

Lam Pham

DEVELOPING SENSOR MANAGEMENT APP

DEVELOPING SENSOR MANAGEMENT APP

 Lam Pham
 Bachelor’s Thesis
 Spring 2022
 Degree in Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Bachelor’s degree in Information Technology

Author(s): Lam Pham
Title of the bachelor’s thesis: Developing Sensor management app
Supervisor(s): Lasse Haverinen
Term and year of completion: Spring 2022
Number of pages: 52

Nome Oy needed a management system for their sensors, which refer to both
sensors in stock and those belonging to their customer. The company wanted to
keep track of the sensors’ data and update their status. This thesis aims to create
a system to manage the data flow of the sensor and monitor the ownership as
well as the logistic process of sensors delivery. The work was commissioned by
Nome Oy.

The working process started with research on current data storage, data flow
management, and sensor monitoring system. Next, the system was designed and
implemented based on the result of the research. A database was created to
store all information about the sensors. Then, a system was built to manage data
flow, update sensor data, and interact with sensors’ owners. MQTT is the main
transmission protocol for sensor data.

As a result, at the end of this thesis, the system passed the testing process and
was running on the company server for management purposes. We create one
private website for monitoring sensors on the client-side and one web application
for database interaction graphically. A mobile application has been created for
monitoring sensors with BLE advertisements.

Keywords: Sensor, monitor, MQTT, BLE

 4

CONTENTS

ABSTRACT 3

CONTENTS 4

VOCABULARY 6

1 INTRODUCTION 7

1.1 General Background 8

1.2 Requirements 8

2 THEORETICAL BACKGROUND 10

2.1 Nodejs 10

2.1.1 ReactJs 10

2.1.1.1 Material UI 11

2.1.1.2 ForceGraph 12

2.1.2 ExpressJs 13

2.1.3 React Native 13

2.2 MQTT 14

2.3 JanusGraph 14

2.4 NodeRed 16

2.5 Development tools 17

2.5.1 Git, Gitlab 17

2.5.2 Visual Studio Code 17

2.5.3 Android environment 17

3 SYSTEM STRUCTURE 19

3.1 System Model 19

3.2 MQTT Broker and Client 23

3.1 Front-end 24

3.1.1 Hybrid Mobile Application 24

3.1.2 Web Application 25

3.1 Back-end 26

3.4 Database 27

3.4.1 Requirements 27

3.4.2 Schema and data structure 28

 5

4 IMPLEMENTATION 30

4.1 API Application 30

4.1.1 Routing 30

4.1.2 Development and deployment 32

4.2 Web Application 32

4.2.1 Data visualization module 32

4.2.2 Sensor management 35

4.3 MQTT Client 37

4.3.1 Data Updating 39

4.3.2 Deadman Check 41

4.3 BLE Advertisement Mobile Application 42

5 RESULT 44

4.1 The outcome of the project 44

4.1 Usability Testing 47

4.1 Functional Testing 47

6 CONCLUSION 49

REFERENCES 50

 6

VOCABULARY

API Application Programming Interface

APK Android application package

BLE Bluetooth Low Energy

HTML HyperText Markup Language

HTTP Hyper Text Transfer Protocol

IT Information Technology

IoT Internet of Things

JSON JavaScript Object Notation

MAC Media access control

MVC Model-View-Controller programming structure

SQL Structured Query Language

UI User Interface

URL Uniform Resource Locator

URI Uniform Resource Identifier

 7

1 INTRODUCTION

1.1 General Background

Nome Oy is a Finnish technology company, based in Oulu, which specializes in

providing high-quality condition monitoring products and services. One of the

main products that they are supplying to their B2B customer are sensors. These

sensors measure different figures of the machine that they were attached to; the

figures included temperature, vibration, battery status, and other scientific data.

Data collected from this measurement decides the condition status of the

machine and the sensor then sent an alarm to the machine owner if there is a

problem. The system needed the following services:

 A database and data structure for sensors.

 A platform for monitoring sensors and data flow.

 Services for customers to manage their sensor.

 Sensor real-time update.

The condition of these sensors was hard to monitor manually and the company

had to manage a vast number of sensors. Therefore, the main objective of the

thesis was to develop a technological system that helps both technical

supervisors and sensors provider easily handle sensor situations. Furthermore,

the major purpose of the project was to provide sensor providers with a method

for remotely controlling the condition of sensors belonging to specific customers.

There are different users in this system, therefore, the system was also required

for security and authentication methods. These methods aim to set a limitation of

permission to an individual user and only allow users to interfere with the system

data based on their permission.

The system can be described as the following:

 Data is exchanged between sensors and the server using the MQTT

protocol; this data is collected and stored in the database.

 Web application was developed for interacting with the database and

providing data visualization for the interface.

 8

 A Web application provided a UI interface for managing sensors.

 A mobile application was also created to monitor nearby sensors using

BLE advertisement technology.

1.2 Requirements

Requirements for this project were established at the start of this project to

provide visions and scopes for the final products. The aim of these requirements

was to ensure the performance and quality of the system at the end of the

development process.

Firstly, data processing should be handled accurately and well-structured as the

main target for the project was managing the dataflow of the system. To archive

this goal, the system architecture should be well designed and the functionality

of each component needs to work properly. It was important that every

component in the system should work closely and in association with each other.

In case of error occurred in the component, there should be warnings and

immediate action must be taken to maintain the dataflow.

The second requirement is that the system should provide good quality UI to

guarantee user experience. In this software, sensor data was demanded to be

displayed logically for content presentation, users can search and view the data

easily. Indeed, the UI needed to be well-organized and well-structured so that

users can follow and understand it. Besides, the interaction between the user and

the application was required to be handled on a real-time basis, every function

and service needed to be executed step-by-step with quick response and

accuracy. The UI software was divided into 2 modules:

1. Warehouse module: Which managed shipment information of sensors to

warehouses including arrival time, calibration certificates, date of sales.

2. Monitoring module following sensor data, sensor status.

Another factor that should be considered is security. The data should be secured

according to user permission. Every user has their own account which allows

them to log in. Each account has permission that allows them to access a specific

 9

field of data within their authorities and these permissions were granted by the

system administrator.

For deployment environment, all the web application and API application is

developed and deployed to company’s Linux server running in Node.js. The

database is also hosted in Linux server and store in Websockets. Moreover, the

server also has duty to run MQTT client script and keep that process run forever.

Finally, the mobile application should be created as APK file for testing and further

deployment.

