

Minh Hoang

DEVELOPING A VIDEO SUMMARIZING

TOOL USING MACHINE LEARNING

Technology and Communication
2022

ACKNOWLEDGEMENTS

First of all, I would like to thank all of my teachers at VAMK, especially Dr. Ghodrat

Moghadampour, my thesis report supervisor. Without his help throughout my

journey at VAMK, I might not have graduated with the highest possible grades,

despite having learned so much from his lectures.

Furthermore, I would like to express my gratitude to Mr. HO Tuong Vinh and Mr.

LAM Quang Tung for providing me with the opportunity to work on this project

and polishing up my research skills. These could be beneficial to me as I prepare

for a new chapter in my career.

Finally, I would like to thank my parents in Vietnam, as well as my friends in Vaasa,

in Vietnam, and the United States, for always having my back and supporting me

not only financially, but also with motivation and encouragement.

Ngoc Minh, Hoang

Vaasa, Finland

11.03.2022

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Minh Hoang
Title Developing a Video Summarizing Tool using Machine

Learning
Year 2022
Language English
Pages 49
Name of Supervisor Ghodrat Moghadampour

In recent years, video has become a highly significant form of visual data, and the
explosion of short video platforms like TikTok, Instagram, and Facebook has led
people to prefer to consume short content than watching a long video without
skipping any second. To solve this problem, a video summarizing system was
developed in this work, to compress a long video into a much shorter version, but
still preserving the important contents of the original one. As a trend in the world
nowadays, Artificial Intelligence was used to make the process more efficient, and
it proved to be perfectly suitable for handling this task too.

The primary goal of the project was to do research in the field of video
summarization and develop a tool that can assist people in improving video
summarization workflow by significantly reducing processing time and simplifying
video summarizing process. The original research focused on improving the
performance of the method but not on the usability for normal users.

With the application developed in this project, the user can summarize a video just
by inputting the original video file and getting a summarized version of it in terms
of seconds.

Keywords Artificial intelligence, machine learning, computer vision,
video summarization, and multimedia processing

CONTENTS

ABSTRACT

1 INTRODUCTION ...9

1.1 Background and Motivation ..9

1.2 Objectives.. 10

2 THEORETICAL REVIEW .. 11

2.1 Artificial Intelligence ... 11

2.2 Machine Learning.. 12

2.3 Neural Networks and Deep Learning .. 13

2.4 Convolutional Neural Network ... 15

2.5 ResNet ... 16

2.6 Long Short-Term Memory... 18

2.7 Generative Adversarial Network .. 20

2.8 Variational Autoencoder ... 21

2.9 Actor-Critic Model ... 22

2.10 Video Structure ... 23

2.11 Knapsack Algorithm .. 24

3 TOOLS AND TECHNOLOGIES IN USE ... 26

3.1 Python ... 26

3.2 PyTorch ... 26

3.3 OpenCV ... 27

3.4 Decord ... 27

3.5 Pydub .. 28

4 APPLICATION DESCRIPTION .. 30

5 IMPLEMENTATION .. 34

5.1 Training ... 34

5.1.1 Training Encoder ... 34

5.1.2 Training Decoder ... 35

5.1.3 Training Linear Compression and Discriminator 36

5.1.4 Training of the Remaining Components 36

5.2 Evaluation ... 37

5.3 Features Extraction ... 38

5.4 Video Generation .. 39

6 TESTING .. 42

6.1 Model Training .. 42

6.2 Video Summarizing ... 43

7 CONCLUSION .. 45

7.1 Future Work .. 45

REFERENCES .. 46

LIST OF FIGURES AND TABLES

Figure 1. Differences between machine learning and software engineering /4/ 12

Figure 2. Types of Machine Learning /5/ .. 13

Figure 3. Example of a Neural Network /7/ .. 14

Figure 4. Convolutional layer /10/ .. 15

Figure 5. Shortcut connection /11/ .. 17

Figure 6. ResNet and VGG-19 architecture /11/... 17

Figure 7. Example of an RNN /16/ .. 18

Figure 8. Comparing the structure of an RNN cell and an LSTM cell /17/ 19

Figure 9. The architecture of GAN /21/ .. 20

Figure 10. Workflow of a VAE /25/ ... 21

Figure 11. Actor-Critic architecture /29/ .. 22

Figure 12. The hierarchical structure of a video /31/ ... 23

Figure 13. Audio wave sampling representation /32/ .. 24

Figure 14. Benchmarking the performance of different libraries /39/ 28

Figure 15. Application use cases diagram ... 31

Figure 16. The sequence diagram of the training process 32

Figure 17. The first three steps of the incremental training procedure. Dark-

colored boxes denote the parts updated in each step. /41/ 32

Figure 18. The fourth step of the incremental training procedure. Dark-colored

boxes denote the parts updated in this step. /41/ ... 32

Figure 19. The sequence diagram of the summarizing process 33

Figure 20. Visualization of a summarized video ... 43

Table 1. Application requirement specifications, with 1 indicating highest and 3

indicating lowest priority. ... 30

Table 2. The evaluation results of the training process (higher is better). 43

Table 3. The video summarizing process evaluation results, with the result lengths

being approximately 15% of the original lengths. .. 44

LIST OF CODE SNIPPETS

Code Snippet 1. Implementation of Knapsack problem in Python /33/ 25

Code Snippet 2. Example of Decord functionality .. 28

Code Snippet 3. Example of Pydub functionality ... 29

Code Snippet 4. Updating the Encoder .. 34

Code Snippet 5. Updating the Decoder .. 35

Code Snippet 6. Updating Linear Compressor and Discriminator........................ 36

Code Snippet 7. Updating the remaining components of the architecture 37

Code Snippet 8. Implementation of evaluation ... 38

Code Snippet 9. Implementation of feature extraction 39

Code Snippet 10. Implementation of summaries generation 40

Code Snippet 11. Implementation of videos generation 41

Code Snippet 12. Implementation of F-score calculation 42

LIST OF ABBREVIATION

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

CNN Convolutional Neural Network

RNN Recurrent Neural Network

GAN General Adversarial Network

LSTM Long Short-term Memory

VAE Variational Autoencoder

SOTA State-of-the-art

9

1 INTRODUCTION

1.1 Background and Motivation

In recent years, video has become a highly significant form of visual data, and the

amount of video content uploaded to various online platforms has increased

dramatically in recent years. According to Statista /1/, in 2021, YouTube's user

base in the world amounts to approximately 2,240.03 million users and might be

raised to reach 2,854.14 million users by 2025. In this regard, efficient ways of

handling video have become increasingly important.

The explosion of short video platforms, such as TikTok, Instagram, and Facebook

has changed our video-consuming behaviour. People tend to consume short

content rather than sitting down and watching a 10-minute video without skipping

any second. To solve this problem, a video summarizing system is needed, to

compress a long video into a much shorter version, but still able preserve the

important contents of the original one. Video summarization could be used for

summarizing video games, lectures, movies, and so many more.

There are two main ways of summarizing a video right now. One is time-lapse,

which is just increases the speed of a video to 5 or even 10 times faster than the

original one. Another method is key-shot based, which means dividing a video into

multiple segments, then deciding whether a shot is important or not, keeping the

important shots only in the end. However, making this kind of decision is a time-

consuming and tedious task, and opinions can vary among different people. As a

trend in the world nowadays, Artificial Intelligence can be used to maximize work,

and it was perfectly suitable for handling this task. /2/

10

1.2 Objectives

The primary goal of the project was to do research in the field of video

summarization and develop a tool that can assist people in improving video

summarization workflow by significantly reducing processing time and simplifying

video summarizing work.

The question in the research aspect was to select a solution that can provide both

high and reliable performance while remaining usable in production. After

producing the best solution, the challenge was to develop a tool that can do the

summarizing work efficiently, since the original research focused on improving the

performance of the method but not on its usability for ordinary users. With the

application developed in this project, the user could summarize a video just by

inputting the original video file and getting a summarized version of it in terms of

seconds.

