

Teemu Kataja

Systems Integration Application

Implementation of an integration and automation
application for strengthening digitalisation

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

8.4.2022

Abstract

Author: Teemu Kataja

Title: Systems Integration Application

Number of Pages: 44 pages + 3 appendices

Date: 8 April 2022

Degree: Master of Engineering

Degree Programme: Information Technology

Specialisation option: Networking and Services

Instructors: Miikka Kallberg, Development Manager

Ville Jääskeläinen, Principal Lecturer

Digitalisation is a hot topic in the modern world that aims to create better
services that are more available and accessible. Transaction times for
anything and everything needs to be as short as possible, and usable by
virtually anyone, at anytime and anywhere.

This thesis investigates the digitalisation project of one Finnish
government agency. The agency deals with resource usage applications
in paper forms via postal mail. They have recently acquired new digital
systems for the application and archival procedures to replace their
physical world counterparts. Even with brand new digital systems, the
clerks must still deal with the processes of handling applications manually.

The topic of this thesis was to create a systems integration application that
ties three individual information systems together and automates data
flows between them. The new integration application aims to streamline
the resource application process for clients, and to help ease manual work
tasks of the clerks.

The product of this thesis was a brand-new software application. The
application was developed to be highly available through asynchronicity
and easily maintainable and deployable through containerisation and
configurability. The application was designed as a central relay hub for
horizontal integration model using a stateless architecture to ensure
problem-free operation.

Keywords: systems integration, automation, digitalisation

Contents

List of Abbreviations

1 Introduction 1

1.1 Employer 1

1.2 Customer 2

1.3 Thesis Topic and Structure 3

2 Method and Design 4

2.1 Project Method 4

2.2 Integration Design 5

2.2.1 Star Integration 5

2.2.2 Vertical Integration 6

2.2.3 Horizontal Integration 7

2.3 Current State Analysis 8

2.4 Goal State 9

3 Project Specifications 13

3.1 Information Systems 13

3.1.1 Resource Entitlement Management System 13

3.1.2 Digital Document Archive 14

3.1.3 Customer Resource Management System 15

3.2 Initial Plan 16

3.3 Revised Plan 18

3.4 Integration Workflows 19

3.4.1 Submission 20

3.4.2 Archival 26

3.4.3 Decision 29

4 Application Development 31

4.1 Technologies Selection 31

4.2 Application Implementation 32

4.3 Application Deployment 35

5 Application Testing 38

5.1 Testing Utilities 38

5.2 Regression Testing 39

5.3 End to End Testing 41

5.4 Acceptance Testing 42

6 Conclusion 44

References 45

Appendices 48

Appendix 1, Screenshot of REMS demo environment

Appendix 2, Resource application submission full workflow diagram

Appendix 3, Resource application archival process full workflow diagram

List of Abbreviations

AAI Authentication and Authorisation Infrastructure

API Application Programming Interface

CRMS Customer Relationship Management System

CSC CSC* – IT Center for Science Ltd.

CSC* Center for Scientific Computing (legacy acronym)

DDA Digital Document Archive

ESB Enterprise Serial Bus

E2E End to End (Testing)

HAS Hub-and-Spoke

HTTP Hypertext Transfer Protocol

IA Integration Application

NDA Non-disclosure Agreement

OAS OpenAPI Specification

OS Operating System

PDF Portable Document Forma

PEP Python Enhancement Proposal

REMS Resource Entitlement Management System

REST Representational State Transfer

UI User Interface

VM Virtual Machine

1

1 Introduction

Up until the recent times humans have always dealt with contracts in verbal or

written format. These methods of storing and passing information are falling into

obscurity, as the physical and analogue world start to downshift to make way for

digital services. Digitalisation is not only a hype word of the 21st century, but a

steadily growing trend of adopting new technologies and mindsets to ease our

everyday life.

Digitalisation aims to modernise services for businesses and individuals, and to

help enterprises grow and maintain hold of their ever-growing mountains of data.

Digitalisation also makes services more readily available and accessible, which

is a key point in restructuring services for a global world that never sleeps.

Companies can spread rapidly to provide solutions to a wider audience and

individuals will find that their lives become more flexible as errands can be taken

care of remotely.1

This thesis looks into the digitalisation project of one Finnish government agency,

where the thesis objective is to create system integrations and automations that

help bring online services to people and ease the tasks of government clerks.

1.1 Employer

The work conducted in this thesis was performed under the employment of CSC

– IT Center for Science Ltd. (CSC). CSC is a government owned non-profit

organisation operating under the direction of the Ministry of Education and

Culture (the Ministry).2 CSC is owned 70% by the Ministry, and 30% by Finnish

Higher Education Institutions, which in turn are governed by the Ministry.3(p3)

2

Figure 1. CSC ownership hierarchy.

CSC is a special task company that provides IT infrastructure and solutions for

the needs of scientific research, education, and public administration. As an in-

house company, CSC’s customers (public sector agencies) can buy services

from CSC directly without the need of a public procurement process, bypassing

the bids from third party vendors completely.3(p3-4),4 CSC’s non-profit nature helps

to lower the rise of expenses in the public sector, while keeping Finnish

institutions competitive on an international scale.3(p11)

1.2 Customer

The Customer is a government agency that collects, maintains, and administers

register data for research and statistical use. The Customer wishes to digitise

their resource application process, which until now, has been conducted solely

on paper forms via postal mail. The Digital Services Act5 dictates, that publicly

funded services are to be made accessible and available in digital (online) format.

In pursuit of digitising their services, the Customer has recently acquired two new

information systems to bolster their application handling process: a proprietary

3

Digital Document Archive (DDA) and an open-source e-form service called

Resource Entitlement Management System6 (REMS). These two new systems

are to be integrated to the Customer’s existing proprietary Customer Relationship

Management System (CRMS).

1.3 Thesis Topic and Structure

The topic of this thesis, and one of the goals for the digitalisation project, is to

implement an Integration Application (IA) that ties the Customer’s three

aforementioned systems together.

Chapter 2: Method and Design focuses on the background of integration design

and makes a case for the chosen integration method. The chapter also touches

on the administrative side of how the project was conducted. Finally, the current

situation is described as well as the goal state that the IA will establish.

Chapter 3: Project Specifications starts off with introducing the information

systems mentioned in 1.2 in more detail. The initial and final plans are laid out

and the chapter is concluded with detailed workflow diagrams framing the

integration data flows.

Chapter 4: Application Development presents the technical design solutions of

the IA on a high level. Features are abstracted and generalised for security

reasons.

Chapter 5: Application Testing shows how the developed IA was tested and what

were the outcomes of acceptance testing and production deployment.

Chapter 6: Conclusion closes the thesis with final remarks.