 10

2 THEORETICAL BACKGROUND

2.1 Node.js

Node.js is an open-source, cross-platform JavaScript runtime environment that

runs on a V8 engine and executes codes outside the web browser [1]. Node.js

allows the creation of web servers, and other networking tools using JavaScript

and numerous supporting modules that help to handle core functionalities.

Node.js is widely used by developers and IT companies in their projects.

Moreover, it has a big and healthy community that continuously contributes new

or updated libraries to this open-source service.

Node.js is outstanding in its ability to build fast in response, scalable network

applications, faster and easier development, and compatibility with most OS [1].

Above all, the most important feature that Node.js provides to the current market

and why most software project uses this environment is the ability to process real-

time data fast in multi-user conditions.

2.1.1 React

React is a JavaScript library for building user interfaces based on UI components.

The basic concept behind this library is that it allows developers to build a single

web page using reusable components [2].

The application web page created in React is divided into components. Each

component can also have a child component which makes it convenient to build

and manage a webpage in terms of UI development. These components are

created with HTML tag and JavaScript and can be written in JSX syntax which is

another form that acts as DOM createElement method. Each component in React

can be written as a function or a class. The components are used to tell React

what should be seen in a web page screen. The method of displaying

components items in one web page is called rendering.

 11

‘State’ in React is where data in React application is declared and stored. The

React component uses this state to show data on the screen. Each component

can store its data by creating its own state. The React component will be re-

rendered when the state is updated. The child component can also get data and

function from the parent component using ‘props’ [2].

React is widely known for its efficiency in developing application user interfaces

There are some advantages of using React compared to other libraries in web

development:

- Easy to build and deploy

- Using component concept: Separate components into different folders and

files which helps developers to improve the quality of code structure and

file structure, making it easier for them to manage each component and

manipulate it when they want to make an adjustment to the component.

- Using JSX syntax which helps coding easier

- Having many supporting library packages

- Quick in updating data and re-rendering

- Components are reusable

- Easy to learn and understand

2.1.1.1 MaterialUI

Material UI is a robust, customizable, and accessible Node.js library that provides

ready-made advanced components that help the developer to build and develop

React applications faster [3]. Material UI offers a huge of number customized

styling components. The developer can also modify the configuration of the

ready-made component if he wants by stating the change in the ThemeProvider

component.

Material UI makes the styling implementation process quicker, easier, and more

satisfying. It is well-documented so that provided features can be easy to apply.

One aspect that Material UI is the favourite UI library compared to other CSS

libraries is it supports components in React, every component in Material UI has

 12

been developed with React components and can be added directly to the

rendering function.

2.1.1.2 ForceGraph

ForceGraph is a UI library that provides abilities to display graph data in a 2D

layout on a web platform. The graph is rendered in HTML canvas on the physic

engine of d3 [4]. It is commonly used to visualize the connections between objects

in a network.

Figure 2.1 How nodes and links are shown in Forcegraph [5]

Figure 2.1 is an example of how objects and the links between them are displayed

on. The module gathers a set of information about objects and links and then

displays them automatically based on that data. In this layout, the user can see

 13

clearly the relationship between objects, and all the graph data and interact

directly with the data. In this project, we use this library to create a web application

for visualizing data and manipulating the data on a user-friendly web platform.

2.1.2 Expressjs

Express.js is a fast assertive web application framework for Node.js. It provides

various features to make web application development faster and more

comfortable. Moreover, Express.js is convenient and suitable for backend

development [6]. The main usage of this framework in this project’s backend is

creating RESTful API which accepts requests via HTTP and sends back the

appropriate response. Express.js provides some core features that support back-

end development:

 Providing middleware to support HTTP response

 Providing routes that allow performing different actions with HTTP

methods and URL

 Constructed based on the MVC model

 Asynchronous and single thread

These features make Express.js be favourite in build API. It is fast API

processing, well-structured, and easy to connect with the database [6]. Express.js

is running in Node.js environment so it can be beneficial for its big community in

solving problems as well as take advantage of the ready-made supporting NPM

package.

2.2 MQTT

MQTT is a lightweight network protocol to transport messages. This protocol runs

over TCP/IP and is used widely in the IoT field sending and receiving data

between endpoint devices and the central computer [7]. This protocol uses

subscribe/publish message transmission model [7].

There are 2 sides of devices in this model: MQTT broker and MQTT client. In

order for both parts to interact with each other, the client has to make a connection

 14

request to MQTT broker using username and password as authorization

credential. After passing all security step, MQTT client can listen and send

information to the broker.

Publishing: MQTT client send a packet information including a message and a

topic. When the broker receiving the packet, they will send this message back to

all of the clients that subscribed to the topic. This response will be acknowledged

depending on the QOS. There is no acknowledgement with a message QOS 0

but QOS 1 and 2 are acknowledged by the server and will send back the message

until receiver get the packet successfully [7].

Subscribing: MQTT clients can subscribe to multiple topics from the MQTT broker

and receive specific data according to the topic that they are subscribing to.

2.3 PM2

PM2 is a process manager for JavaScript runtime. It allows the system to keep a

Node.js application alive forever and automatically reload the application without

downtime when the server is rebooted [8].

In this thesis project, PM2 is used to manage the running process of our API

application and MQTT client; both applications are written in Node.js. One key

aspect of the connection between MQTT client and broker is keeping alive,

therefore, it is important to use PM2 to monitor the runtime of this application.

2.4 Janusgraph

JanusGraph is a database designed to process graph data with large storage and

computational capacities that beyond a single computer can provide [9].

JanusGraph’s outstanding characteristic is scaling data processing for real-time

traversals and analytical queries [9].

 15

Graph Database is a kind of database that uses graph structures with nodes,

edge, and property data. One of the main concepts of graph database is the

relationship (or edge or link). The purpose of graph database is to store data in

graph theory. Mathematically, the graph model is made of vertices and edges

(10.). Vertices represent the objects in the database while edges represent links

between different nodes. In comparison with Graph database, the relational

database also stores the relationship between objects, but it appears as the

relationship between two sets of data, while the relationship in the graph

Database is directly created between two objects. The relationship can also store

property to describe more details in the connection between objects.

Different nodes that have the same relationship to a specific node create a

network of nodes. As a result, this is easier to create groups of networks and

separate a big data set into small groups of data sets which make it easier to

manage and traverse for specific data. There are 3 elements in a graph database:

 Node: Each node has one label which defines the type of the node. Nodes

that share the same label can be considered to be at the same level.

 Edges: There are 3 aspects that are needed for one edge to be created

the start Node, the end Node, and the label of the relationship. Each edge

is responsible for connection and shows the relationship between 2 nodes.

