

Vu Nguyen

Implementation of Linux GPIO Device Driver on
Raspberry Pi Platform

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

10 May 2014

 Abstract

Author(s)
Title

Number of Pages
Date

Vu Nguyen
Implementation of Linux GPIO Device Driver on Raspberry Pi
Platform
48 pages + 3 appendices
10 May 2014

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Embedded Engineering

Instructor(s)

Markku Nuutinen, Project supervisor

The project was aimed at implementing a General Purpose Input/Output (GPIO) device
driver for the Raspberry Pi model B rev 2.0 platform. Specific attention was given to im-
plement the device driver based on the Linux character device driver.

Each of the GPIO pins on Raspberry Pi is exposed to userspace for use by a device file in
the /dev directory. While a dynamically assigned major number was used to identify the
device driver associated with the GPIO device, a minor number was used by the kernel to
differentiate between GPIO pins that the device driver controls. Four entry points were
implemented to handle low-level hardware GPIO resources on behalf of system calls re-
quested by a userspace application. Besides, interrupt handling was implemented as an
experimental feature to see how a device driver supports interrupt in an embedded Linux
system.

The GPIO device driver could be used on the Raspberry Pi platform by loading it either as
a kernel module or as an integral component of the Linux kernel. One or more userspace
processes could open a device file for reading the logic level of a GPIO pin, controlling the
direction of a GPIO pin, and setting its logic level to high state or low state. Besides, inter-
rupt handling feature was tested; the result showed that more than one process could
share an interrupt resource on a GPIO pin and could disable interrupt on that GPIO pin.

There still remain, however, some limitations to the features offered by the driver. Interrupt
handling is still an experimental feature. More work needs to be done to make the feature
useful for use. Furthermore, the GPIO character device driver is deprecated with a newer
version of the Linux kernel by the gpio-sysfs driver.

Keywords Linux GPIO driver, Raspberry Pi, Linux character driver,
GPIO kernel module

Contents

1 Introduction 1

2 Theoretical Background on the Embedded Linux System of the Project 2

2.1 Raspberry Pi Model B Rev 2.0 Platform 2

2.2 Overview of Raspberry Pi GPIO Pins 3

2.3 Raspbian Linux Distribution 5

2.4 Linux Character Device Driver 8

3 Design of the GPIO Device Driver 11

3.1 Project Setup 11

3.2 Design of Per-device Structure and Initialization and Exit Routines 16

3.3 Design of the Entry Points for the GPIO Device Driver 17

3.4 Design of Interrupt Handling Functions 22

4 Implementation of the GPIO Device Driver 23

4.1 Linux Kernel Compilation and Installation 23

4.2 Implementation of Per-device Structure and Initialization and Exit Routines 26

4.3 Implementation of the Entry Points for the GPIO Device Driver 30

4.4 Implementation of Interrupt Handling Functions 35

5 Testing of the GPIO Device Driver 37

5.1 Testing Preparation 37

5.2 Testing of Output Functionality 37

5.3 Testing of Input Functionality 39

5.4 Testing of Interrupt Functionality 42

6 Results and Discussion 45

7 Conclusion 47

References 48

Appendices

Appendix 1. Source code for GPIO Linux device driver

Appendix 2. Source code for output testing of GPIO device driver

Appendix 3. Source code for input testing of GPIO device driver

List of Abbreviations

API Application programming interface

DHCP Dynamic host configuration protocol

DMM Digital multimeter

DNS Domain name system

FAT File allocation table

GCC GNU compiler collection

GND Ground

GPIO General-purpose input/output

GPU Graphics processing unit

I2C Inter-integrated circuit

IC Integrated circuit

IDE Integrated development environment

IO Input/ouput

IP Internet protocol

IPC Inter-process communication

LAN Local area network

LED Light-emitting diode

LTS Long term support

MAC Media access control

PC Personal computer

PLD Programmable logic device

PWM Pulse-width modulation

SD Secure digital

SoC System on chip

SPI Serial peripheral interface

SSH Secure shell

UART Universal asynchronous receiver/transmitter

USB Universal serial bus

UTP Unshielded twisted pair

VFS Virtual filesystem

1

1 Introduction

Nowadays Linux is an operating system of choice for many computing systems ranging

from personal computers (PC), servers, mainframe computers and supercomputers to

electronic devices known as embedded systems. An embedded system is a computing

system which is specifically designed to carry out a set of dedicated tasks, and it typi-

cally uses a custom microcontroller as its main processing unit. Linux is a highly porta-

ble operating system; it can run on a variety of hardware architectures such as x86,

PowerPC, MIPS, H8, SPARC, or ARM, to name just a few.

This portability also comes with limitations, however. It is no doubt that while the modu-

lar architecture of Linux makes it easy when porting to different types of architectures,

a great deal of effort is required to build new kernel components in order to support a

target platform. The real hard work of these efforts is to develop device drivers for a

particular target platform. A device driver (kernel module) is a piece of software that

consists of a set of low-level interfaces, and is designed to control a hardware device.

The Raspberry Pi platform is an example of a target device that Linux can be ported to

run on it. GPIO device driver is one of the kernel components that can be developed to

support the Raspberry Pi platform. The goal of this project was to implement a GPIO

device driver for Raspberry Pi.

Specifically, attention was given to the implementation of the GPIO device driver based

on Linux character device drivers. The intended result of this work was to give a deeper

understanding on the Raspberry Pi platform, to learn what a Linux device driver does

and how it works, and finally to implement a GPIO character device driver for the

Raspberry Pi platform from scratch.

2

2 Theoretical Background on the Embedded Linux System of the Project

2.1 Raspberry Pi Model B Rev 2.0 Platform

The Raspberry Pi model B rev 2.0 platform was chosen for the project to implement the

Linux GPIO device driver. This is due to the fact that Raspberry Pi is a low-cost Linux

computer which costs approximately $35 from the Farnell distributor. The platform is

widely used by hobbyists and professional embedded developers around the world.

Therefore, there is a large support from the community when it comes to getting help or

information. For convenience, Raspberry Pi will be used when referring to the Raspber-

ry Pi model B rev 2.0 platform throughout this report. Figure 1 shows the Raspberry Pi

platform used in the project.

Figure 1. Raspberry Pi model B rev 2.0 platform

Reprinted from Raspberry Pi Wiki (2014) [1]

Raspberry Pi is a fan-less embedded computer which is equipped with a wide range of

peripherals such as Universal Serial Bus (USB), Ethernet, Universal Asynchronous

Receiver/Transmitter (UART), High-Definition Multimedia Interface (HDMI), Serial Pe-

ripheral Interface (SPI), Inter-Integrated Circuit (I2C), audio codec and so on. The heart

of the platform is a Broadcom BCM2835 System on Chip (SoC) that has an

ARM1176JZF-S 700 MHz core processor, an integrated graphics processor VideoCore

IV Graphic Processing Unit (GPU), 512MB of RAM for model B rev 2.0, and an SD

3

card in place of a hard disk drive [2]. The platform is powered from an external power

supply via a USB micro connector. It is recommended from the official Raspberry Pi

website that the board be powered from a good-quality power supply that gives at least

700mA at 5V [3]. This is because if the board is powered by a USB micro connector,

there will not be enough current and, as a result, the board my reboot sometimes when

it draws too much power.

2.2 Overview of Raspberry Pi GPIO Pins

Raspberry Pi comes with a 26-pin connector called P1 and an 8-pin connector called

P5. The pins on these connectors expose to users a set of buses such as I2C, SPI,

Pulse Width Modulation (PWM), and signals. There are eight GPIO pins on P1 con-

nector and four GPIO pins on P5 connector. In addition, the P1 connector has an I2C

interface which consists of two pins, a 5-wire SPI interface, and a serial interface with

two pins. These pins can be configured to be GPIO pins, thus making the total number

of GPIO pins on Raspberry Pi to be 21 pins. A point worth mentioning here is that four

GPIO pins on the P5 connector are available only on the Raspberry Pi model B rev 2.0

platform.

Figure 2. Mapping between BCM2835 GPIO pins and Raspberry Pi P5 connector

Modified from Henderson (2013) [4]

Figure 2 shows the mapping between Broadcom BCM2835 SoC's GPIO pins and the

Raspberry Pi P5 connector. The P5 connector which consists of eight pins as seen in

4

figure 2 is viewed from the bottom side of the board. Since Raspberry Pi was originally

shipped without any header on P5 connector, a double sided 2.54mm header has to be

soldered either on top or at the bottom of the board for use.

Figure 3. Mapping between BCM2835 GPIO pins and Raspberry Pi P1 connectors

Modified from Henderson (2013) [4]

As can be seen from figure 3, the pins on the P1 connector, on the other hand, are

viewed looking at the platform from above with the USB micro connector at the top-left

to the Raspberry Pi and P1 connector to the top-right of the platform.

5

As the name implies, GPIO is a general-purpose pin on a chip which, whether config-

ured as input or output, can be controlled on the fly by means of software. By default, a

GPIO pin has no defined special purpose, and is not used. GPIO pins may be used in

situations where there is a need to have multiple digital control lines so that no addi-

tional circuitry is required [5]. A GPIO pin is capable of performing the following:

 Can be configured as an input pin or an output pin

 Can be set low or high for output GPIO pin

 Can be set as input for reading digital logic level

 Can be set to enable interrupt. [5.]

Due to the flexibility of GPIO pins, they are often used in a wide range of integrated

circuits (IC), SoC, embedded platforms such as Arduino, BeagleBoard, Stellaris

Launchpad, and Raspberry Pi, multiple function chips, for example audio codes and

video cards, or Programmable Logic Devices (PLD) [5]. It should be noted that GPIO

pins 2 and 3 on Raspberry Pi are initially configured as I2C interfaces with 1.8KΩ pull-

up resistors, and pin 15 being configured as a serial UART receive pin. When Raspber-

ry Pi is booting, these pins must be left unused. Otherwise, the board will not be able to

boot successfully.