11

2 THEORETICAL REVIEW

2.1 Artificial Intelligence

According to IBM, Artificial Intelligence "is the science and engineering of making

intelligent machines, especially intelligent computer programs. It is related to the

similar task of using computers to understand human intelligence, but AI does not

have to confine itself to methods that are biologically observable." /3/ AI is built

for maximizing the work of humans, and it can be used for applications such as:

- Speech recognition is known as automatic speech recognition (ASR) or

speech-to-text (STT). This is an aspect of Natural Language Processing

(NLP), which is responsible for processing human speech into a written

form like text. There are many systems applying this technology such as

voice typing systems, or virtual assistants such as Siri from Apple, Google

Assistant from Google, and Alexa from Amazon.

- Text analyzation is also another aspect of NLP, which is capable of

understanding documents given by humans, then trying to understand

that and doing some specified tasks such as sentiment analysis, giving

feedback to interact with or used in frequently answered questions (FAQs)

system, recommendation system.

- Computer vision technology gives the machines the ability to derive

meaningful information from digital images, video, or any other kind of

visual input, then act based on the given information. Computer vision has

some applications such as face recognition, autonomous driving, photo

tagging, and the medical field.

- Recommendation system is based on the behavior of users in the past, AI

algorithms can help to discover data trends that can be used for giving

some recommendations to users, such as what we can get from online

shopping platforms or search engines.

12

Both Machine Learning (ML) and Deep Learning (DL) are subfields of AI, and DL is

a subfield of ML.

2.2 Machine Learning

Machine Learning is a branch of AI and Computer Science, which focuses on the

use of data and algorithms for recreating the way human learns. ML models are

built based on data and algorithms as explained in Figure 1, then their accuracy

gradually improved by derivatives. The more data is fed into the training model,

the better and more accurate the final model would be.

Figure 1. Differences between machine learning and software engineering /4/

There are three main types of ML, as depicted in Figure 2:

- Supervised Learning: the model is trained based on a labeled dataset, for

serving regression and classification problems, such as predicting if an

advertisement is suitable for a person or not, classifying cat and dog

pictures. Some algorithms are using this approach like linear regression,

random forest, and support vector machines (SVMs).

- Unsupervised Learning: the model is trained on neither classified nor

labeled datasets, and the model must find the data pattern and optimal

solutions on its own. Unsupervised learning is often used in clustering and

13

abnormal detection problems, abnormal transaction detection in banking

as an example. Some famous algorithms built on this method are principal

component analysis (PCA), k-means clustering, probabilistic methods. This

project is also built based on this method.

- Reinforcement Learning: this allows the model to learn in an interactive

environment by trial and error using feedback based on its own

experiences, or shortly based on reward and penalty.

Figure 2. Types of Machine Learning /5/

There is also another method called semi-supervised learning, which is the

procedure of using supervised learning to train based on a small amount of labeled

data, then use the trained model for labeling the unlabeled data, feed them to

train another supervised data.

In the development of ML, a new concept has been developed, named Neural

Networks, inspired by our understanding of the biology of our brains, and related

to Deep Learning.

2.3 Neural Networks and Deep Learning

According to IBM /6/, a neural network like in Figure 3 replicates the human brain

through a set of algorithms. At the basic level, a neural network is created from

14

four things: input, weight, bias, and output. A neural network usually has multiple

hidden layers between the input and output, and each hidden layer has its

activation function, potentially passing information from the previous one to the

next one, like 𝑅𝑒𝐿𝑈, 𝑆𝑖𝑔𝑚𝑜𝑖𝑑, or 𝑇𝑎𝑛ℎ.

Figure 3. Example of a Neural Network /7/

The main difference between a neural network and a linear function is that a

neural network has multiple different neurons, that can give flexibility to the net

by changing the weight of a single neuron without affecting others.

Deep Learning (DL) are neural networks with multiple hidden layers /8/. A DL

model is trained through the backpropagation, which is moving in the opposite

direction from the output to input, instead of flowing from the input to the output.

This procedure allows us to make some calculations then give feedback to

different neurons, training model through derivatives.

With the development and explosion of DL, there are a lot of different types of

neural networks invented, and significantly enhanced the performance of AI, such

as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long

Short-Term Memory (LSTM), and many more.

15

2.4 Convolutional Neural Network

Convolutional Neural Network (CNN) /9/ is one of the leading architectures that

have been used in a wide variety of practical applications, especially in Computer

Vision like Object Classification, Object Detection.

CNN uses a convolutional layer, as explained in Figure 4, which is the core building

block of a CNN, for learning the feature representations of the input data. The data

can be in the 1D format such as time-series or 2D format such as image data. In

each convolutional layer, there is a filter that slides through the input data,

creating a feature map for feeding to the non-linear activation functions.

Figure 4. Convolutional layer /10/

Following the convolutional layer, a pooling layer is often used for reducing the

number of parameters in the input. Similar to the convolutional layer, there is also

a filter that slides through the feature map, but the difference is that there is no

learning weight in this filter. According to IBM /10/, normally there are two main

types of pooling:

16

- Max pooling: As the filter moves across the input, it selects the pixel with

the maximum value to send to the output array. As an aside, this approach

tends to be used more often compared to average pooling.

- Average pooling: As the filter moves across the input, it calculates the

average value within the receptive field to send to the output array.

Finally, fully connected layers are often used for high-level specified tasks such as

classification, based on the feature extracted from previous layers.

Up until now, there are quite a lot of different variant CNN architectures that have

been developed and in use like ResNet /11/, GoogLeNet /12/, VGGNet /13/, and

many more.

2.5 ResNet

The rise of CNN has led to a series of breakthrough innovations in image

classification, with deeper architectures introduced such as LeNet /12/, VGGNet

/13/, and AlexNet /14/. A major pattern observed overall is that networks are

designed to be deeper and deeper, to improve the performance of classification

tasks. However, deep CNN with too many layers often faces the problem of

vanishing/exploding gradient, which affects the convergence of the network and

makes the training procedure becomes more challenging.

Announced in December 2015, ResNet /11/ introduces the “shortcut connections”

concept, which can solve the vanishing gradient problem and allow researchers to

build deeper architectures. As described in Figure 5, shortcut connections are

connections that skip one or more layers of a network, mapping stacked layers fit

a residual mapping ℱ(𝑥) instead of directly fitting a desired underlying mapping

ℋ(𝑥). Hence, the output is ℋ(𝑥) = ℱ(𝑥) + 𝑥, and the weight layers are to learn

a kind of residual mapping ℱ(𝑥) = ℋ(𝑥) + 𝑥. Even if there is a vanishing

gradient for the weight layers, we always still have the identity 𝑥 to transfer back

to earlier layers.

17

Figure 5. Shortcut connection /11/

The overall architecture of ResNet-34 is described in Figure 6, with the comparison

of the VGG-19 network. As claimed by authors, ResNet-34 has fewer filters and

lower complexity than VGG-19, but gives much better performance, with the

vanishing gradient solved. Furthermore, there are 50/101/152 layers variants of

ResNet, following the same concept “deeper is better”.

Figure 6. ResNet and VGG-19 architecture /11/

Later, ResNet has also been widely used for feature extraction in other

architecture, like Faster-RCNN for object detection /15/, and many more.

18

2.6 Long Short-Term Memory

LSTM is a special type of Recurrent Neural Network (RNN), which is focused on

processing sequential data or time-series data and showing an efficient

performance when learning long-term dependencies. /16/

Unlike any other kind of feed-forward neural network, for every element of a

sequence, RNN has a special memory to remember computed information of all

previous elements. For example, given a sequence of input (𝑥1, 𝑥2, … 𝑥𝑇) in Figure

7, RNN will compute for a total of 𝑇 timesteps, with each timestep 𝑡 taking 𝑥𝑡 as

input, and produce 𝑦𝑡 as output. There is a thing called hidden state ℎ𝑡, which is

responsible for remembering all the information of previous elements in the

sequence. Hidden state ℎ𝑡 is calculated based on previous hidden state ℎ𝑡−1 and

input 𝑥𝑡, then output 𝑦𝑡 is determined by ℎ𝑡.

