

Anh Minh Hoang

SMART TELEVISION APPLICATION

DEVELOPMENT

Technology and Communication
2022

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my supervisor Anna-Kaisa
Saari for her patience, motivation, enthusiasm and immense knowledge. Her
guidance and advice were invaluable during the research and writing of this
thesis.

Besides my supervisor, I would like to thank all my teachers at VAMK,
especially Dr. Ghodrat Moghadampour and Mr. Timo J Kankaanpää for helping,
supporting and teaching me a lot during my university.

Mr. Ari Pöyhtäri, Mr. Erkki Salminen and Mr. Mika Kanerva deserve special ap-
preciation for providing me with summer trainee chances at Sofia Digital Oy
and allowing me to work on a variety of intriguing projects.

Last but not the least, I am extremely grateful to my parents for their love,
care and sacrifices in educating and preparing me for the future.

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Hoang Anh Minh
Title Smart television Application Development
Year 2022
Language English
Pages 46
Name of Supervisor Anna-Kaisa Saari

The topic of this thesis is the development of the smart television application
providing streaming services such as live television, movies, tv shows and radios
that run on HbbTV (Hybrid Broadcast Broadband TV) and Smart TV.

The professional background needed for the application contains an understand-
ing of HbbTV and Smart TV development, programming language skills in JavaS-
cript, familiarity with the Vue framework and third-party players that support
adaptive media formats.

The main objective of the thesis was to develop a television application that allows
the user to experience and watch the VOD (Video on Demand), live streaming and
radio with different media formats (MPEG-DASH, HLS and Smooth Streaming) and
search the program and add to their favorite list. In addition, the player interface
is very important for the user experience so the application contains the thumbnail
images on the progress bar, the subtitles and the full control buttons for the
player.

Keywords Smart TV, HbbTV, VOD, VUE.js video media formats

CONTENTS

ABSTRACT

LIST OF FIGURES AND TABLES

LIST OF SNIPPETS

LIST OF ABBREVIATIONS

1 INTRODUCTION .. 9

2 TELEVISION APPLICATION DEVELOPMENT ... 11

2.1 Smart TV operating system ... 11

2.1.1 Most popular operating system on a smart TV 11

2.1.2 Software Development Kit for the Operating System 12

2.2 Hybrid Broadcast Broadband TV ... 13

2.3 Smart TV Resolutions .. 13

2.4 Technologies for smart tv application .. 14

2.4.1 Frontend Technologies.. 14

2.4.2 Backend Technologies ... 16

2.4.3 Third-party Player Technologies ... 16

2.5 Digital Rights Management (DRM) .. 17

2.6 Media Formats .. 18

2.6.1 HTTP Live Streaming ... 18

2.6.2 Dynamic Adaptive Streaming over HTTP 19

2.7 Navigation Management .. 20

3 BUILDING SMALL SMART TV APPLICATION .. 21

3.1 Setup and Development ... 21

3.2 Size of the Application .. 21

3.3 Navigation and d-pad Focusable... 21

3.4 Banner and Program Carousel .. 23

3.5 Keyboard for Searching Screen ... 25

3.6 Player UI .. 26

3.7 Key Events for the Application .. 28

3.8 Event Listeners for the Player ... 31

3.9 Creating a Player .. 33

3.9.1 OIPF Object Tag ... 33

3.9.2 Shaka ... 34

3.9.3 Dash.js ... 34

3.10 DRM Configuration ... 35

3.10.1 OIPF object Tag ... 35

3.10.2 Shaka ... 37

3.10.3 Dashjs .. 37

3.11 Creating and Adding Subtitles to the Video ... 38

3.12 Implementing Thumbnail Images on the Player 42

4 CONCLUSIONS .. 45

REFERENCES .. 46

LIST OF FIGURES AND TABLES

Figure 1. Traficom’s Internet TV surpasses survey ... 10

Figure 2. Smart TV resolutions .. 13

Figure 3. Digital Rights Management functionality .. 17

Figure 4. Original thumbnail image .. 44

Figure 5. Thumbnail image after getting cut off ... 44

Table 1. Television resolutions ... 14

Table 2. Video extension and its mime type .. 33

Table 3. Result message and its description after sending the DRM message

defined by DRM system .. 37

LIST OF SNIPPETS

Snippet 1. Initialization and adding the spatial navigation 22

Snippet 2. Making navbar items focusable .. 22

Snippet 3. Focus on the section with the specified section id (default) 22

Snippet 4. Enabling and disabling the section .. 23

Snippet 5. Uninitialization and clearing SpatialNavigation 23

Snippet 6. Setting up banner carousel using vue-awesome-swiper 24

Snippet 7. Setting up program carousel using vue-awesome-swiper 24

Snippet 8. Import simple-keyboard to the project ... 25

Snippet 9. Set up keyboard with the layout ... 26

Snippet 10. Creating the player UI ... 27

Snippet 11. Determine the keycode for the application 28

Snippet 12. Export all of the key names ... 29

Snippet 13. Function for checking the keycode and key name 30

Snippet 14. Key down event for the application .. 31

Snippet 15. Adding event listeners for the player .. 32

Snippet 16. Removing player’s event listeners .. 33

Snippet 17. Object tag for the HbbTV player ... 34

Snippet 18. Creating a player using Shaka player... 34

Snippet 19. Creating a player using Shaka player... 34

Snippet 20.Integrating dashjs to player .. 35

Snippet 21. Creating an object tag ... 35

Snippet 22. XML License Acquisition for PlayReady system 36

Snippet 23. XML License Acquisition for marlin system 36

Snippet 24. Running sendDRMMessage function with arguments 36

Snippet 25. DRM Configuration for Shaka player ... 37

Snippet 26. DRM Configuration for Dashjs player .. 38

Snippet 27. Subtitle file with the WebVTT format ... 39

Snippet 28. Reading and converting the data from subtitle file to array 40

Snippet 29. Generating subtitle text and showing it on the screen 41

Snippet 30. Displaying thumbnail image on the progress bar of the player 43

LIST OF ABBREVIATIONS

OS Operating System

GUI Graphical User Interface

DRM Digital Right Management

SDK Software Development Kit

HTTP HyperText Transfer Protocol

NPM Node Package Manager

HBBTV Hybrid Broadcast Broadband TV

VOD Video On Demand

HLS HTTP Live Streaming

DASH Dynamic Adaptive Streaming over HTTP

HTML HyperText Markup Language

CSS Cascading Style Sheets

API Application Programming Interface

DOM Document Object Model

MP4 MPEG-4 Part 14

CDN Content Delivery Network

9

1 INTRODUCTION

Especially during the COVID-2 pandemic certain parts of the world were on lock-

down, which caused people to get locked in their homes. At home, people spend

the majority of their time on digital media. Entertainment, news, games, applica-

tions and websites have all seen an increase in visitors. It is no longer difficult to

determine which digital media is the best for each function. The rise of the Internet

and technology has made digital material more accessible in a variety of formats,

making people's lives easier. Even though the younger generation and the wealthy

are increasingly using smartphones, tablets and other forms of portable devices

for gaming and social media access, a significant section of the public continues to

expand their internet usage for watching digital video content.