2.3 Raspbian Linux Distribution

The Raspberry Pi platform includes hardware resources such as CPU, memory, In-

put/Output (I/O) peripherals, networking, and many other resources. In order to man-

age those hardware resources, a Linux kernel was utilized in the project. The Linux

kernel is one of the components of an embedded Linux system which was created by a

Finnish student named Linus Torvalds in 1991 as a hobby project. The announcement

was made by Linus in 1991 on the newsgroups comp.os.minix. Since then Linux has

made its way into a robust, reliable, and high-end operating system that can be consid-

ered to be a strong rival of closed-source operating systems. Nowadays, over 50% of

Internet services on the Internet are being run on Linux servers. [6,65.] The Linux ker-

nel is the heart of an embedded Linux system just like a processor is the heart of an

embedded system. In particular, the Linux kernel is responsible for the following tasks:

6

 To manage and control a system's hardware resources (e.g. I/O, CPU,

memory)

 To offer set Application Programming Interfaces (API) so that application

programs and libraries can use hardware devices

 To handle concurrent accesses and usage of hardware devices from

application programs. [6,5.]

All of the above mentioned tasks mean that having the Linux kernel to manage system

resources abstracts away all of the low-level hardware details that are hard to use from

a userspace application's point of view. An application must make a request to the ker-

nel via system calls when it needs to use a certain hardware resource. The kernel in

turn evaluates the request and manages the hardware resource on behalf of the us-

erspace application. By doing so, it is easier and safer for userspace applications to

make use of a system's hardware resources as opposed to bare-metal programming

when an application has total rights to access hardware resources.

Figure 4. Main tasks of the Linux kernel

Data gathered from Cooperstein (2009) [7,68]

Figure 4 illustrates the main tasks that a Linux kernel performs. Typically, the Linux

kernel components consist of process management, memory management,

filesystems, device management, and networking. The process management

7

component takes care of creating and terminating processes, providing input and

output to processes, offering inter-process communication (IPC), signals and pipes so

that processes are able to communicate with each other, and scheduling to share

processor time slice between multiple processes. The second component is the

memory management which is responsible for managing process address spaces,

allocating and freeing memory spaces. The next component called filesystems builds

structured filesystems, for instance FAT filesystem, on top of a unstructured hardware

resource. An example is a flash memory secure digital (SD) card that the Linux kernel

can make it a structured FAT filesystem. It also helps processes to interact with

filesystems. Following the filesystems component is the networking component. All of

the networking operations must be managed by the kernel since certain network

operations are not process-specific, such as processing an incoming packet. Since the

arrival of packets to an Ethernet port is not known by a process in advance, they have

to be gathered, identified and forwarded before a process can handle them. The last

one and also the focus of the project is the device management component. This

component is sometimes called a device driver component because it is responsible for

abstracting away hardware devices and allowing userspace applications to access

them. It is at the lowest abstraction level of the kernel and is the largest component in

terms of code size. This is due to the fact that the world is full of many different types of

hardware devices. [7,67-69.]

A distribution of Linux called Raspbian was used in this project. Raspbian is a Debian-

based operating system. Raspbian is optimized and adjusted with its compilation set-

tings so that it can be run on Raspberry Pi. By optimization, the operating system is

actually adjusted to produce optimized hard float code. Thanks to this adjustment, this

provides a much faster performance for userspace applications that use floating point

arithmetic operations. Raspbian also comes with more than 35,000 packages and pre-

compiled software. [8.] Instead of using an official Linux kernel from www.kernel.org, I

decided to use Raspbian. This decision was because Raspbian is a widely used, free

operating system. It also supports many features necessary in the project, and is famil-

iar to the Debian-based Ubuntu distribution which I am using now. Besides, the official

kernel offers very limited support for the Raspberry Pi platform. It has basic interrupt

management, resource definitions, basic definitions and register address and timers.

8

2.4 Linux Character Device Driver

In Linux there are essentially three kinds of devices: network devices, block devices

and, character devices. Network devices are represented as network interfaces and

are visible when issuing ifconfig command from userspace. Block devices provide us-

erspace applications with access to raw storage hardware devices (e.g. hard disks).

These are visible to userspace as device files in /dev directory. The last type is charac-

ter devices. They provide userspace applications with access to other types of devices

such as input, serial, graphics, or sound, to name just a few. The design of the Linux

GPIO device driver for Raspberry Pi was based on the Linux character device driver.

For that reason, this section will look at the internals of the Linux character device driv-

er.

Linux character device drivers are byte-oriented operations or character-oriented oper-

ations in the C lingo. Because a large number of hardware devices are character-

oriented, a majority of Linux device drivers are character device drivers. Linux charac-

ter device drivers are the kernel code that gets access to data from a hardware device

sequentially. They are capable of capturing raw data from several kinds of devices

such as serial ports, mice, tapes, or memory. [9,120].

Figure 5. Overview of Linux character device driver

Reprinted from Pugalia (2011) [10]

As illustrated by figure 5, in order for a userspace application to use a character-

oriented device in hardware space, it must use a corresponding character device driver

in kernel space. A character device file appeared in /dev directory acts as a communi-

9

cation channel between a userspace application and a character device driver. A us-

erspace application performs usual file operations (e.g. open, read, write, close) on the

character device file. Those operations are then mapped into the entry points in the

linked character device driver by the virtual filesystem (VFS). Those entry points finally

perform low-level accesses to the actual device to get the desired results. [10.]

To access a device file exported by a character device driver, the /dev directory should

be listed. Figure 6 shows the device files that are exported to userspace by Linux

device drivers including character device drivers and block device drivers.

Figure 6. Device files exported by device driver on /dev directory

Network interfaces are, however, not exported on the /dev directory since they do not

have mapping on the filesystem. The first character of the first column in figure 6

identifies the type of a device. Device files for character drivers are identified by a “c”

which stands for character. Block devices are identified by a “b” which stands for block.

The reason that device drivers export their device files to the /dev directory to the

userspace is because Linux inherits many features from the Unix operating system. In

the Unix design philosophy, everything is a file. This allows the system to represent

system objects as files, and applications manipulate all system objects with files by

means of normal file APIs, for example, open, read, write, and close. Linux inherits this

feature from Unix, so the devices are represented as files to the userspace.

When a device driver is registered to a running kernel, a major number will be used to

assign to it. The kernel uses this major number to distinguish between different device

10

drivers, not by the names of the device drivers, however. A device driver may have

many instances, and minor numbers are used by the kernel assign to these device

driver instances. As can be seen from figure 6, the fifth column indicates the major

number of a device driver, and the sixth row indicates the minor number. We can have

the same major number but cannot have the same minor number.

Since the GPIO device driver is a character device driver, it must therefore implement

and register entry points or methods that enable userspace applications to manipulate

the device as a file. These entry points are described in the struct file_operations struc-

ture which is defined in <linux/fs.h> header file in Linux. Some of the most important

entry points for a character device driver are shown in listing 1 below.

Listing 1. Entry points for the GPIO device driver

Implementing the entry points and registering them is not sufficient when writing a

character device driver. Several other steps have to been taken, and they can be gen-

eralized from two perspectives: code-flow perspective and data-flow perspective. From

the perspective of code-flow, character device drivers possess an initialization function,

called raspi_gpio_init() in this project, that takes care of initializing the character device

driver and registering the device driver to the kernel by using registration functions (e.g.

cdev_add). The next is a collection of methods such as the ones mentioned in listing 1

which directly map to system calls. The last is bottom halves, timer handlers, interrupt

service routines and other support infrastructure. From a data-flow perspective, charac-

ter device drivers have at first a driver-specific data structure to keep track of the state

of the device driver itself. Secondly, it has a struct cdev structure. The Linux kernel

uses this structure as an abstraction for character device drivers, and this is often nest-

11

ed inside the driver-specific data structure. Thirdly, it has a struct file_opentations struc-

ture which has already been mentioned in listing 1. The last one is a struct file structure

that holds information about the associated /dev device file. [9,121.] By now, it is be-

lieved that the reader should have a basic knowledge of what constitutes a Linux char-

acter device driver and the relation between userspace applications, device files, sys-

tem calls, entry points and character device drivers. Detailed implementation of the

GPIO character device driver will be discussed in chapter 4.

One important point worth mentioning here is that the subject of interrupt handling in

Linux was studied during the design of the project, and I did not really understand to a

large degree about interrupt handling in Linux. As a result, interrupt handling can be

considered to be an experimental feature in the design of the device driver.

3 Design of the GPIO Device Driver

3.1 Project Setup

The first step in the design of the GPIO device driver in this project was to set up a

proper embedded Linux development environment. Figure 7 shows the development

setup used in the project. On the left-hand side of the figure is a host development sys-

tem which runs on my favorite Ubuntu 12.04 Long Term Support (LTS) Linux distribu-

tion. To the right of the figure is an embedded Linux target which, in this case, is the

Raspberry Pi platform. Communication between the host development system and the

embedded Linux target is done via Ethernet. The platform's Ethernet interface and the

Ethernet hub's socket is connected using an RJ45 Unshielded twisted pair (UTP) ca-

ble. Similarly, the host development system's Ethernet interface is connected to the

Ethernet hub's socket using an RJ45 UTP cable. The serial connection RS-232 was

not used in the project since host-target communication was done using Secure Shell

(SSH) protocol. In order to use the SSH protocol as a means of communication be-

tween the host and the target, an SSH daemon was installed in Raspberry Pi, which

makes the target become a server, whereas an SSH client was installed in the host

development system, thus making the host a client.