4

2 Method and Design

This chapter touches on the aspects of project culture, system integration and

implementation method (integration design). System integration is a process of

identifying isolated systems and their functionalities to create solutions that

enable communication across system boundaries. Integrated systems are often

created for the needs of automated data flows, but due to their inherent nature of

adding value to existing systems, emergent properties can be found.7,8

2.1 Project Method

The project was carried out in an agile method because the initial plan and

requirements were open-ended and not quite polished. Had the initial plan and

requirements been well fleshed out, the IA could have been implemented

following the waterfall model. Development began using the initial plan, which

was tested, and feedback was gathered in weekly meetings from the Customer

and their consultants of the proprietary systems.

Figure 2. Agile loop for the development of the IA.

The agile software development method is a way of producing incremental

changes that are then tested to get feedback that finally turns into new

requirements. Agile also expects teams to be self-organised to be able to bring

new ideas into the table at a rapid pace. Self-organisation in this case was

5

obvious as the IA has only one developer. Agile puts an emphasis on trial and

error: when things are not quite clear, it’s a perfectly reasonable method to test

ideas out and pick the one solution that fits the case best. As such, agile is an

iterative process that continually tries to improve the product.9 This method is

extremely powerful for creating ad hoc solutions.

2.2 Integration Design

Integration design is an important decision to make, as it lays out the scope of

the system integration. Some methods are more invasive than others in terms of

required changes to source code. Selecting the design for the job also depends

on available resources, as some options are simpler, faster, and easier to

implement than others. The following subchapters introduce common integration

designs and their benefits and drawbacks.

2.2.1 Star Integration

Figure 3. Star integration model where all systems are interconnected.

The star integration model, also called a point-to-point integration, is one of the

earliest integration designs. Using this method all systems are interconnected to

one another in a mesh of overlaying connections. Such a network is only

manageable with a few systems, and promptly becomes overly complicated and

unmaintainable as more systems are added. The star integration shows its

6

weakness when a new system needs to be integrated into an established

network, as Application Programming Interfaces (API) need to be updated on

every connected system. A system whose complexity increases exponentially is

difficult to maintain.7,8,9(p.8)

2.2.2 Vertical Integration

Figure 4. Vertical “silo” integration.

Vertical integration is often also called silo integration. In this integration design

unrelated subsystems are chained together into an isolated block. In vertical

integration, systems typically push data upwards in the silo in a way that each

upper system depends on the lower system to provide data for its needs. Vertical

integration may work well in cases where the systems need to work sequentially

like a pipeline, but it is difficult to modify and update the silo later, e.g., in case a

new system layer needs to be included in the stack. Vertical integration is

therefore a one-off type of method that provides a quick, but unmaintainable

solution.7,8

7

2.2.3 Horizontal Integration

Horizontal integration is divided to two general designs: Hub-and-Spoke (HAS)

model and Enterprise Serial Bus (ESB) model. The common denominator of the

horizontal design is the addition of a new subsystem: a message broker.7,8,9(p.10-

11)

Figure 5. Horizontal integration design with HAS model. Central hub serves as a
relay between systems.

The HAS model is reminiscent of the star integration modelFig.3, with a

distinguishing feature being the central hub substituting the interconnected mesh-

like network. The HAS model requires systems to expose APIs that can be used

to push or pull data on demand. The HAS model is easily expandable, as the Hub

provides a consistent API to which the systems can adhere to.7,8,9(p.10, p.20)

8

Figure 6. Horizontal integration design with ESB model. ESB provides a
publisher-and-subscriber platform for services to communicate with each other.

The ESB model is a more refined horizontal integration design that builds on the

base idea of the HAS model. ESB provides a publisher-and-subscriber platform

to which systems can push data that the ESB makes available for other systems

to consume. In this kind of design, the connected systems can potentially see

data flows from each other and selectively choose which sources to use in their

internal mechanisms.7,8,9(p.10-11, p.19)

The HAS model is relatively simpler to adopt for use with existing systems, as not

all connected systems need to know the Hub’s API. The Hub can be triggered by

one system, and other systems merely provide endpoints where data can be

gathered from. The ESB model is more laborious in this sense, as systems must

know and adhere to the ESB’s API in order to send and read data. This key

difference is pivotal for the selection of the integration design for the IA and will

be reiterated upon in Chapter 2.4 Goal State.

2.3 Current State Analysis

The current state of resource application process is extremely cumbersome for

the applicant and requires manual labour from the clerks at the Customer’s office.

There are multiple manual steps to take on both sides of the exchange that have

9

been identified and analysed to being time consuming, and in need of automation

to respond to the ever-growing number of applications.

Figure 7. Current state of resource application process.

The resource application process begins with the applicant downloading a paper

form from the Customer’s website.Fig.7(1.) The filled paper form is then delivered

to the Customer via mail Fig.7(2.) where a clerk reviews it and processes it into the

relevant systems and folders for keeping track of customer relations and

preservation of documents.Fig.7(3.) The decision is returned to the applicant in

paper form via mail.Fig.7(4.)

2.4 Goal State

The thesis objective is to integrate the Customer’s three information systems

together, and to automate data flows between them. The chosen integration

design is a horizontal integration using the HAS model. This method is

advantageous, as it uses existing APIs to create channels for data flow and

relieves the existing systems of needing to implement new features. This choice

was possible, because not all systems need to initiate events at the IA, which

means, not all systems need to know the API of the IA. A more detailed sequence

diagram depicting the workflows conducted by the IA will be introduced in chapter

3.4 Integration Workflows.

10

Figure 8. Overview of the information systems and the integration connections.

REMS will replace the use of paper forms for resource applications by providing

extensive online tooling for creating and managing electronic forms. The filled

applications and possible attachments are transferred to the DDA via the IA. The

CRMS is used to keep track of applicants (clients of the Customer) and their

resource permissions.

REMS (in green) is an open-source product developed at CSC, while DDA and

CRMS (in red) are proprietary systems of the Customer. As such, REMS is a

white box system, where it is possible to monitor the internal mechanisms and to

understand the system, whereas DDA and CRMS are black box systems, of

which only the APIs are exposed.

REMS will be the primary system to trigger events in the IA, while DDA and CRMS

mainly serve as data repositories where data is pushed to and pulled from.

Another event in the IA network is an intrinsic timed trigger that executes certain

tasks within the connected systems.

11

Figure 9. A clerk will oversee the systems that are automated by the IA.

The IA will integrate the information systems together and automate data flows

between them. This automation removes most of the clerk’s manual labour tasks,

but the clerk is still required to oversee the systems, and to approve and initiate

some tasks and functions.

With the new REMS and DDA systems replacing paper forms and paper archives

respectively, the clerk’s tasks remain mostly unchanged, only being replaced by

digital and automatic alternatives. The digital nature of the systems however

allows the clerks to sift through applicant details and documents using user

interfaces (UI) more easily and efficiently, as they provide search functionalities

which would not be available in traditional paper archive circumstances.

12

Figure 10. Single point of contact with the Customer via REMS.

