ... 11

2.5 Tesseract and PyTesseract .. 11

2.6 Googletrans ... 13

2.7 OpenCV2 ... 15

2.8 PyQt ... 16

3 DESCRIPTION OF APPLICATION .. 17

3.1 Operation .. 17

3.2 Usage ... 21

3.3 Graphical User Interface Design ... 21

4 IMPLEMENTATION .. 25

4.1 Research .. 25

4.2 Command-line Version ... 28

4.3 Graphical Version .. 30

4.4 Installer ... 34

5 TESTING .. 36

5.1 File handling .. 36

5.2 Cleaning ... 36

5.3 Translation .. 39

6 SUMMARY .. 42

REFERENCES .. 43

LIST OF FIGURES

Figure 1. Comparative evaluation of different translation models 14

Figure 2. Linguistic families of the available languages in Google Translate 15

Figure 3. Global thresholding compared to Adaptive Thresholding 18

Figure 4. The flowchart of the software ... 20

Figure 5. Full GUI ... 22

Figure 6. Open file -prompt .. 22

Figure 7. Page comparison and cleaning methods ... 23

Figure 8. Translation options and progress bar .. 24

Figure 9. Copied and pasted text from Adobe Acrobat DC Pro 25

Figure 10. Google document translation .. 26

Figure 11. Result of a Multilizer.com automatic translation 27

Figure 12. Command-Line version of the software .. 29

Figure 13. Adaptive thresholding methods .. 30

Figure 14. Drag-and-Drop Widget box of the Qt Designer 31

Figure 15. Properties panel of the element .. 32

Figure 16. findChild method for referencing the GUI elements 32

Figure 17. Initialising the software ... 33

Figure 18. Inno Setup Wizard.. 35

Figure 21. Application in a frozen state .. 37

Figure 22. Global thresholding compared against adaptive mean thresholding . 38

Figure 23. Different cleaning methods with a picture .. 38

Figure 24. Comparison between all the cleaning methods 39

Figure 25. The quality of the translation .. 40

Figure 26. English to Finnish translation ... 41

 6

1 INTRODUCTION

The objective of this thesis was to create assistive software to be used by transla-

tors. The main goal was to create an application that could clean and translate PDF

files that the user could load into the application. Other software in the market

fills some of the requirements, usually just the cleaning or the translation. The

purpose was to create an application that would do everything needed by the

translator in one simple to use package.

One of the greatest hindrances that translators face in their work is the bad quality

of the source material. They often receive files for translation, which have been

scanned and copied multiple times, and often have artefacts, such as scanlines,

dust speckles, and even stains. These problems cause the files to be hard to read,

which costs the translator valuable time, and in the worst-case scenario, might

even cause errors in the translation if some parts have become unintelligible.

The other part of the software is the automatic translation of the files. As Google

translate has taken strides in the quality of its machine translation, it has become

the tool of choice for many translators. It provides a preliminary translation of the

file, as it translates the most uncomplicated sentences correctly on the first go.

The preliminary translation leaves the human translator more time to focus on the

parts of the translation that a machine cannot understand or translate correctly.

The PDF cleaner and translation application was developed to answer these issues.

The software was developed using Python and a variety of libraries. The software

comes with an installer, and a complete graphical user interface, making the in-

stallation and usage of the software as simple as possible.

 7

2 TECHNOLOGIES

The technologies used in this project were chosen on their availability and user-

friendliness. Most of the software and libraries used are open-source and have

extensive written documentation, making it easier to develop software. Python

was chosen as a primary language for the project due to the available libraries,

which suited the application well.

2.1 Visual Studio Code

Visual Studio Code is a text editor developed by Microsoft. It was released in 2015

and has since become the most popular tool among programmers, with 71% of

programmers reporting using Visual Studio Code1 (Stackoverflow, 2021). Visual

Studio Code is a lightweight program compared to full integrated development

environments (IDEs), yet it still retains many features of IDEs, such as automatic

code completion with IntelliSense, Git commands and debugging. VS Code is also

highly customisable, giving the community full access to create extensions for it.

Visual Studio Code is based on Electron, a framework designed for creating cross-

platform applications with native technologies. The program is entirely free and

open-source, and it can be run on Windows, Linux, or macOS. Visual Studio Code

is a code-centric tool that makes editing code files and folder-based project sys-

tems easier. It allows the writing of cross-platform Web and mobile applications

using the most popular platforms, such as Node.js and .NET core, with integrated

support for many languages and rich editing features, such as IntelliSense finding

1 The Stack Overflow survey is an annual questionnaire aimed at software developers. The survey
has questions ranging from age, location, favourite languages, software and frameworks, all the
way to questions on where do you learn, how do you learn, and how many years you have been
developing software.