12

Figure 7. Project development setup

Reprinted from Hallinan (2010) [6,14]

After the target has been booted successfully, it will receive a dynamic Internet Proto-

col (IP) address. This IP address is assigned dynamically from the Dynamic Host Con-

figuration Protocol (DHCP) server. Given the Media Access Control (MAC) address of

the target, the dynamic IP address assigned to the target can be found by using the

following command from the host:

$ arp -a

This command lists MAC and IP addresses of all the devices available on a Local Area

Network (LAN). By doing so, the assigned IP address is found and the host can make a

connection to the target by using the SSH protocol. At the initial stage of the design, it

was realized that it is time-consuming and not convenient to find out the dynamic IP

address assigned to the target after each time the target is rebooted. The solution to

solve this inconvenience was to install a Domain Name System (DNS) client on Rasp-

berry Pi and to sign up a domain name from a DNS hosting website. In this project, a

DNS client called ddclient was installed on Raspberry Pi and a domain name was reg-

istered from a free DNS hosting website from the link http://freedns.afraid.org. For se-

curity reasons, in this thesis report a domain name called vunguyen.fyp.org and a user

name “pi” will be used when referring to the actual domain name that was registered

from the DNS hosting website mentioned just before and the user name from the tar-

get, respectively. After all the networking had been set up properly, communication

13

between the host and the target was tested. Apparently, the procedure became much

simpler and faster by simply using the following command from the host:

$ ssh pi@vunguyen.fyp.org

A password required by the ssh server which is the target was entered for checking

authentication. After that, the host could interact with the target board as if it was work-

ing on the local host machine. Further information about the development environment

setup can be referenced from my personal blog page at http://e-linux-note.blogspot.fi/.

The physical setup of the development environment has been covered by now. The

following paragraphs will discuss the software aspects the host development system

needed in the project.

Regarding a programming tool, an Eclipse Indigo version 3.7.2 Integrated Development

Environment (IDE) was chosen to be installed in the development host. The Eclipse

IDE is an open source programming tool which has a base workspace and a plug-in

system for customizing the programming environment. Eclipse was chosen as a pro-

gramming tool because it offers a C/C++ Development Tools plug-in which supports

programming in the C language. What's more, it contains many nice features such as

syntax highlighting, on-the-fly syntax check, auto-completion, code folding, code navi-

gation, and so on. These features can help speed up the coding process, thus reducing

the project time allocated for the implementation phase. In order to develop application

programs and Linux device drivers, the Eclipse IDE alone is not sufficient. Since the

target platform runs on the ARM1176JZF-S processor, a toolchain was needed to

cross-compile the source code so that it could run on the target. It should be noted that

the native GNU C Compiler (GCC) compiler on the host is targeted to build source

code for Intel x86 family processors, not for other processor architectures. The tool-

chain used in the project was gcc-linaro-arm-linux-gnueabihf-raspbian. This toolchain

was downloaded from the link https://github.com/raspberrypi/tools. The last software

component needed in the development host was the source code for the Linux kernel.

It was obtained from the Raspberry Pi kernel source code repository at

https://github.com/raspberrypi/linux. To ease the management of the toolchain, the

Linux kernel source code, application programs, Linux device drivers, final report, and

other project related documents, I proceeded to set up the layout for a project work-

space. The process of organizing the layout could be compared to making the layout

for the thesis report which is being worked on now. At the top of the project workspace

14

tree is ldd_raspi_gpio_driver directory inside which other subdirectories are created.

Table 1 shows the layout of the project workspace with parent directories and their

subdirectories as well as the contents of each directory.

Table 1. Project workspace layout

Directory Level-1

subdirectories

Level-2

Subdirectories

Content

ldd_raspi_g

pio_driver

app input_test - Executable for testing

GPIO input

- Source code for testing

GPIO input

output_test - Executable for testing

GPIO output

- Source code for testing

GPIO output

buildtools Tools Cross toolchain for ARM pro-

cessor

documentation All documentation needed for

the project

drivers rpi_gpio Linux GPIO device driver ver-

sion 1

rpi_gpio_v2 Linux GPIO device driver ver-

sion 2

kernel Linux The vanilla Linux kernel source

code

Rpi_kernel Rapberry Pi Linux kernel

source code

report report_figures Normal figures included in the

thesis report

testing_figures Figures from testing phase of

the project

The Rpi_kernel directory contains two subdirectories: linux directory and modules di-

rectory. The linux directory holds the Raspberry Pi source code from which the Linux

kernel build system uses for building a kernel image for Raspberry Pi. The modules

directory contains kernel modules which Raspberry Pi will install when it is booting. It

15

is, undoubtedly, impossible to compile a Linux device driver without a Makefile file.

Therefore, inside the rpi_gpio and rpi_gpio_v2 subdirectories are Makefile files used by

the Eclipse IDE during Linux device driver compilation process. The Makefile file is

shown in listing 2.

Listing 2. Makefile file for Linux device driver compilation

Finally, a note about the vanilla Linux kernel. This is an official Linux kernel which is

hosted at the main Linux kernel website https://www.kernel.org/. This kernel is located

in the kernel level-1 subdirectory for future experiments when the project has been

completed.

16

3.2 Design of Per-device Structure and Initialization and Exit Routines

Since the per-device structure (driver-specific data structure) is the information reposi-

tory which the GPIO character device driver instantiates and revolves, it was designed

first. The structure consists of the following data elements:

 A cdev kernel abstraction element for character device drivers

 An instance of struct gpio structure describing a GPIO pin with configuration

 A variable indicating the state of a GPIO pin (low or high)

 A variable indicating the direction of a GPIO pin (input or output)

 A boolean variable used to enable or disable interrupt on a GPIO pin

 A flag indicating rising or falling edge trigger on a GPIO pin

 A counter for keeping track of the number of requests for interrupt

 A spinlock used for synchronization.

The per-device data structure plays the role of representing a GPIO pin on the Rasp-

berry Pi platform. There are, in total, 21 GPIO pins on Raspberry Pi; therefore, 21 in-

stances of the per-device data structure were created to represent these GPIO pins.

After the per-device structure had been created, the design of driver initialization rou-

tine and driver exit routine took place. The driver initialization routine is the one which is

called first when the kernel installs the GPIO device driver. The driver exit routine, in

contrast, is the last one called by the kernel when being unloaded from the system. In

this thesis report, device driver and kernel module will be used interchangeably. Be-

cause the driver initialization routine is the bedrock for registering the GPIO character

device driver to the kernel, it will be responsible for doing the following steps:

 Register a range of character device numbers

 Create a device class in /sys directory

 Claim GPIO pin resources

 Allocate memory for the per-device structure

 Initialize a spinlock to be used for synchronization

 Register character device to the kernel

 Create device nodes to expose GPIO resources to userspace

 Get current timestamp used for contact debouncing.

17

A feature in the design of the GPIO character device driver was to let a userspace poli-

cy daemon udevd to dynamically create device nodes in the /dev directory. That is why

step 2 and step 7 were added to the initialization routine. It should be kept in mind that

the implementation of the GPIO device driver followed the steps of driver initialization in

the order mentioned above. Handling errors was the responsibility in the implementa-

tion phase. As a rule, if there is an error when calling kernel APIs, it must log error in-

formation to the kernel log system, release any previously allocated resources, and exit

without any further processing. Doing the opposite of what the driver initialization rou-

tine is supposed to do is the driver exit routine. When the system is rebooted or when a

userspace user issues a command, for example rmmod, the exit routine takes action.

Firstly, it unregisters a range of character device numbers. After that, it frees all the

per-device structures allocated previously during the initialization routine. Next, it re-

leases all the device nodes in the /dev directory, frees all GPIO pin resources, and sets

the direction of all the GPIO pins to output and sets their logic levels low. Finally, it de-

stroys the device class registered in the virtual filesystem mounted at /sys directory. It

is a good practice to set the direction of all GPIO pins to output and their logic levels

low. This is because sometimes a user of the GPIO device driver might make mistakes

by accidentally short-circuiting a certain GPIO pin, thus playing havoc with the proces-

sor of Raspberry Pi. It cannot prevent Raspberry Pi from damaging when a user ap-

plies a high voltage to a GPIO pin, however.

3.3 Design of the Entry Points for the GPIO Device Driver

The GPIO character device driver consists of four entry points which handle requests

from userspace applications on behalf of system calls. The open entry point went first

when designing entry points of the GPIO character device driver. This order of design

was followed based on the theory of code-flow perspective discussed in section 2.4.

Although the open entry point is the first operation exercised on the device file, this is

not compulsory for a character device driver to declare. Opening a device file always

returns success even if this entry point is NULL. [11,51.] The open entry point was de-

signed for the device driver, however. The reason for this is that it is needed for regis-

tering interrupt resources and keeping track of how many times an interrupt is request-

ed by userspace applications. Moreover, it is recommended that an interrupt request

be called when a device file is first open [11,261]. Clearly, this means that a request for

18

an interrupt should be handled in the open entry point. Figure 8 illustrates the flowchart

for the open entry point of the GPIO device driver.

Figure 8. Flowchart of open entry point for GPIO device driver

The open entry point of the GPIO character device driver is called raspi_gpio_open.

This function allocates GPIO interrupt resources when requested on the condition that

the interrupt flag is enabled and the direction of a GPIO pin is set to input. Based on

the irq_flag variable in the per-device structure, this open entry point allows a us-

erspace application to request for a rising edge trigger interrupt or a falling edge trigger

19

interrupt. The last feature which was designed for the raspi_gpio_open entry point was

that an interrupt line could be shared by multiple userspace applications.

When a userspace application closes a device file, the kernel invokes the release entry

point. Like the open entry point, the release entry point is not needed and can be

NULL. For the GPIO device driver, the release entry point was designed. The design of

this release entry point followed after the design of the open entry point. The release

entry point, when being called, is responsible for releasing the GPIO interrupt resource

that has been requested before. It only releases the interrupt resource when the device

is last closed. To do this, there is a counter called irq_counter inside the per-device

structure which keeps track of how many times an interrupt has been requested. The

design philosophy of the GPIO character device driver was defined so that multiple

userspace applications could share the same interrupt resource on a certain GPIO pin.