When the IA and the system network is complete, REMS will become the main

point of contact for the applicant to converse with the Customer. The applicant is

provided with a single portal where they can send applications and receive

decisions. This digital service removes many time-consuming steps from the old

application process from both sides of the exchange, and additionally provides

more security as well as robust transaction and history logs for audit purposes.

13

3 Project Specifications

This chapter describes the information systems in more detail and presents the

initial and final (revised) plans that were received and conceived. The chapter is

concluded with workflow diagrams depicting the data flows of the IA based on the

revised plan.

3.1 Information Systems

The IA acts as a message broker between the following three information

systems.Fig.5, Fig.8 The systems provide extensive APIs which the IA leverages to

create value and relieves the vendors of the system from needing to create point-

to-point integrations.Fig.3

3.1.1 Resource Entitlement Management System

REMS is an open-source product developed at CSC.6 REMS was launched in

2012 and is currently living its second iteration (version 2). A screenshot of the

REMS UI taken from a public demo environment can be seen in Appendix 1.

REMS is an online e-form service that was developed for permission handling of

datasets. It provides organisations with a platform that contains tools for enabling

secure identification of users via federated Authentication and Authorisation

Infrastructures (AAI) or other trusted identity sources such as national identity

providers (e.g., Suomi.fi).

Resource permissions authorised from REMS can be given end dates, which

improves security by not allowing indefinite access rights to resources.

Permissions can also be revoked, or users blacklisted by administrators for

limiting access to data. REMS applications also contain licenses, which are

digitally signed with the authenticated users’ details, which provide legal validity

to contracts generated online.

14

REMS provides an extensive OpenAPI Specification (OAS) with examples and

written documentation to the internal functions, which makes REMS an extremely

easy system to interface with.

Figure 11. REMS data model.

The REMS data model consists of several vertical and horizontal hierarchies.

Categories are top-level entities that hold catalogue items. Catalogue items are

the e-forms that applicants select in the web UI for filling. Catalogue items consist

of workflows, resources, and forms. Workflows can be paralleled to ownership,

they are controlled by selected handlers, that are responsible for dealing with the

applications. Workflows can hold forms of their own. Resources are links to the

data that is being requested. Resources contain licenses which the applicant

must adhere to in order to gain access to the resources. Catalogue items can

also hold additional forms with the workflow-forms (it is possible that applicants

must fill multiple standalone forms for one application, e.g., personal details, data

use plan).

3.1.2 Digital Document Archive

DDA is provided by a third-party vendor, a supplier of the Customer. The purpose

of the DDA is to replace traditional paper folder archives, and to store documents

in digital format instead. The DDA is used to store all documents coming from

REMS, such as the resource application document and attachments provided by

15

the applicants. The clerks also use the DDA to store decision documents which

are responses to the applicants. The DDA is intended to be a long-term digital

storage and is equipped with the same legal requirements and protections that

concern traditional archives, such as viewing level privileges and disposal time

limits.

The DDA is a closed source system of which only the API is exposed of. Luckily

the DDA also provides an OAS similarly to REMS, but it lacks example values,

which makes it more difficult to work with. Example values for the duration of the

project were however provided on a separate document, but APIs are more

accessible when all relevant information is readily available from the APIs

themselves.

Figure 12. DDA data model.

The DDA data model is built in a hierarchical way. Top-level entities are cases

that are assigned permanent journal numbers for identification. Inside cases

there can be many document entities that are the real-world equivalent for folders.

Inside of documents there can be many files. Files are the real-world equivalent

for the actual paper forms and attachments.

3.1.3 Customer Resource Management System

CRMS is another system from a third-party vendor, from a supplier of the

Customer. The CRMS is used to keep track of all applicants and their resource

permissions. Resource applications are often valid only for the duration an

individual is a member of the organisation they were in when the resource

16

permission was granted. There also exists an integration between the CRMS and

the DDA which syncs customer information between the systems. This integration

has been done prior to the IA and is vital for the intended workflows to operate.

The CRMS is another closed source system of which only the API is exposed.

Unlike REMS and DDA, the CRMS does not provide an OAS, but the relevant

endpoints and example values were provided on a separate document.

Figure 13. CRMS data model.

The CRMS data model is built in a more horizontal fashion. Like in the DDA, the

case is the top-level hierarchy, but children in the case are not embedded within

each other. Inside of the case there can be many resources and participants.

Resources have permanent identifiers, and they represent the data the applicants

are requesting access for. Participant entities are created for each member of the

project group.

3.2 Initial Plan

The initial plan for the IA workflows at the beginning of the project were vague

and not fully scoped. Implementation of the IA was however started based on the

rough idea of what needs to happen and how, and the final plan was fleshed out

over the course of several weeks of feedback meetings with the Customer’s

consultants, the vendors of CRMS and DDA.Fig.2 Below is a workflow diagram

depicting the logic for the data flows and directions.Fig.11

17

Figure 14. Initial plan for the IA as a workflow diagram.

The general idea was, that applicants would fill e-forms in REMS and send them

forward to be processed. The IA would get an event notification that would start

the workflow (trigger: applicant). Details from a new application were to be

extracted and sent to the CRMS for registration, upon which an account number

was to be returned to the IA that was stored to REMS with an event completion

message.Fig.14(1-5)

A clerk would then visually verify the e-form and start an archival process. The IA

would get a second event notification that would start the workflow (trigger: clerk).

The IA would create a new case in DDA, which would return a journal number for

bookkeeping. This journal number would be returned to REMS and CRMS where

it would be assigned to the application. Next the IA would request attachments

from the application and send them to DDA for archival.Fig.14(6-13)

18

The final workflow is the decision process. The IA would get a third event

notification that would start the workflow (trigger: DDA). The IA would forward the

decision to REMS and mark the application as handled. REMS in turn would

inform the applicant of a new decision on their case. Finally, the IA would close

the case in both CRMS and DDA.Fig.14(14-18)

Considering this workflow diagram with greater analysis, we can see, that it

clearly consists of three separate events and workflows. These events would later

be framed in more detail; (1) application submission, (2) application archival, (3)

decision returning. The revised plan is introduced next in Chapter 3.3 Revised

Plan, and more detailed workflow diagrams for each stage are shown in the

following Chapter 3.4 Integration Workflows.

3.3 Revised Plan

Further development of the IA revealed that there are different types of

applications sent from REMS that are to be processed in separate workflows. The

table below lists three application types that were identified: resource

applications, non-disclosure agreements (NDA) and other, unsupported, types of

applications.

Table 1. Destination matrix of REMS applications based on application type.

Application type CRMS DDA

Resource application yes yes

NDA application no yes

Other applications no no

Resource applications are the main type applications. They are used for gaining

permissions to use restricted access data. Resource applications are registered

to both CRMS and DDA. The CRMS keeps track of client (applicant) details and

DDA is used to store relevant documents in the application process. NDA

19

applications are always required from each participant, they are not registered to

CRMS, as the participant information from the resource application already

contains this data. NDAs are however stored in DDA for legal purposes. Other

types of applications are not handled by the IA at all, they are processed manually

in REMS by the clerks.