 Properties: Property is the data that is stored inside the object. Each node

has a set of properties. These properties are the node attributes that can

be modified and used in queries.

This kind of database brings some benefits compared to other relational or non-

relational databases [10]:

1. Object-oriented thinking: every node acts as an object and it appears in

the same platform as each other. It is easier to query and traverse without

having much knowledge about the data structure, unlike in relational SQL

you have to know all the tables that you are querying for index using FROM

[10].

2. Scaling: Graph database can store over big numbers of nodes as it has

saved relational information in the edges, so it leaves more storing

 16

capacities for nodes and properties. This is so-called managing big data

[10].

3. Updating data in real-time while supporting queries at the same time.

There are queries model that help search for vertices and update data at

the same time [10].

4. Power full recursive queries: Graph provides queries that are complicated

in terms of logic and the structure of data also help user to execute high-

level queries for retrieving data whereas in relational SQL you have to

include a lot of JOINS command in the query [10].

5. Flexible grouping: It is easy to group object that shares the same common

ground: label or connect to the same node, each small group that has

common features then create a new group. It is different from a relational

database when it is hard to group data as their properties are displayed in

different tables [10].

2.5 Node-Red

Node-Red is a flow-based development tool for visual programming [11]. The

main purpose of Node-Red is to wire together hardware devices, API, and online

services as a part of the Internet of Things. It provides a flow-based editor which

makes it easier to manipulate the flows using a wide range of nodes that can be

deployed in single click runtime [11].

With the help of Node-Red, the developer only has to configure nodes and

functions and wire them to make a sequence for services. There are two types of

nodes: inject node and function node. Inject node sends a message to others

without requiring input. On the other hand, the function node receives input

message from the previous node and runs the algorithm to process the input and

then sends the processed output to the next node in the sequence.

Based on that convenience, Node-Red is used to manipulate our MQTT data flow

and trigger a telegram bot to send an alarm message to the system manager

when the inject node receives an alarm message published from our MQTT client.

 17

2.6 Development tools

2.6.1 Git

Git is an open-source distributed version control system designed to handle

everything from small to large projects with speed and efficiency [12]. Git tracks

changes in all sets of the files and is used for coordinating work among

collaboratively developing source code during software [12].

Github is an internet hosting for software development and version control using

Git. Most projects, whether personal or collaborative, use git and Github to

manage work processes and version control.

Version control is where every change of the projects is saved, and the developer

can have access to the history of modification of the files and other people who

want to reuse the code or collaborate in the development process can understand

the meaning of the change and code. Not only being used for version control, but

Github also provides CI/CD options for team projects such as branch merging,

code review.

2.6.2 Visual Studio Code

In this thesis, Visual Studio Code was chosen as the code editor for this project.

VS Code is a software that provides developers with tools to write code and

manage files in a project repository [13]. There are many advantages in using

Visual Studio Code in the project:

 It is a free and lightweight code editor.

 Easy to manage workflow, folder, and files.

 Provide extensions that support the syntax of multiple programming

languages.

 There is a terminal in the application to execute code and see logs.

2.6.3 Postman

Postman is an open-source application that provides tools to perform API

requests to a specific API’s URL [14]. With Postman, developers can perform

 18

different kinds of requests (GET, POST, PUT, DELETE). Postman also provides

tools and utilities for making an API request including request header

configuration, adding data for request body and authorization then displaying the

response after sending the request [14]. Therefore, within this project, the author

uses Postman to test and evaluate the performance and accuracy of his RESTful

API.

 19

3 SYSTEM ARCHITECTURE

3.1 System Model

System architecture, in information technology, is a conceptual model that

defines the structure and behavior, and views of the technical system [15]. An

identical system architecture consists of multiple components and the

relationship between them and how each component reacts to each other. A

system which had a good technical architecture can gain plenty of benefits [15]:

1, Ensure that everything works together.

2, Enable quicker changes in the system during the development process.

3, Provide clear visions and principles for the development and implementation

process.

4, Identify the need for the technical requirements.

5, Identify the needs for a financial plan.

In the project, the C4 model was used as the basis for our structure visualization

and architecture guidelines. C4 model is a diagramming software architecture,

based on the abstractions that reflect how architects and developers think about

and build software [16]. In this thesis, our system displays 3 levels of the C4

model: Context, Containers, and Components.

Context:

 20

Figure 3.1 System in Context-level C4 model

The context diagram shows how the overall process works and most importantly

defined the main output of the internal system [16]. In Figure 3.1, the main user

of the system or system manager was the one who had the permission to view

and interfered with the data processing; this person can be the sensors providers

or the owner of specific sensors.

 21

The system is the center of the data process. The first important functionality that

the system had was exchanging data with the database. This activity includes

getting data from the database, creating data structure and schema along with

making modifications to the database. Another task of this system was using

listening and sending MQTT requests to an MQTT broker in the outer server in

which the sensor will reply to the request with a response of their data. Users can

access the system to view the data and request to trigger the system to use its

logic for monitoring data. This action can be done both manually and

automatically.

Container:

Figure 3.2 System in Container-level C4 model

The container model describes the system in more detail. It emphasizes the

applications in the system and how they interact with others. In the figure 3.2, the

model shows a list of applications in the system and the life cycle of the whole

system. It also illustrates the actions that the system manager can do with front-

end applications as well as the types of action that each application needs to take

in relation to others for the system to run smoothly and reduce unwanted errors.

 22

There is an API application where it receives API requests from 3 front-end

applications and an MQTT broker. This request can be triggered by the user and

by the MQTT server. The API, which is connected to the databases, has access

to read and modify data in the databases using queries. When API received a

request, it starts analyzing the input from the request and processing data to

make a response to the client whether the process is a fail or a success. The

client-side uses the data received from API and then displays it to the user.

Component

Figure 3.3 System in Component-level C4 model

The final level of architecture in our system is the component model. In this

model, the application breaks into multiple components. The main purpose of this

model is to show all the functional modules needed in the system and the

relationship between the components themselves. Therefore, this concept helps

developers to have a clearer view of what modules in the system should be built

and how the components should work with each other as well as with other

 23

external systems. Moreover, another important benefit of the component model

is to prevent missing functional requirements in the development process to

ensure the durability of workflow because all required components that need to

be implemented are displayed in this model.