In addition to that feature, the release entry point also controls enabling and disabling

of an interrupt upon request regardless of how many devices are using the interrupt. A

spinlock used for synchronization is also part of the code-flow in the release entry

point. The last two entry points for the GPIO character device driver are read entry

point and write entry point.

Perhaps, the read entry point was the easiest part during the design phase of the de-

vice driver. This entry point is called, by design, raspi_gpio_read. This function allows

userspace applications to read the logic state of input GPIO pins and of output GPIO

pins. Since multiple processes are allowed to read the logic state of a GPIO pin simul-

taneously, it was not designed to use a spinlock for protecting atomic sections of code

or synchronization or whatsoever.

The last and also the most important entry point is the write entry point. This entry point

is responsible for exchanging data between userspace and a hardware device. The

write entry point does the opposite to the read entry point. Instead of reading from the

hardware device, it receives bytes of data from the userspace and then writes what has

been received directly to the device. Finally it returns the number of bytes that it has

successfully written. That is the mechanism how the write entry point works. For the

GPIO character device driver, the write entry point accepts a set of defined commands

received from the userspace and takes action accordingly. In particular, it was de-

signed to accept a set of seven defined commands from userspace. The commands

20

are, in fact, a string of characters sent to the device file by a userspace application.

Those commands are listed in table 2.

The description in table 2 should be descriptive enough to understand what a com-

mand asks the write entry point to perform. If a userspace application needs to set, for

example, GPIO pin 2 to output and set it to logic level low, it will need to do the follow-

ing commands based on the description from table 2.

$ echo out > /dev/raspiGpio2

$ echo 1 > /dev/raspiGpio2

Table 2. Command set for GPIO character device driver

Command Description

“out” Set GPIO direction to output

“in” Set GPIO direction to input

“1” Set GPIO pin's logic level to high

“0” Set GPIO pin's logic level to low

“rising” Enable rising edge trigger

“falling” Enable falling edge trigger

“disable-irq” Disable interrupt on a GPIO pin

After that the GPIO pin 2 will be set to output with high logic level. What the first

command does is that it first opened the device file /dev/raspiGpio2 and sent to the

device file the string “out”. The string “out” or command “out” in this case was then read

by the write entry point. It then processed if a correct command was received. If so, it

sets the direction of GPIO pin 2 to output. Otherwise, error will be printed on the

console. In the demonstration above, there was no error reported. Therefore, it means

that the command “out” was processed successfully by the write entry point, and the

direction of GPIO pin 2 was set to output. The same process happens when the

command “1” was written to the /dev/raspiGpio2 device file. Again, there was no error

and it was measured from the GPIO pin 2 by a Digial Multimeter (DMM) that the

voltage of the pin was about 3.287 V. It is easy to use from the userspace application's

point of view. However, there are many low-level details that require the job of the

GPIO device driver’s write entry point.

21

Figure 9 shows the flowchart for the write entry point. The design of the write entry

point was based on the switch case statement.

Figure 9. Flowchart of write entry point for the GPIO device driver

The write entry point first reads a command sent from userspace and stores the

command into a buffer. Based on the content of the buffer, it makes a decision on

whether or not to go forward. If there is no match between the buffer and a specified

command shown in table 2, an error will be returned indicating an invalid value was

22

received. When a request for an interrupt such as falling or rising is received, it will be

processed by the write entry point as a high priority task, thus overriding the setting of

the GPIO pin’s direction and the permission flag in the per-device structure. Other

commands are just trivial commands for setting the direction and logic level of a GPIO

pin. For sections of code which require to be atomic, the implementation for the write

operation entry point should be able to decide suitable places for inserting a spinlock.

3.4 Design of Interrupt Handling Functions

Interrupt handling is a feature that was decided to be added to the GPIO device driver

later when the first version of the driver had been finished. This was due to some

changes in the requirements of the project. The subject of interrupt handling was stud-

ied during the design phase, and was not really understood thoroughly. For that rea-

son, this feature was designed in the second version of the GPIO device driver, and is

considered to be experimental. To make this feature useful for userspace applications,

more work needs to be done.

Requesting for interrupt resources and releasing them were already mentioned in sec-

tion 3.2. This section will look at the design of an interrupt handler that is called by the

kernel when a hardware interrupt signal arrives. In addition, a simple timing function

was designed so that it solves a problem known as contact bouncing. Contact bounc-

ing is the problem which is caused by mechanical switches when they are pressed and

released. This problem causes the processor to misinterpret when the signal from the

switch oscillates several times, going from logic level low to high and vice versa. In

other words, when a switch is pressed and released only one time, it will be interpreted

by the processor as several switch presses.

Basically, when called by the kernel, the interrupt handler starts taking a timestamp

right at the moment it was started. It will then compare the current time with the last

timestamp when it was called. If the time duration between successive calls is less than

200 milliseconds, it will consider the interrupt signal that has just arrived as a signal

pulse caused by contact bouncing. Otherwise, it will be interpreted as an interrupt sig-

nal; the handler takes proper actions that userspace applications desire. In the GPIO

device driver, the interrupt handler simply displays some information to the kernel log-

ging system to signify that an interrupt signal has been received. In order to avoid be-

ing interrupted by another interrupt signal when the interrupt handler is busy, functions

23

local_irq_save and local_irq_restore were used to disable interrupt signals temporarily

and then resume them as before.

The timing function was designed in quite a simple way. This function is named millis

which means milliseconds. It takes no argument and returns the current system time in

milliseconds. The data type of the return value was designed to be unsigned int. It

takes the current system time by calling do_gettimeofday(struct timeval *tv) function

which is defined in <linux/time.h> header file.

4 Implementation of the GPIO Device Driver

4.1 Linux Kernel Compilation and Installation

In order to see how the Linux kernel was compiled and installed for Raspberry Pi in this

project, it is necessary to understand how Raspberry Pi boots up. The Broadcom

BCM2385 SoC consists of two processors; one is a VideoCore IV GPU and the other is

an ARM1176JZF-S 700 MHz core which runs the Linux kernel. A small RISC core on

the GPU starts running first at power-up, and this core runs the first stage bootloader

which has been preprogrammed into the SoC to mount the FAT32 boot partition on the

SD card. Next the GPU looks for the second stage bootloader called bootcode.bin and

loads it into the system memory and starts executing that code. Then the second stage

bootloader searches for a file called config.txt from the SD card and searches again for

the kernel.img file which is the Linux kernel image. Finally, the kernel image is loaded

into memory at the address (0X8000), and this in turn starts the ARM processor exe-

cuting at that memory location. The GPU is ready and the ARM will start using the code

in kernel.img. [12.]

In a nutshell, the following components are needed for booting the Raspberry Pi plat-

form:

 A second stage bootloader file called bootcode.bin

 A config.txt file used for kernel settings

 A kernel.img file

24

 Linux kernel modules

 Other files: start.elf, fixup.dat, .config configuration file.

The bootcode.bin second stage bootloader, the start.elf and fixup.dat files were down-

loaded for the project from the Raspberry Pi main repository at

https://github.com/raspberrypi/firmware/tree/master/boot

The config.txt file already exists in the running Raspberry Pi platform at /boot directory.

So, it was copied from there. If that file is not available, it can be downloaded from

https://github.com/Evilpaul/RPi-config/blob/master/config.txt

The kernel.img kernel image and the Linux kernel modules were cross-compiled from

the development host. All of the preparation steps were done as follows:

 Get the Raspberry Pi Linux kernel source code

 Get a gcc-linaro-arm-linux-gnueabihf-raspbian toolchain for cross compilation

 Get an existing .config configuration file.

The first step in compiling the kernel image for Raspberry Pi was to have the Raspber-

ry Pi Linux kernel source code. It was obtained from

https://github.com/raspberrypi/linux.git by using the following git command:

git clone https://github.com/raspberrypi/linux.git

The kernel source code was then stored in the Rpi_kernel workspace directory as

shown in table 1. The next step was to get a toolchain in order to cross-compile for the

target. The toolchain is stored in the tools level-2 subdirectory in the workspace. It was

downloaded by using the following command:

git clone https://github.com/raspberrypi/tools

The Raspberry Pi tools directory contains several toolchain versions. gcc-linaro-arm-

linux-gnueabihf-raspbian was chosen since it contains linaro patches. The last one

needed was a configuration file for kernel compilation. In order save time, an existing

configuration file from a running Raspberry Pi system was retrieved. This configuration

file is stored in /proc/config.gz directory. This file was copied, unzipped, renamed to

.config and saved into the top tree of the Raspberry Pi kernel. Next the compilation

25

process took place. The following commands were run to compile the Linux kernel im-

age. It should be noted that they were executed in the following order:

make oldconfig ARCH=arm CROSS_COMPILE=${CCPREFIX}

make ARCH=arm CROSS_COMPILE=${CCPREFIX}

make modules_install ARCH=arm CROSS_COMPILE=${CCPREFIX}

The result after a successful compilation was a kernel image and a folder containing

kernel modules. The new kernel image was stored in the /linux/arch/arm/boot/ directory

of the kernel source tree. It was a compressed file called zImage, so it was uncom-

pressed to be used on Raspberry Pi. The tool for uncompressing zImage kernel image

comes from the tools/mkimage directory in the workspace. This tool is called image-

tool-uncompressed.py which is a kind of Python script. The following commands were

used to uncompress and upload the zImage kernel image to Raspberry Pi:

./imagetool-uncompressed.py zImage

scp kernel.img pi@vunguyen.fyp.org:/tmp

Another component needed for booting the Raspberry Pi platform is kernel modules.

These modules were stored in my development host's directory at the path

/home/quangng/study/linux_device_drivers/Metropolia/labs/project/ldd_raspi_gpio_driv

er/kernel/Rpi_kernel/modules. Since this directory contains quite a large number of

modules, it was compressed before uploading to Raspberry Pi to save uploading time.