The third event, (3) decision returningFig.11(14), was found to be intended to be

launched internally by the IA as a timed job, and not by the DDA. Other aspects

of the initial plan remained largely the same, only that more comprehensive

actions would be found out during the development. These more detailed steps

are shown in the next chapter’s each sub chapter representing the different

workflow types.

3.4 Integration Workflows

Author’s notes:

I. This chapter is highly technical and covers the IA workflow diagrams in

great detail. Explanations of steps are written below the figures for offering

understanding on the process.

II. Workflow diagrams have been simplified to contain short sentences.

Endpoints and authentication protocols have been redacted for security

reasons. Some minor (internal processing) steps have been omitted for

brevity.

III. Some workflow diagrams consist of so many steps, that it would not be

feasible to show the full workflow in a single figure on one page. In these

cases, the workflow diagram has been split up into sections, and the full

unsliced diagram has been added into the appendices.

20

3.4.1 Submission

Common Characteristics

A new case always begins with an application submission from REMS. No other

workflows can be initiated, if the relevant metadata created by the submission

workflow doesn’t exist. It’s important to notice in this chapter, that all submission

workflows begin with the same 5 steps:

1. An applicant fills an e-form in REMS and sends it forward,

2. REMS sends an event to the IA regarding a new submission,

3. IA requests the application data from REMS,

4. REMS returns the application data to IA,

5. IA parses the application data and decides which workflow, if any, to
initiate based on what kind of application it detected.

Figure 15. Workflow diagram for unsupported application type submissions.

21

Unsupported Applications

When an applicant submits an application that is of other type from a resource or

an NDA application, the application gets rejected by the IA, and the workflow is

aborted.Fig.12(6) This process happens silently, and the applicant or clerk are not

aware of the behind-the-scenes actions. These kinds of unsupported applications

are handled directly in REMS by the clerks, and as such, are not part of the IA’s

agenda, and will not be discussed further.

NDA Applications

NDA applications are the simpler kind of the two application types that get

processed by the IA. NDAs are signed by applicants prior to resource

applications, and they are always required in tandem. NDAs are valid forever,

and as such, are only required to be filled once. Old NDAs can be reused in future

resource applications.

22

Figure 16. Workflow diagram for NDA application submissions.

When an NDA application is received at the IA, the IA checks from DDA if there

is an existing NDA case where the application can be filed into. NDAs are filed in

annual cases. If an existing case was found, a new document entity is created in

that location. In other cases, a new case is first established for the year.Fig.16(6-11)

After the initial DDA operations the NDA application and signed licenses are

downloaded from REMS in Portable Document Format (PDF). These are

uploaded to DDA in a file entity.Fig.16(12-15) The workflow is completed by sending

a success message to REMS.Fig.16(16)

23

Resource Applications

The resource application submission workflow consists of so many steps, that for

reading assistance, the workflow diagram has been split to 3 parts, and each

section will be covered sequentially. The complete, unsliced, workflow diagram

can be seen in Appendix 2.

A resource application submission begins in a similar fashion to NDA

submissions, with one distinct caveat: instead of interfacing with DDA, the IA first

interfaces with CRMS.

Figure 17. Workflow diagram for resource application submissions, part 1/3.

The IA checks from CRMS if a case has already been created for the application.

If an existing case was found, then the case details are updated with changed

information from the REMS e-form (application data). If there are no existing

cases, then a new one is created.Fig.17(6-11)

The next step in resource application submissions is to handle the resources. The

resources contain technical identifiers and usage licenses that describe what

data the applicant is requesting access for, and what are the terms of use.

24

Figure 18. Workflow diagram for resource application submissions, part 2/3.

For each resource in the REMS application, the IA checks from CRMS if the

metadata already exists. If it does, the metadata is returned, in other cases, the

IA generates the necessary metadata from the REMS resource for later use

(different applicants can request access to the same data). Fig.18(12-16) Next the

workflow diverges based on if it’s an existing application that is updated, or a

totally new application submission. New application submission handling is

simple: resources are linked to the case, and then this step is complete.Fig.18(17)

For existing application submissions there are some additional steps to be taken.

First the existing resources that are linked to the CRMS case are requested, then

for each resource entity in the REMS application, the IA checks and matches

resources that are on the application, but not in CRMS, and vice versa (resources

that are in CRMS, but not in REMS). The resources that are missing from CRMS

are linked to the case, and resources that were found from CRMS but not from

the REMS application, are removed from the case, because they are

deprecated.Fig.18(18-21)

25

The final step in resource application submissions is to handle the participants.

The participant entities contain personal details such as the applicant’s name and

organisation affiliation, and means of contacting (phone, email, etc.).

Figure 19. Workflow diagram for resource application submissions, part 3/3.

The participant processing is performed similarly to the resource handling, but

whereas resources are distinct entities in the REMS application, the participant

information must be parsed from the structured data within the REMS e-

form.Fig.19(22-23)

For new resource application submissions, a new participant entity is created in

CRMS.Fig.19(24) For existing cases the process is again slightly longer. First the

existing participants are requested from CRMS, and then for each participant

listed in the REMS e-form, if a participant exists in the CRMS case, the existing

personal details are updated. If a participant does not exist in CRMS, a new

participant entity is created for them. And finally, any other participants are

26

removed from the CRMS case, because the REMS application represents the

current situation.Fig.19(25-29)

3.4.2 Archival

Similarly, to the resource application submission, the archival request workflow

consists of so many steps, that for reading assistance, the workflow diagram has

been split to 3 parts, and each section will be covered sequentially. The complete,

unsliced, workflow diagram can be seen in Appendix 3.

Figure 20. Workflow diagram for archival request, part 1/3.

Contrary to previous workflows, an application archival workflow is initiated by a

clerk, and not by an applicant. A clerk will visually approve the filled application

e-form in REMS, and either return it for correction, or approve it for the archival

workflow.Fig.20(1)

The archival workflow begins with the IA looking for an existing CRMS case

corresponding to the identifier received in the event notification from REMS. If no

case metadata is found, the workflow is aborted, and the clerk is notified of the

27

issue. The archival process depends on the proper execution of the submission

workflow prior to the archival request.Fig.20(6-8)

Between the CRMS and DDA there exists a data integration that syncs up client

details. After receiving case metadata, the IA attempts to verify, that the client

details received from CRMS exist in DDA. In case they don’t, the workflow is

aborted, and the clerk is notified of the issue.Fig.20(9-10)

Figure 21. Workflow diagram for archival request, part 2/3.

Next the IA looks for an existing application case from the DDA. If a case was

found, the metadata is returned for later use. If no existing case was found, then

a new archive case is issued. Archive cases are legal entities, and they hold a

permanent identifier “journal number” which is used to refer to the case. The

journal number is stored to both REMS and CRMS for book-keeping.Fig.21(11-16)

The next and final steps of the archival request describe the actual archiving

process of documents and files.