In Figure 3.3, the area covered by a dotted triangle represents the API system

consisting of components and their controller. Modules are created based on the

function that the front-end system wants to deliver. Each module consists of a

controller and a component. The controller receives requests from the front-end

client and transmits the request to other components where data is taken from

the database and other logical processes should be done in these components.

The result of these processes will then be used by the controller to respond back

to the client-side, while some processes can send requests to outer service to

continue the workflow. In the sensor management API case, 3 controllers will use

the “Data management Component” to get data and services from the database

and then use that data to respond back to front-end applications, while the

“Deadman Check” use both data from MQTT Broker and “Data management

component” to check sensor status to Send an MQTT message to request

Telegram bot, which is an external system.

3.2 MQTT broker and Client

MQTT broker is a piece of software running on a server. The broker acts as a

post office. MQTT clients do not connect directly to the server for data requests

but use a subject called “topic”. Every MQTT clients which subscribe to the

significant topic get messages from the broker. These messages are published

continuously from other clients, which in this case are sensors. Depending on the

types of sensors, after every significant amount of time, a sensor will publish a

message to the topic stating its condition; this message data is in Buffer format.

MQTT clients can also publish a data message to the broker. MQTT broker server

uses TLS encryption with username and password for security protection and it

also requires certification from the clients. There are some advantages in using

MQTT broker to send and receive data:

- Prevent vulnerable and insecure connections from clients

 24

- Can connect and send data to a huge amount of clients.

- Reducing network strain.

In the sensor management system, the MQTT managing component in API will

subscribe to a topic in the MQTT broker to receive a message with data of

sensors then these data will be examined and saved into databases. The “Dead-

man check components” also use the MQTT signal to publish topics to the broker

to trigger the Telegram bot to send an alarm or notification to the user. MQTT

client is written in Nodejs and uses MQTTjs package for implementation.

3.3 Front-end

The front-end refers to the layer of software which includes all the applications

and software that relates to the user interface. The front-end is a component in

system architecture where the user interacts and experiences the service. In the

system, the main purpose of front-end components is to provide a platform for

managing sensors which requires usability and user experience. This will help

users easier to use the system, manipulate all the requests and actions to the

back-end side and have a clear view of data as well as the data structure. In

sensor management systems, applications that belong to the front end include

web applications and a mobile application.

3.3.1 Hybrid mobile application

A native mobile application is a mobile application that is developed using a native

programming language and tools specific to that platform [17]. For example, a

mobile application used in IOS is written in Swift or Objective-C using Xcode while

an android application is written in Kotlin or Java using Android Studio. The

advantage of this kind of application is that there are libraries and tools that

support specific programming language to help the application performs better

and the developer more comfortable with the development process. However,

there are some hindrances in developing a native application if a developer wants

to build an application that is compatible with multiple OS. For instance, a

program written in Swift cannot run in Android-OS while a Java application is

unable to work in IOS. So, it means that if developers want to build an application

 25

that is compatible with multiple OS, they have to write codes in different

programming language for different platform.

A hybrid mobile application is an application written using web application

technologies (HTML, CSS, JavaScript) and then encapsulated in a native

application [16]. For better understanding, this app acts as a web application, but

instead of being shown on the web browsers, it is run within a native application.

This application can be compatible with both IOS and Android.

Developing a hybrid application helps developers with some aspects compare to

a native application:

 Developing an application that is cross-platform support

 Code can be reused to develop instead of building new for different OS

 Time-saving for the development process

For these reasons, in our system, the hybrid theory is applied to our mobile

application which helps developers to build code once, and then the app can run

on different operating systems. The main purpose of the mobile application in

front-end development is to scan sensor data using BLE and use that technology

to update and monitor sensor data through a Bluetooth connection. The result of

the application is APK file hosting on Google play on Android.

3.3.2 Web application

Our web application’s main purpose is to manipulate sensors’ data and monitor

different aspects of a sensor. This application provides a graphical and visual

display of sensor data and relationships between owners and their sensors. The

application is written in React with Nodejs development environment with Material

UI for customization and design system for the user interface. The website is

hosted by Linux server.

 26

3.4 Back-end

As for the back-end development, the system uses RESTful API to manage the

dataflow from the databases to clients. These clients include front-end

applications and the MQTT broker. The main functions of this API are receiving

HTTP requests by the client, reading the request, getting the needed data from

the database, and processing that data to get a suitable response.

API is a set of definitions and protocols for building and integrating application

software. It is sometimes referred to as the contract between information

providers and information users – establishing the content required from the

consumer through API call and the content required by the producer (the

response). In another word, if the user wants the system to retrieve data or

perform a function, API help the client communicate with the system so that it can

understand and fulfil the request. The system then also uses API to respond to

the client according to the request. API acts as a bridge connecting the clients

and resources and services, helping both sides to communicate and deliver

services.

RESTful API is an API that has patterns of REST architectural styles and allows

systems to interact with RESTful web services. REST is a set of architectural

constraints. When a client request is made via Restful API, it transfers a package

of information via HTTP in different formats; the most popular format currently

used is JSON. The information inside this HTTP request can be metadata, URI,

authorization, caching, cookies [18]. There are some criteria that API can be

considered to be RESTful:

 The architecture of the system includes clients, servers, and resources

with requests managed through HTTP.

 Stateless: A request from the client must contain all of the information

needed for the server to understand. The application cannot be stored any

information on previous requests on the server.

 Cacheable: requires that a response should implicitly or explicitly label

itself as non-cacheable or cacheable.

 27

 Layered system: The progress involved in retrieving and processing data

is invisible to the client [18].

In our system, we use Nodejs end Expressjs to develop API. There are

advantages of using Expressjs to build Rest API.

 Easy to connect to Databases

 Creating routes for API calls

 Data is protected with security components

 Data processing is hidden inside API functions

 Easy to configure and customize

 Error handling middleware [18].

The API has a connection to a database which is also located in the Linux server.

It gets services from the database by sending request which includes queries of

instructions. The Database that the system used is JanusGraph, a Graph

database that stores data of sensors, and system users. After having access to

the database, API can create CRUD (create, read, update, delete) functions with

queries written in Gremlin language. In the end, the expected output of the API

services is a response to the client.

3.5 Database

3.5.1 Requirement

Two requirements are considered to be important and prioritized in this database

which are data persistence and scalability. The system needs to store data from

a big number of sensors; in the future, this number can increase to hundreds of

thousands. Therefore, this demands for a database that has scalable storage

capacity.