It was done as follows:

cd ./Rpi_kernel/module

tar czf modules.tgz *

scp modules.tgz pi@vunguyen.fyp.org:/tmp

Finally, the kernel image and the kernel modules were installed for Raspberry Pi using

the command as follows:

cd /

sudo mv /tmp/kernel.img /boot/

sudo tar xzf /tmp/modules.tgz

rm /tmp/modules.tgz

26

After Raspberry Pi were rebooted and connected to the development host over SSH,

the command uname -r was used to verify that the new kernel image that had been

built before was booted successfully.

Figure 10. Successful result after building a new Linux kernel

Figure 10 shows the result from a successful boot from Raspberry Pi with the new ker-

nel version 3.10.34+. After the successful compilation of the new kernel, the target was

ready for the implementation and testing later on during the project.

4.2 Implementation of Per-device Structure and Initialization and Exit Routines

The design of the per-device structure, the initialization routine and the exit routine was

discussed in section 3.2. This section gives more details on how each of them was

implemented by analyzing their source code. Listing 3 shows a snippet of code that

was implemented for the per-device data structure.

Listing 3. Per-device data structure for the GPIO device driver

The very first pieces of code implemented for the GPIO device driver were the per-

device data structure. This data structure is named raspi_gpio_dev. In the project,

27

almost every name of variables, structures, and functions were named beginning with

the prefix raspi_gpio_. Each instance of the per-device data structure represents a

GPIO pin. The first element of the structure is an instance of struct cdev structure. This

is the internal structure of the Linux kernel that represents character devices. This

structure is defined in <linux/cdev.h> header file. The next element is an instance of

struct gpio structure. As the name implies, this element is used to store such

information as GPIO pin number, flags to define the status of a GPIO pin when it is first

claimed, and a pointer to the const char data type called label. The struct gpio structure

encapsulates all the three fields just mentioned; hence, when using this structure to

represent a GPIO pin, it will be much easier to handle. The next two elements in the

per-device structure are state and dir elements which are of user-defined data types.

The user-defined data type for the state data element has two values: low or high.

Likewise, the data type of dir data element has two discrete values: in or out. To

support the interrupt feature, three more data elements were added to the

raspi_gpio_dev structure. They are irq_perm, irq_flag, and irq_counter. The irq_perm is

of bool data type, so it has two values, either true or false. The irq_flag is of data type

unsigned long which is used to determine the triggering type for an interrupt. The

irq_counter is of data type unsigned int which keeps track of the number of requests for

interrupt from userspace applications. The last element is a lock that is of system data

type spinlock_t. This data element is used for synchronization purposes.

When the GPIO kernel module is loaded by the kernel upon request, the initialization

routine will be called. First of all, raspi_gpio_init () invokes alloc_chrdev_region() to

dynamically request a range of unused character device numbers. Variable first of data

type dev_t contains the allocated major number if the call is successful. The second

and third arguments passed into alloc_chrdev_region() require the function to allocate

NUM_GPIO_PINS number of minor devices starting from zero. The last argument is

the device name which will appear in /proc/devices when the device driver is registered

successfully. This argument is defined using a macro called DEVICE_NAME. Figure 11

shows the output from cat /proc/devices command.

When the Raspberry Pi GPIO kernel module has been registered successfully, display-

ing the content of /proc/devices directory shows the major number allotted for the de-

vice which, as shown in figure 11, is 248 in the first column. After that, the initialization

routine creates a class under the virtual filesystem which is mounted at /sys by using

function class_create(). Together with function class_create(), the function de-

28

vice_create() results in the generation of 21 uevents. Since there are, in total, 21 GPIO

pins on Raspberry Pi, the raspi_gpio_init() loops 21 times. With each iteration, it re-

quests the kernel to allocate memory dynamically for the per-device structure using

kernel API function kmalloc(). It should be noted that the cdev is embedded inside each

per-device structure. When the kernel allocates memory for the per-device structure,

cdev will also be allocated. If successful, the initialization routine will continue by claim-

ing resource for a GPIO pin with initial status of a GPIO pin set to output and low logic

level. Since initial values and states should be set at the beginning when the kernel

module is first loaded, the initialization routine is responsible for doing that. In particu-

lar, it sets the direction of all GPIO pins to output and initial states of GPIO pins to low

level, disables the irq_perm flag in each per-device structure, sets the irq_flag flag to

rising edge triggering, initializes the irq_counter to be zero since there is no interrupt

request at the beginning, and finally sets the owner of the module to THIS_MODULE.

In order to protect atomic sections of code, a spinlock is used. Hence, it is initialized for

each per-device structure. Finally, cdev_init() associates the file operations in

raspi_gpio_fops structure with the cdev. It is also responsible for connecting major and

minor numbers previously allocated to the cdev. If everything goes smoothly without

any error, the initialization process completes and prints out a message "RaspberryPi

GPIO driver initialized" indicating its happiness.

Figure 11. Output shown from cat /proc/devices command

Listing 4 shows the implementation of the exit routine. When a kernel module is being

unloaded from the system, the kernel calls this function to take care of that job. The exit

29

function of the GPIO device driver is called raspi_gpio_exit(). Basically, its job is to de-

allocate resources that were requested from the initialization routine. Firstly, it unregis-

ters from the system a range of NUM_GPIO_PINS device numbers. To be specific, the

value of NUM_GPIO_PINS is defined to be 21. There are 21 per-device structures rep-

resenting each GPIO pin. These structures were allocated dynamically by the kernel. In

order to de-allocate those, the kernel API function kfree() is used.

Listing 4. Implementation of exit routine

As explained in section 3.2, the exit routine should set the direction of all GPIO pins to

output and their logic levels to low. For that reason, gpio_direction_output() is called.

This function is defined in <linux/gpio.h> Linux header file. The resource for GPIO pins

were requested by gpio_request_one() before, so gpio_free() will take care of releasing

those resources. Finally, all the information that populates the virtual filesystem mount-

ed at /sys directory and all the uevents created by device_create() are destroyed by

class_destroy() and device_destroy(), respectively.

30

4.3 Implementation of the Entry Points for the GPIO Device Driver

When a user space application opens a corresponding device file, the

raspi_gpio_open() entry point will be invoked by the kernel. Listing 5 shows the imple-

mentation of the raspi_gpio_open() entry point.

Listing 5. Implementation of raspi_gpio_open entry point

The implementation of the open entry point was first started by obtaining a minor

number that corresponds to a GPIO pin number. Mapping between a minor number

and a GPIO pin number was specified by design. The inode which is passed as an

argument to raspi_gpio_open() holds the address of the cdev structure allocated during

31

initialization. Since struct cdev structure is nested inside the raspi_gpio_dev per-device

structure as show in listing 3, the raspi_gpio_dev structure is the container of the struct

cdev structure. In order to access data elements of the per-device structure, the

address of it needs to be elicited. The open entry point uses the kernel helper function

container_of() to do this. The address of raspi_gpio_dev structure is needed not only in

the open entry point but also in other entry points including release, read, and write.

Hence, this address is assigned to the private_data data field that is part of the struct

file structure, the second argument. The raspi_gpio_open() entry point is also

responsible for requesting interrupt resources upon request from userspace

applications. The open entry point which was implemented based on the flowchart

shown in figure 8 checks the status of the interrupt request permission variable

irq_perm and the GPIO pin direction variable dir. If the interrupt permission variable

irq_perm is set and the direction of the GPIO pin is set as input, the entry point will

continue by checking the value of irq_counter. Otherwise, it will return zero indicating

everything is fine. The irq_counter is used to keep track of how many times an interrupt

is requested. If the value of the irq_counter is equal to zero, it means that an interrupt

resource has not been acquired. As a result, the entry point will request for an interrupt

resource from the GPIO pin and increment the value of the irq_counter by one. Since

requesting for an interrupt resource must be atomic, spin_lock_irqsave() and

spin_unlock_irqrestore() are used to protect this section of code. If requesting for an

interrupt is successful, the open entry point will return zero. If there is an error due to

interrupt request, the entry point will log the string "unable to claim irq: %d, error %d\n"

to the kernel logging system and exit with an error code. Next the release entry point

was implemented.

When a device file is closed by a userspace application, the kernel invokes the release

entry point. The release entry point for the Raspberry Pi GPIO device driver is called

raspio_gpio_release. Two arguments are passed into the raspi_gpio_release entry

point, namely inode and filp. The entry point does not make use of the filp pointer; only

the inode is used to get the address of the per-device structure. It can, of course, elicit

the per-device structure's address from the private_data filed inside the struct file struc-

ture as an alternative. A GPIO pin number is obtained by using the inline function imi-

nor(). This number is needed when the release entry point de-allocates an interrupt

resource from a GPIO pin. There are two cases in which the release entry point is sup-

posed handle. The first case is when an interrupt is enabled. In such a case, the re-

lease entry point keeps track of the value of the irq_counter. When the device is last

32

closed, the value of the irq_counter should be zero after being decremented and the

interrupt will be released by the entry point. On the other hand, if the interrupt is still

enabled and the value of the irq_counter is not equal to zero after being decremented,

this means that some userspace applications are still using the interrupt, and therefore,

the release entry point will just return zero indicating the device file is closed success-

fully. The second case is when interrupt is asked to be disabled. The release entry

point will respond to the request by checking the value of the irq_counter. If this value

is equal to zero, it means that the interrupt resource has already been released, thus

no need to do anything else. If the irq_counter value is larger than zero, some us-

erspace applications are still using the interrupt. Since the interrupt is asked to be disa-

bled, the release entry point will force the irq_counter value to be zero and then release

interrupt resource. Accessing the irq_counter and releasing the interrupt resource

should be atomic. As a result, the spinlock is utilized to protect these critical sections of

code.