 8

symbol references, quickly reaching a type definition, and much more. (Del Sole,

2019)

Extensions are one of the key features of Visual Studio Code. Tools, languages,

code snippets, debuggers, key bindings and themes can be added to the program.

Visual Studio Code, in particular, allows the enhancement of the code editor with

specialised syntax support, such as code snippets and code refactoring. Visual Stu-

dio Code is available to every language and tool on any platform, allowing for a

limitless number of development scenarios. (Del Sole, 2019)

2.2 Python

Python is a high-level, object-oriented, open-source programming language de-

signed to optimise development speed. Python is a general-purpose language, but

it is often called an object-oriented scripting language because it is commonly used

to combine other software components to an application. Python emphasises four

key concepts (Lutz, 2001):

1. Quality. Python makes it simple to create reusable and maintainable soft-

ware. It was created to raise development quality requirements in the

scripting community. Python's straightforward syntax and well-thought-out

architecture almost force programmers to write readable code, essential

for software that others may modify. Python is also well-suited to contem-

porary software reuse methodologies. In reality, developing high-quality

Python components that can be used in various situations is nearly effort-

less.

2. Productivity. Python has been designed for speed of development. Python

makes it simple to develop applications quickly because the interpreter

handles aspects that must be coded directly in lower-level languages. For

example, there will be no type definitions, memory management, or build

procedures in Python scripts. However, fast initial development is only one

 9

component of productivity. Programmes must develop code that can be ex-

ecuted by a computer and read and maintained by other programmers. Py-

thon produces programs that are easy to comprehend long after being de-

veloped because its syntax is similar to executable pseudocode2. Python

also supports advanced paradigms, such as object-oriented programming,

which help developers be more productive and reduce development time.

3. Portability. Almost any computer system in use today can execute Python

programs without modification. Python scripts may now be found on eve-

rything from IBM mainframes to Cray supercomputers, as well as notebook

PCs and mobile devices. Although some platforms have nonportable exten-

sions, the core Python language and libraries are platform-neutral. For ex-

ample, most Python programs written on Linux will generally run on Win-

dows right away, and vice versa. Furthermore, a GUI program written with

Python's standard Tkinter library will operate natively on Linux, Windows

or Macintosh without any source code changes.

4. Integration. Python is built to work with a variety of additional tools. As a

result, Python programs may easily be mixed with and script other system

components. Python scripts, for example, may now use existing C and C++

libraries and communicate with Java classes, among other things. Further-

more, programs written in other languages can just as efficiently run Python

scripts by calling C and Java API functions.

Guido van Rossum invented Python in 1990 while working at the Dutch National

Research Institute for Mathematics and Computer Science. It was initially designed

to be a scripting language for the Amoeba distributed operating system and the

ABC language. Python's design proved to be sufficiently broad to cover various

fields. Hundreds of thousands of engineers utilise it in increasingly diversified jobs

2 Pseudocode is a way of representing code, without being written in any programming language

 10

worldwide. Today, Python is used in commercial products to test chips and boards,

design GUIs, search the Web, produce videos, script games, provide maps and

email over the Internet, and much more. Python's target domains are only re-

stricted by the scope of computers in general because it is an entirely general-

purpose language. (Lutz, 2001)

2.3 Pillow

Pillow is a Python library with image processing capabilities. Pillow is a continua-

tion of the original Python Imaging Library (PIL). PIL was developed initially by

Fredrik Lundh and was active from 1995 to 2009. After Lundh ceased the develop-

ment of PIL, Alex Clark took over the project and started developing Pillow from

the remainings of PIL and forked it into its own project. Clark has stated that the

goal of Pillow is to foster and support the active development of PIL by continuous

integration testing, publicised development and regular releases. (Pillow, 2022a)

The Pillow library provides extensive file format support, with over 30 different

file formats supported (Pillow, 2022b). An important thing to note is that Pillow

uses the metadata of the image to detect the file format instead of using the file

extension. Pillow has three main uses:

1. Image Archives. Pillow is ideal for batch processing and image archiving. In

addition, the library can be used for thumbnail creation, converting be-

tween file formats and printing images.

2. Image Display. The library comes with functionality from the Tk Pho-

toImage and BitmapImage interfaces, allowing the display of images di-

rectly from the application. There are also functions for using an external

display utility.

3. Image Processing. The Pillow Library contains image processing function-

ality, including point operations filtering and colour space conversions. The

 11

library also comes with functions to resize and rotate the images. A histo-

gram method also allows the user to pull statistics out of the image.