The database is responsible for storing sensor data, sensor status history and

data of owners and the relationship between sensors and owners. Individual

sensor gets their new data every 3 hours and with the numbers of sensors equal

with the numbers of requests for retrieving and updating data. A request for

sensor data update includes quite many properties that need to update. For the

 28

database to perform accurately and securely under these circumstances, the

query algorithm that is used in the database needs to be easy to use and can be

iterated.

Based on the requirement, JanusGraph database is applied to the project as a

type of database for the system. As mentioned in section 3.1, JanusGraph is an

open-source and scalable database. Its structure is based on Graph database

which is applied to manage relationships and it uses Gremlin query language for

traversing and updating data.

3.5.2 Schema and data structure:

In the system, the system has different modules and one of those modules is

sensor management. The main purpose of the sensor management module in

the database is to store the data of sensors and owners. Using graph theory can

simplify the way to control both data and relationships.

Figure 3.4 Database schema of sensor management

Figure 3.4 illustrates the schema of the database. Graph database provides a

schema that is very easy to understand and straightforward. There are 4 types of

nodes in this schema.

Sensor: a sensor has some basic properties like name, mac address which are

unique properties, the date that a sensor node is created to the database, and all

 29

of the data that has been measured by the actual sensor including the timestamp

when the data is updated.

Status: The sensor object has “HAS_STATUS” one-to-one relationship. One

sensor will get only one status node to follow it to decide whether it is active or

inactive.

The diagram also shows the relationship between the sensor and owner as well

as the warehouse. One sensor can be owned by only one owner and stored at

one warehouse. However, one owner can own multiple sensors and one

warehouse should store multiple sensors.

 30

4 IMPLEMENTATION

4.1 API Application

API application is running in the environment of Node.js and is written in

Express.js framework. The aim of the API application is to provide RESTful API

in order to transmit data between the Client application and server via HTTP. It

provides CRUD requests for the client-side; this includes GET, POST, PUT, and

DELETE.

The API is connected to the JanusGraph database using a remote connection

which requires necessary credentials. When the server starts, the application

firstly tries to govern the connection to the database; if the database does not

exist the server will try to initialize to create the first image of the graph database.

The connection code requires the URL of the database in the server and needed

credentials; the URL and credentials are stored in the environment configuration

file. During connection, API has complete permission to access data in the

database. The application uses the gremlin middleware library to perform query

execution to the database.

Figure 4.1 Initialize Drive code

 31

Express.js application uses the MVC model, the controller manages routes and

receives HTTP requests from clients. In controller files, the request is validated

and then it triggers the method provided by the model files to handle the request.

The model parts, all logic algorithms to examine this request to retrieve and

manipulate data from the database and return data for the controller to respond

to the client. If there is an error with the query or input validation, the controller

responds with an error.

4.1.1 Routing

The majority of request used by the application is GET and POST request. In this

project, we use Express.js routes for each resource. Each type of object in the

database will get one route URI for its CRUD operation.

Route Sensors: The central object in the management system is sensors. For

CRUD operations, there are some considerations regarding sensor data

manipulation. Each sensor has some unique data that is a mac address and id,

when creating a new sensor object, the application has to check if there is any

sensor that has a duplicate mac address in the database before creating a new

one. Apart from these CRUD operations, there are other functions like Deadman

check which manipulate the status of all sensors.

Route node: provide CRUD operations for node in general, also provide some

Post method URL for searching special node and sensor with the help of

traversing query. One API route that is used in the system is getting node

upstream when the API will find all nodes and the relationship is a child of the

target node.

Route relationship: provide CRUD operations for the relationship between two

nodes.

User Route: allow the system to create new users and middleware for

authentication. These routes use passport middleware for the authentication and

authorization phase. Route ‘login’ requires the user to give basic authentication

with username and password, after successfully passing this phase, the user

 32

receives a JSON web token which then is used to bypass the authentication

phase for other URI requests.

4.1.2 Development and Deployment

The Application is continuously developed and tested with Postman. This

Postman API testing process is in parallel with the coding process and

debugging. After an API route is created, the API request is tested with Postman

with different scenarios to ensure the algorithm works as expected.

API is running in the Linux server on the basis of pm2. Pm2 helps the application

to run forever in the background of the server. There is a public URL for this

application which is used by front-end applications. For reusable and code study

purposes, all API documentation is written in swagger to instruct the usage of

each API call.

4.2 Web Application

After databases and API application is set up, web browser is one platform that

uses those resources and brings them into the user interface. Two web

application has been developed. One web application focus on managing

database data in general. The other application focus on managing the sensor

and its ownership.

The core technology that is used by this application is React. React is a very

straight-forward JavaScript framework that has a purpose of building web user

interfaces.

4.2.1 Database Visualization module

The aim of this module is to provide UI platform for admin and sensor owner to

manipulate database’s data and relationship between nodes. It helps system

manager to manage all data in the database in an interactive and easy way.

 33

Figure 4.2 Sensors data display in ForceGraph

The first function that related to this application data visualization in graph form.

This interface is written with the support of ‘force-graph’ library which render this

graph data on 2d dimension on HTML canvas. Data is retrieve from the database

by an API call and is store in React state. The data consists of all nodes and

relationships; each node represents one object called vertex in graph. Force

graph takes this data set and uses its ready-constructed algorithm to separate

nodes and links and render it in a graph-oriented interface.

Figure 4.3 ForceGraph 2D configuration implementation

 34

In this ForceGraph2D component, displaying property of nodes and links should

be configured and set as props in this component. This property can be node

size, displayed name of node, link length, and how nodes should be color, nodes

sharing the same label have the same color to distinguish themselves. Under one

node, node’s name will be displayed and for sensor mac address is displayed.

User can interact with the graph, for example, zoom in and out, dragged the

nodes and relocate. Through this graph, user can see the whole picture of what

data they have on database, which sensor belong to which owner and what is the

status of every sensor in a 2D graphic. A list of actions that can be done with a

single node can be shown when the user right-clicks to specific node.

Another feature of this application is CRUD operations of nodes and link. When

a node in the graph is clicked there should be a popup showing node’s properties;

these properties are displayed in table format. New node can also be created; a

form for creating new node is provided. There are also functions for deleting and

modify nodes and its property. The relationship between two nodes can also be

create on this platform. Application can also search for individual nodes or a set

of nodes.

All of these functions is done by using API call to the API application via axios

request. After send request to API, the app receive response which requires

callback function to handle.

One special function of this application is “get nodes upstream”. In the future there

will be hundreds of thousand sensors available in this database so showing that

the number of nodes in one graph will be very difficult to follow and understand.