Listing 6. Implementation of raspi_gpio_read entry point

The last two entry points for the GPIO device driver are raspi_gpio_read entry point

and raspi_gpio_write entry point. Listing 6 shows the implementation of the

raspi_gpio_read entry point. This entry point was the easiest and simplest part of the

device driver implementation, so it will be explained briefly. The raspi_gpio_read entry

point first obtains a GPIO pin number from a device file by using the inline function imi-

nor(). After that it gets the state of the GPIO pin with the help of the kernel function

33

gpio_get_value(). This function returns either zero or one. Then the value returned from

gpio_get_value() function will be converted into a character and saved to a temporary

variable called byte. Finally this value will be copied to the userspace by using the ker-

nel API function put_user(). It should be noted that copying from kernel space to us-

erspace cannot be done by using normal C library functions. Instead, this has to be

done by using kernel API functions such as put_user() or copy_to_user() functions.

Upon completion of copying, the raspi_gpio_read entry point exits and returns the

number of bytes copied to the userspace buffer pointed to by the buf pointer, the sec-

ond argument passed into the raspi_gpio_read() entry point.

Similarly, the write entry point performs the task of copying data between a kernel

space and a userspace. The last implementation of entry points for the GPIO device

driver was the raspi_gpio_write() entry point. The struct file structure is passed as an

argument into the raspi_gpio_write entry point. The private_data field contained in this

struct file structure holds the address of the per-device structure which will be needed

in this entry point. This is due to the fact that the address of the per-device structure

was assigned to the private_data filed when the raspi_gpio_open entry point was

called. This assignment can be seen from the third to last line in listing 5. Passed as

the third argument to the write entry point is a count which indicates the number of

bytes a userspace application has written into the buffer which is pointed to by the buf

pointer, the second argument. Based on this information, the raspi_gpio_open entry

point then reads count numbers of bytes from the buffer pointer to by buf pointer into its

own temporary buffer in the kernel space called kbuf. Once the reading process has

been completed and kbuf contains what has been read, the raspi_gpio_open entry

point will compare the value of the kbuf with a set of commands specified in the design

phase. These commands can be referenced from table 2. If the kbuf buffer contains

commands “in” or “out”, the direction of the GPIO pin will be set by using

gpio_direction_in() or gpio_direction_out(), respectively. Besides, the data elements in

the per-device structure will be accessed and updated. For output direction setting, the

data field dir will be set to out, and the data field state will be set to low. The default

logic level when setting output direction is to set it low. For the input direction setting,

only the data field dir needs to be updated and is set to in.

Listing 7 shows a code snippet implemented for the raspi_gpio_write entry point. When

the content of the kbuf buffer is “1” or “0”, it will be understood by the write entry point

that a userspace application requests for setting the logic level of a GPIO pin. The val-

34

ue is first converted into integer data type and stored in the temporary value variable. If

the GPIO pin has been configured as an input pin, the write entry point will ignore this

request and return an error code because an input GPIO pin cannot be set low or high.

If the GPIO pin has been configured as an output pin, the content of the value variable

will be checked. If the value of value variable is larger than zero, the GPIO pin's logic

level will be set high and the state data field in the per-device structure will be updated

accordingly – that is, it will be updated to high. If it is not larger than zero, the GPIO

pin's logic level will be set low and the state data field will be updated to low. The prac-

tice of setting GPIO pin direction and updating the state data field should be atomic;

therefore, a spinlock is used to protect these critical sections of code.

Listing 7. Code snippet for raspi_gpio_write entry point

The last part of code implemented for the raspi_gpio_write entry point was interrupt

handling. Requesting for an interrupt resource by a userspace application means that

either the string “rising” or “falling” is received. The following actions will be performed

by the raspi_gpio_write entry point upon receiving a valid string command:

 Lock a spinlock to protect a critical section of code

 Set GPIO pin's direction to input

 Update the dir data field in the per-device structure to in

 Update the irq_perm data field in the per-device structure to true

35

 Set irq_flag data field in the per-device structure to IRQF_TRIGGER_RISING if

“rising” command is received

 Set irq_flag data field in the per-device structure to IRQF_TRIGGER_FALLING

if “falling” command is received

 Unlock a spinlock.

When a userspace application asks to disable interrupt on a GPIO pin, it will send

“disable-irq” command. This command simply means “disable interrupt request” in plain

English. Upon receiving this command, the write entry point will set the irq_perm data

field in the per-device structure to false indicating that the request for interrupt is not

permitted. Any command received by the raspi_gpio_write entry point other than the

ones specified in table 2 will be ignored, and EINVAL error code will be returned. Final-

ly, the entry point will update the current position of the f_pos pointer by count positions

and return the number of bytes received.

4.4 Implementation of Interrupt Handling Functions

The interrupt handling feature in the project was experimental, so the implementation

for it was quite short and simple. Listing 8 shows the source code for interrupt handling

functions. The interrupt handling of the GPIO device driver consists of two functions:

millis() and irq_handler. While millis() is a normal function which returns the current

system time to the caller, the irq_hanlder is a special function which is called only when

a hardware interrupt signal arrives. As for the millis() function, it gets the current system

time by calling the kernel API function do_gettimeofday(). This function returns the cur-

rent system time and stores it in the timeval variable of type struct timeval. After that, it

converts the time stored in timeval variable to milliseconds. What is returned from the

millis() function is the current system time.

Regarding the interrupt handling function irq_handler(), this function will be called when

an interrupt occurs. Due to the nature of interrupt handling, this function was imple-

mented in such a way that it is fast and it does not contain any blocking functions. The

interrupt handler first gets the current time and compares it with the last timestamp

when an interrupt occurred. By trial and error, it was determined that a time duration of

200 milliseconds is good enough to avoid voltage glitches caused by contact bouncing.

The timestamp when the interrupt handler was called is stored in last_interrupt_time

36

global variable as a reference timestamp for the next interrupt. Since an interrupt han-

dler can be interrupted by another interrupt, functions local_irq_save() and lo-

cal_irq_restore() are used to prevent that problem from happening. The irq_handler

interrupt handle is not of practical use since this feature is still experimental. It simply

logs the string “Interrupt [%d] was triggered\n” into the kernel logging system.

Listing 8. Implementation of interrupt handling functions for the GPIO device driver

That was the last part in the implementation of the GPIO character device driver. Chap-

ter 5 will discuss how the device driver was tested.

37

5 Testing of the GPIO Device Driver

5.1 Testing Preparation

Testing was the final phase in the development of the GPIO character device driver for

Raspberry Pi. The purpose of the testing was to verify that the GPIO device driver

worked according to a set of defined test cases. The testing of the device driver was

based on black-box testing. In other words, the functionalities offered by the device

driver were examined case by case. There were three test cases applied to test the

device driver, namely output functionality test case, input functionality test case, and

interrupt functionality test case.

The hardware needed for the testing included 7 white light-emitting diodes (LED), 17

resistors with a resistance of 100Ω, 19 male to female electrical wires, 2 100KΩ resis-

tors, a switch, and 2 breadboards. Each 100Ω resistor was used to limit the current

flowing through each white LED. The switch was used for testing interrupt functionality.

The test software used for testing the GPIO device driver is located at

ldd_raspi_gpio_driver/app directory where ldd_raspi_gpio_driver is the workspace root

directory. Two application programs were developed for testing, and they were written

in the C programming language. The first application program, called output_test.c, is

located at ldd_raspi_gpio_driver/app/output_test and is provided in appendix 2. This

was used for testing output functionality of the device driver. The second application,

called input_test.c, is located at ldd_raspi_gpio_driver/app/input_test and is provided in

appendix 3. This was used for testing input functionality of the device driver. The GPIO

device driver had been loaded into the running kernel before performing each test

case.

5.2 Testing of Output Functionality

The first test case was carried out to verify the output functionality offered by the GPIO

device driver. An application program called output_test was run in the userspace to

test the driver, and it has the following syntax:

./output_test <logic_level>

38

where <logic_level> refers to the logic state that is passed as an argument to the pro-

gram for setting a GPIO pin low or high. If <logic_level> is “1”, the application will set

the logic level of all GPIO pins high, whereas passing “0” as an argument to the appli-

cation program will set all the logic level of all GPIO pins low.

A simple circuit was constructed on a breadboard for testing the output functionality.

Each of the 17 100Ω resistors was connected in series with each of the 17 white LEDs

in order to limit the current flowing through the LEDs. The output from each GPIO pin

was wired to the anode terminal of an LED. The cathode terminal of the LED was con-

nected in series with a 100Ω resistor which in turn was connected to a GND pin from

the breadboard. Below is the output of the application program when invoked from the

command line with arguments ”1” and ”0”, respectively.

Figure 12. Output of the application program output_test with arguments ”0” and ”1”

The results of the output functionality test case are shown in figure 13 and figure 14.

Figure 13 shows that the LEDs connected to the Raspberry Pi P1 header were lit when

the application program was executed with argument “1” being passed into the pro-

gram.

Figure 13. Output functionality testing result with all GPIO pins set high

Figure 14 shows that all the white LEDs went off when the application program was

executed with argument “0” being passed into the program. In fact, four GPIO pins from

39

the Raspberry Pi P5 connector were also set high. Because I did not solder any header

into the P5 connector, these four GPIO pins were not tested using LEDs. I did, howev-

er, measure the voltages from each of the four GPIO pins from the P5 connector. The

voltage values were about 3V when GPIO pins were set high, and about 0V with GPIO

pins being set low.

Figure 14. Output functionality testing result with all GPIO pins set low

The next section will show the test setup, testing procedures as well as testing results

from the input functionality test case of the GPIO device driver.

5.3 Testing of Input Functionality

Input functionality test case was performed to verify the input functionality offered by

the GPIO device driver. An application program called input_test was run in the us-

erspace to test the driver. When invoked from the userspace, the application program

first sets all the GPIO pins on Raspberry Pi to input. After that it reads the logic levels

of all the GPIO pins and prints these values to the terminal.

Figure 15 shows a circuit that was constructed on a breadboard for testing input func-

tionality of the GPIO device driver when all GPIO pins were connected to the ground

40

(GND). Each of the 17 GPIO pins was connected in series with one terminal of a 100Ω

resistor. The other end of each resistor was connected to the GND of the breadboard.