All this functionality makes Pillow the preferred technology for the image pro-

cessing requirements in this project. (Pillow, 2022c)

2.4 Pdf2image

Pdf2image is a Python library that wraps the pdftoppm utility to convert a PDF to

a PIL image object (Belval, 2022). Pdftoppm is originally a Linux utility to convert

PDF files into Portable Pixmap, Portable Graymap, or Portable Bitmap format

(Glyph & Cog LLC, 2011). Pdf2image is a simple way to extract pages from PDF files,

to enable their editing in a picture format. After the conversion, the images of

pages can be saved separately and then opened and used by other image pro-

cessing tools, such as Pillow.

2.5 Tesseract and PyTesseract

Tesseract is an open source Optical Character Recognition engine. Optical Charac-

ter Recognition turns paper documents or text from images into editable and

searchable digital documents, such as text files. OCR works by analysing the pat-

terns of light and dark that form the letters and numbers in the image and turning

them into text. Early OCR systems worked only with specific fonts explicitly de-

signed to be able to be read by an OCR. Modern OCR software, however, can un-

derstand nearly all fonts and, in some cases, even handwriting. (Konica Minolta,

2018)

The Tesseract OCR engine was initially developed by Hewlett-Packard Company,

with the project running between 1985 and 1995. In 1995 Tesseract ranked among

the top 3 OCRs in accuracy in a test conducted by the University of Nevada in Las

Vegas. There was no knowledge outside of HP for the ten years that the project

was in development. Tesseract was close to being adopted into the HP scanners

to become the key differentiator between HP and their competitors. Tesseract had

 12

a real advantage initially over other OCR engines at the time, as it was more accu-

rate, especially with low-quality images. The disadvantage of Tesseract was its

speed and required processing power, meaning it needed to be assisted by a com-

puter, as the scanners of the time did not have enough processing power. All of

this, combined with other issues such as localisation, HP decided to discontinue

the development of Tesseract. (Smith, 2013)

After 1995, the project laid dormant for ten years, with no development being

done on it. In 2004 or 2005, engineers at HP decided to release Tesseract as open-

source software with the help of the Information Science Research Institute at the

University of Nevada in Las Vegas and Google. In 2006, Tesseract was released as

open-source software, being developed further by Google. In the beginning, only

the English language was supported, and the software was not as accurate as

other commercially available OCRs. Tesseract was still the most accurate open-

source OCR available. (Google, 2006)

Five versions have been released for Tesseract throughout the years, each bringing

more functions and supported languages. At the moment, Tesseract supports over

100 languages, including ideographic languages, such as Chinese or Japanese, and

right to left written languages, such as Hebrew and Arabic. The software also sup-

ports multiple output formats, including plain text, hOCR, PDF and TSV. Google

stepped down from developing Tesseract in November 2018, and the software is

currently completely community-driven. There are also third-party graphical user

interfaces and trained language packs developed by the community. (Smith, 2022)

Python-Tesseract, or PyTesseract for short, is a wrapper for Tesseract, making it

possible to use Tesseract in Python software. PyTesseract works well with Pillow,

as it has full support for the imaging libraries used by Pillow. PyTesseract can also

be used as direct scripts, omitting the requirement of saving the result to a file but

rather using the result directly in the code in a variable. (Lee, 2022)

 13

2.6 Googletrans

Googletrans is a Python package that allows the usage of the Google Translate API

in Python programs for free. It has features such as detecting the language of a

text and bulk translations. (Han, 2020) Using this library simplifies the usage of

Google Translate API, as it removes the need for a Google Service Account and

private keys.

Google Translate is a free machine translation software with over 500 million users

worldwide (Turovsky, 2016). Google Translate was initially launched online in

2006, with the possibility to translate texts from English to Arabic and vice-versa.

Around the time when Google Translate launched, the go-to method of translation

software was to use a rules-based approach, which required much work by lin-

guists to define vocabularies and grammar. Google's approach, however, was to

implement a system where they would feed words, phrases, and different kinds

of translated texts in both languages. They would then apply statistical learning

techniques to build a translation model. (Och, 2006)

In 2016, Google announced they would move Translate from the phrase-based

model into a neural network model called Google Neural Machine Translation sys-

tem. The GNMT brought machine translation closer to human translation (Figure

1). That has become possible primarily due to the advances in machine intelli-

gence: GNMT employs state-of-the-art training techniques to enhance its transla-

tion capabilities continuously. The critical difference between a phrase-based

model and a neural network-based translation model is how longer texts and

phrases are translated. A phrase-based model takes a sentence, breaks it down

into words and translates each word individually. However, the neural machine

translation considers the entire input sentence as a unit for translation. (Le &

Schuster, 2016) The result of this is a more natural-sounding translation, as we

humans perceive language in complete sentences rather than individual words.