Television and broadcasting were at the top of the entertainment rankings for sev-

eral decades. The popularity of television waned as the Internet became more

prevalent, although it was not completely replaced. The developers grew into the

smart TV application development generation, which entices clients with a diverse

set of features and a simple user interface. /22/

According to a survey commissioned by Traficom*, as seen in figure 1, internet TV

streaming services surpassed traditional linear TV viewing among Finns under 45

in 2021. The total viewing time was still evenly balanced as late as spring last year,

but by October, the percentage of linear TV had declined to 46%, while the share

of streaming services, such as Yle Areena and Netflix, had climbed to 54%. Linear

TV viewership has declined dramatically in this age group since 2014 when stream-

ing services accounted for 22% of total TV viewing time. /20/

10

Figure 1. Traficom’s Internet TV surpasses survey

The goal of this thesis is to create a television application that allows users to view

VOD (Video on Demand), live streaming, and radio in various media types (MPEG-

DASH, HLS and Smooth Streaming). There are numerous screens in the application

(menu, program, player and screen screens). Furthermore, because the player in-

terface is so vital to the user experience, the program includes thumbnail images

on the progress bar, subtitles, and full player control buttons.

The thesis consists of four sections. The first section is an overview of the use of

television and broadcasting for entertainment and the introduction of the thesis

and the application. The second section reviews the television application devel-

opment in multiple parts (operating system, HbbTV, resolutions, technologies, dig-

ital rights management, media formats and the navigation management). The

third part shows how to set up build the smart tv application. The last part is the

conclusion that presents the purpose of the thesis and the most challenge when

developing the application.

11

2 TELEVISION APPLICATION DEVELOPMENT

A smart TV is an internet-connected television that includes on-demand program-

ming via different applications such as BBC iPlayer, ITV Hub and All 4. It also in-

cludes access to streaming services such as Netflix and the ability to link television

to other wireless devices such as smartphones. /16/

This chapter introduces key concepts related to smart tv application development,

such as technologies, media formats, platforms and DRM content support.

2.1 Smart TV operating system

The television operating system is bootable software that allows users to access

and operate advanced features and linked devices on smart TVs and set-top boxes.

TA television OS has a graphical user interface (GUI) for interaction, just like the

personal computer has. In essence, smart TVs can be called Internet-connected

entertainment-specialized computers that can wirelessly link to a variety of de-

vices. /1/

Users of TV operating systems can access not only satellite or cable TV channels,

but also on-demand video services. Pictures, music and video content stored on

connected storage devices or streamed can also be accessed by the systems. /1/

2.1.1 Most popular operating system on a smart TV

The most popular operating systems on smart televisions are WebOS, Android TV

and Tizen OS.

1. WebOS: Despite popular assumptions, the original Linux kernel-based system

was created and developed by a Palm company, which was later sold to

Hewlett-Packard and then to LG Electronics. In 2009, WebOS was initially used

on a PDA and although LG's operating system, it was first deployed on televi-

sion in 2014. WebOS has proven to be an absolute protagonist since its debut

and it has a simple and unobtrusive user interface./2/

12

The evolution of WebOS has been ongoing over time. For example, support for

Alexa, Google Assistant, Apple HomeKit 2 and a variety of home automation

tasks have been developed. New applications include Apple TV, Disney+ and a

slew of others./2/

2. Android TV: The Android operating system is one of the most widely used mo-

bile operating systems. The Android TV operating system, created by Google,

offers everything from the Android phone to the large screen./2/

Sony, Philips and Sharp are among the companies that employ the Android TV

operating system. One of the most appealing features of an Android TV is the

ability to cast entertainment from users’ smartphones to their TV. The home

screen offers a clean, easy-to-navigate design and you can connect to the

Google Play store can be connected to download all favorite applications. /2/

3. Tizen OS is a Samsung-developed system. Tizen OS is also based on the Linux

operating system. The original project began in 2011 with the implementation

of a platform for HTML5 apps for mobile devices. Tizen OS has made its way

into smartphones and smartwatches as the market has evolved. It has been

substantially modified with heavy inspiration from WebOS and landed on tel-

evisions since 2015, where it has also become the most popular smart-TV sys-

tem in the world thanks to Samsung TV sales. /2/

The strength of Tizen OS has been the ease of use, functionality and App store

offered over the years. Aside from the WebOS pointing system, there is not a

single feature that is not n available on this system, except Tizen's multi-view

feature, which allows users to view two sources at once. /2/

2.1.2 Software Development Kit for the Operating System

The software development kit (SDK) is a term used to describe a collection of tools

that can be used. The SDK, sometimes known as a devkit, is a collection of software

development tools for a certain platform, which often includes building blocks,

13

debuggers and a framework or group of code libraries, such as a set of operating-

system-specific procedures (OS). /3/

For developing the Smart TV operating system webOS SDK, Android Studio and

Tizen Studio are needed. The webOS SDK is a set of tools for developing web ap-

plocations for the webOS TV platform as well as an emulator for testing.

2.2 Hybrid Broadcast Broadband TV

The hybrid broadcast broadband TV, HbbTV, is a global movement aiming at har-

monizing the distribution of entertainment services to customers via linked TVs,

set-top boxes and multiscreen devices. Industry leaders created the HbbTV speci-

fication to improve the video user experience for customers by enabling novel,

interactive services over broadcast and broadband networks. The protocol incor-

porates aspects from several specifications such as OIPF, CEA, DVB, MPEG-DASH

and W3C. /18/

HbbTV applications are launched like DVB linear TV channels overlays, whereas

Smart TV applications must be downloaded from a TV app store such as Google

Play for Android or the App Store for iOS. /18/

2.3 Smart TV Resolutions

Figure 2. Smart TV resolutions

14

Smart TV resolutions are usually 16x9, as seen in figure 2 and the most common

are 1280x720 (HD) and 1920x1080 (Full HD). The TV and monitor industry is grow-

ing day by day, so TV resolutions are moving to 4k, 8k and even 10k. Because the

developers know the exact size of the screen, they do not need to implement resiz-

able and responsive application screen by screen, instead they just need to create

a variable for each screen into this variable will change according to the screen

resolution. For example, if the variable for 720x1280 is 1 unit, then 1080x1920 is

one 1*1080/720 equal to 1.5 units and the same for other resolutions. Common

examples of television resolutions are shown in table 1. /4/

Table 1. Television resolutions

Resolution Description Aspect Ratio Width in pixels Height in
pixels

720p High Definition (HD) 16:9 1280 720

1080p High Definition (HD) 16:9 1920 1080

2160p Ultra-High Definition
(UHD) or 4K

16:9 3840 2160

2.4 Technologies for smart tv application

This chapter briefly introduces some of the technologies that can be used in tele-

vision applications. Building and developing the smart tv application involves tech-

nologies from both the server-side and client-side. On the client-side, besides the

technologies and framework used, the application needs the third-party players

that be adaptive media formats like HLS or Dash.