Figure 7. Example of an RNN /16/

With LSTM /18/, each time step is processed through four stages, with two

different kinds of state: “hidden state” and “cell state”. In time step 𝑡, at the first

stage, the LSTM cell will try to decide which information should be thrown away

or not. The current input 𝑥𝑡 and previous hidden state ℎ𝑡−1 will be used for a

function called “forget gate” 𝑓𝑡. Values come out between 0 and 1, the closer to 0

means to forget, and the closer to 1 means to keep. Moreover, we have the “input

gate” 𝑖𝑡, which is responsible for deciding what information is relevant to add from

19

the current step. We pass the previous hidden state ℎ𝑡−1 and current input 𝑥𝑡 into

a sigmoid 𝜎 function, to decide which value should be updated by transforming

the value to be between 0 and 1, also regulate the network by passing the previous

hidden state ℎ𝑡−1 and current input 𝑥𝑡 into a 𝑡𝑎𝑛ℎ function to squish value into -

1 and 1 range. After that, the output of 𝜎 and 𝑡𝑎𝑛ℎ function will be multiplied

together, deciding what information will be kept from the 𝑡𝑎𝑛ℎ output, stored by

𝑖𝑡.

Figure 8. Comparing the structure of an RNN cell and an LSTM cell /17/

After having 𝑓𝑡 and 𝑖𝑡 calculated, we should now have enough information to

calculate the cell state 𝑐𝑡. Previous cell state 𝑐𝑡−1 gets pointwise multiplied with

forget gate 𝑓𝑡, then get a pointwise addition with 𝑖𝑡, producing new cell state 𝑐𝑡.

Lastly, we have the output gate 𝑜𝑡, deciding what the next hidden state ℎ𝑡+1

should be. 𝑜𝑡 is calculated by passing ℎ𝑡−1 and 𝑥𝑡 into a sigmoid function, then

deciding what ℎ𝑡+1 should be by multiplying 𝑜𝑡 with the result of passing 𝑐𝑡

through a 𝑡𝑎𝑛ℎ function.

For increasing the performance of the LSTM network, a Bidirectional LSTM

(BiLSTM) is also used, consisting of two LSTMs: one taking the input in the forward

direction, and the other in the backward direction. This effectively increases the

amount of information available to the network, improving the context available

to the algorithm. /19/ Aside from the normal LSTM, there is also a simple version

of it, called Gated Recurrent Unit (GRU), which combines the forget gate and input

gate, as well as merges the cell state and hidden state, is also being used widely.

20

2.7 Generative Adversarial Network

In June 2014, Ian Goodfellow and his colleagues /20/ introduced a class of Machine

Learning framework, called Generative Adversarial Network, in which two models

are simultaneously trained: a generative network 𝐺 learns for creating new data

that captures the training data distribution, and the discriminative network 𝐷

learns for discriminating the realistic of generated data. This framework

corresponds to a minimax two-player game when 𝐺 tries to maximize the

probability of 𝐷 making a mistake, while 𝐷 tries to maximize the errors of 𝐺. The

training procedure ends when 𝐷 cannot discriminate the differences between the

training data distribution and the distribution of results generated from 𝐺.

Figure 9. The architecture of GAN /21/

GANs can be used in many different aspects, such as image enhancements, art

generating, AR, and VR for reconstructing 3d models. In multimedia processing,

GANs can also be used for pictures, videos quality enhancement, and frame

predicting. In 2017, there was a problem that has been raised now about the

concern of using GANs in creating Deepfakes, which can be used “to manipulate

media and replace a real person’s image, voice, or both with similar artificial

likenesses or voices. Among the possible risks, deepfakes can threaten

cybersecurity, political elections, individual and corporate finances, reputations,

21

and more. This malintent and misuse can play out in scams against individuals and

companies, including on social media.” /22/

2.8 Variational Autoencoder

A Variational Autoencoder /23,24/ is a type of autoencoder, which the

architecture composes of both an encoder and a decoder, trained to minimize the

reconstruction error between the encoded-decoded data and the initial data. The

training of VAE is regularized to avoid overfitting and ensure that the latent space

of the input data has good properties for enabling the generative process, by

encoding it as a distribution over latent space instead of encoding as a single point.

As described in Figure 10, the training process of VAE is divided into four steps:

- First, the input is encoded as a distribution over the latent space

- Second, a point from the latent space is sampled from that distribution

- Third, the sampled point is then decoded, and the reconstruction error can

be computed

- Finally, the reconstruction error is backpropagated through the network

Figure 10. Workflow of a VAE /25/

22

There are different studies on the combination of VAE and GAN /26,27/ since the

Decoder module of VAE and the Generator module of GAN share some similarities

in the generation tasks.

2.9 Actor-Critic Model

Actor-Critic is a method in Reinforcement Learning, which combines the

advantages of actor-only and critic-only methods, where the words actor and critic

are synonyms for the policy and value function, respectively. The principal idea is

to split the model into two: one for computing an action based on a state and

another one to produce the Q values of the action. The actor is responsible for

deciding which action should be taken, and the critic will inform the actor how

good was the action and how should it adjust. Those two models together

participate in a game where they both get better in their roles. The result is that

the overall architecture will learn to play the game more efficiently than the two

methods separately. /28/

Figure 11. Actor-Critic architecture /29/

Actor-Critic and GANs also share some similarities, such as “one model has access

to information about errors from the environment (the discriminator in GANs and

the critic in AC), while the other model must be updated based only on gradient

23

information from the first model”, so that there are many studies on the

combination of two. /30/

2.10 Video Structure

A video is made up of a series of various frames, also known as images, that are

displayed at a constant rate, such as 24 frames per second (fps), 30fps, and 60fps,

as seen in Figure 12. A shot is made up of consecutive frames with similar features,

different shots are put together to make a scene, and scenes are joined together

to form a video.

Figure 12. The hierarchical structure of a video /31/

Most videos now include audio tracks that are played in parallel with visuals to

provide additional information. As shown in Figure 13, audios are represented in

digital form with a variety of different sample points at a constant rate, such as

44,1kHz. Speakers can play them constantly, and accurately represent the audio

information in the video using these values.

24

Figure 13. Audio wave sampling representation /32/

2.11 Knapsack Algorithm

The knapsack problem is one of the combinatorial optimization problems: given a

set of 𝑛 items, and two integer arrays 𝑣𝑎𝑙[0. . 𝑛 − 1] and 𝑤𝑡[0. . 𝑛 − 1] represent

values and weights associated with 𝑛 items respectively; also, given a knapsack

with the capacity of 𝑊, determine the maximum subset of 𝑣𝑎𝑙[] such that the

total weight is less than or equal to the capacity 𝑊. It has been studied for more

than a century since 1897, referring to the commonplace problem of packing the

most valuable or useful items without overloading the luggage /33/. In the real-

world, knapsack problems are applied to find the least wasteful way to cut raw

materials, selection of investment and portfolios, selection of assets for asset-

backed securitization, and many more.