That is the reason behind the exist of get node upstream function. In details, the

goal of this function is to get all nodes and relationships between those nodes to

create a small group of nodes. The function sorts out all of its child nodes and

relationship create a group of nodes in which the chosen node is the center one.

With this function, the whole database can be split into small part which is easier

to manage.

For security, the application use JWT login model, in which when user login for

the first time. After a successful authentication, a token is sent to the application

 35

via API. Then the token is stored in local storage and state, this token has

encoded user information and authentication credentials which can be used for

retrieving protected data.

4.2.2 Sensor Management

Another application built for specializing in sensor manipulation for both sensor

owner and system manager. The purpose of this application is to manage data

focusing on sensors. The application is built in React and Material UI for building

an attractive user interface.

The UI is divided into multiple components on one web page. Each component

of UI is separated into different React functions stored in different files in order to

improve the code structure and code reusability.

Figure 4.4: File structure

 36

Figure 4.5: Web application components, (1) Route list, (2) Search bar, (3)

Table displaying sensors data

Multiple UI components also make it easier to implement and make adjustments

for styling purposes. In figure 4.5, the whole web page is divided into many

separate components, the developer can change UI properties or add styling

directly to those components.

The first feature is to view all of the sensor and owner data. The application sends

API requests to the back-end server and gets responses with the data of sensors

and owners. After login with API authentication, the owner gets access to all

sensor data that belong to him. This data is displayed in a table form and in order

by the timestamp of the last sensor update the limitation for the number of

sensors displayed on one page is 10 sensors. Another factor that should be

applied for easy managing data is searching. When there are a great number of

sensors in total but only a few sensors that the user wants to work on within one

session, the search engine should be applied to filter a sensor or group of sensors

that needs to manipulate. We use factors that are unique for each sensor in

consideration in this searching algorithm, the sensor will be filtered according to

its MAC address and name.

The second feature is that the sensor owner can manually change the ownership

of one sensor from one owner to another. This is very helpful especially when a

 37

new unowned sensor is purchased by a new owner, the owner when they want

to discard their sensor can also change ownership of their sensor.

4.3 MQTT Client

The aim of the client is to act as a tool for managing sensor data through MQTT

messages. Most of the sensors send data via the MQTT protocol, MQTT client

has the mission of receiving sensor data through a TCP connection to the MQTT

broker and then using its algorithm to make UPDATE or ADD requests to API

Figure 4.6 Data flow in MQTT connection

Figure 4.6 shows how sensor data is managed with the MQTT client. The basis

of this data flow goes along with MQTT transmission.

MQTT client is a script file running on the server. It runs under the control of pm2

to keep the client connection alive. MQTT client is written in JavaScript Nodejs

and it uses mqtt.js library to generate the MQTT protocol.

The first thing that an MQTT operates is to connect with an MQTT broker. In order

to clarify the connection, there are some arguments needed to be added to the

connection’s configuration. Some essential arguments that need to be declared

are ClientID, username, and password of the broker, broker’s URL, and protocol

types, and other connection configurations supporting the connection. The

connection starts with the function mqtt.connect():

 38

Figure 4.7 MQTT client configuration

This function will return a Client object which allows users to perform requests

and receive messages from the broker. MQTT protocol is based on subscribe

and publish model; after being connected to the MQTT broker, the client has the

possibility to subscribe and publish a message to the broker.

Subscribe: The client can make a subscription request by executing

client.subscribe() function. Each subscription requires a topic to which the MQTT

broker sends the message. The topic is a string that helps the MQTT broker to

filter messages for each connected client; each topic has different levels and

separated in the string by forward slash. Here is one example command:

The ‘#’ in the topic string is called wildcard topic where it will tell the broker that

the client wants to subscribe to multiple topics without knowing the exact address.

When a broker sends a message within a topic that client subscribes, the MQTT

client can receive the message with the method on(‘message’):

 39

This function detects the arrival of a message within a topic from the MQTT broker

message response.

Publish: The client can also publish a message to the MQTT broker. The broker

can then send back this message to other clients that subscribe to the message’s

topic. With MQTTjs, the MQTT client can publish a message and topic that is

related to with client.publish() function.

4.3.1 Data updating

After having built infrastructure code for MQTT data transmission, there comes a

need for a method that helps to translate this message and add data from this

message to the current database.

The first thing that the client will do when receiving the message is to parse this

message into an object of data. The original message, which is published to the

broker by a sensor, is a string formed in a Buffer containing some bytes long. This

Buffer is created as an output of the sending message function produced by the

sensor’s hardware, each set of bytes in this Buffer represents a measurement

figure in sensor data.

 40

Figure 4.8. Data parsing function

Figure 4.8 shows how each set of bytes from Buffer was parsed into different

variables. After being parsed, the final result of the message is an object of

readable sensor data.

The next step after getting the parsed data was to update this data of the sensor

into the database via API. The sensor of the new data is checked using their mac

Address whether the sensor already exists in the database or not. If the database

has already stored the sensor the data of that sensor will be added. If the first

sketch of the sensor did not exist in the database, the sensor would be added for

the first time.

The message from the MQTT broker comes constantly and each sensor

publishes their measurement data every 24 hour.

 41

4.3.2 Deadman Check

Another module that is built in MQTT client is Deadman Check. A Deadman

check is a test conducted to decide the status of the sensor. The dead-man check

is based on the fact that each sensor sends data every 6 hours or 24 hours

depending on the type of sensor; if the sensor does not send a signal or message

to the MQTT broker once a day, that sensor is considered to be offline.

To perform this module, we have created an algorithm in which the time of the

check is compared with the last time the sensor sends data. Due to the difference

in the time of each sensor is a maximum of the 1-day time, every 24 hours the

check will be done in the client. In one check, the client will get data of every

sensor’s last timestamp. Then the module performs a loop through all sensors

comparing each sensor’s last update timestamp with the time of the check. If the

module found any sensors that did not respond within 24 hours, those sensors

were considered to be inactive. On the other hand, other sensors which passed

the test had the status of the active sensor. The client will detect the change in

each sensor status, this change first is updated to the database and then reported

back to the system manager for notification.

The Dead-man check report module was built with the help of Node-Red. When

there is a change in sensor status, the Client will publish a message to the broker

with the topic ‘status’. This message contains the sensor’s mac address which

changes its status and its current status. In Node-red, a data flow is built to react

to the MQTT message publish.

Figure 4.9 Data flow in Node-Red

 42

Figure 4.9 shows how the reporting process works in Node-red. After publishing

the notification message to the MQTT broker, Node-red creates an MQTT client

only for receiving that status message. The message will then be parsed and sent

to the system manager via Telegram by a telegram bot.