28

Figure 22. Workflow diagram for archival request, part 3/3.

If an application is being archived for the first time, new documents must be

created. Documents in DDA represent folders in the physical world and they can

hold multiple files inside of them. The IA begins with creating a document slot for

the application e-form, there is always only one application e-form coming from

REMS. The second document slot created is for the application decision. This

document is left empty, and it will be filled in by the clerks. When an application

has been approved, a digitally signed file is uploaded to the decision document.

Finally, for each attachment type, a document slot is created. As of the writing of

this thesis, there exists two types of attachments: public and confidential. Public

attachments are as their name suggests, in public domain. Confidential

attachments are handled with more care, and access to them is limited.Fig.22(17-22)

29

For existing cases only missing attachment documents are created, as

application and decision documents are always created regardless of the

application contents.Fig.22(23-24)

Next the application e-form is downloaded from REMS and uploaded to the

document slot in DDA. After this, each attachment is downloaded and uploaded

to the correct attachment type documents. As mentioned before, the decision

document will be left empty at this stage. Finally, the event is marked as

completed to REMS.Fig.22(25-31)

3.4.3 Decision

The final workflow works slightly differently from the previous ones, in that, it’s not

initiated by human interaction, but by a timed (cron) job. This automated workflow

is responsible for closing the previously opened cases.

Figure 23. Workflow diagram for requesting decision documents.

30

When the timed event is fired, the IA requests decision documents from the DDA

that are ready for further processing. Each decision document is verified, that it

belongs to the IA workflow and that the decision document has been digitally

signed, any other documents are discarded from the workflow.Fig.23(1-4)

For each file in the decision document, the file is downloaded from DDA and

uploaded to REMS as an attachment to the application e-form. This is the method

which is used for delivering the legal decision documents to the applicant via

REMS. Fig.23(5-8)

Finally, the application is marked as completed in each system. When the

application is closed in REMS, the applicant is notified, and they will find the

decision document from their application. Next the case is closed in DDA, which

produces a closure timestamp. This timestamp is retrieved from DDA and sent to

CRMS along with a case closure request. Lastly, the list of processed decisions

is returned as a response to the job manager.Fig.23(9-14).

31

4 Application Development

The product of this thesis (the IA) is an HTTP web service that exposes a REST

API for making requests for carrying out tasks. HTTP stands for Hypertext

Transfer Protocol, and it dictates how requests and responses are conducted

between servers. REST stands for Representational State Transfer and it

provides guidelines and constraints for building a web service in a deterministic

way to ensure interoperability and stability. These details are industry standards

and don’t require further investigation.

The following subchapters provide insight into the technological selections and

implementation details of the IA.

4.1 Technologies Selection

While starting the development of the IA, there were two options for the

programming language selection based on use case and previous experience:

Python and Go. Both are high level programming languages that can be used to

solve the issue in this project: to develop a web service that complies with HTTP

and REST principles.

Python is a multipurpose programming language that can, and has been, used to

create anything and everything. One of its strong points are its simple syntax that

is close to reading English text. Due to Python being so simple to understand it’s

a popular language for learning programming. Python is a dynamically (or

loosely) typed language, that allows variables to change meaning during runtime.

Due to the flexibility of Python it’s a very convenient prototyping tool and has great

developer productivity aspects from the quick development-loop of writing code,

to testing, and getting feedback.11(c.1.2), 12

Go is also a multipurpose programming language, however, it’s younger than

Python, and was developed with a single purpose in mind: systems programming.

Go was developed by Google to support their expanding cloud service needs. It’s

a statically typed and slightly more convoluted language, not as beginner friendly

32

as Python. The great thing about Go for web service development is, that it was

developed with concurrency in mind. Web services need to be able to serve

multiple requests and responses at the same time, and this feature has been built

into the core of Go. The same functionality in Python requires the use of special

asynchronicity packages.13(c.1), 14

Python is an extremely popular language due to its simplicity and availability of

premade packages to be used in nearly any use case. According to Statistics

Times, Python’s global share of programming projects in 2021 was 30.21%. Go’s

share for the same time period was a meager 1.52%.15

Had I been given the authority to decide the language of implementation for the

IA, I had gone with Go for its superior performance, stability, scalability, and use

case specialisation. However, similarly to the global share, the competence at

CSC strongly favours the use of Python over Go. As such, Python was the

language of choice, and improvements on it had to be made using additional

packages to build functionality over the base features.

4.2 Application Implementation

Figure 24. Event loop handles requests and responses asynchronously. Parallel
non-blocking coroutines carry out tasks.

33

Asynchronicity

Python is traditionally a synchronous programming language, in that, it executes

orders procedurally one after the other. To be able to serve multiple requests

coming to the web service simultaneously, an additional asyncio-package had to

be leveraged. Asyncio provides new features to Python in the form of an event

loop, coroutines, and futures.16 Using these features the web service can

simultaneously receive requests and send back responses without blocking the

processing of other clients.Fig.24

Managing a Growing Codebase

When starting with the implementation, the dynamic typing nature of Python was

convenient for rapidly testing different use cases, and iteratively building the

application to work as intended. However, as the project grew, I started to have

trouble in remembering the contents of variables being passed around from

function to function in the program. In Go this would have been a non-issue, as

the statically typed variables would self-document their contents and purpose.

For Python, optional type hints can be built using the Typing-package.17 This

brings similar constraints to Python that exist in statically typed languages, where

a program refuses to build if conflicts are detected. Adding typing to large Python

projects is virtually mandatory, as the vague nature of missing variable and

function types will make a project unmaintainable as the codebase grows.

Stateless Architecture

When designing a web service, a decision must be made for state and data

management. If a service stores data and operates according to the shape of the

data, then it’s a stateful service. A stateful service may behave differently from

time to time depending on the form of data it’s storing. Another style, in a stateless

service, is to store no data. A stateless service behaves idempotently; it always

does the same thing when executed, as it is operating independently from the

context of previous data. This style of architecture greatly simplifies a program in

both operation, deployment, and maintenance.18

34

The IA’s architecture style is a stateless web service. This decision was possible

because the subsystems in the HAS-model, where the IA serves as the central

relaying hubFig.5, Fig.8, are already equipped with databases of their own that store

all relevant information needed for their operation. This reality relieved the IA from

needing to have its own database for tracking transactions, as the systems are

bolstered with APIs that allows the IA to push and pull contextual data during its

workflows. As the IA has no database of its own, there are no states that can get

jumbled up in confusion and later hamper its operation. Each request to the IA

starts from nothing, and context is gathered from the subsystems’ databases.

Configurability

An important aspect in creating long lasting software is to make them

configurable. With a great amount of configurability, a program can be tweaked

using simple text files instead of making code changes, that then require new

versions to be built and deployed.

Figure 25. REMS e-form parser.