The knapsack problem can be solved by dynamic programming, with the time and

space complexity of Ο(𝑛 ∗ 𝑊). We will use a two-dimensional array 𝐾[][] for

remembering the states of calculation, with weights from 1 to 𝑊 as the columns

and items from 1 to 𝑛 as the rows; the state 𝐾[𝑖][𝑗] will denote maximum value

of 𝑗– 𝑡ℎ weight considering values of items from 1 to 𝑖– 𝑡ℎ. So, if we consider 𝑤𝑡[𝑖],

we can fill it in all columns that the weight values are greater than 𝑤𝑡[𝑖]. At this

stage, there are two possibilities: fill 𝑤𝑡[𝑖] into the given column or not, which

means we must take the maximum value of these possibilities:

25

- If we do not fill the 𝑤𝑡[𝑖] in the 𝑗– 𝑡ℎ column, 𝐾[𝑖][𝑗] will be the same as

𝐾[𝑖 − 1][𝑗]

- If we fill 𝑤𝑡[𝑖], 𝐾[𝑖][𝑗] will be equals to 𝑣𝑎𝑙[𝑖] + 𝐾[𝑖 − 1][𝑗 − [𝑤𝑡[𝑖]]

The optimal solution will be the value at 𝐾[𝑛][𝑊] state. /33/ Code Snippet 1 below

shows how the solution is implemented in Python.

def knapsack(W, wt, val, n):

 K = [[0 for x in range(W+1)] for x in range(n+1)]

 # Build table K[][] in bottom up manner

 for i in range(n+1):

 for w in range(W+1):

 if i == 0 or w == 0:

 K[i][w] = 0

 elif wt[i-1] <= w:

 K[i][w] = max(val[i-1]+K[i-1][w-wt[i-1]],

 K[i-1][w])

 else:

 K[i][w] = K[i-1][w]

 # Trace the selected items

 selected = []

 w = W

 for i in range(n, 0, -1):

 if K[i][w] != K[i-1][w]:

 selected.insert(0, i-1)

 w -= wt[i-1]

 return selected

Code Snippet 1. Implementation of Knapsack problem in Python /33/

26

3 TOOLS AND TECHNOLOGIES IN USE

In this chapter, the tools and technologies that have been used for developing the

application are discussed. Since the application is deep learning-based, PyTorch

(Python) was mainly used for the training and evaluating process. Since we are

dealing with multimedia issues, we also use OpenCV, Decord, and Pydub.

3.1 Python

Python is a simple, interpreted, object-oriented, high-level programming language

with dynamic semantics /34/. Clear and simple syntax makes it widely used and

gains more and more applications internationally such as web development, data

visualization, data analytics, and especially AI and machine learning. With most of

the features of an object-oriented language for full object-oriented programming

and cross-platform for a variety of operating systems including Windows, macOS,

and Linux, there are a lot of different frameworks developed for AI and data

science such as PyTorch, Tensorflow, Keras, mxnet, NumPy, Pandas, and many

more.

3.2 PyTorch

Released to open source in 2017, PyTorch /35/ is a machine learning framework

developed by Facebook’s AI Research lab. According to Paszke et al. /36/, “it

provides an imperative and Pythonic programming style that supports code as a

model, makes debugging easy and is consistent with other popular scientific

computing libraries, while remaining efficient and supporting hardware

accelerators such as GPUs.”

Not only being integrated with popular libraries such as NumPy, SciPy and

supports CPU, GPU, but also PyTorch supports parallel processing, as well as

distributed training, and having excellent documentation with a large community

that is active and supportive, makes it a great option for implementing Computer

Vision (CV), Natural Language Processing (NLP) and many other tasks. /37/

27

3.3 OpenCV

OpenCV is an open-source library for machine learning and computer vision,

mainly aimed at real-time processing, widely adopted with an estimated number

of exceeding 14 million downloads. With more than 2500 optimized algorithms,

which include a comprehensive set of both classic and state-of-the-art (SOTA)

computer vision and machine learning algorithms, it can be used to detect and

recognize faces, identify objects, track moving objects, and many more. Since this

library is primarily focused on real-time performance, it was optimized by C/C++,

was designed for computational efficiency, and can take advantage of multi-core

processing capabilities. Furthermore, it can take advantage of the hardware

acceleration of the underlying heterogeneous compute platform by supporting

OpenCL and CUDA frameworks. It has C++, Python, Java, and MATLAB interfaces

and supports Windows, Linux, Android, and macOS, so there are large companies

such as Google, Yahoo, Microsoft, Intel, and IBM making extensive use of this

library, as well as start-ups such as Applied Minds, VideoSurf, and Zeitera. /38/

3.4 Decord

Announced in CVPR 2020, Decord is a library that provides convenient video slicing

methods based on a thin wrapper on top of hardware-accelerated video decoders,

for example, FFMPEG/LibAV, Nvidia Codecs, and Intel Codecs /39/. The random-

access pattern of this library is drastically improved comparing to the performance

of any other libraries, particularly OpenCV. Figure 14 shows the performance

comparison between Decord and OpenCV, with up to 2.38 times faster at

sequential read and up to 14.48 times faster at accurate random seek. With

dramatically improved efficiency, this library simplifies video processing tasks,

allowing Python to become a much more efficient programming language.

28

Figure 14. Benchmarking the performance of different libraries /39/

Decord is also capable of decoding audio from both video and audio files. One can

slice video and audio together to get a synchronized result, hence providing a one-

stop solution for both video and audio decoding. Code Snippet 2 shows an

example of Decord functionality.

from decord import VideoReader

vr = VideoReader('examples/test.mp4')

print('Video frames:', len(vr))

Output: 7414

print('Frame shape:', vr[0].shape)

Output: (720, 1280, 3)

print('Batch of frames shape:', vr[0:10].shape)

Output: (10, 720, 1280, 3)

print('Key frames list:', vr.get_key_indices())

Output: [0, 44, 85, 125, 161, 221, 260, 289]

print('FPS:', vr.get_avg_fps())

Output: 25.0

Code Snippet 2. Example of Decord functionality

3.5 Pydub

Pydub /40/ is a Python library for handling audio files. Similar to Decord, Pydub

allows slicing and locating audio files with different metrics such as timestamps or

indexes easier. Moreover, it also offers the ability of audio editing for example,

29

volume modification, audio concatenating, adding crossfade, and many more. It

supports a wide range of codecs, from audio formats such as WAV, MP3, and AAC

to video formats such as MP4, FLV, and WMV. Code Snippet 3 below shows a

functionality example of Pydub.

from pydub import AudioSegment

from pydub.playback import play

ar = AudioSegment.from_file('examples/test.mp4', 'mp4')

Pydub does things in milliseconds

first_10_seconds = ar[:10*1000]

last_5_seconds = ar[-5000:]

Boost volume by 10dB

beginning = first_10_seconds + 10

Reduce volume by 5dB

end = last_5_seconds – 5

Concatenate audio

combined = beginning + end

play(combined)

print('Length of audio:', combined.duration_seconds)

Output: 15.0

Save audio

combined.export('test.mp3', format='mp3')

Code Snippet 3. Example of Pydub functionality

30

4 APPLICATION DESCRIPTION

In this chapter, the structure and requirement specifications of the application will

be discussed.

This project used state-of-the-art research in the unsupervised video

summarization field, which is AC SUM GAN /41/ as the logical part for processing.

The tool was focused on improving the workflow and simplifying the work of video

summarization just by inputting the original video file and getting a summarized

version of it. The requirements of this project could be categorized into three

distinct levels of importance: must-have, should have, and nice to have, with the

order of priorities are #1, #2, and #3 respectively. Table 1 fully describes the

requirement specifications of this application.

Table 1. Application requirement specifications, with 1 indicating highest and 3

indicating lowest priority.

Reference Description Priority

F1 The application can receive an input video, then produce
a summarized video

1

F2 The application could easily be used with the command-
line interface

1

F3 Output video should include audio, exactly matching to
the scenes selected by the application

1

F4 Performance of the solution should be reasonably close
to the original solution from the paper

2

F5 Input pre-processing time should be minimized so that
the overall process can be reduced

2

F6 The application should allow users to manipulate the
length of the output video

3

31

Based on the requirement specifications of the summarizing application, there

were two main use cases that the application can serve: train the main processing

model and summarize videos, matching the use of developers and normal users,

respectively. Figure 15 depicts the use cases diagram of the application.