4.4 BLE Advertisement Mobile Application

A hybrid mobile application aims to provide a platform for users to manage nearby

sensors using Bluetooth Low Energy connections. This application is written in

React Native and during the implementation process, the app is running and

debugging on an android device.

Every sensor in our company is created with to have Bluetooth Low Energy

technology available allowing these sensors to be connected and transfer data to

other Bluetooth devices. BLE is a wireless radio signal, adapted to low-power

sensors and accessories [19]. By using a BLE connection, the application can

use BLE advertisement to find sensors via Bluetooth to read its data and perform

other actions through that connection. In BLE, the mobile application act like a

central device that has full control over other the surrounding device which is

called peripheral devices [19].

The mobile app use ‘ble manager plx” NPM package as a library for BLE

integration in React Native. This library provides a class named BleManager

which has some ready-made methods that can scan, connect and interact with

BLE peripherals. There are 2 stacks in this application, the first stack screen is

scanning BLE sensors and the second is show details of the connected sensor

and manipulates the sensor data using BLE services.

For sensor scanning, React Native runs a scan when the component is rendered.

To perform this scan on Android, the user is asked to give “ACCESS FINE

LOCATION” permission. To start the scan, a new object BleManager is defined

then the code run this object’s method scanDevices(). The output of this method

is data gathered from every device that has BLE found within the signal range.

These data are gathered continuously until the application trigger stopScan()

 43

method. These data are saved as React state as an array of sensor objects. The

data from this state then will be displayed in React Native Scrollview.

The data from the scanned object contains MAC address, name, connection

condition, and manufacturer data and it is originally in the form of an object called

Device. Manufacturer data includes measurement data of the sensor. The

application also checks if the found sensors exist in the database, if it is an

untracked sensor, the user can manually add the sensor to the database. This

will give the system many options to add new sensors from the factory to the

database when they arrive at the warehouse.

Another function that this library provides is allowing this application to connect

to sensors in order to use their services. Our sensor has provided a service to

change the name of the sensor. After being connected, each Device object

provides a range of services, by method Device.service() the output of this

function is a list of Service objects which then be used to interact with sensors.

One of the services that the sensor scanner provides is changing its name. This

would give sensors meaningful names, so it is easier to track them in the future.

For deployment, the mobile application has produced an APK file and this app is

put in Google Play to first use on the android platform.

 44

5 RESULT

5.1 The outcome of the project

Overall, the thesis project provided a system for sensor owners to control and

manipulates sensors.

A database for storing the sensors and owner data was built and allowed a

connection for managing the data from the API. There were currently 72 sensors

and 12 owners in the database, the storage capacity of the database can allow it

to store more than a thousand sensors. Data in the database had relationships

which each other so there was no stand-alone object. The database allowed

sensors to be added and updated with API application using gremlin query which

takes about 0.5 milliseconds. This time cost was considered to be acceptable

with the requirement of the real-time system.

Sensor data is monitored and manipulated on different platforms and with

different algorithms. There are 4 applications is implemented in the system

providing many options for users to manage the data. All of these changes are

done through the request to the API.

Firstly, sensor data can be continuously updated with MQTT connections. MQTT

clients constantly received signals and data from sensors through MQTT

protocols, these data then replaced the data in the database creating a

continuous development of the data.

Secondly, the system provides services for maintaining the database, especially

for sensors, in a user-experienced and interactive platform. There are 2 websites

has been created. The first website offers a graphical user interface for database

management, this is the platform where users can see all data in the database in

graphical formation and interact with this data.

 45

Figure 5.1 The database displayed in web application

Figure 5.2 Information of Object’s property

 46

Figure 5.3 Edit/Delete property function of specific object

Another website displays sensors and owner information in a tabular style to

display data. Sensor data and its ownership can also be edited manually by this

application.

Lastly, a mobile application was created for the purpose of scanning. The mobile

application used BLE advertisement to scan and read information from sensors,

which have the ability to broadcast their measurement data via BLE signal. With

this technology, users can read data in real-time measurement from nearby

sensors and change its inner configuration. Users can also add a new sensor to

the database using this application.

Data security functions were applied and developed in this project to identify

logins, users, and permission. This security system helps the data to be securely

retrieved and updated with the user’s permission; each user had their own access

to certain data and had to provide an authentication identity for active access.

 47

The data security system was developed in API based on the JWT authentication

method. The user and permission information was stored in the database.

Sensor status was also controlled continuously with the dead-man check

function. The MQTT clients will detect automatically the change in the status of

the sensor and update the status in the database. Meantime, it sent a notification

to the user’s Telegram using a Telegram bot via MQTT message.

Despite some features that were successfully developed, there are some

requirements that this thesis did not achieve. The warehouse module, which was

planned to be implemented to support monitoring sensors, was not developed at

the end of the project. Furthermore, in the mobile application, the user should be

able to connect with the sensor via BLE but the tests showed that it failed to

deliver this function.

5.2 Usability testing

There was usability testing conducted at the end of the implementation phases.

All of the functional requirements were checked and used as test cases. The

applications can be accessed in the company’s public domain URL. Customers

and system managers were asked to perform every function of the application

and give feedback on their experiences. Results showed that every available

function in the system works finds, however, there would be UI modifications and

functions developed in this system in the future. In the end, usability testing

helped the author and development team know the drawbacks of the currents

system.

5.3 Functional testing

The purpose of functional testing is to ensure every existing function of the

applications works according to its original requirement and find to fix any bugs.

Based on requirements, there are test cases for each function to perform. Most

of the tests are done with API and it is executed with Postman. Each test case

has its set of inputs and expected outputs; Postman will run the test with the

request URL and input data, the result of the request as compared to the

expected output to decide whether the test failed or succeeded. If the test showed

 48

that the function did not meet the requirement, the functions will be fixed in the

implementation process.

 49

6 CONCLUSION

The aim of creating a system for Nome’s sensor management was achieved. A

database for storing sensor data was created with a capacity of storing up to 1000

objects data. Web applications for database management and monitoring sensor

were implemented and continuously developed in both the development and

production environment. In addition, a mobile application was developed for

scanning data from nearby sensors using Bluetooth signals. The sensors’ data

can also be collected and updated with our MQTT clients. All of the data flow from

these applications was connected with the database through API applications.

API ensures the UI applications can retrieve and update data to the database

securely and precisely.