2.4.1 Frontend Technologies

The application running on television mainly uses HTML, CSS, JavaScript, Type-

Script and DOM. The exceptions are Native Android TV Apps which are built using

Java and Apple TV Apps, which are built using Swift. Besides using Vanilla JavaS-

cript (using plain JavaScript without any additional libraries and frameworks), the

15

applications nowadays are more and more developed using frameworks due to

the following reasons:

+ The framework has built-in features that are common to the application/soft-

ware. For example, almost all e-commerce websites need registration, login, user

data management, etc. The framework has built-in these features and program-

mers only need to put them to use when building a website.

+ Frameworks help programmers to save time and effort when developing soft-

ware/applications.

+ Frameworks follow application products to inherit standardized features and

structures. It makes operating and maintaining or /troubleshooting the application

easier.

+ Frameworks allow users to expand arbitrarily based on what the Framework has

to offer. Developers can extend features by selectively overriding existing classes

or writing new functionality on top of the Framework, as long as certain standards

are followed.

JavaScript is aprogramming language that is one of the core technologies of the

World Wide Web, alongside HTML and CSS. JavaScript is a high-level, often just-

in-time compiled language that conforms to the ECMAScript standard. It has dy-

namic typing, prototype-based object orientation and first-class functions. JavaS-

cript is multi-paradigm, supporting event-driven, functional and imperative pro-

gramming styles. It has application programming interfaces (APIs) for working with

text, dates, regular expressions, standard data structures and the Document Ob-

ject Model (DOM). /5/

React (also known as React.js or ReactJS) is an open-source front-end JavaScript

library for building user interfaces specifically for single-page applications. React

allows developers to create reusable UI components and makes the website to be

fast, simple and scalable. /6/

16

Vue is a framework for creating progressive user interfaces and built from the

ground up to be incrementally adoptable, unlike other monolithic frameworks.

The core library is focused on the view layer only and is easy to pick up and inte-

grate with other libraries or existing projects. /7/

Svelte is a free and open-source front-end compiler created by Rich Harris and

maintained by the Svelte core team members. Not similar to React or Vue, the

Svelte application generates the necessary code to manipulate the DOM within

each component, which may reduce the size of transferred files and give better

client startup and run-time performance. /8/

2.4.2 Backend Technologies

The backend is all the parts that support the operation of a website or application

that cannot be seen by the user. Arguably the backend is like the human brain. It

processes requests, and commands and selects the correct information to display

on the screen.

The backend is made up of 3 components: server, application and database. Simi-

lar to frontend development, the backend comes with multiple features that are

helpful to the developers. These are for example database, architecture, server,

API, router and security.

Express.js: is a free and open-source framework for Node.js. Express.js is used to

design and build web applications and APIs simply and quickly. /9/

2.4.3 Third-party Player Technologies

HTML has three supported video formats, WebM, OGG and MP4. To run these on

Smart TV, third-party player technologies, such as Shaka Player and Dash.js are

needed. Some televisions do not support video tag on HbbTV, so the Open IPTV

Forum (OIPF) has developed a solution by using object tag to play the video.

Shaka Player is an open-source JavaScript library for adaptive media. It plays adap-

tive media formats such as DASH and HLS in a browser, without using plugins or

17

Flash. Instead, Shaka Player uses the open web standards Media Source Extensions

and Encrypted Media Extensions. /10/

Dash.js is a reference client implementation for the playback of MPEG DASH via

JavaScript and compliant browsers. Dash.js supports the in-band events, multiple

periods, and cross-browser DRM /11/

2.5 Digital Rights Management (DRM)

Digital rights management (DRM) is a way to protect copyrights for digital media.

DRM is essentially a way of controlling the copyright of digital data content based

on encryption. By using DRM, the copyright holder can control how users (buyers

of digital products) use their products. For example, control can be done by limit-

ing the number of times to install the file, limiting the time of use or limiting the

object of using the file./12/

DRM works is based on encrypting file content with a secret key. When there is a

need to use the file, a separate application to read the file will proceed to decrypt

the file. After the file has been decrypted, it can be used in the application. The

functionality of DMR is shown in Figure 3. /13/

Figure 3. Digital Rights Management functionality

18

Encryption

First, the package file will send a request to the DRM System to receive the en-

cryption key (Figure 3 [1][2][4]). After receiving the encryption key, it is used to

encrypt the file, Sometimes the encryption key is generated by the person who

packaged the file. This key is then stored on the DRM System (Figure 3 [3]). /13/

Decryption

The application will download the encrypted content. After having the Encrypted

file, the application will ask to receive the Decryption key from the DRM System

(Figure 3 [4]). If the credentials are accepted, the DRM System will resend the de-

cryption key. The application will decrypt the DRM file with this decryption key for

users to use (Figure 3 [5][6]). /13/

There most popular types of DRM are Google’s Widevine, Apple’s FairPlay and Mi-

crosoft's PlayReady.

2.6 Media Formats

Any video file has two components: a container and a codec. A video format is a

file that contains audio, video, subtitles, and other metadata. HTTP Live Streaming

and Dynamic Adaptive Streaming over HTTP are the main formats used for deliv-

ering adaptive bitrate video. /23/

2.6.1 HTTP Live Streaming

HTTP Live Streaming, which is also known as HLS, is an HTTP-based adaptive bi-

trate streaming communications protocol developed by Apple Inc. HLS was re-

leased in 2009. First, HLS breaks down the video files into smaller HTTP-based file

downloads, then delivers them using the HTTP protocol. Initially, HLS was sup-

ported only on iPhone but now it has become the most popular protocol and HLS

is widely supported by most of the available devices and browsers. /15/

19

HLS protocol includes various features like subtitles, fast forward and rewind, al-

ternative audio and video, contingency alternatives, ads insertion, and content

protector. /15/

First an HLS stream comes from a server where the media file is kept (in on-de-

mand streaming) or where the stream is created (in live streaming). Because HLS

is based on HTTP, it may be started by any regular web server. When client devices

request the stream, the encoded video chunks are sent over the Internet to them.

Typically, a content delivery network (CDN) will help disseminate the stream to

geographically different places. A CDN will also cache the stream so that it may be

served to clients even faster. The client device — for example, a user's smartphone

or laptop – receives the stream and plays the video. The client device utilizes the

index file as a guide for putting the video together in the right order, switching

from higher to lower quality (and vice versa) when appropriate./21/

2.6.2 Dynamic Adaptive Streaming over HTTP

Dynamic Adaptive Streaming over HTTP, which is also known as DASH or MPEG-

DASH, is an adaptive bitrate streaming technique that enables high-quality

streaming of media content over the Internet delivered from conventional HTTP

web servers. Similar to Apple's HTTP Live Streaming (HLS) solution, MPEG-DASH

works by breaking the content into a sequence of small segments, which are

served over HTTP./17/

In MPEG-DASH the video file is divided into smaller segments by the origin server,

each of which is a few seconds long. The server also creates an index file for the

video parts, similar to a table of contents. The segments are then encoded, which

means they are presented in a way that multiple devices can understand. Any en-

coding standard can be used with MPEG-DASH. The encoded video chunks are

pushed out to client devices via the Internet once consumers begin watching the

broadcast. A content delivery network (CDN) almost always aids in the more effi-

cient distribution of the stream. When a user's device receives streamed data, it