 14

Figure 1. Comparative evaluation of different translation models

In 2019 and 2020, Google improved on the translation models even more with the

help of M4 modelling. The M4 model is called a Massively Multilingual Massive

Neural Machine Translation. This model uses other languages in the same linguis-

tic family and even from other language families in some cases (Figure 2). That is

done to improve the translation quality, especially in low-resource languages,

where there is not much data. (Bapna, 2019) With the usage of the M4 model,

Google Translate was able to reach an average of +5 BLEU score3 in all 100+ lan-

guages available (Liang Bowen, 2020).

Today, Google Translate is a popular software, with over 500 million users, more

than 100 languages, and 100 billion words translated daily. The recent evolution

3 Bilingual Evaluation Understudy is a popular metric for evaluating machine translations. It is based
on a system, in which machine translations are compared to translations of the same texts done
by humans.

 15

of Google Translate has also been a mobile application that uses machine vision

to directly translate a text when the user points their phone camera at the text.

There is also a large community of 3.5 million people who have made contribu-

tions to the software, helping Google add new languages and improve the current

ones. (Turovsky, 2016)

Figure 2. Linguistic families of the available languages in Google Translate

2.7 OpenCV2

OpenCV is a free and open-source computer vision library. The library is created

in C and C++ and runs on Linux, Windows, and Mac OS. Interfaces are being ac-

tively developed for Python, Ruby, Matlab, and other languages. OpenCV was cre-

ated with a heavy focus on real-time applications and was designed to be compu-

tationally efficient. OpenCV is developed in optimised C and is multicore CPU com-

patible.

 16

The purpose of OpenCV is to provide a simple-to-use computer vision infrastruc-

ture that allows individuals to construct reasonably complex vision applications

quickly. Over 500 functions are available in the OpenCV library, covering a wide

range of vision topics, including industrial product inspection, robotics, security,

user interface, camera calibration, stereo vision, and medical imaging. An entire

general-purpose machine learning library is also included with OpenCV. Statistical

pattern identification and clustering are the focus of the machine learning library.

It is beneficial for the vision problems at the heart of OpenCV, but it is also versatile

enough to be applied to any machine learning problem. (Bradski & Kaehler, 2008)

2.8 PyQt

PyQt is a collection of Python bindings for the cross-platform application frame-

work Qt, which combines Qt's and Python's advantages. PyQt allows embedding

Qt libraries in the Python code, allowing the creation of graphical user interfaces

in Python. In other words, PyQt allows the usage of the Python code to access all

of Qt's features. PyQt requires the Qt libraries to function; thus, when installing

PyQt, the required version of Qt is also installed on the PC. (Harwani, 2018)

Riverbank Computing develops pyQt. It is more than just a graphical user interface

framework. Network sockets, threads, Unicode, regular expressions, SQL data-

bases, SVG, OpenGL, XML, a fully complete web browser, a help system, a multi-

media framework, and a comprehensive selection of GUI widgets are all included.

Qt classes use a type-safe but loosely connected signal/slot method for communi-

cating between objects, making it simple to construct reusable software compo-

nents. Qt also comes with Qt Designer, a tool for creating graphical user interfaces.

Qt Designer may be used to generate Python code with PyQt. Qt Designer also

allows the addition of additional GUI controls written in Python. (Riverbank

Computing)

 17

3 DESCRIPTION OF APPLICATION

The purpose of the application is to be used as an assistive tool by translators by

cleaning and automatically translating scanned PDF files. The issue is that the files

received for translation are frequently in poor condition. The files contain arte-

facts, such as scan lines and dust speckles, and the files are often skewed. As the

files are also scanned, most PDF readers will not allow copying the text from the

file. That also causes it to be nearly impossible for online automatic translation

software to recognise the text or even try a translation. Many offerings instantly

show an error message saying they cannot translate scanned PDFs. There are ways

in which one can do all of this software functionality. However, it requires multiple

steps through different software. This software aims to combine these solutions

into one package that takes a PDF file as an input and provides a translated edita-

ble text file as an output.

3.1 Operation

The first step in the application is to open a PDF file. After the PDF is opened, the

pdf2image library is used to convert each page of the file into an image. These

images are automatically stored in an array by pdf2image, and the images will be

saved to separate image files by looping through the array. The purpose of this is

to have a reference point to compare the starting point and the cleaned version.