Figure 15. Application use cases diagram

According to Apostolidis et al. /41/, a training epoch was divided into four

incremental steps, and at each step, different components were being trained

(e.g., Linear Encoder, Encoder, Decoder). Figures 17 and 18 show how components

were being trained through each step, with the first three steps of the procedure

depicted in Figure 17, and the step 4 of the procedure depicted in Figure 18. This

procedure was looped through 100 epochs, then the best model would be chosen

for the testing part. Figure 16 shows the sequence diagram of the whole training

process.

32

Figure 16. The sequence diagram of the training process

Figure 17. The first three steps of the incremental training procedure. Dark-

colored boxes denote the parts updated in each step. /41/

Figure 18. The fourth step of the incremental training procedure. Dark-colored

boxes denote the parts updated in this step. /41/

In the video summarizing part, the input video features would be extracted first.

Firstly, we must recognize the keyframes in the input video, then divide them into

shots for evaluation. for examination. The KTS algorithm /42/ could be used to

perform this technique, however, it usually takes a long time since it would look

33

over every individual frame of the video before deciding on the keyframes.

Fortunately, by using Decord here, we could greatly minimize the processing time,

so that we could obtain the result in just a few seconds.

After obtaining keyframes and partitioning the original video into shots, we took

the representative frames of each shot and feed them into a pre-trained ResNet

for extracting features. Then, all the extracted features were evaluated using the

pre-trained model in the training part, scoring the importance of shots, then using

the Knapsack algorithm for deciding which shots were kept or not, calculating the

most valuable result in a limited period decided in the beginning. Finally, chosen

shots were then combined, forming the final output video. Figure 19 shows how

different modules of the process interact with each other.

Figure 19. The sequence diagram of the summarizing process

34

5 IMPLEMENTATION

In this section, the process of implementing the application is discussed.

5.1 Training

As described in Figures 17 and 18, the training pipeline of this application was

divided into four incremental steps. The Encoder would be trained in the first step,

then the Decoder would be trained in the second step. The third step would be

used for training the Discriminator and Linear Compression modules. Finally, in the

fourth step, the State Generator, Critic, and Actor modules would be trained, and

the Linear Compression module was once again being learned. The whole training

process was looped through 100 epochs, for producing the best result.

5.1.1 Training Encoder

#---------- train eLSTM ----------#

e_optimizer.zero_grad()

for video in range(config.batch_size):

 image_features, action_fragments = next(iterator)

 image_features = image_features.view(-1, config.input_size)

 action_fragments = action_fragments.squeeze(0)

 image_features_ = Variable(image_features)

 seq_len = image_features_.shape[0]

 original_features = linear_compress(image_features_

 .detach()).unsqueeze(1)

 weighted_features, _ = AC(original_features,

 seq_len, action_fragments)

 h_mu, h_log_variance, generated_features = summarizer

 .vae(weighted_features)

 h_origin, original_prob = discriminator(original_features)

 h_summary, summary_prob = discriminator(generated_features)

 recon_loss = reconstruction_loss(h_origin, h_summary)

 prior_loss = prior_loss(h_mu, h_log_variance)

 e_loss = recon_loss + prior_loss

 e_loss = e_loss/config.batch_size

 e_loss.backward()

update e_lstm parameters every 'batch_size' iteration

torch.nn.utils.clip_grad_norm_(summarizer.vae.e_lstm

 .parameters(), config.clip)

e_optimizer.step()

Code Snippet 4. Updating the Encoder

Depicted in Figure 17, in the first step, the algorithm made a forward pass through

all the components of the network (Linear Compression, State Generator, Actor,

35

Fragment Selector, Encoder, Decoder, and Discriminator) for computing losses.

The prior loss 𝐿𝑝𝑟𝑖𝑜𝑟 was calculated by using the Encoder module, and the

reconstruction loss 𝐿𝑟𝑒𝑐𝑜𝑛 was calculated by using the Discriminator. After 𝐿𝑝𝑟𝑖𝑜𝑟

and 𝐿𝑟𝑒𝑐𝑜𝑛 was calculated, the Encoder was updated with a backward. The entire

process of step 1 was implemented in Code Snippet 4.

5.1.2 Training Decoder

Similar to step 1, in step 2, the input was forwarded through the partially updated

network as in Figure 17, computing the reconstruction loss 𝐿𝑟𝑒𝑐𝑜𝑛 and the

generator loss 𝐿𝐺𝐸𝑁 using the Discriminator. 𝐿𝑟𝑒𝑐𝑜𝑛 and 𝐿𝐺𝐸𝑁 was then summed

together, updating the Decoder module. The procedure of this step is described in

Code Snippet 5.

#---------- train dLSTM ----------#

d_optimizer.zero_grad()

for video in range(config.batch_size):

 image_features = list_image_features[video]

 action_fragments = list_action_fragments[video]

 image_features_ = Variable(image_features)

 seq_len = image_features_.shape[0]

 original_features = linear_compress(image_features_

 .detach()).unsqueeze(1)

 weighted_features, _ = AC(original_features,

 seq_len, action_fragments)

 _, _, generated_features = summarizer.vae(weighted_features)

 h_origin, original_prob = discriminator(original_features)

 h_summary, summary_prob = discriminator(generated_features)

 recon_loss = reconstruction_loss(h_origin, h_summary)

 gen_loss = criterion(summary_prob, original_label)

 orig_features = original_features.squeeze(1)

 gen_features = generated_features.squeeze(1)

 recon_losses = []

 for frame_index in range(seq_len):

 recon_losses.append(reconstruction_loss(orig_features

 [frame_index,:], gen_features[frame_index,:]))

 recon_loss_init = torch.stack(recon_losses).mean()

 d_loss = recon_loss + gen_loss

 d_loss = d_loss/config.batch_size

 d_loss.backward()

update d_lstm parameters every 'batch_size' iteration

torch.nn.utils.clip_grad_norm_(summarizer.vae.d_lstm

 .parameters(), config.clip)

d_optimizer.step()

Code Snippet 5. Updating the Decoder

36

5.1.3 Training Linear Compression and Discriminator

In step 3, the partially model was again forward passed as shown in Figure 17. The

compressed features (which are produced by the Linear Compressor) were then

fed into the Discriminator, calculating the original loss 𝐿𝑂𝑅𝐼𝐺 . The features

reconstructed by the Decoder were also fed into the Discriminator, calculating the

generator loss 𝐿𝐺𝐸𝑁. The gradients computed from the two losses, after two

individual backward passes, were then used for updating the Discriminator and

the Linear Compressor. Implementation of this step is shown in Code Snippet 6.

#---------- train cLSTM ----------#

c_optimizer.zero_grad()

for video in range(config.batch_size):

 image_features = list_image_features[video]

 action_fragments = list_action_fragments[video]

 image_features_ = Variable(image_features)

 seq_len = image_features_.shape[0]

 # Train with original loss

 original_features = linear_compress(image_features_

 .detach()).unsqueeze(1)

 _, original_prob = discriminator(original_features)

 c_original_loss = criterion(original_prob, original_label)

 c_original_loss = c_original_loss/config.batch_size

 c_original_loss.backward()

 # Train with summary loss

 weighted_features, _ = AC(original_features,

 seq_len, action_fragments)

 _, _, generated_features = summarizer.vae(weighted_features)

 _, summary_prob = discriminator(generated_features)

 c_summary_loss = criterion(summary_prob, summary_label)

 c_summary_loss = c_summary_loss/config.batch_size

 c_summary_loss.backward()

update c_lstm parameters every 'batch_size' iteration

torch.nn.utils.clip_grad_norm_(list(discriminator.parameters())

 + list(linear_compress.parameters()), config.clip)

c_optimizer.step()

Code Snippet 6. Updating Linear Compressor and Discriminator

5.1.4 Training of the Remaining Components

In the last step, the State Generator, the Actor, the Critic, and the Linear

Compressor were all updated through an incremental process as shown in Figure

18, with the partially updated model. At the end of the process, actor loss 𝐿𝑎𝑐𝑡𝑜𝑟,

critic loss 𝐿𝑐𝑟𝑖𝑡𝑖𝑐, and sparsity loss 𝐿𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 were calculated, making backward

37

steps for the remaining components of the architecture. This process

implementation is fully described in Code Snippet 7 below.