20

decodes it and plays the video back. To respond to network conditions, the video

player automatically converts to a lower or better-quality picture. For example, if

the user currently has very limited bandwidth, the movie will play at a lower qual-

ity level that requires fewer data to be downloaded over HTTP./17/

2.7 Navigation Management

On a computer, a mouse can be used to navigate through web pages, but televi-

sions do not have a mouse available. Instead, navigation needs to be done with

the help of a television remote. The navigation on TV remotes is referred to as the

"D-Pad" (Directional Pad). The most popular means for a user to navigate around

a TV interface are the up, down, left and right arrow buttons. A pointer input

(magic remote) may be provided in some circumstances, such as with LG TVs and

Apple TV features a directional touch pad./4/

21

3 BUILDING SMALL SMART TV APPLICATION

3.1 Setup and Development

In order to develop and implement the smart tv application, the development ma-

chine (computer or laptop) has to have NodeJS pre-installed. Yarn and Vue CLI can

be installed globally by running npm install -g yarn and npm install -g @vue/cli.

3.2 Size of the Application

The Smart TV resolutions are usually 16x9 so the default application size should be

1280px for width and 720px for height. The ratio variable needs to be defined for

the bigger screen. For example, the ratio for the screen 1920x1080 is:

𝑟𝑎𝑡𝑖𝑜 = 1 ×
1920

1280
= 1.5

For example, if the position of the navbar is 100px from the left, it can be styled to

a 100px x ratio to make the navbar responsive on the different television.

3.3 Navigation and d-pad Focusable

There are two ways to install and use the JavaScript Spatial Navigation. The first

way is to install the Spatial Navigation from npm by running the command: yarn

add spatial-navigation-js. Another way is copying spatial_navigation.js from URL

https://github.com/luke-chang/js-spatial-navigation/blob/master/spatial_naviga-

tion.js to the project folder /src/assets/js/spatial_navigation.js. The application

will follow the second way because the developer can customize, change, or add

any properties or any behaviors of spatial navigation to be suitable for the project.

The spatial navigation with the section id default needs to be initialized and the

navigation configuration needs to be done. There are three common and im-

portant properties needed on the configuration object: selector, straightOnly and

rememberSource. Selector id is needed for navigable elements, whereas

straightOnly (Boolean) defines the direction for navigation (the vertical or hori-

zontal elements will be navigated when it is true and ignores the diagonal or

22

oblique elements) and rememberSource (Boolean) defines if the previous ele-

ment focused will be chosen as the next candidate with a greater priority. Spatial

navigation configuration is presented in Snippet 1.

window.SpatialNavigation.init()

window.SpatialNavigation.add('default', {

 selector: '.dpad-focusable',

 straightOnly: true,

 rememberSource: true,

})

Snippet 1. Initialization and adding the spatial navigation

After initializing and defining spatial navigation, the element will be the focusable

element when having the dpad-focusable class name. Snippet 2 shows how the

navbar items were made to be focusable and navigable elements.

<router-link

 v-for="item in navbarItem"

 :key="item.title"

 class="navbar-item dpad-focusable"

 :to="item.routerLink"

>

 {{item.title}}

</router-link>

Snippet 2. Making navbar items focusable

Making the currently existing navigable elements focusable and focusing on the

first navigable element by using two prototypes of SpatialNavigation are makeFo-

cusable and focus. Both prototypes receive the section id as an argument, as

shown in Snippet 3.

window.SpatialNavigation.makeFocusable('default')

window.SpatialNavigation.focus('default')

Snippet 3. Focus on the section with the specified section id (default)

23

In some special ways, it is easy to enable and disable the section by id temporarily

by using two prototypes of the library enable and disable. As for previous proto-

types, these receive also the section id as an argument, as shown in Snippet 4.

window.SpatialNavigation.enable('default')

window.SpatialNavigation.disable('default')

Snippet 4. Enabling and disabling the section

Before destroying the application, the spatial navigation should be destroyed, un-

initialized and cleared. For this, the SpatialNavigation provides uninit and clear

prototypes, as shown in Snippet 5. Uninitialization resets the variable state

with/without unbinding the event listeners.

window.SpatialNavigation.uninit()

window.SpatialNavigation.clear()

Snippet 5. Uninitialization and clearing SpatialNavigation

3.4 Banner and Program Carousel

To implement the banner and program carousel, the Vue awesome swiper pack-

age for the project is needed. It is installed with the following command: yarn add

swiper vue-awesome-swiper.

24

swiperOptions: {

 slidesPerView: 'auto',

 centeredSlides: true,

 spaceBetween: 1,

 initialSlide: 2,

 lazy: {

 loadPrevNext: true,

 loadOnTransitionStart: true,

 },

 navigation: {

 nextEl: '.swiper-button-next',

 prevEl: '.swiper-button-prev',

 },

 autoplay: {

 delay: 5000,

 },

 loop: true,

}

Snippet 6. Setting up banner carousel using vue-awesome-swiper

When the Vue awesome swiper package has been taken into use, setting up the

banner carousel can be done. The carousel includes auto play in five seconds, loop,

the navigation and the initialization slide. The initialization slide is the second slide,

normally the banner carousel has one or three slides or images per view. Settings

needed for the banner carousel are shown in Snippet 6.

Snippet 7 below shows how to set up the basics program carousel. The carousel

includes five slides per view and a lazy loader for the banner images.

swiperOptions: {

 slidesPerView: 5,

 lazy: {

 loadPrevNext: true,

 loadOnTransitionStart: true,

 },

}

Snippet 7. Setting up program carousel using vue-awesome-swiper

25

3.5 Keyboard for Searching Screen

One of the key functionalities of the Smart TV application is the keyboard, which

is needed on the search screen. The simple keyboard package can be installed for

the project using the command: yarn add simple-keyboard.

Once the keyboard package has been taken into use, import simple keyboard can

be imported to the file using keyboard component as shown in Snippet 8:

import Keyboard from 'simple-keyboard'

import 'simple-keyboard/build/css/index.css'

Snippet 8. Import simple-keyboard to the project

Snippet 9 is split into two sections. The first section (from the beginning to "...")

shows how to set up the keyboard with four different layouts: lowercase text, up-

percase text, number, and char. The second section (codes after "...") also demon-

strates how to construct a div element with the class name simple-keyboard and

incorporate the simple keyboard user interface into the project.

26

this.keyboard = new Keyboard({

 layout: {

 shift: [

 'q w e r t y u i o p',

 'a s d f g h j k l z',

 'x c v b n m',

 '{shift} {numbers} {chars} {space} {enter} {backspace}',

],

 default: [

 'Q W E R T Y U I O P',

 'A S D F G H J K L Z',

 'X C V B N M',

 '{numbers} {chars} {space} {enter} {backspace}',

],

 numbers: [

 '1 2 3 4 5 6 7 8 9 0',

 '{abc} {chars} {space} {enter} {backspace}',

],

 chars: [

 '_ # + - ! ? @ $ % () . , :',

 '£ & / = * € []',

 '{abc} {numbers} {space} {enter} {backspace}',

],

 },

}

...