After the PDF file is saved into images, the software opens the first image file, gets

the size information of the image, and stores the width and height values into

variables. Next, the software goes through each pixel in the picture and gets the

RGB value of the pixel. This value is then compared to the preset value or a value

set by the user. The pixel colour will be set to black if the value is less than the

preset value and white if the value is greater. The former causes the picture to be

completely black and white, with no grey values. This binary cleaning is usually

sufficient if the files are scanned. If the files were pictures of pages, this method

 18

would not be sufficient, as it might cause some parts of the page to become com-

pletely black (Figure 3). A more comprehensive system with proper algorithms can

be used in these cases, such as Adaptive Thresholding (Figure 3) or Otsu's Binari-

zation, both provided in the CV2 library. (OpenCV, 2022) After whichever method

was chosen and used, the cleaned image is saved.

Figure 3. Global thresholding compared to Adaptive Thresholding

After the image is cleaned, it will be opened by CV2 and passed to PyTesseract, to

have the text extracted from the images. Tesseract has a better chance of extract-

ing the correct text when the image is first cleaned of all the artefacts. The ex-

tracted text will be then saved to a separate text file and appended to a string

containing the text from all of the original pages.

 19

After the text has been extracted and saved to a text file, the last thing to do is to

pass the text file into Google Translate to be translated. The Googletrans library

could be used to detect the input language automatically. However, it was decided

to have the input language chosen manually by the user in this case, as it is a safer

option: If there are some parts in the text, which is in another language, for exam-

ple, an abstract in English in the beginning, this might cause issues with the auto-

matic language detection. Therefore, the user also chooses the output language,

and Googletrans will use these parameters as a basis for the translation. For trans-

lating, Googletrans connects automatically to the Google Cloud Translate API,

which implies that the developed software requires an internet connection to

work. The translated text is then saved to a text file, and the text is also appended

to a string variable, which contains all the translated texts.

After all these steps have been made for a single page, the software will open the

following page continuing with the whole process from the beginning. When no

more pages are left, the string variables with the texts from all pages will be saved

to separate files. The software saves each step into folders for review in the cur-

rent form because automated procedures, such as machine vision and machine

translations, may lead the software to make mistakes. If anything appears not to

be correct in the final result, the translator can consult the preceding files to make

an informed guess as to what the words are. A complete flowchart of the software

is shown in Figure 4

 20

Figure 4. The flowchart of the software

 21

3.2 Usage

Because the output is not ideal, this program should only be used for assistive rea-

sons. The purpose is to get a preliminary translation, speed up, and help the pro-

cess of translating. Because Google Translate can correctly translate most basic

and regularly used sentences, the translator may focus on portions of the text that

a machine cannot translate correctly: implied meanings, distinct tones, wordplays

or proverbs. The translator's job becomes more manageable with the preliminary

translation. With tight deadlines, having the time to focus on the essential aspects

is critical.

3.3 Graphical User Interface Design

The GUI was designed to be fairly simple but still offer users enough choices and

flexibility to get the best result possible (Figure 5). As the Tesseract optical charac-

ter recognitions result is directly affected by the quality of the source material, it

was essential for the user to have the ability to see the cleaned pages before being

passed on to Tesseract. The ability to fine-tune the cleaning process, combined

with the view of the original file next to the cleaned one, provides an easy and fast

way to get reliable results from the cleaning process.

There is a button in the top left corner of the GUI to open a file. The top left corner

is where users look when opening a new application, so it was natural to put the

file opening button there. When the button is clicked, a file explorer window will

open on the computer, allowing the user to go to the chosen PDF file on their

system. (Figure 6).

 22

Figure 5. Full GUI

Figure 6. Open file -prompt

 23

Figure 7. Page comparison and cleaning methods

The last part of the software is the translation options at the bottom. There are

two drop-down menus, one for the source language and one for the output lan-

guage (Figure 8). When the user presses the translate -button, a prompt will open,

asking the user where they want the files saved. After this, the actual translation

process will begin. Because the process might take even 10 seconds per page, a

progress bar was added at the bottom for the user to see the progress of the pro-

cess (Figure 8).

 24

Figure 8. Translation options and progress bar

 25

4 IMPLEMENTATION

The implementation of the software could be divided roughly into three phases.

The first phase was the research phase, where the scope of the project and the

already available software were studied. In the second phase, a preliminary proof

of concept version of the software was developed. The first version was run on the

command line and required some technical knowledge and a separate installation

of the different software. The final version had nearly the same functionality as

the command line version. However, it was made to be far more user friendly with

a graphical user interface and an installer to make it as easy as possible for the

end-user to start using the software.

4.1 Research

The research phase began with a meeting with the client to hear the desired func-

tions for assistive software for translations. The immediate problem that needed

to be solved was the low quality of the scanned PDF files and the inability to copy

text from the files. There is already software on the market which makes it possible

to turn the text in scanned PDF files into a copyable format. However, most of this

software fails to provide satisfactory results because of the low quality of the files.