Figure 15. Test setup for input functionality testing with GPIO pins connected to ground

In a similar fashion, the circuit in figure 16 was built to test the input functionality of the

device driver. However, in this circuit all the other ends of each resistor were connected

to a 3.3V power supply from the breadboard.

Figure 16. Test setup for input functionality testing with GPIO pins connected to 3.3V

Figure 17 shows the output of the application program input_test when the GPIO pins

were connected to a 3.3 V power supply. All 21 GPIO pins were read by the program

as high logic level except for the last four GPIO pins. This is because these GPIO pins

41

come from the P5 header of Raspberry Pi, and they were left floating. Therefore, their

logic levels are usually low when being set as input.

Figure 17. Input functionality testing result with all GPIO pins connected to 3.3 V

When all GPIO pins were connected to the ground of the breadboard, the application

program was executed again. The logic levels of all GPIO pins were read as “0” as

shown in figure 18.

Figure 18. Input functionality testing result with all GPIO pins connected to GND

The next section will discuss the testing of interrupt handling feature of the device driv-

er. Another circuit was built to interface with a GPIO pin of Raspberry Pi.

42

5.4 Testing of Interrupt Functionality

Testing of interrupt functionality is called interrupt functionality test case. The aim of

this test case was to verify interrupt functionality of the GPIO device driver. To make it

clearer, when a userspace application makes a request for interrupt on a certain GPIO

pin, the device driver will act accordingly by allocating an interrupt resource on that

GPIO pin. Then when a hardware interrupt signal arrives at the GPIO pin, interrupt on

that GPIO pin will be triggered. Below are commands used to enable interrupt on GPIO

pin 27. An interrupt can be rising edge triggering or falling edge triggering.

echo <triggering_type> > /dev/raspiGPIO27

cat /dev/raspiGPIO27

where <triggering_type> can be rising or falling.

When asked by a userspace application to disable an interrupt, the device driver will

force to free an interrupt resource regardless of how many userspace applications are

still using a GPIO pin for the interrupt. Below is a sample command which is used to

disable the interrupt from GPIO pin 27.

echo disable-irq > /dev/raspiGpio27

Figure 19. External pull-up-resistor circuit diagram

Reprinted from Mando [13]

Figure 19 shows a circuit diagram built for testing an interrupt. The circuit consists of a

switch (button) and a 10KΩ pull-up-resistor. When the switch is not pressed, the input

pin will read a high logic state because a small amount of current flows between the

43

power supply VCC and the input pin. When the switch is pressed, the current will flow

directly to the ground via the 10KΩ resistor. As a result, the input pin reads a low logic

state.

Figure 20. Result of interrupt testing

Figure 20 shows the result of interrupt testing displayed on the kernel log. It was dis-

played by using the following command:

tailf /var/log/messages

Table 3 shows commands issued on the terminal together with actions from the

external circuit and their corresponding results shown in figure 20. Firstly, an interrupt

was requested from the userspace by issuing the command echo rising >

/dev/raspiGpio27. It should be kept in mind that allocating an interrupt resource actually

took place until the device file /dev/raspiGpio27 was opened again. Lines 4 and 5 in

figure 20 show that when the device file /dev/raspiGpio27 was opened by using cat

/dev/raspiGpio27, an interrupted was requested for GPIO pin 27. While reading from

the device file, the switch was pressed four times and the interrupt was triggered as

shown from lines 6 to 10. Line 7 in figure 20 shows that the interrupt was ignored. The

reason for this is that the mechanical switch causes a phenomenon known as contact

bouncing when pressed and released. Contact bouncing is undesirable, and therefore,

it was ignored since the switch was pressed only four times. When the userspace

44

closed the device file, a message “Closing GPIO 27” showed up on line 11 indicating

that the device file was being closed. After that, the interrupt was released as shown on

line 12 because only one userspace process used the GPIO pin 27 for the interrupt at

the time.

Table 3. Commands issued together with actions from external circuit and their corre-

sponding results

Commands issued on terminal and

actions from external circuit

Corresponding result shown in figure 20

echo rising > /dev/raspiGpio27 lines 1 – 3

cat /dev/raspiGpio27

Switch pressed

Lines 4 – 12

echo disable-irq > /dev/raspiGpio27 Lines 13 – 17

cat /dev/raspiGpio27

Switch pressed

Lines 18 – 19

Another interrupt handling feature tested in this test case was to disable the interrupt

on a GPIO pin and to verify if the interrupt was really disabled. Below is the command

used to disable the interrupt on GPIO pin 27.

echo disable-irq > /dev/raspiGpio27

Lines 13 to 17 in figure 20 show the output of the kernel logging system when the de-

vice file /dev/raspiGpio27 was opened to disable the interrupt and closed. To test if the

interrupt on GPIO pin 27 was disabled, the device file was opened again and the switch

was pressed and released several times. No logging messages indicating the interrupt

triggering were displayed on the terminal as shown on lines 18 and line 19 in figure 20.

This means that the interrupt on GPIO pin 27 was successfully disabled.

45

6 Results and Discussion

A complete GPIO character device driver for Raspberry Pi was designed and imple-

mented from scratch. It was also tested in the form of black-box testing during the test-

ing phase of the project. The results of the testing phase show that the device driver

does what it is supposed to function. By and large, the objective of the final year project

was met.

Regarding the output functionality feature, the direction of all GPIO pins on Raspberry

Pi could be set to output. These GPIO pins can also be set to a high logic level or a low

logic level. The input functionality was verified to be working normally. When all the

GPIO pins were grounded, the logic level values read from them were all zero. Like-

wise, the logic level values were read high or one when all the GPIO pins were con-

nected to a 3.3V power supply. Finally the interrupt handling feature was tested in the

interrupt handling test case. One or more processes were able to share an interrupt on

a GPIO pin, and an external signal could invoke an interrupt on that GPIO pin.

However, there still remain several limitations. First of all, interrupt handling offered by

the device driver is rather an experimental feature. When a hardware interrupt signal

arrives, the kernel will simply call the interrupt handler and display a message to its

logging system. Therefore, it is not practically useful when a userspace application

needs interrupt from a GPIO pin. In addition to that, the time duration for contact de-

bouncing of a switch was determined based on trial and error. A time duration of 200

milliseconds was effective to avoid the contact bouncing problem in the case of this

project. Each button or switch possesses its own characteristics; the bouncing time

duration of each type of switch is different. Therefore, the debouncing solution imple-

mented in the device driver will not be effective if another type of switch is used.

Secondly, GPIO character device driver is deprecated with a newer version of the

Linux kernel by the gpio-sysfs driver. This implies that for a newer Linux kernel version

a GPIO device driver could be implemented so that the driver exposes interfaces for

userspace to use in the virtual filesystem mounted at /sys directory.

Finally, there are about 500 lines of code implemented for the GPIO device driver. This

is due to repetitions of code implemented for the raspi_gpio_write and

46

raspi_gpio_release entry points. In my opinion, 500 lines of code for the GPIO device

driver is still a rather long snippet of code.

47

7 Conclusion

The goal of the project was to design and implement a GPIO device driver from scratch

based on Linux character device drivers. The final result was a working GPIO character

device driver for the Raspberry Pi platform.

Three drawbacks and limiations were drawn, and these could be improved in the

future. With reference to the contact boucing problem discussed in chapter 6, it is rec-

ommend that a Schmitt trigger circuit, for example, be built when interfacing a switch

circuit to a GPIO pin of Raspberry Pi. As for the code size implemented for the device

driver, the repetitions of code could be reduced by breaking them into several small

functions. By doing this, the code would not only be reduced in terms of code size but

also be easier to maintain and debug. Lastly, a newer method for implementing a GPIO

device driver could be used – that is, interfaces exposed by a GPIO device driver to the

userspace are in the virtual filesystem mounted at /sys directory.

The GPIO character device driver implemented for Raspberry Pi in this project could be

further modified and implemented for other platforms such as BeagleBone, Beagle-

Bone Black, Beagleboard, PandaBoard and so on. This is due to the fact that the GPIO

device driver was designed and implemented using the GPIO APIs offered by the Linux

kernel.

48

References

1 RPi Wiki. RPi Hub [online]. Raspberry Pi Wiki; 17 March 2014.
URL: http://elinux.org/RPi_Hub. Accessed 12 April 2014.

2 Wikipedia. Raspberry Pi [online]. Wikipedia, the free encyclopedia; 17 April 2014.
URL: http://en.wikipedia.org/wiki/Raspberry_Pi. Accessed 12 April 2014.

3 Raspberry Pi Foundation. SETUP [online]. Raspberry Pi Foundation; 31 March
2014.
URL: http://www.raspberrypi.org/documentation/setup/README.md. Ac-
cessed 12 April 2014.

4 Gordon Henderson. Pins [online]. 14 May 2013.
URL: https://projects.drogon.net/raspberry-pi/wiringpi/pins/.
Accessed 12 April 2014.

5 Wikipedia. General-purpose input/output [online]. Wikipedia, the free encyclope-
dia; 21 March 2014.
URL: http://en.wikipedia.org/wiki/General-purpose_input/output.
Accessed 12 April 2014.

6 Hallinan C. Embedded Linux Primer, A Practical Real-World Approach. The Unit-
ed States of America: Prentice Hall; 2010.

7 Cooperstein J. Writing Linux Device Drivers, a guide with exercises. CreateSpace
Independent Publishing Platform; 2009.

8 Raspbian Wiki. FrontPage [online]. Raspbian Wiki.
URL: http://www.raspbian.org/FrontPage. Accessed 13 April 2014.

9 Venkateswaran S. Essential Linux Device Drivers. The United States of America:
Prentice Hall; 2009.

10 Pugalia A. Device Drivers, Part 4: Linux Character Driver [online]. Open Source
For You; 1 February 2011.
URL: http://www.opensourceforu.com/2011/02/linux-character-drivers.
Accessed 13 April 2014.