<template>

 <div class="simple-keyboard"></div>

</template>

Snippet 9. Set up keyboard with the layout

3.6 Player UI

To create a user interface for the player, several elements were needed, which

are:

+ Player position element, which is needed for showing the current position of

the video.

+ Player time element, which is needed for showing the total duration of the

video.

27

+ Progress bar element, which is needed for displaying the status of the video

timestamp.

+ Pause/play, rewind and forward button elements, which are needed for con-

trolling the video player (play/pause the video, moving/skipping to a new posi-

tion).

+ Subtitle text element, which is needed for displaying subtitle options for exam-

ple depending on the subtitle language or showing/hidden subtitle text.

+ Audio text element, which is needed for displaying audio selection if the audio

has more than one audio source.

+ Loading icon, which is needed for displaying when the video is loading.

The implementation for player user interface is shown in Snippet 10.

<div id="player">

 <div id="playposition"></div>

 <div id="playtime"></div>

 <div id="progress_currentTime" style="left: 130px"></div>

 <div id="progressbarbg"></div>

 <div id="progressSeekable" style="transition03all"> </div

 ><div id="progressbar" style="transition03all"></div>

 <div id="prew"></div>

 <div id="ppauseplay" class="pause">

 <div class="vcrbtn"></div>

 </div>

 <div id="pff"></div>

 <div id="subtitleButton"><div

id="subtitleButtonText">Subtitles</div></div>

 <div id="audioButton"><div id="audioButtonText">Audio</div></div>

</div>

Snippet 10. Creating the player UI

28

3.7 Key Events for the Application

The key names and key codes had to be defined before adding to the application.

For example, VK_RED is the name and 82 is the code of the red button on the

remote control, as shown in Snippet 11.

const defaults = {

 VK_RED: 82,

 VK_GREEN: 71,

 VK_YELLOW: 89,

 VK_BLUE: 66,

 VK_LEFT: 37,

 VK_UP: 38,

 VK_RIGHT: 39,

 VK_DOWN: 40,

 VK_ENTER: 13,

 VK_0: 48,

 VK_1: 49,

 VK_2: 50,

 VK_3: 51,

 VK_4: 52,

 VK_5: 53,

 VK_6: 54,

 VK_7: 55,

 VK_8: 56,

 VK_9: 57,

 VK_PLAY: 415,

 VK_PAUSE: 19,

 VK_PLAY_PAUSE: 463,

 VK_STOP: 413,

 VK_FASTFWD: 417,

 VK_REWIND: 412,

 VK_HOME: 771,

 VK_END: 35,

 VK_BACK: 220,

 VK_BACK_SPACE: 8,

 VK_TELETEXT: 459,

}

Snippet 11. Determine the keycode for the application

After defining the keycodes for the application, they needed to be exported to the

code. Exporting all of the key names defined on the object is shown in Snippet 12.

29

export const VK_LEFT = 'VK_LEFT'

export const VK_RIGHT = 'VK_RIGHT'

export const VK_UP = 'VK_UP'

export const VK_DOWN = 'VK_DOWN'

export const VK_ENTER = 'VK_ENTER'

export const VK_RED = 'VK_RED'

export const VK_BLUE = 'VK_BLUE'

export const VK_YELLOW = 'VK_YELLOW'

export const VK_GREEN = 'VK_GREEN'

export const VK_0 = 'VK_0'

export const VK_1 = 'VK_1'

export const VK_2 = 'VK_2'

export const VK_3 = 'VK_3'

export const VK_4 = 'VK_4'

export const VK_5 = 'VK_5'

export const VK_6 = 'VK_6'

export const VK_7 = 'VK_7'

export const VK_8 = 'VK_8'

export const VK_9 = 'VK_9'

export const VK_PLAY = 'VK_PLAY'

export const VK_PAUSE = 'VK_PAUSE'

export const VK_PLAY_PAUSE = 'VK_PLAY_PAUSE'

export const VK_STOP = 'VK_STOP'

export const VK_FAST_FWD = 'VK_FAST_FWD'

export const VK_REWIND = 'VK_REWIND'

export const VK_HOME = 'VK_HOME'

export const VK_END = 'VK_END'

export const VK_BACK = 'VK_BACK'

export const VK_BACK_SPACE = 'VK_BACK_SPACE'

export const VK_TELETEXT = 'VK_TELETEXT'

export const VK_GUIDE = 'VK_GUIDE'

export const VK_INFO = 'VK_INFO'

Snippet 12. Export all of the key names

To be able to react to user events, a function that receives the keycode and key

name as parameters needed to be implemented. The function returns true if the

keycode belongs to the key name (463 is a keycode of VK_PLAY_PAUSE) and vice

versa. The implemented function is shown in Snippet 13.

30

export function isKey(code, key) {

 if (

 typeof window.KeyEvent !== 'undefined' &&

 typeof window.KeyEvent.VK_LEFT !== 'undefined'

) {

 if (key === VK_PLAY_PAUSE) {

 const playPause =

 typeof window.KeyEvent.VK_PLAY_PAUSE !== 'undefined'

 ? window.KeyEvent.VK_PLAY_PAUSE

 : 463

 return code === playPause

 } else if (window.KeyEvent[key]) {

 return code === window.KeyEvent[key]

 } else if (key === VK_TELETEXT || key === VK_BACK_SPACE) {

 return (

 (key === VK_TELETEXT && code === 459) ||

 (key === VK_BACK_SPACE && code === 8)

)

 }

 } else {

 return defaults[key] && defaults[key] === code

 }

 return false

}

Snippet 13. Function for checking the keycode and key name

In order to improve the user experience, back navigation (return to the previous

screen) and exit behavior (exit from the application) had to be be added. Snippet

14 shows how to add the key down event listener for the back and exit navigation.

31

document.addEventListener('keydown', this.onKeyDown, false)

onKeyDown(event) {

 event.preventDefault()

 if (!this.loading) {

 if (

 isKey(event.keyCode, VK_BACK) ||

 isKey(event.keyCode, VK_BACK_SPACE)

) {

 if (this.$route.name === 'home') {

 this.showExitDialog()

 } else {

 // Return to previous view

 this.$router.go(-1)

 }

 return true

 } else if (isKey(event.keyCode, VK_RED)) {

 if (

 this.$route.name === 'home' ||

 this.$route.name === 'menu' ||

 this.$route.name === 'search'

) {

 this.showExitDialog()

 return true

 }

 }

 } else {

 if (

 isKey(event.keyCode, VK_BACK) ||

 isKey(event.keyCode, VK_BACK_SPACE)

) {

 this.$router.go(-1)

 }

 }

}

Snippet 14. Key down event for the application

3.8 Event Listeners for the Player

In order to interact with the player, the event listeners have to be added. Common

events for the player are error event, ended the event, playing event, pause event,

time update event and seeking event.

32

• Error event occurs when the source could not be loaded.

• Ended event occurs when the audio/video was reached to the end.