One of the most popular offerings is Adobe Acrobat, which has an automatic en-

hancement and character recognition function, but it fails to provide accurate re-

sults in low-quality files. The result of the enhancement and OCR functions can

have trouble distinguishing between scan lines and actual text (Figure 9).

Figure 9. Copied and pasted text from Adobe Acrobat DC Pro

The second feature the client wanted to see in the software was an automatic

machine translation to get a preliminary version of the translation. There are,

 26

again, software online, which does this automatically when uploading a PDF file to

the software, but they often do not work with scanned PDF files. The result was

usually a direct prompt saying the software does not work with scanned PDF files

(Figure 10), or the result was utterly unreadable (Figure 11).

Figure 10. Google document translation

 27

Figure 11. Result of a Multilizer.com automatic translation

 28

4.2 Command-line Version

The proof of concept application development began when enough study was per-

formed and the need for such software was recognised. The first step of develop-

ing the software was to find out the best options for a language to write the appli-

cation. Python was chosen as a language with all the available libraries and ease

of use. The whole software in its initial form was written in under 60 lines of code

and was fully functional at that point (Figure 12). All the variables were hard-

coded, so the filenames needed to be changed in the source code before running

the software. The application had only the option of a global thresholding cleaning

method, and the value of that was set at 130, as this proved to be the most con-

sistent value with good results. The source and destination languages of the trans-

lation also needed to be changed from the source code. They were set at Norwe-

gian to Romanian, as these were the languages of the test files.

The problem with this version was unmistakably its lack of usability. The original

thought was to create a more advanced version of the proof of concept, in which

the user may provide filenames and languages via the command line. However,

because this would have taken too long, the emphasis was on developing a final,

graphical version of the software.

 29

Figure 12. Command-Line version of the software

 30

4.3 Graphical Version

After the proof of concept yielded positive results, the effort shifted to creating a

graphical user interface for the software and implementing additional, more ad-

vanced cleaning methods. The initial step was to set up the cleaning procedures

for Adaptive Gaussian Thresholding and Adaptive Mean Thresholding. The CV2 li-

brary included a direct method for adaptive thresholds, and both the gaussian and

adaptive methods were simply passed as arguments to the method.

Figure 13. Adaptive thresholding methods

After the adaptive cleaning methods were successfully implemented, the graph-

ical user interface development was started. The choice for the PyQt library was

made after thorough research of the available libraries and tools available for Py-

thon GUI creation. The decision was made between Tkinter and PyQt, with PyQT

providing a more user-friendly approach to designing the user interfaces. The PyQt

GUI can be created easily using the Qt Designer software, as the software provides

an easy drag-and-drop system for placing the interface elements (Figure 14).

 31

Figure 14. Drag-and-Drop Widget box of the Qt Designer

After an element or widget has been placed, the properties of the element can be

adjusted directly in the designer (Figure 15). An essential value in the properties

panel is the objectName, as this will be used in the source code when referring to

the element, with a findChild method included in the Qt library (Figure 16). The

graphical implementation of the GUI was fast and straightforward with the de-

signer tool, and after the designing process was finished, the implementation of

the logic was started.

 32

Figure 15. Properties panel of the element

Figure 16. findChild method for referencing the GUI elements

 33

The main program consists of two files, the primary Python file and the .ui file,

provided by the Qt Designer software. In the source code, the first thing that needs

to happen is initialising all the necessary elements of the software (Figure 17.) The

whole software is under the UI class, and the QmainWindow, which is the main

window of the software, is passed in as an argument. The init method is where the

initialisation of the GUI happens. The first thing in the initialisation is loading the

.ui file received from the designer. After this, the available languages are loaded

from a JSON file into the originalLanguage and targetLanguage combo box lists.

The JSON file has key-value pairs of all the available languages in the Google trans-

late API, as the API accepts only language codes, such as 'en' or 'fi', as arguments.

The file provides a "conversion" from the language codes to full country names in

the drop-down menus for user-friendliness and readability.

Figure 17. Initialising the software

After the initialisations, all the elements placed in the designer are then refer-

enced. All the buttons and sliders will also have a connect method to run through

them, which will connect the action with a set method.

 34

There are six methods in the software: openFile, leftClicker, rightClicker,

sliderChange, cleanClicker and translateClicker. The openFile method allows se-

lecting and opening the desired PDF file from the file explorer. When the open file

button is pressed, the file explorer windows opens and shows only PDF files avail-

able. After the file is chosen, the PDF file is loaded into the software. The first page

is loaded into the space reserved for it. The left and right clicker methods provide

a way to navigate the different pages of the file.