#---------- train sLSTM, Actor and Critic ----------#

actor_s_optimizer.zero_grad()

critic_optimizer.zero_grad()

for video in range(config.batch_size):

 image_features = list_image_features[video]

 action_fragments = list_action_fragments[video]

 image_features_ = Variable(image_features)

 seq_len = image_features_.shape[0]

 original_features = linear_compress(image_features_

 .detach()).unsqueeze(1)

 next_state, log_probs, values, rewards,

 masks, entropy = AC_s4(original_features,

 seq_len, action_fragments)

 next_state = torch.FloatTensor(next_state)

 next_value = critic(next_state)

 returns = compute_returns(next_value, rewards, masks)

 log_probs = torch.cat(log_probs)

 returns = torch.cat(returns).detach()

 values = torch.cat(values)

 advantage = returns - values

 actor_loss = -((log_probs*advantage.detach()).mean()

 +(config.entropy_coef/config.termination_point)*entropy)

 sparsity_loss = sparsity_loss(scores)

 critic_loss = advantage.pow(2).mean()

 actor_loss = actor_loss/config.batch_size

 sparsity_loss = sparsity_loss/config.batch_size

 critic_loss = critic_loss/config.batch_size

 actor_loss.backward()

 sparsity_loss.backward()

 critic_loss.backward()

update s_lstm, actor and critic parameters every 'batch_size'

iteration

torch.nn.utils.clip_grad_norm_(list(actor.parameters())

 + list(linear_compress.parameters())

 + list(summarizer.s_lstm.parameters())

 + list(critic.parameters()), config.clip)

actor_s_optimizer.step()

critic_optimizer.step()

Code Snippet 7. Updating the remaining components of the architecture

5.2 Evaluation

After the completion of the training process, the successfully trained model was

then saved and used to calculate the importance scores of various shots in a video.

The input video was fed into the Linear Compressor, which reduces the size of

feature vectors from 1024 to 512 before using the State Generator, Actor, and

Critic to score the importance of different shots in the original video. The

38

evaluated result was then saved to a JSON file for later uses. Code Snippet 8 below

describes the entire process implementation.

def evaluate(epoch_i):

 model.eval()

 out_dict = {}

 for image_features, video_name, action_fragments in tqdm(

 test_loader, desc='Evaluate', ncols=80, leave=True):

 image_features = image_features.view(-1,

 config.input_size)

 image_features_ = Variable(image_features)

 original_features = linear_compress(image_features_

 .detach()).unsqueeze(1)

 seq_len = original_features.shape[0]

 with torch.no_grad():

 _, scores = AC(original_features, seq_len,

 action_fragments)

 scores = scores.squeeze(1)

 scores = scores.cpu().numpy().tolist()

 out_dict[video_name] = scores

 score_save_path = config.score_dir

 .joinpath(f'{config.video_type}_{epoch_i}.json')

 if not os.path.isdir(config.score_dir):

 os.makedirs(config.score_dir)

 with open(score_save_path, 'w') as f:

 json.dump(out_dict, f)

 score_save_path.chmod(0o777)

Code Snippet 8. Implementation of evaluation

5.3 Features Extraction

Before evaluation, the original video had to be preprocessed first. To begin, the

video was divided into different sub-shots by detecting the keyframes (changing

points), then we took some representative frames of that shot, passing through

ResNet for extracting primary features. These features, as well as other metadata

such as frames per second, change points, and sequences, were then saved to a

compressed file, and could be evaluated by the trained model then.

The KTS Algorithm /42/ could be used to implement keyframe detection, but it

typically takes a long time to process the result (normally hours). Fortunately, the

result could be retrieved in seconds by using Decord, significantly reducing

39

processing time. Code Snippet 9 explains how the feature extraction process was

carried out.

def generate_dataset():

 for video_idx, video_path in enumerate(tqdm(video_list,

 desc='Feature Extract', ncols=80, leave=True)):

 video_name = os.path.basename(video_path)

 # for passing through resnet

 vr = decord.VideoReader(video_path, width=224,

 height=224)

 fps = vr.get_avg_fps()

 n_frames = len(vr)

 frame_list, picks = [], []

 video_feat = None

 change_points, n_frame_per_seg = get_change_points(

 video_path)

 # mid frame of shot representing main features

 for segment in change_points:

 mid = (segment[0] + segment[1])//2

 frame = vr[mid].asnumpy()

 frame_feat = extract_feature(frame)

 picks.append(mid)

 if video_feat is None:

 video_feat = frame_feat

 else:

 video_feat = np.vstack((video_feat, frame_feat))

 h5_file['video_' + video_idx]

 ['features'] = list(video_feat)

 h5_file['video_' + video_idx]

 ['picks'] = np.array(list(picks))

 h5_file['video_' + video_idx]['n_frames'] = n_frames

 h5_file['video_' + video_idx]['fps'] = fps

 h5_file['video_' + video_idx]

 ['change_points'] = change_points

 h5_file['video_' + video_idx]

 ['n_frame_per_seg'] = n_frame_per_seg

 h5_file['video_' + video_idx]['video_name'] = video_name

 h5_file.close()

Code Snippet 9. Implementation of feature extraction

5.4 Video Generation

The final result would be generated after the evaluation step. Metadata from the

feature extraction step, as well as evaluated scores from the evaluation step, were

then retrieved and used in the sub-shot selection process. The Knapsack algorithm

was used to complete the sub-shot selection process, with a "capacity of the bag"

(length of the output video) inputted. Code Snippet 10 shows how the shots

selection process is implemented.

40

def generate_summaries(score_path, metadata_path, duration=-1):

 all_scores = []

 with open(score_path) as f:

 data = json.loads(f.read())

 keys = list(data.keys())

 for video_name in keys:

 scores = np.asarray(data[video_name])

 all_scores.append(scores)

 video_names, all_shot_bound = [], []

 all_nframes, all_positions = [], []

 with h5py.File(metadata_path, 'r') as hdf:

 for video_key in keys:

 video_index = video_key[6:]

 video_name = hdf[video_key + '/video_name'][()]

 .decode()

 sb = np.array(hdf.get('video_' + video_index

 + '/change_points'))

 n_frames = np.array(hdf.get('video_' + video_index

 + '/n_frames'))

 positions = np.array(hdf.get('video_' + video_index

 + '/picks'))

 video_names.append(video_name)

 all_shot_bound.append(sb)

 all_nframes.append(n_frames)

 all_positions.append(positions)

 all_summaries = generate_summary(all_shot_bound, all_scores,

 all_nframes, all_positions, duration)

 return video_names, all_summaries

Code Snippet 10. Implementation of summaries generation

Following the completion of the sub-shots selection step, the selected results were

combined to make a complete output video, which includes a 5-second intro and

outro. Audio segments associated with the selected video shots were also

retrieved, concatenated, and saved as a file. After that, the created video and

audio were combined to form the final product. The implementation of the video

generation process is shown in Code Snippet 11.