• Playing event occurs when the audio/video is playing.

• Pause event occurs when the audio/video is pause by user or programmat-

ically

• Time update event occurs when the audio/video position has changed.

• Seeking event occurs when the audio/video position moving, skipping, or

seeking to the new position.

Adding event listeners is shown in Snippet 15.

this.video.addEventListener('error', this.onErrorHander, false)

this.video.addEventListener('ended', this.onEndedHandler, false)

this.video.addEventListener('abort', this.onAbortHandler, false)

this.video.addEventListener('loadstart', this.onLoadStartHandler,

false)

this.video.addEventListener('waiting', this.onWaitingHandler, false)

this.video.addEventListener('playing', this.onPlayingHandler, false)

this.video.addEventListener('pause', this.onPauseHandler, false)

this.video.addEventListener('emptied', this.onEmptiedHandler, false)

this.video.addEventListener('timeupdate', this.onTimeUpdateHandler,

false)

Snippet 15. Adding event listeners for the player

Before destroying or disposing of the video player component, the event listeners

of the video player need to be removed to avoid the memory leaks. Removing

event listeners is shown in Snippet 16.

33

this.video.removeEventListener('error', this.onErrorHander, false)

this.video.removeEventListener('ended', this.onEndedHandler, false)

this.video.removeEventListener('abort', this.onAbortHandler, false)

this.video.removeEventListener('loadstart', this.onLoadStartHandler,

false)

this.video.removeEventListener('waiting', this.onWaitingHandler,

false)

this.video.removeEventListener('playing', this.onPlayingHandler,

false)

this.video.removeEventListener('pause', this.onPauseHandler, false)

this.video.removeEventListener('emptied', this.onEmptiedHandler,

false)

this.video.removeEventListener('timeupdate',

this.onTimeUpdateHandler ,false)

Snippet 16. Removing player’s event listeners

3.9 Creating a Player

3.9.1 OIPF Object Tag

In some HbbTV environments, the video does not work with the video tag and has

to use an object tag instead. An object tag is created with the mime type and me-

dia URL. Table 2 shows video extensions and their mime types. The code to create

an object tag is shown in Snippet 17.

Table 2. Video extension and its mime type

Video extension Mime type

mpd application/dash+xml

m3u8 application/vnd.apple.mpegurl

mp3 audio/mpeg

mp4 video/mp4

34

<object id="video" type="mime type" data="URL"></object>

Snippet 17. Object tag for the HbbTV player

3.9.2 Shaka

In order to install Shaka Player for the project, running this command yarn add

shaka-player. Shaka Player required to be imported to the top of the file after the

library was already in the project.

Snippet 18 shows how to create a player using Shaka player based on the video

element tag. Shaka Player has a load method that loads the media source

this.player.load(url) after the player has been initialized.

this.video = document.getElementById("video")

this.player = new shaka.Player(this.video)

Snippet 18. Creating a player using Shaka player

3.9.3 Dash.js

In order to use Dash.js for the project, Dash.js needed to be installed by using the

command yarn add dashjs

First, as shown in Snippet 19, dashjs was imported into the file, then the play-er

was created with dashjs and the player initialized with three arguments: video el-

ement, media source, and auto play that are shown in Snippet 20.

const dashjs = require("dashjs")

Snippet 19. Creating a player using Shaka player

35

this.player = dashjs.MediaPlayer().create()

this.player.initialize(this.video, url, true)

Snippet 20. Integrating dashjs to player

3.10 DRM Configuration

If the video has license management to access, the application needs to provide

the player with two things: the URL(s) and its license server(s).

3.10.1 OIPF object Tag

In order to send DRM to the DRM system, DRM OIPF object tag with the type is

application/oipfDrmAgent needs to be created, as shown in Snippet 21.

<object id="oipfDrm" type="application/oipfDrmAgent" width="0"

height="0"> </object>

Snippet 21. Creating an object tag

When sending the DRM message with the function sendDRMMessage, it takes

three arguments: msgType msg and DRMSystemID.

• msgType: The DRM system defines a globally unique message type (for exam-

ple application/vnd.ms-playready.initiator+xml is the MIME type of Play-

Ready Action Token).

• msg: it is to be sent to the underlying DRM agent, formatted according to the

message type specified by the msgType property.

• DRMSystemID: is defined by DRMSystemID. For example, for PlayReady, the

DRMSystemID value is urn:dvb:casystemid:19219.

There are two DRM systems available, PlayReady DRM system and Marlin DRM

system. XML License acquisition for PlayReady system is shown in Snippet 22 and

for marlin system is shown in Snippet 23.

36

var msgType = "application/vnd.ms-playready.initiator+xml";

var xmlLicenceAcquisition =

'<?xml version="1.0" encoding="utf-8"?>' +

'<PlayReadyInitiator

xmlns="http://schemas.microsoft.com/DRM/2007/03/protocols/">' +

 '<LicenseServerUriOverride>' +

 '<LA_URL>' +

 this.drm.la_url +

 '</LA_URL>' +

 '</LicenseServerUriOverride>' +

'</PlayReadyInitiator>';

var DRMSysID = "urn:dvb:casystemid:19219";

Snippet 22. XML License Acquisition for PlayReady system

var msgType = "application/vnd.marlin.drm.actiontoken+xml";

var xmlLicenceAcquisition =

'<?xml version="1.0" encoding="utf-8"?>' +

'<Marlin xmlns="http://marlin-

drm.com/epub"><Version>1.1</Version><RightsURL><RightsIssuer><URL>'+

this.drm.la_url +'</URL></RightsIssuer></RightsURL></Marlin>';

var DRMSysID = "urn:dvb:casystemid:19188";

Snippet 23. XML License Acquisition for marlin system

After defining the message, message type and the DRM system ID, the

sendDRMMessage has to be called to send DRM message to DRM service, as

shown in Snippet 24. The result message will be returned to the client after it has

been sent, and the result message as well as the description may be found in Table

3.

this.oipfDrm = document.getElementById('oipfDrm')

this.oipfDrm.sendDRMMessage(msgType, xmlLicenceAcquisition, DRMSysID);

Snippet 24. Running sendDRMMessage function with arguments

37

Table 3. Result message and its description after sending the DRM message de-

fined by DRM system

Result message Description

0 Successful

1 Unknown error

2 Cannot process request

3 Unknown MIME type

4 User consent needed

5 Unknown DRM system

6 Wrong format

3.10.2 Shaka

Snippet 25 shows how to configure the DRM for Shaka. Shaka provides the config-

ure method to set up the multiple DRM playback. It requires two important things,

the first thing is the DRM server (for example for PlayReady is com.microsoft.play-

ready) and the second one is the license server.

this.player.configure({

 drm: {

 servers: {

 'com.widevine.alpha': 'the license server url for widevine',

 'com.microsoft.playready': 'the license server url for playready'

 }

 }

})

Snippet 25. DRM Configuration for Shaka player

3.10.3 Dashjs

Snippet 26 demonstrates how to set up the DRM for Dashjs. The setProtectionData

method in Dashjs is used to set up multiple DRM playback. It receives the DRM

38

server and the server url, and the licensing token is optional, much like when set-

ting up DRM for Shaka player.

this.player.setProtectionData({

 'com.widevine.alpha': {

 serverURL: 'the server url for widevine',

 httpRequestHeaders: {

 'X-AxDRM-Message': 'license token',

 },

 },

 'com.microsoft.playready': {

 serverURL: 'the server url for playready',

 httpRequestHeaders: {

 'X-AxDRM-Message': 'license token',

 },

 },

})

Snippet 26. DRM Configuration for Dashjs player

3.11 Creating and Adding Subtitles to the Video

The format of HTML5 video is WebVTT with .vtt extension. Snippet 27 shows how

to create a subtitle file named example.vtt. For example “This is an example sub-

title from 01:27 to 01:30” will be the subtitle text of the video from 1 minute 27

seconds and 600 milliseconds to 1 minute 30 seconds and 160 milliseconds.