One of the key features of the IA is extracting specific data from REMS application

e-forms to be pushed into CRMS. Application e-forms can be updated on demand

as needed, as opposed to traditional paper forms. The IA must be able to respond

to changes swiftly, and so, an intricate e-form parser was developed as part of

the application submission workflow. The e-form parser takes the REMS e-form

35

contents and a configuration file as input and parses the raw data into the desired

format in which the CRMS can process it.Fig.16-19, Fig.25

4.3 Application Deployment

There are many ways for applications to be deployed to production with. The

simplest method that was used in the past was to just start the application on

some machine and expose its port to the internet. This method is not very

scalable of course, since the application that was being run on a single machine

would consume resources directly from other processes and the operating

system (OS) itself. It was also cumbersome to start new replicas on separate

machines, as doing so required manual labour each time for setting up the

environments. Since then, new virtualisation techniques have been developed

that allowed proper resource handling to be performed on the host hardware.19

Figure 26. Virtual machine deployment scheme.

Virtual machines (VM) were the first step to improving the scalability of

deployments through the emulation of physical computers using software called

a hypervisor. The hypervisor is a program that administers these virtual

environments. VMs contain all the same elements as a normal physical computer,

but instead of being run on dedicated hardware (motherboard and processor),

36

the process is emulated in a virtual environment that is running on top of another,

existing, OS, with its own hardware. VMs also provided isolation and environment

separation which increased the security of applications, as access and visibility

could be restricted to the virtual environments only. Another positive aspect that

came from virtualisation was the possibility to automatically provision new

services in order to scale deployments horizontally.19, Fig.26

VMs, while being a step in the right direction, are not without issues themselves.

Running them requires allocating static resources to the individual VMs, so that

even if the emulations don’t require all the resources they are allocated, they are

still reserved for those VMs, and can’t be utilised by other processes. A more

granular approach has been developed with the use of containers, that provide a

more minimalistic approach to virtualisation.19

Figure 27. Container deployment scheme.

While VMs emulate a complete physical computer environment, containers are a

step down in complexity: they aim to only provide an isolated environment from

the host machine where a single application can be run without interference.

Because containers have the possibility of sharing the host OS and kernel, their

resource management is much more powerful. Containers can be configured to

only use the resources they need at a single moment. When a container

application is not processing anything, the resources are freed back to the host

system for use by the host OS, or other containers. This feature allows more

applications to be run on dedicated hardware compared to the heftier VMs.19

37

Containers are administered by a container manager runtime, of which one of the

most popular ones, also the one used in this project, is Docker. Docker provides

extensive tooling for building and deploying applications while using minimal host

system resources. The IA was built using a multistage docker image that packs

the business logic into a very small image, that can then be run in an application

container. The size of the image is in the magnitude of dozens of megabytes,

while VM images tend to range in the magnitude of hundreds of megabytes to

several gigabytes.

38

5 Application Testing

Testing is a mandatory step in software development in order to create quality

code. Feathers20 suggests, that any code without tests is automatically legacy

code, and in order for code to be of good value, it is to be well maintained, which

includes having rigorous test cases.20(c.2, c.7) The operation of the IA is intended

to last indefinitely, thus, it also requires a set of testing tools to aid in development

as well as automated regression tests (introduced later in Chapter 5.2) to help

with feature development and other code changes.

5.1 Testing Utilities

Proper testing of software often requires tools of convenience to aid in mimicking

real world scenarios or to ease laborious manual tasks. During the development

of the IA, two helper tools were birthed in tandem: a tool for copying REMS

resources from one environment to another, and a tool for mocking digital

signatures of electronic documents in DDA.

REMS Copy Tool

The intricate data model of REMS was introduced in Chapter 3.1.1

with Figure 11.

Software testing should always be carried out in testing environments which are

separated from the real production environments. For testing REMS

functionalities, it is beneficial to create an initial testing environment where

everything is laid out and all aspects are tested rigorously. After tweaking and

fine tuning, the resources can then be copied over to a production environment.

This method of testing allows the production environment to stay free of the clutter

of deprecated items that were rejected during testing.

The amount of REMS resources varies from user to user, but they are often quite

numerous. In the case of the Customer, their catalogue contains over a hundred

different resources, not to mention their supporting forms, licenses, and

39

workflows. In total, there are so many items, that transferring them between the

testing and production environments every time new versions are created, would

be too time consuming to be done by hand. For this purpose, a REMS copy tool21

was created that can be used to copy only the changes between environments,

similarly to how git handles code changes.

DDA Digital Signature Mocking Tool

When the Customer’s clerks handle cases, the end result is always a legal

decision document, which must be digitally signed by the clerks to ensure

authenticity and validity. The signature is verified by the IA during the decision

retrieval.Fig.23(4) The digital signing and certification of documents is done in the

DDA, however, this feature is missing from the test environment, so a tool had to

be devised to help the clerks play out the full workflow in the test environment.

The tool mocks the digital signature process, so that the decision document may

travel onwards from the DDA, via the IA finally to REMS.

5.2 Regression Testing

Regression testing is a method of quality assurance for detecting and preventing

bugs from being introduced with new features and code changes. A regression

in a codebase happens when changes are introduced and something that used

to work before now suddenly doesn’t anymore. Regression testing is usually an

automated process that can be executed quickly to verify that small incremental

changes have not broken the software. When breaking changes are introduced,

it requires updating the tests cases accordingly.20(c.2), 22

Unit Testing

The characteristics of unit tests are small and isolated test cases that test a single

functionality in a code, for example, the execution of a single operation or a

function call. The advantage of unit tests is that they are often quick to run, and

they can swiftly test multiple different cases of a function’s operation. The

disadvantage is, that their number is often large, and updating a small piece of

40

code requires updating many test cases, however, the value they bring in

preventing bugs is often much greater. Unit tests are usually used to calculate a

testing coverage of the codebase, which tells the amount of code that has been

run and verified. This value can be used as a metric of how well maintained a

codebase is, and it is generally said that programmers should strive to maintain

a coverage of over 80%.20(c.2)

It is important to understand about testing code functionality, that tests should not

only be made for ideal cases where the operation works perfectly from start to

end, but also to verify, that error cases are handled appropriately.

Table 2. Codebase metrics of the IA (calculated with Linux command find and
python package unittest).

Category Metric (n)

Business logic (codebase) 2082 lines

Testing logic 2176 lines

Test cases 128

Configuration files 690 lines

Statements 1076

Tested statements 1048

Missed statements 28

Coverage 97%

The business logic of the IA (the codebase) contains 2082 lines of code, including

comments. The business logic relies on configuration files, which add another

690 lines on top of it. The test suite with all the 128 individual test cases covering

this codebase is written with 2176 lines of code. In the codebase there are 1076

individual statements of which 1048 are covered in the unit tests, bringing the

code coverage to 97%. A statement in a code is any operation that the stack

executes, for example, a variable assignment, an if-else-clause, a function call,

etc.