41

def generate_videos(video_names, all_summaries):

 for video_name, summary in zip(video_names, all_summaries):

 audio_name = video_name[:-4] + '.mp3'

 video_reader = decord.VideoReader(tmp_path)

 audio_reader = AudioSegment.from_file(tmp_path, 'mp4')

 fps = video_reader.get_avg_fps()

 (frame_height, frame_width, _) = video_reader[0]

 .asnumpy().shape

 # add 5 seconds of video beginning and end into summary

 summary[:int(fps*5)] = 1

 summary[-int(fps*5):] = 1

 frame_ids = list(np.argwhere(summary == 1)

 .reshape(1, -1).squeeze(0))

 vid_writer = cv2.VideoWriter(

 'output_video/' + video_name,

 cv2.VideoWriter_fourcc(*'mp4v'),

 fps, (frame_width, frame_height))

 summarized_audio = None

 for idx in frame_ids:

 # write video to file

 frame = video_reader[idx]

 vid_writer.write(cv2.cvtColor(frame.asnumpy(),

 cv2.COLOR_RGB2BGR))

 au_start, au_end = video_reader

 .get_frame_timestamp(idx)

 # seconds to miliseconds

 au_start = round(au_start*1000)

 au_end = round(au_end*1000)

 if summarized_audio is None:

 summarized_audio = audio_reader[au_start:au_end]

 else:

 summarized_audio +=audio_reader[au_start:au_end]

 # write audio to file

 summarized_audio.export('output_video/' + audio_name,

 format='mp3')

 vid_writer.release()

 # combine video and audio

 input_video = mpe.VideoFileClip(

 'output_video/' + video_name)

 input_audio = mpe.AudioFileClip(

 'output_video/' + audio_name)

 output_video = input_video.set_audio(input_audio)

 output_video.write_videofile(

 'output_video/fin_' + video_name,

 codec='libx264', audio_codec='aac')

Code Snippet 11. Implementation of videos generation

42

6 TESTING

6.1 Model Training

The training procedure was compared to the performance of the AC-SUM-GAN, as

published by Apostolidis et al., /41/. TVSum dataset /43/, which is a standardized

dataset in the video summarization field, containing 50 videos of various genres

(e.g., news, how-to, documentary, vlog, egocentric) and 1,000 annotations of

shot-level importance scores obtained via crowdsourcing (20 per video), was used

for this benchmark, with five different splits proposed by Apostolidis et al. Each

split was trained for 100 epochs, then the best epoch was chosen for comparison

based on Reward and Actor loss.

The F-score of selected epochs were calculated as shown in Code Snippet 12, with

precision calculated by the overlapped to generated ratio and recall calculated by

the overlapped to ground truth ratio. The results of the benchmark can be found

in Table 2.

def evaluate_summary(predicted_summary, user_summary,

 eval_method):

 max_len = max(len(predicted_summary), user_summary.shape[1])

 S = np.zeros(max_len, dtype=int)

 G = np.zeros(max_len, dtype=int)

 S[:len(predicted_summary)] = predicted_summary

 f_scores = []

 for user in range(user_summary.shape[0]):

 G[:user_summary.shape[1]] = user_summary[user]

 overlapped = S & G

 precision = sum(overlapped)/sum(S)

 recall = sum(overlapped)/sum(G)

 if precision + recall == 0:

 f_scores.append(0)

 else:

 f_scores.append(

 2*precision*recall*100/(precision+recall))

 if eval_method == 'max':

 return max(f_scores)

 else:

 return sum(f_scores)/len(f_scores)

Code Snippet 12. Implementation of F-score calculation

43

Table 2. The evaluation results of the training process (higher is better).

Split Selected epoch’s F-score The reference’s F-score

0 57.3

60.6

1 59.6

2 57.3

3 58.5

4 61.0

As shown in Table 2, the training process yielded results that were close to the

original implementation, indicating that the application was already in a good

shape and capable of producing a well-summarized video.

6.2 Video Summarizing

For testing the video summarizing process, 16 videos taken from YouTube were

used, with the predefined output length was 15% of the input. The results of

summarizing process are shown in Table 3. As we can see, the result lengths were

approximately equal to 15% of the original length, matching the predefined

configuration. Figure 20 shows the visualization of a summarized video.

Figure 20. Visualization of a summarized video

44

Table 3. The video summarizing process evaluation results, with the result lengths

being approximately 15% of the original lengths.

Video Original length Result length Ratio of result to original (%)

1 11m27s 1m43s 15

2 14m58s 2m12s 14.7

3 3m44s 35s 15.6

4 3m31s 32s 15.2

5 5m 50s 16.7

6 10m9s 1m39s 16.3

7 10m19s 1m38s 15.8

8 4m57s 45s 15

9 7m14s 1m3s 14.5

10 12m35s 2m3s 16.3

11 6m24s 58s 15.1

12 4m 37s 15.4

13 5m49s 1m 17.2

14 2m24s 27s 18.4

15 2m31s 33s 21.9

16 23m14s 3m36s 15.5

45

7 CONCLUSION

In conclusion, the main goal of the project was to do research in the field of video

summarization and develop a tool that can assist people in improving video

summarization workflow by significantly reducing processing time and simplifying

video summarizing work.

The project met all of its goals. The developed tool can produce adequate results,

with an understandable output that allows people to skim through a video without

losing too much information delivered by both video and audio, by using AC-SUM-

GAN, which was state-of-the-art research in the field of unsupervised video

summarization, as a chosen solution for the processing unit. Furthermore, by

utilizing powerful technologies such as Decord, Pydub, and PyTorch, the

processing time of video summarizing has been significantly reduced, such that an

ordinary user could summarize a video simply by inputting the original video file

and receiving a summarized version of it within seconds.

7.1 Future Work

For future improvements, the user interface could be improved. At the moment,

the user must interact with the application through the command-line interface,

which can be challenging for inexperienced users. For improved usability, a

graphical user interface, or a web application could be implemented while

providing more scalability. This project could also be packed for the development

of other applications in search of new potential use cases.

Furthermore, by focusing on video processing and summarizing, this project

opened a new horizon for other AI research topics, such as generating sport

highlights, automatically selecting thumbnails, image processing and pattern

recognition, and many others.

46

REFERENCES

1. Statista. Forecast of the number of Youtube users in the World from 2017
to 2025. Accessed 11.02.2022.
https://www.statista.com/forecasts/1144088/youtube-users-in-the-
world

2. Apostolidis, E., Adamantidou, E., Metsai, A.I., Mezaris, V. and Patras, I.,
2021. Video summarization using deep neural networks: A survey.
Proceedings of the IEEE, 109(11), pp.1838-1863.

3. IBM Cloud Education. 2020. Artificial Intelligence (AI). Accessed
11.02.2022. https://www.ibm.com/cloud/learn/what-is-artificial-
intelligence

4. Ajanki, A., 2018. Differences between machine learning and software
engineering. Accessed 11.02.2022. https://futurice.com/blog/differences-
between-machine-learning-and-software-engineering

5. Sultan, K., Ali, H. and Zhang, Z., 2018. Big data perspective and challenges
in next generation networks. Future Internet, 10(7), p.56.

6. Kavlakoglu E., 2020. AI vs. Machine Learning vs. Deep Learning vs. Neural
Networks: What’s the Difference?. Accessed 11.02.2022.
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-
learning-vs-neural-networks

7. Melcher K., 2021. A Friendly Introduction to [Deep] Neural Networks.
Accesses 11.02.2022. https://www.knime.com/blog/a-friendly-
introduction-to-deep-neural-networks

8. IBM Cloud Education. 2020. Deep Learning. Accessed 11.02.2022.
https://www.ibm.com/cloud/learn/deep-learning

9. LeCun, Y. and Bengio, Y., 1995. Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks,
3361(10), p.1995.

10. IBM Cloud Education. 2020. Convolutional Neural Networks. Accessed
11.02.2022. https://www.ibm.com/cloud/learn/convolutional-neural-
networks

11. He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 770-778).

https://www.statista.com/forecasts/1144088/youtube-users-in-the-world
https://www.statista.com/forecasts/1144088/youtube-users-in-the-world
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
https://futurice.com/blog/differences-between-machine-learning-and-software-engineering
https://futurice.com/blog/differences-between-machine-learning-and-software-engineering
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.knime.com/blog/a-friendly-introduction-to-deep-neural-networks
https://www.knime.com/blog/a-friendly-introduction-to-deep-neural-networks
https://www.ibm.com/cloud/learn/deep-learning
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://www.ibm.com/cloud/learn/convolutional-neural-networks

47

12. LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11),
pp.2278-2324.

13. Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556.

14. Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification
with deep convolutional neural networks. Advances in neural information
processing systems, 25.

15. Ren, S., He, K., Girshick, R. and Sun, J., 2015. Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural
information processing systems, 28.

16. IBM Cloud Education. 2020. Recurrent Neural Networks. Accessed
11.02.2022. https://www.ibm.com/cloud/learn/recurrent-neural-
networks

17. Rassem, A., El-Beltagy, M. and Saleh, M., 2017. Cross-country skiing gears
classification using deep learning. arXiv preprint arXiv:1706.08924.

18. Phi M., 2018. Illustrated Guide to LSTM’s and GRU’s: A step by step
explanation. Accessed 11.02.2022.
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-
step-by-step-explanation-44e9eb85bf21

19. Papers With Code. Bidirectional LSTM. Accessed 11.02.2022.
https://paperswithcode.com/method/bilstm

20. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A. and Bengio, Y., 2014. Generative adversarial nets. Advances
in neural information processing systems, 27.

21. TUM Wiki. 2017. Generative Adversarial Networks (GANs). Accessed
23.01.2022.
https://wiki.tum.de/pages/viewpage.action?pageId=23562510

22. Johansen A.G., 2020. Deepfakes: What they are and why they’re
threatening. Accessed 23.01.2022.
https://us.norton.com/internetsecurity-emerging-threats-what-are-
deepfakes.html

23. Rocca J., 2019. Understanding Variational Autoencoders (VAEs). Accessed
23.01.2022. https://towardsdatascience.com/understanding-variational-
autoencoders-vaes-f70510919f73

https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://paperswithcode.com/method/bilstm
https://wiki.tum.de/pages/viewpage.action?pageId=23562510
https://us.norton.com/internetsecurity-emerging-threats-what-are-deepfakes.html
https://us.norton.com/internetsecurity-emerging-threats-what-are-deepfakes.html
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

48

24. Kingma, D.P. and Welling, M., 2019. An introduction to variational
autoencoders. arXiv preprint arXiv:1906.02691.

25. Xiang Y., 2021. Deploy variational autoencoders for anomaly detection
with TensorFlow Serving on Amazon SageMaker. Accessed 23.01.2022.
https://aws.amazon.com/blogs/machine-learning/deploying-variational-
autoencoders-for-anomaly-detection-with-tensorflow-serving-on-
amazon-sagemaker/

26. Larsen, A.B.L., Sønderby, S.K., Larochelle, H. and Winther, O., 2016, June.
Autoencoding beyond pixels using a learned similarity metric. In
International conference on machine learning (pp. 1558-1566). PMLR.

27. Xian, Y., Sharma, S., Schiele, B. and Akata, Z., 2019. f-vaegan-d2: A feature
generating framework for any-shot learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp.
10275-10284).

28. Grondman, I., Busoniu, L., Lopes, G.A. and Babuska, R., 2012. A survey of
actor-critic reinforcement learning: Standard and natural policy gradients.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 42(6), pp.1291-1307.

29. Andrew, A.M., 1999. REINFORCEMENT LEARNING: AN INTRODUCTION by
Richard S. Sutton and Andrew G. Barto, Adaptive Computation and
Machine Learning series, MIT Press (Bradford Book), Cambridge, Mass.,
1998, xviii+ 322 pp, ISBN 0-262-19398-1,(hardback,£ 31.95). Robotica,
17(2), pp.229-235.

30. Pfau, D. and Vinyals, O., 2016. Connecting generative adversarial networks
and actor-critic methods. arXiv preprint arXiv:1610.01945.

31. Milind, M.P.M.G.P., 2010. Histogram Based Efficient Video Shot Detection
Algorithms. pp.2

32. Wikipedia. Sampling (Signal Processing). Accessed 12.02.2022.
https://en.wikipedia.org/wiki/Sampling_(signal_processing)#/media/File:
Signal_Sampling.svg

33. GeeksforGeeks, 2022. 0-1 Knapsack Problem | DP-10. Accessed
11.03.2022. https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-
10/

34. Python, What is Python? Executive Summary. Accessed 02.04.2022.
https://www.python.org/doc/essays/blurb/

https://aws.amazon.com/blogs/machine-learning/deploying-variational-autoencoders-for-anomaly-detection-with-tensorflow-serving-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/deploying-variational-autoencoders-for-anomaly-detection-with-tensorflow-serving-on-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/deploying-variational-autoencoders-for-anomaly-detection-with-tensorflow-serving-on-amazon-sagemaker/
https://en.wikipedia.org/wiki/Sampling_(signal_processing)#/media/File:Signal_Sampling.svg
https://en.wikipedia.org/wiki/Sampling_(signal_processing)#/media/File:Signal_Sampling.svg
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
https://www.python.org/doc/essays/blurb/

49

35. PyTorch. End-to-end Machine Learning Framework. Accessed 21.02.2022.
https://pytorch.org/features/

36. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L. and Desmaison, A., 2019. Pytorch: An
imperative style, high-performance deep learning library. Advances in
neural information processing systems, 32.

37. NVIDIA. Pytorch. Accessed 21.02.2022. https://www.nvidia.com/en-
us/glossary/data-science/pytorch/

38. OpenCV. About. Accessed 21.02.2022. https://opencv.org/about/

39. DMLC. Decord. Accessed 21.02.2022. https://github.com/dmlc/decord

40. Robert J. 2011. Pydub. Accessed 21.02.2022.
https://github.com/jiaaro/pydub/

41. Apostolidis, E., Adamantidou, E., Metsai, A.I., Mezaris, V. and Patras, I.,
2020. AC-SUM-GAN: Connecting actor-critic and generative adversarial
networks for unsupervised video summarization. IEEE Transactions on
Circuits and Systems for Video Technology, 31(8), pp.3278-3292.

42. Queudet, A., Abdallah, N. and Chetto, M., 2017. KTS: a real-time mapping
algorithm for NoC-based many-cores. The Journal of Supercomputing,
73(8), pp.3635-3651.

43. Song, Y., Vallmitjana, J., Stent, A. and Jaimes, A., 2015. Tvsum: Summarizing
web videos using titles. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 5179-5187).

https://pytorch.org/features/
https://www.nvidia.com/en-us/glossary/data-science/pytorch/
https://www.nvidia.com/en-us/glossary/data-science/pytorch/
https://opencv.org/about/
https://github.com/dmlc/decord
https://github.com/jiaaro/pydub/

	1 IntRoduction
	1.1 Background and Motivation
	1.2 Objectives

	2 Theoretical review
	2.1 Artificial Intelligence
	2.2 Machine Learning
	2.3 Neural Networks and Deep Learning
	2.4 Convolutional Neural Network
	2.5 ResNet
	2.6 Long Short-Term Memory
	2.7 Generative Adversarial Network
	2.8 Variational Autoencoder
	2.9 Actor-Critic Model
	2.10 Video Structure
	2.11 Knapsack Algorithm

	3 TOOLS AND TECHNOLOGIES IN USE
	3.1 Python
	3.2 PyTorch
	3.3 OpenCV
	3.4 Decord
	3.5 Pydub

	4 APPLICATION DESCRIPTION
	5 IMPLEMENTATION
	5.1 Training
	5.1.1 Training Encoder
	5.1.2 Training Decoder
	5.1.3 Training Linear Compression and Discriminator
	5.1.4 Training of the Remaining Components

	5.2 Evaluation
	5.3 Features Extraction
	5.4 Video Generation

	6 TESTING
	6.1 Model Training
	6.2 Video Summarizing

	7 CONCLUSION
	7.1 Future Work

	references