39

WEBVTT

1

00:01:27.600 --> 00:01:30.160

This is an example subtitle from

01:27 to 01:30

2

00:01:31.000 --> 00:01:36.000

This is an example subtitle from

01:31 to 01:36

3

00:01:37.600 --> 00:01:42.000

This is an example subtitle from

01:37 to 01:42

4

00:01:42.400 --> 00:01:47.480

This is an example subtitle from

01:42 to 01:47

Snippet 27. Subtitle file with the WebVTT format

In order to create and add the track to the video element tag, the subtitle source

and source language are required as well as the kind of the track has to be “subti-

tles”. The track below has a subtitle source as an example.vtt and subtitle language

with English. One video can have multiple subtitle tracks.

<track src="example.vtt" label="English" kind="subtitles" srclang="en" >

If the player running on the object text does not support track tag, the developer

needs to create a subtitle element and the function that reads the subtitle file and

passes the text on the created element.

<div id="subcontainer"> </div>

40

convertSubtitleFileToArray(url, index) {

 const self = this

 axios.get(url).then((response) => {

 self.arraySubtitles[index] = response.data

 .split('\n\r\n')

 .map(function(item) {

 var parts = item.split('\r\n')

 if (item && parts && parts[1]) {

 const time = parts[1].split(' --> ')

 return {

 number: parts[0],

 starttime: self.convertFormatTimeToSeconds(

 time[0].split('.')[0],

 time[0].split('.')[1]

),

 endtime: self.convertFormatTimeToSeconds(

 time[1].split('.')[0],

 time[1].split('.')[1]

),

 text: parts.slice(2).join(' '),

 }

 }

 })

 .splice(1, response.data.length - 1)

 })

}

convertFormatTimeToSeconds(time, ms) {

 const [hh = '0', mm = '0', ss = '0'] = (time || '0:0:0').split(':')

 const hour = parseInt(hh, 10) || 0

 const minute = parseInt(mm, 10) || 0

 const second = parseInt(ss, 10) || 0

 return hour * 3600 + minute * 60 + second + ms / 1000

}

Snippet 28. Reading and converting the data from subtitle file to array

Reading and converting the subtitle file to the array function is done as shown in

Snippet 28. There are two functions. The first function is converting the data from

the subtitle file to the object with four keys (the number is subtitle index, starttime

is the start time of subtitle showing in seconds, endtime is the end time of subtitle

showing in seconds and text is the subtitle text). The second function is converting

the format time on the subtitle file to seconds. For example: 00:01:27.600 to 87.6

seconds.

41

Snippet 29 describes the function that generates and transmits the subtitle text to

the subtitle element. The generateSubText function loops through the subtitle ar-

ray, looking for a subtitle object with a start time less than the current video time

and an end time greater.

generateSubText() {

 const self = this

 clearInterval(this.showSubIntervalTime)

 if (this.subtitlesSelected > -1) {

 this.showSubIntervalTime = setInterval(() => {

 const subItem = self.arraySubtitles[self.subtitlesSelected].filter(

 (item) =>

 item &&

 item.starttime &&

 item.endtime &&

 item.starttime - 1 <= self.getPlayPosition() &&

 item.endtime >= self.getPlayPosition()

)

 if (

 !self.arraySubtitles ||

 self.arraySubtitles.length === 0 ||

 self.arraySubtitles[self.subtitlesSelected].length === 0

) {

 clearInterval(self.showSubIntervalTime)

 }

 let currentSub = ''

 if (subItem && subItem.length > 0) {

 currentSub = subItem[0].text

 } else {

 currentSub = ''

 }

 document.getElementById(

 'subcontainer'

).innerHTML = `${currentSub}`

 }, 100)

 } else {

 document.getElementById('subcontainer').innerHTML = ''

 clearInterval(this.showSubIntervalTime)

 }

}

Snippet 29. Generating subtitle text and showing it on the screen

42

3.12 Implementing Thumbnail Images on the Player

Snippet 30 shows the function that displays the thumbnail image on the progress

bar of the player. The function receives two parameters, the first parameter is the

video duration and the second one is the current position of the player. The

thumbnail image height and width have to be defined to ensure the calculation of

the position of the thumbnail image is in the right place on the progress bar. The

example of the original thumbnail image is shown in Figure 4. The original thumb-

nail includes multiple images and it should be cut to the single one based on the

duration and position of the video like the image shows in Figure 5.

43

displayThumbnailImage(duration, position) {

 const imageHeight = 68;

 const imageWidth = 120;

 if (this.player && duration && this.thumbnailImageExist) {

 const progressBar = document.getElementById('progressbarbg')

 const thumbnail = document.getElementById('thumbnail')

 thumbnail.style.display = 'block'

 // Calculate 1 thumbnail takes how many pixel

 const thumbnailPixel =

 progressBar.getBoundingClientRect().width / (duration / 30)

 const progressBarLeft = progressBar.getBoundingClientRect().left

 const currentProgressBarWidth =

 (progressBar.getBoundingClientRect().width / duration) *

position

 const row = Math.floor((currentProgressBarWidth / thumbnailPixel)

% 8)

 const column = Math.floor(currentProgressBarWidth / (8 *

thumbnailPixel))

 thumbnail.style.left =

 Math.floor(currentProgressBarWidth + progressBarLeft -

imageHeight - imageWidth * row) +

 'px'

 thumbnail.style.top = -60 - imageHeight * column + 'px'

 thumbnail.style.clip = `rect(${imageHeight * column}px,

${imageWidth * (row + 1)}px, ${imageHeight *

 (column + 1)}px, ${imageWidth * row}px)`

 }

}

Snippet 30. Displaying thumbnail image on the progress bar of the player

44

Figure 4. Original thumbnail image

Figure 5. Thumbnail image after getting cut off

45

4 CONCLUSIONS

The purpose of the thesis was to introduce television development in general and

to design a smart television application for the streaming service industry in par-

ticular. The application should have a user-friendly user interface that includes a

banner and program carousel, searching, a player screen and a focus on the user

experience with the application's full button bind (back, exit and enter buttons) as

well as navigation.

The most challenging part of the application was doing the player elements, com-

ponents and functionalities as well as making sure the player worked correctly,

smoothly without crashing and handling the errors.