The cleanClicker method checks the radio buttons for which of the three cleaning

methods is chosen, runs the cleaning for all the pages in the file, and shows the

result in the right space. The cleanClicker method also utilises the sliderChange

method to get the value for the global thresholding method. The translateClicker

method runs the pages first through the Tesseract OCR to read the text in the file.

The entire scanned file is first saved as a PDF file, which will have the text in a

copyable format. After this, the software takes the input and output languages

from the drop-down choices, saves the original text in a separate .txt file and runs

through the Google Translate API. Finally, the result of the translation is saved in

another .txt file. The user is left with three different files, the PDF file in a copyable

format, the original language text file, and the translated text file.

4.4 Installer

The installer was created by first producing a Windows executable file from the

Python source code. The file was built using the pyinstaller, which creates a pack-

aged version of Python and all of the required libraries and files to run the soft-

ware. The pyinstaller generated a file that may be launched without the require-

ment for the user to install Python. The drawback was the size of the software,

which was unreasonably big, almost 100 megabytes. The size was a calculated

trade-off for the ease with which the software could be run.

The actual installer was then created by using jrsoftware's Inno Setup. The soft-

ware comes with an easy to use wizard, which allows the user to choose what files

 35

to include, add licenses and folder structures (Figure 18). The result is a one-click

installer, which includes all the necessary files, folders, and an executable in the

right place. Custom icons for the software may also be added.

Figure 18. Inno Setup Wizard

 36

5 TESTING

The tests for the software were done to evaluate the functionality of the full soft-

ware. The tests were run on the installer, the file handling, the actual functions

and buttons of the software, the cleaning process, and the translation.

5.1 File handling

After the installation was successful, the file handling and all the functions of the

software were tested. The file opening and loading in the software worked as in-

tended, except for a bug that crashes the software if no file is chosen and the file

picker window is closed. This could be easily solved by having a conditional for

checking if a file was chosen. The progress bar at the bottom of the application

worked effectively for smaller files. However, on larger files, the software went

into an unresponsive state, the window greyed out, and the progress bar could

not show the actual progress but instead jumped to the end when the loading was

finished (Figure 21). This issue could have been solved by separating the threads

on which the functions and the GUI run, but it would have required a lot more

knowledge on how to manage multithreaded applications.

5.2 Cleaning

 For the cleaning, a variety of files were tested for functionality. The first file tested

was a picture taken from a paper with a shadow placed on purpose to show the

issue with the global thresholding method. Next, the same file was cleaned with

the adaptive thresholding method, which showed a better, albeit a bit, washed-

out result (Figure 22).

The next test was chosen to show the issues with the adaptive thresholding meth-

ods. If there was a picture on the same page with text, the adaptive methods strug-

gled to retain the picture intact. However, this was a perfect scenario where the

global thresholding method could be used to still retain the picture in the cleaned

file (Figure 23).

 37

Figure 19. Application in a frozen state

 38

Figure 20. Global thresholding compared against adaptive mean thresholding

Figure 21. Different cleaning methods with a picture

The final test demonstrated the minor differences between the various cleaning

methods in a regular file, with no particular circumstances, but rather a regular

scanned text file (Figure 24). The Gaussian cleaning method was usually the best

in a standard file like this in terms of the following step in the process, optical

 39

character recognition. Even if the variations appear negligible to the naked eye,

there might be a significant difference for the machine reading.

Figure 22. Comparison between all the cleaning methods

5.3 Translation

The translation tests were conducted on files of different quality to assess the

complete process of the software. The files chosen were either in Finnish or Eng-

lish, as these are languages that could be analysed appropriately regarding the

actual quality of the translation. The first file chosen was the same as shown in

Figure 22. The actual text extraction worked even better than expected, with even

all the umlauts being retained. The translation in this file worked well on the parts

where the sentences were whole. The only issue could be seen in the edges, where

the words get split up with the hyphen. In these cases, the software did not realise

the words were the same and instead tried to translate both parts of the words

separately. This issue could be seen best with the word "Havait-seminen" being

translated to "Observe-Simeman" instead of "detection" (Figure 25).

 40

Figure 23. The quality of the translation

The second test was run on an English file being translated to Finnish. The chosen

file can be seen in Figure 7. The quality of the file was relatively poor because it

was severely faded. The quality of the file proved to be difficult for the software,

but it could still manage to get a reasonably good result in the end. The only issue

was with the actual translation, as Finnish is a complex language to translate.

Therefore, the actual quality of the translation is not that great, and the last sen-

tence was not translated at all (Figure 26.)

 41

Figure 24. English to Finnish translation

 42

6 SUMMARY

The result of the software ended up being an excellent prospect for future devel-

opment. The project was hindered by the lack of knowledge of Python and all the

relevant technologies but proved to be a great learning experience. With very little

prior knowledge of anything connected to this project, there is still a lot to be

learned, and the development of the application will continue after the thesis.