41

Typing Enforcement

Another vector to regression testing is typing enforcement. While unit tests

ensure that functions work as intended, typing enforcement ensures, that the

variables that are passed between the functions retain their correct forms. This

aspect is not inherently covered by python’s dynamic typing, but this was

achieved by adding type hints with the typing17 package, and type validation with

the mypy23 package.

Style Enforcement

There are as many programming styles as there are programmers

programming programs.

While unit tests and style enforcement may fail due to syntactic reasons, it’s

possible for horribly written code to pass testing and usage requirements.

Software developers often need to agree on common conventions when they are

working together on projects, and the Python Software Foundation has also

devised such guidelines in their Python Enhancement Proposal (PEP) article 8.24

Using the rules of PEP-8 developers can impose strict code quality requirements

to ensure that code remains consistent and readable in the future. This style

enforcement for the IA was conducted using the black25 package, which also

provides automatic formatting as means of improving developer productivity.

5.3 End to End Testing

End to end (E2E) testing is a framework of testing the whole pipeline of

functionalities from start to end. It often involves laying out a plan for each step

to be tested and verified for functioning correctly.26

For the IA, E2E testing was conducted manually, with a plan devised for

automated testing. Manual testing is simple, but it only allows to test the

successful operation and some error cases. To be able to test all error cases,

mock services will need to be built of each subsystem in network.Fig.8 Automated

42

E2E testing is a laborious task and is thus excluded from the topic of this thesis

and will be developed at a later date as deemed necessary.

5.4 Acceptance Testing

Acceptance testing is a set of final testing to verify that software meets a set of

essential criteria before being passed on to production. This stage is conducted

as black box testing, where only the outcome is under scrutiny.27 Acceptance

testing for the IA was conducted during meetings with the Customer, with having

representatives of each system present to note down flaws, while the Customer’s

clerks attempted to execute various operations in the different systems.

Table 3. Acceptance testing meetings, findings, and fixes.

Meeting
number

Findings Fixes

1 • Some DDA documents
were stored under a
wrong classifier

• Edit configuration values
in IA

2 • Bug in DDA that prevents
document metadata from
being formed

• Typo in IA caused wrong
resource translations to
be transferred to CRMS

• Bug fixed in new version
release

• Fixed typo

• Edit configuration values
in IA

3 • Bug in REMS that caused
forms to disappear when
copying a previous
application and adding a
new resource to
application

• Bug fixed in new version
release

4 • Error in CRMS when
linking resources to
applications

• Human error, resources
were set as deactivated

5 • Bug in DDA causes
decision documents to
not be findable

• No solution to bug

43

6 • Bug in DDA causes
decision documents to
not be findable

• Modify the way IA
queries decision
documents from DDA to
be able to find faulty
decision documents
(temporary fix)

A total of six acceptance testing sessions were held, before all issues were taken

care of. In total there were 4 bugs found across the systems and a couple of

minor configuration errors. The bugs in IA were misclassifying documents for

DDA and a typo in reading resource translations from REMS to be pushed to

CRMS. As configuration errors, the fixes were issued swiftly. REMS had a share

of one bug where an application would lose an e-form when the application was

copied to a new application and the resources were changed. A fix was issued

for this on code level and a new version was released. CRMS was the best

performing system of the bunch, as no flaws were found from it, only human

errors that were corrected with process guidelines. DDA had the majority of

issues from the four systems. The first issue was related to document metadata

not being formed correctly based on underlying rulesets. This issue was fixed

with a new version release. The second issue of decision documents not being

findable was caused by an unknown conflict in the database, and its cause is still

unknown to this date. The issue hasn’t been fixed, but a workaround was devised

to it from the IA’s side, by querying decision documents in a different manner.

This fix was deemed to be a temporary solution by the DDA’s personnel while

they investigate the issue.

44

6 Conclusion

Digitalisation is quickly transforming the service industry landscape by being able

to provide services more rapidly to a wider audience around the clock. The most

notable advantage digital media provides is the service availability, as most things

that previously required queueing at an office during daytime, can now be done

in the middle of the night, leisurely from one’s home. The second advantage

comes from the newfound accessibility from the nature of digital media. Paper

forms and human clerks at a reception can only serve a very narrow clientele:

those who can read, and who speak the same language as the clerks. With

digitalisation, services can be used by virtually anyone using the right accessibility

tools, be it translation, text-to-speech, or any other form of aid.

The goal of this thesis was to create a systems integration application, that not

only connects independent systems together, but also automates work tasks for

the clerks. The application was developed to be highly customisable and free of

regular maintenance. These aspects were achieved using elaborate

configuration schemes and stateless architecture. The finished application was

positively received by the Customer, with the following quote received from the

project manager after one of the acceptance testing sessions:

“I have been in the IT industry for 25 years, and this is the best

performing systems integration that I have witnessed to date.”

Overall, I am very happy with the results of the project and the integration

application that I created. It was my first outside-company project that I largely

designed, developed, and maintained communications with the end customer by

myself. My only grievance comes from the choice of the programming language,

where I would have rather used Go over Python.

The IA has now finished acceptance testing and has been deployed to

production. The expected application volumes linger somewhere around 500 per

year. The next steps for the application are to prepare for new features to be

added and to contemplate on the creation of automated E2E testing scenarios.

45

References

1 Digitalisation [Internet]. Ministry of Finance; [cited 22 Jan 2022] Available
from: https://vm.fi/en/digitalisation

2 Regulation 30.4.2010/310 [Internet]. Helsinki: Republic of Finland; 30 Apr
2010 [cited 1 Jan 2022]. 2§ Agencies, departments, companies and other
institutions of the Ministry of Education and Culture. Available from:
https://finlex.fi/fi/laki/ajantasa/2010/20100310#P2

3 The board's proposal to parliament for a law on a limited liability company
called CSC – IT Center for Science Ltd [Internet]. Helsinki: Ministry of
Education and Culture; 19 Oct 2018 [cited 1 Jan 2022]. Available from:
https://api.hankeikkuna.fi/asiakirjat/d9ce7f26-6255-41e4-ba52-
3dce39f6d90f/08e96958-f5b5-4020-8600-
07087d2daa5c/KIRJE_20181113110425.pdf

4 Law 1397/2016 on public procurement and concessions [Internet]. Helsinki:
Republic of Finland; 29 Dec 2016 [cited 1 Jan 2022]. 17§ Exclusive service
contracts. Available from:
https://www.finlex.fi/fi/laki/alkup/2016/20161397#Pidm45237816340688

5 Law 306/2019 Digital Services Act [Internet]. Helsinki: Republic of Finland;
15 Mar 2019 [cited 4 Jan 2022]. Available from:
https://www.finlex.fi/fi/laki/alkup/2019/20190306

6 Resource Entitlement Management System [Internet]. Espoo: CSC – IT
Center for Science Ltd.; 2017 [cited 4 Jan 2022]. Available from:
https://github.com/CSCfi/rems