Throughout the course of designing the application, I have learned a lot about de-

veloping TV apps for HbbTV and SmartTv. In addition, I gained more expertise with

problem-solving and testing skills to ensure that the application works well on a

variety of televisions such as LG, Samsung and others.

The work on this application continues to be developed and maintained by me at

Sofia Digital Oy after graduation.

REFERENCES

/1/ What is the Best Smart TV Operating System? WhatIs. Accessed 18/02/2022
https://whatis.techtarget.com/definition/TV-operating-sys-
tem#:~:text=A%20TV%20operating%20system%20(TV,interac-
tion%20in%20a%20TV%20OS.

/2/ What is the Best Smart TV Operating System?. Source. Accessed 10/02/2022
https://www.sourceht.com/what-is-the-best-smart-tv-operating-system/

/3/ SDK vs. API: What’s the Difference?. Ibm. Accessed 13/02/2022
https://www.ibm.com/cloud/blog/sdk-vs-api

/4/Smart-TV Development: The Basics. Medium. Accessed 04/02/2022
https://mlangendijk.medium.com/smart-tv-development-the-basics-
5ec22a9ea2ad

/5/ JavaScript. Wikipedia. Accessed 04/02/2022 https://en.wikipedia.org/wiki/Ja-
vaScript

/6/ React. Wikipedia. Accessed 04/02/2022 https://en.wikipedia.org/wiki/Re-
act_(JavaScript_library)

/7/ What is Vue.js. Vue.js. Accessed 04/02/2022 https://v2.vuejs.org/v2/guide/

/8/ Svelte. Wikipedia. Accessed 04/02/2022 https://en.wikipedia.org/wiki/Svelte

/9/ Express.js. Wikipedia. Accessed 04/02/2022 https://en.wikipedia.org/wiki/Ex-
press.js

/10/ shaka-player. Github. Accessed 04/02/2022
https://github.com/google/shaka-player

/11/ dash.js Github. Accessed 04/02/2022 https://github.com/Dash-Industry-Fo-
rum/dash.js?

/12/ Digital rights management Wikipedia. Accessed 04/02/2022 https://en.wik-
ipedia.org/wiki/Digital_rights_management

/13/ EME, CDM, AES, CENC and Keys – The Essential Building Blocks of DRM. Ot-
tverse. Accessed 05/02/2022 https://ottverse.com/eme-cenc-cdm-aes-keys-drm-
digital-rights-management/

/14/ HOW TO PRODUCE PROTECTED CONTENT: UNDERSTANDING DIGITAL
RIGHTS MANAGEMENT. Brightcove. Accessed 05/02/2022

https://whatis.techtarget.com/definition/TV-operating-system#:~:text=A%20TV%20operating%20system%20(TV,interaction%20in%20a%20TV%20OS.
https://whatis.techtarget.com/definition/TV-operating-system#:~:text=A%20TV%20operating%20system%20(TV,interaction%20in%20a%20TV%20OS.
https://whatis.techtarget.com/definition/TV-operating-system#:~:text=A%20TV%20operating%20system%20(TV,interaction%20in%20a%20TV%20OS.
https://www.sourceht.com/what-is-the-best-smart-tv-operating-system/
https://www.ibm.com/cloud/blog/sdk-vs-api
https://mlangendijk.medium.com/smart-tv-development-the-basics-5ec22a9ea2ad
https://mlangendijk.medium.com/smart-tv-development-the-basics-5ec22a9ea2ad
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/React_(JavaScript_library)
https://en.wikipedia.org/wiki/React_(JavaScript_library)
https://v2.vuejs.org/v2/guide/
https://en.wikipedia.org/wiki/Svelte
https://en.wikipedia.org/wiki/Express.js
https://en.wikipedia.org/wiki/Express.js
https://github.com/google/shaka-player
https://github.com/Dash-Industry-Forum/dash.js?
https://github.com/Dash-Industry-Forum/dash.js?
https://en.wikipedia.org/wiki/Digital_rights_management
https://en.wikipedia.org/wiki/Digital_rights_management
https://ottverse.com/eme-cenc-cdm-aes-keys-drm-digital-rights-management/
https://ottverse.com/eme-cenc-cdm-aes-keys-drm-digital-rights-management/

https://www.brightcove.com/en/resources/blog/dealing-drm-understanding-
drm-and-how-produce-protected-content/

/15/ HTTP Live Streaming. Accessed 05/02/2022 https://en.wikipe-
dia.org/wiki/HTTP_Live_Streaming

/16/ What is a smart TV? Best smart TVs for 2022. Accessed 16/03/2022
https://www.which.co.uk/reviews/televisions/article/what-is-smart-tv-
aNeqk6F0RAAn

/17/ Dynamic Adaptive Streaming over HTTP. Accessed 05/02/2022
https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP

/18/ HbbTV Overview. Accessed 16/03/2022 https://www.hbbtv.org/overview/

/19/ HbbTV Overview. Accessed 16/03/2022 https://me-
dium.com/@tvgames/hbbtv-vs-smart-tv-70baaca4448f

/20/ Online streaming overtakes traditional TV viewing among Finns under the
age of 45. Accessed 16/03/2022 https://www.traficom.fi/en/news/online-
streaming-overtakes-traditional-tv-viewing-among-finns-under-age-45

/21/ What is HTTP Live Streaming? | HLS streaming Accessed 16/03/2022
https://www.cloudflare.com/learning/video/what-is-http-live-streaming/

/22/ How To Develop A Smart Tv Mobile App: Features, Cost & Tech Stack.
Accessed 16/03/2022 https://www.emizentech.com/blog/smart-tv-app-develop-
ment.html

/23/ Media type Accessed 16/03/2022 https://en.wikipedia.org/wiki/Me-
dia_type

https://www.brightcove.com/en/resources/blog/dealing-drm-understanding-drm-and-how-produce-protected-content/
https://www.brightcove.com/en/resources/blog/dealing-drm-understanding-drm-and-how-produce-protected-content/
https://en.wikipedia.org/wiki/HTTP_Live_Streaming
https://en.wikipedia.org/wiki/HTTP_Live_Streaming
https://www.which.co.uk/reviews/televisions/article/what-is-smart-tv-aNeqk6F0RAAn
https://www.which.co.uk/reviews/televisions/article/what-is-smart-tv-aNeqk6F0RAAn
https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP
https://www.hbbtv.org/overview/
https://medium.com/@tvgames/hbbtv-vs-smart-tv-70baaca4448f
https://medium.com/@tvgames/hbbtv-vs-smart-tv-70baaca4448f
https://www.traficom.fi/en/news/online-streaming-overtakes-traditional-tv-viewing-among-finns-under-age-45
https://www.traficom.fi/en/news/online-streaming-overtakes-traditional-tv-viewing-among-finns-under-age-45
https://www.cloudflare.com/learning/video/what-is-http-live-streaming/
https://www.emizentech.com/blog/smart-tv-app-development.html
https://www.emizentech.com/blog/smart-tv-app-development.html
https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/Media_type