The development process started with designing the system architecture. When

all the requirements were analyzed, rules and principles of component

applications were set for the implementation process. The web application is

written in React and Material providing UI for interacting with data. Sensor data

is gathered based on the concept of MQTT protocols and BLE advertisements

for mobile devices. Meanwhile, it is stored and displayed in graph format

increasing visual management and manipulation.

The result of the thesis project is applicable for the future development of the

whole system of the company. It built a ground infrastructure of sensor data

management for the company. However, there are also some functions that this

thesis failed to deliver. Therefore, there are more functions that can be applied to

this system, based on the foundation that this thesis achieved and its failure. To

optimize the benefit of using the graph model, there should be a new algorithm

for searching sensors and developing relationships from different modules in the

database not only sensor management.

 50

REFERENCES

[1] OpenJS foundation, “About Node.js”, March 18, 2022. [Online].

 Available: https://nodejs.org/en/about/. [Accessed Mar. 22, 2022].

[2] Facebook open-source Meta platform, “React documentation”,

March 29, 2022. [Online]. Available: https://reactjs.org/docs/getting-

started.html. [Accessed Mar. 22, 2022].

[3] Microsoft contributors, “About Material UI”, 2022. [Online]. Available:

https://mui.com/. [Accessed Mar. 22, 2022].

[4] V. Asturiano, “react-force-graph package documentation and

installation”, February 2022. [Online]. Available:

https://www.npmjs.com/package/react-force-graph. [Accessed Apr

26, 2022].

[5] V. Asturiano, “Example of directional links for graph”, February

2022. [Online]. Available: https://vasturiano.github.io/force-

graph/example/directional-links-arrows/. [Accessed Mar. 5, 2022].

[6] CM. Syamla, “What Are The Benefits Of Using Express.Js For

Backend Development”, October 29, 2019. [Online]. Available:

https://www.techomoro.com/what-are-the-benefits-of-using-

express-js-for-backend-development/. [Accessed Mar. 22, 2022].

[7] S. Cope, “MQTT Publish and Subscribe Beginners Guide”,

December 16, 2021. [Online]. Available: http://www.steves-internet-

guide.com/mqtt-publish-subscribe/. [Accessed Feb. 27, 2022].

[8] A. Strzelewicz2022, “Pm2 documentation and installation”, Unitech,

February 2022. [Online]. Available: www.npmjs.com/package/pm2.

[Accessed Mar. 16, 2022].

https://nodejs.org/en/about/
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://mui.com/
https://www.npmjs.com/package/react-force-graph
https://vasturiano.github.io/force-graph/example/directional-links-arrows/
https://vasturiano.github.io/force-graph/example/directional-links-arrows/
https://www.techomoro.com/what-are-the-benefits-of-using-express-js-for-backend-development/
https://www.techomoro.com/what-are-the-benefits-of-using-express-js-for-backend-development/
http://www.steves-internet-guide.com/mqtt-publish-subscribe/
http://www.steves-internet-guide.com/mqtt-publish-subscribe/
http://www.npmjs.com/package/pm2

 51

[9] JanusGraph’s authors, “Introduction of JanusGraph”, January 18,

2022. [Online]. Available: https://docs.janusgraph.org/. [Accessed

Feb. 19, 2022].

[10] J. O’Conner, “Graph 101: Traversing and Querying JanusGraph

using Gremlin”, Compose IBM, November 2007. [Online]. Available:

https://www.compose.com/articles/graph-101-traversing-and-

querying-janusgraph-using-gremlin. [Accessed Feb. 19, 2022].

[11] Openjs Foundation, “Node-Red documentation”, 2022. [Online].

Available: https://nodered.org/about/. [Accessed Apr. 2, 2022].

[12] S. Chacon & B. Straub, “Pro Git”, 2nd edition. Published: 2014. [E-

book]. Available: https://git-scm.com/book/en/v2/Getting-Started-

What-is-Git. [Accessed Mar. 2, 2022].

[13] Microsoft, “Why visual studio code”, March 30, 2022. [Online].

Available: https://code.visualstudio.com/docs/editor/whyvscode.

[Accessed Feb. 16, 2022].

[14] O. Gupta, “Basics of API Testing Using Postman”, November

18,2021. [Online]. Available: https://www.geeksforgeeks.org/basics-

of-api-testing-using-postman/. [Accessed Mar. 12, 2022].

[15] C. Paganini, “Understanding Software and System Architecture”,

December 5, 2019. [Online]. Available:

https://thenewstack.io/primer-understanding-software-and-system-

architecture/. [Accessed Apr. 2, 2022].

[16] S. Brown, “C4 model for visualising software structure”, 2011.

[Online]. Available: https://c4model.com/. [Accessed Feb. 16,

2022].

[17] Stardust Group, “Hybrid Apps: an overview of advantages,

limitations, and consequences for your testing phase”, April 11,

2022. [Online]. Available: https://www2.stardust-

testing.com/en/blog-en/hybrid-apps. [Accessed Mar. 2, 2022].

https://docs.janusgraph.org/
https://www.compose.com/articles/graph-101-traversing-and-querying-janusgraph-using-gremlin
https://www.compose.com/articles/graph-101-traversing-and-querying-janusgraph-using-gremlin
https://nodered.org/about/
https://git-scm.com/book/en/v2/Getting-Started-What-is-Git
https://git-scm.com/book/en/v2/Getting-Started-What-is-Git
https://code.visualstudio.com/docs/editor/whyvscode
https://www.geeksforgeeks.org/basics-of-api-testing-using-postman/
https://www.geeksforgeeks.org/basics-of-api-testing-using-postman/
https://thenewstack.io/primer-understanding-software-and-system-architecture/
https://thenewstack.io/primer-understanding-software-and-system-architecture/
https://c4model.com/
https://www2.stardust-testing.com/en/blog-en/hybrid-apps
https://www2.stardust-testing.com/en/blog-en/hybrid-apps

 52

[18] Redhat, 2020. “What is a REST API?”, May 8, 2020. [Online].

Available: https://www.redhat.com/. [Accessed Feb. 20, 2022].

[19] D. Zasukha and A. Boradenko, 2020. “What to Consider when

integrating BLE in your React Native app”, Stormotion, July 12,

2020. [Online] Available: https://stormotion.io/blog/what-to-

consider-when-integrating-ble-in-your-react-native-app/. [Accessed

Mar. 12, 2022].

https://www.redhat.com/
https://stormotion.io/blog/what-to-consider-when-integrating-ble-in-your-react-native-app/
https://stormotion.io/blog/what-to-consider-when-integrating-ble-in-your-react-native-app/