While developing the application, many new features were discovered which

could be added to the software. The client also requested many new features and

improvements after using the final product. Some of the features for further de-

velopment will be having two different views, an easy-mode view and an advanced

view. In easy-mode, the cleaning could be done automatically by a method chosen

by the software. With the advanced mode, more options for tweaking the cleaning

could be added. Tooltips would also need to be added for all the features. Auto-

matic de-skewing of the files would also be an excellent addition, improving the

OCR quality.

Other features for future development will be having different cleaning settings

for separate pages, usage of picture file formats, and the possibility to detect the

source language automatically. Other more significant features will be having the

translation done directly on the PDF to retain all the positioning of the text in the

file. Another option would be the automatic creation of a Word file, which would

have the text positioning, tables, and pictures in the correct form.

All-in-all, this was a great experience and has taught a lot about the process of

creating a complete application for an actual use case. The development will con-

tinue onwards, maybe even to a commercial product.

 43

REFERENCES

Bapna, A. 2019. Googleblog. Accessed 06.02.2022
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html

Belval 2022. Github. Accessed 05.02.2022 https://github.com/Belval/pdf2image

Bradski, G. & Kaehler, A. 2008. Learning OpenCV, Computer Vision with the
OpenCV Library. Sebastopol. O'Reilly Media, Inc.

Riverbank Computing. Accessed 27.03.2022
https://riverbankcomputing.com/software/pyqt/intro

Glyph & Cog LLC 2011. Mankier. Accessed 05.02.2022
https://www.mankier.com/1/pdftoppm

Google 2006. Announcing Tesseract OCR. Accessed 05.02.2022
https://web.archive.org/web/20061026075310/http://google-code-
updates.blogspot.com/2006/08/announcing-tesseract-ocr.html

Han, S. 2020. Googletrans Documentation. Accessed 06.02.2022 https://py-
googletrans.readthedocs.io/en/latest/

Harwani, B. 2018. Qt5 Python GUI Programming Cookbook: Building responsive
and powerful cross-platform applications with PyQt. Birmingham, UK: Packt
Publishing Ltd.

Konica Minolta 2018. Accessed 05.02.2022
https://www.konicaminolta.com.au/news-insight/blog/how-optical-character-
recognition-works

Lee, M. 2022. Pypi. Accessed 05.02.2022 https://pypi.org/project/pytesseract/

Bowen, L. & Caswell, I. 2020. Googleblog. Accessed 06.02.2022
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html

Lutz, M. 2001. Programming Python, 2nd edition. Sebastopol. O'Reilly media.

Och, F. 2006. Googleblog. Accessed 05.02.2022
https://ai.googleblog.com/2006/04/statistical-machine-translation-live.html

OpenCV, 2022. Accessed 06.02.2022
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html

Pillow 2022a. About. Accessed 05.02.2022
https://pillow.readthedocs.io/en/stable/about.html

 44

Pillow 2022b. image-file-formats. Accessed 05.02.2022
https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html

Pillow 2022c. Overview. Accessed 05.02.2022
https://pillow.readthedocs.io/en/stable/handbook/overview.html

Python. Accessed 04.02.2022 https://www.python.org/doc/essays/blurb/

Quoc V. & Schuster, M. 2016. Googleblog. Accessed 06.02.2022
https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html

Smith, R. 2013. History of the Tesseract OCR Engine: What Worked and What
Didn't. Proceedings of SPIE.

Smith, R. 2022. Github. Accessed 05.02.2022 https://github.com/tesseract-
ocr/tesseract

Del Sole, A. 2019. Visual Studio Code Distilled: Evolved Code Editing for
Windows, macOS, and Linux. Berkeley. Apress.

Stackoverflow 2021. Accessed 04.02.2022
https://insights.stackoverflow.com/survey/2021#section-most-popular-
technologies-integrated-development-environment

Turovsky, B. 2016. Google Blog. Accessed 06.02.2022
https://www.blog.google/products/translate/ten-years-of-google-translate/

	1 introduction
	2 technologies
	2.1 Visual Studio Code
	2.2 Python
	2.3 Pillow
	2.4 Pdf2image
	2.5 Tesseract and PyTesseract
	2.6 Googletrans
	2.7 OpenCV2
	2.8 PyQt

	3 description of application
	3.1 Operation
	3.2 Usage
	3.3 Graphical User Interface Design

	4 implementation
	4.1 Research
	4.2 Command-line Version
	4.3 Graphical Version
	4.4 Installer

	5 Testing
	5.1 File handling
	5.2 Cleaning
	5.3 Translation

	6 Summary
	References