7 What to know when planning system integration [Internet]. Cleo; [cited 23
Jan 2022]. Available from: https://www.cleo.com/blog/system-integration

8 Hou, Z.X. Guest editorial: Special Issue on Network Integration Technology
[Internet]. Telecommunication Systems; New York. May 2013 [cited 23 Jan
2022];53(1):1-2. Available from: http://dx.doi.org/10.1007/s11235-013-
9669-2

9 Agile 101 [Internet]. Agile Alliance; [cited 22 Jan 2022]. Available from:
https://www.agilealliance.org/agile101/

10 Spackman, D. Speaker, M. Enterprise Integration Solutions. Redmond,
Washington, USA: Microsoft Press; 2005. 368 p.

11 Lutz, M. Programming Python. 3rd edition. Sebastopol, California, USA:
O’Reilly; 2009. 400 p.

12 General Python FAQ [Internet]. Python Software Foundation; [cited 18 Mar
2022] Available from: https://docs.python.org/3/faq/general.html

https://vm.fi/en/digitalisation
https://finlex.fi/fi/laki/ajantasa/2010/20100310#P2
https://api.hankeikkuna.fi/asiakirjat/d9ce7f26-6255-41e4-ba52-3dce39f6d90f/08e96958-f5b5-4020-8600-07087d2daa5c/KIRJE_20181113110425.pdf
https://api.hankeikkuna.fi/asiakirjat/d9ce7f26-6255-41e4-ba52-3dce39f6d90f/08e96958-f5b5-4020-8600-07087d2daa5c/KIRJE_20181113110425.pdf
https://api.hankeikkuna.fi/asiakirjat/d9ce7f26-6255-41e4-ba52-3dce39f6d90f/08e96958-f5b5-4020-8600-07087d2daa5c/KIRJE_20181113110425.pdf
https://www.finlex.fi/fi/laki/alkup/2016/20161397#Pidm45237816340688
https://www.finlex.fi/fi/laki/alkup/2019/20190306
https://github.com/CSCfi/rems
https://www.cleo.com/blog/system-integration
http://dx.doi.org/10.1007/s11235-013-9669-2
http://dx.doi.org/10.1007/s11235-013-9669-2
https://www.agilealliance.org/agile101/
https://docs.python.org/3/faq/general.html

46

13 Chisnall, D. The Go Programming Language Phrasebook. Ann Arbor,
Michigan, USA: Addison-Wesley; 2012. 264 p.

14 The Go Programming Language Specification [Internet]. Google; [cited 18
Mar 2022] Available from: https://go.dev/ref/spec

15 Top Computer Languages [Internet]. Statistics Times; [cited 18 Mar 2022]
Available from: https://statisticstimes.com/tech/top-computer-
languages.php

16 Asyncio – Asynchronous I/O [Internet]. Python Software Foundation; [cited
18 Mar 2022] Available from: https://docs.python.org/3/library/asyncio.html

17 Typing – Support for type hints [Internet]. Python Software Foundation;
[cited 18 Mar 2022] Available from:
https://docs.python.org/3/library/typing.html

18 Stateful vs. Stateless Architecture: Why Stateless Won [Internet]. Dwyer,
G., Virtasant [cited 19 Mar 2022] Available from:
https://www.virtasant.com/blog/stateful-vs-stateless-architecture-why-
stateless-won

19 P. K. Singh, M. Kumari. Containers in OpenStack. Packt Publishing; 2017.
176 p.

20 M. C. Feathers. Working Effectively with Legacy Code. 1st edition. Pearson;
2004. 464 p.

21 REMS Copy – A helper tool for copying items from one REMS instance to
another. CSC – IT Center for Science Ltd. [cited 26 Mar 2022] Available
from: https://github.com/CSCfi/rems-copy

22 What Is Regression Testing? Definition, Tools, Method, And Example
[Internet]. Software Testing Help. [cited 26 Mar 2022] Available from:
https://www.softwaretestinghelp.com/regression-testing-tools-and-methods

23 Mypy [Internet]. The Mypy Project; [cited 26 Mar 2022]. Available from:
http://mypy-lang.org/

24 PEP 8 – Style Guide for Python Code [Internet]. Python Software
Foundation; [cited 26 Mar 2022]. Available from:
https://peps.python.org/pep-0008/

25 Black [Internet]. Python Software Foundation [cited 26 Mar 2022]. Available
from: https://github.com/psf/black

26 End To End Testing: A Detailed Guide [Internet]. S. Bose. BrowserStack;
2021 [cited 26 Mar 2022]. Available from:
https://www.browserstack.com/guide/end-to-end-testing

https://go.dev/ref/spec
https://statisticstimes.com/tech/top-computer-languages.php
https://statisticstimes.com/tech/top-computer-languages.php
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/typing.html
https://www.virtasant.com/blog/stateful-vs-stateless-architecture-why-stateless-won
https://www.virtasant.com/blog/stateful-vs-stateless-architecture-why-stateless-won
https://github.com/CSCfi/rems-copy
https://www.softwaretestinghelp.com/regression-testing-tools-and-methods
http://mypy-lang.org/
https://peps.python.org/pep-0008/
https://github.com/psf/black
https://www.browserstack.com/guide/end-to-end-testing

47

27 What Is Acceptance Testing (A Complete Guide) [Internet]. Software
Testing Help; [cited 26 Mar 2022]. Available from:
https://www.softwaretestinghelp.com/what-is-acceptance-testing/

https://www.softwaretestinghelp.com/what-is-acceptance-testing/

48

Appendices

Appendix 1, Screenshot of REMS demo environment

49

Appendix 2, Resource application submission full workflow diagram

50

Appendix 3, Resource application archival process full workflow diagram

	List of Abbreviations
	1 Introduction
	1.1 Employer
	1.2 Customer
	1.3 Thesis Topic and Structure

	2 Method and Design
	2.1 Project Method
	2.2 Integration Design
	2.2.1 Star Integration
	2.2.2 Vertical Integration
	2.2.3 Horizontal Integration

	2.3 Current State Analysis
	2.4 Goal State

	3 Project Specifications
	3.1 Information Systems
	3.1.1 Resource Entitlement Management System
	3.1.2 Digital Document Archive
	3.1.3 Customer Resource Management System

	3.2 Initial Plan
	3.3 Revised Plan
	3.4 Integration Workflows
	3.4.1 Submission
	3.4.2 Archival
	3.4.3 Decision

	4 Application Development
	4.1 Technologies Selection
	4.2 Application Implementation
	4.3 Application Deployment

	5 Application Testing
	5.1 Testing Utilities
	5.2 Regression Testing
	5.3 End to End Testing
	5.4 Acceptance Testing

	6 Conclusion
	References
	Appendices
	Appendix 1, Screenshot of REMS demo environment
	Appendix 2, Resource application submission full workflow diagram
	Appendix 3, Resource application archival process full workflow diagram