11 Corbet J. Linux Device Drivers, Third Edition. The United States of America:
O’Reilly Media, Inc.; 2005.

12 Brian. Step01 – Bare Metal Programming in C Pt1 [online]. 23 January 2014.
URL: http://www.valvers.com/embedded-linux/raspberry-pi/
step01-bare-metal-programming-in-cpt1. Accessed 15 April 2014.

13 Mando. Pull-up Resistors [online]. SparkFun Electronics
URL: https://learn.sparkfun.com/tutorials/pull-up-resistors/all.
Accessed 16 April 2014.

Appendix 1

1 (13)

Source code for GPIO Linux device driver

/*

 * raspi_gpio_driver.c - GPIO Linux device driver for Raspberry Pi B

 * rev 2.0 platform

 * Author: Vu Nguyen <quangngmetro@gmail.com>

 * Version: 0.2

 * License: GPL

 */

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/init.h>

#include <linux/types.h>

#include <linux/kdev_t.h>

#include <linux/fs.h>

#include <linux/device.h>

#include <linux/cdev.h>

#include <asm/uaccess.h>

#include <linux/gpio.h>

#include <linux/slab.h>

#include <linux/errno.h>

#include <uapi/asm-generic/errno-base.h>

#include <linux/string.h>

#include <linux/spinlock.h>

#include <linux/interrupt.h>

#include <linux/time.h>

/* User-defined macros */

#define NUM_GPIO_PINS 21

#define MAX_GPIO_NUMBER 32

#define DEVICE_NAME "raspi-gpio"

#define BUF_SIZE 512

#define INTERRUPT_DEVICE_NAME "gpio interrupt"

/* User-defined data types */

enum state {low, high};

enum direction {in, out};

/*

Appendix 1

2 (13)

 * struct raspi_gpio_dev - Per gpio pin data structure

 * @cdev: instance of struct cdev

 * @pin: instance of struct gpio

 * @state: logic state (low, high) of a GPIO pin

 * @dir: direction of a GPIO pin

 * @irq_perm: used to enable/disable interrupt on GPIO pin

 * @irq_flag: used to indicate rising/falling edge trigger

 * @lock: used to protect atomic code section

 */

struct raspi_gpio_dev {

struct cdev cdev;

 struct gpio pin;

 enum state state;

 enum direction dir;

 bool irq_perm;

 unsigned long irq_flag;

 unsigned int irq_counter;

 spinlock_t lock;

};

/* Declaration of entry points */

static int raspi_gpio_open(struct inode *inode, struct file *filp);

static ssize_t raspi_gpio_read (struct file *filp,

 char *buf,

 size_t count,

 loff_t *f_pos);

static ssize_t raspi_gpio_write (struct file *filp,

 const char *buf,

 size_t count,

 loff_t *f_pos);

static int raspi_gpio_release(struct inode *inode, struct file *filp);

/* File operation structure */

static struct file_operations raspi_gpio_fops = {

.owner = THIS_MODULE,

 .open = raspi_gpio_open,

 .release = raspi_gpio_release,

 .read = raspi_gpio_read,

 .write = raspi_gpio_write,

Appendix 1

3 (13)

};

/* Forward declaration of functions */

static int raspi_gpio_init(void);

static void raspi_gpio_exit(void);

unsigned int millis (void);

static irqreturn_t irq_handler(int irq, void *arg);

/* Global varibles for GPIO driver */

struct raspi_gpio_dev *raspi_gpio_devp[NUM_GPIO_PINS];

static dev_t first;

static struct class *raspi_gpio_class;

static unsigned int last_interrupt_time = 0;

static uint64_t epochMilli;

/*

 * millis - Get current time

 *

 * This function returns current time in ms. It is primarily used for

 * debouncing

 */

unsigned int millis (void)

{

struct timeval timeval ;

uint64_t timeNow ;

do_gettimeofday(&timeval) ;

timeNow = (uint64_t)timeval.tv_sec * (uint64_t)1000 +

 (uint64_t)(timeval.tv_usec/1000);

 return (uint32_t)(timeNow - epochMilli) ;

}

/*

 * irq_handler - Interrupt request handler for GPIO pin

 *

 * This feature is pretty experiment, so more work needs to

 * be done to make the feature useful for application

 */

Appendix 1

4 (13)

static irqreturn_t irq_handler(int irq, void *arg) {

 unsigned long flags;

 unsigned int interrupt_time = millis();

 if (interrupt_time - last_interrupt_time < 200) {

 printk(KERN_NOTICE "Ignored Interrupt [%d]\n", irq);

 return IRQ_HANDLED;

 }

 last_interrupt_time = interrupt_time;

 local_irq_save(flags);

 printk(KERN_NOTICE "Interrupt [%d] was triggered\n", irq);

 local_irq_restore(flags);

 return IRQ_HANDLED;

}

/*

 * raspi_gpio_open - Open GPIO device node in /dev

 *

 * This function allocates GPIO interrupt resource when requested

 * on the condition that interrupt flag is enabled and pin direction

 * set to input, then allow the specified GPIO pin to set interrupt.

 */

static int raspi_gpio_open (struct inode *inode, struct file *filp) {

 struct raspi_gpio_dev *raspi_gpio_devp;

 unsigned int gpio;

 int err, irq;

 unsigned long flags;

 gpio = iminor(inode);

 printk(KERN_INFO "GPIO[%d] opened\n", gpio);

 raspi_gpio_devp = container_of(inode->i_cdev,

 struct raspi_gpio_dev,

 cdev);

 if ((raspi_gpio_devp->irq_perm == true) &&

(raspi_gpio_devp->dir == in)) {

 if ((raspi_gpio_devp->irq_counter++ == 0)) {

Appendix 1

5 (13)

 irq = gpio_to_irq(gpio);

 if (raspi_gpio_devp->irq_flag == IRQF_TRIGGER_RISING) {

 spin_lock_irqsave(&raspi_gpio_devp->lock, flags);

 err = request_irq (irq,

 irq_handler,

 IRQF_SHARED | IRQF_TRIGGER_RISING,

 INTERRUPT_DEVICE_NAME,

 raspi_gpio_devp);

 printk(KERN_INFO "interrupt requested\n");

 spin_unlock_irqrestore(&raspi_gpio_devp->lock, flags);

 } else {

 spin_lock_irqsave(&raspi_gpio_devp->lock, flags);

 err = request_irq (irq,

 irq_handler,

 IRQF_SHARED | IRQF_TRIGGER_FALLING,

 INTERRUPT_DEVICE_NAME,

 raspi_gpio_devp);

 printk(KERN_INFO "interrupt requested\n");

 spin_unlock_irqrestore(&raspi_gpio_devp->lock, flags);

 }

 if (err != 0) {

printk(KERN_ERR "unable to claim irq: %d, error %d\n", irq,

err);

 return err;

 }

 }

 }

 filp->private_data = raspi_gpio_devp;

 return 0;

}

/*

 * raspi_gpio_release - Release GPIO pin

 *

 * This functions releases GPIO interrupt resource when the device is

 * last closed. When requested to disable interrupt, it releases GPIO

 * interrupt resource regardless of how many devices are using

 * interrupt.

 */

Appendix 1

6 (13)

static int

raspi_gpio_release (struct inode *inode, struct file *filp)

{

 unsigned int gpio;

 struct raspi_gpio_dev *raspi_gpio_devp;

 raspi_gpio_devp = container_of(inode->i_cdev,

struct raspi_gpio_dev,

cdev);

 gpio = iminor(inode);

 printk(KERN_INFO "Closing GPIO %d\n", gpio);

 spin_lock(&raspi_gpio_devp->lock);

 if (raspi_gpio_devp->irq_perm == true) {

 if (raspi_gpio_devp->irq_counter > 0) {

 raspi_gpio_devp->irq_counter--;

 if (raspi_gpio_devp->irq_counter == 0) {

 printk(KERN_INFO "interrupt on gpio[%d] released\n", gpio);

 free_irq(gpio_to_irq(gpio), raspi_gpio_devp);

 }

 }

 }

 spin_unlock(&raspi_gpio_devp->lock);

 if (raspi_gpio_devp->irq_perm == false &&

raspi_gpio_devp->irq_counter > 0) {

 spin_lock(&raspi_gpio_devp->lock);

 free_irq(gpio_to_irq(gpio), raspi_gpio_devp);

 raspi_gpio_devp->irq_counter = 0;

 spin_unlock(&raspi_gpio_devp->lock);

 printk(KERN_INFO "interrupt on gpio[%d] disabled\n", gpio);

 }

 return 0;

}

/*

 * raspi_gpio_read - Read the state of GPIO pins

 *

Appendix 1

7 (13)

 * This functions allows to read the logic state of input GPIO pins

 * and output GPIO pins. Since it multiple processes can read the

 * logic state of the GPIO, spin lock is not used here.

 */

static ssize_t

raspi_gpio_read (struct file *filp,

 char *buf,

 size_t count,

 loff_t *f_pos)

{

 unsigned int gpio;

 ssize_t retval;

 char byte;

 gpio = iminor(filp->f_path.dentry->d_inode);

 for (retval = 0; retval < count; ++retval) {

 byte = '0' + gpio_get_value(gpio);

 if(put_user(byte, buf+retval))

 break;

 }

 return retval;

}

/*

 * raspi_gpio_write - Write to GPIO pin

 *

 * This function allows to set GPIO pin direction (input/out),

 * to set GPIO pin logic level (high/low), and to enable/disable

 * edge-triggered interrupt on a GPIO pin (rising/falling)

 * Set logic level (high/low) to an input GPIO pin is not permitted

 * The command set for setting GPIO pins is as follows

 * Command Description

 * "out" Set GPIO direction to output via gpio_direction_ouput

 * "in" Set GPIO direction to input via gpio_direction_input

 * "1" Set GPIO pin logic level to high

 * "0" Set GPIO pin logic level to low

 * "rising" Enable rising edge trigger

 * "falling" Enable falling edge trigger

Appendix 1

8 (13)

 * "disable-irq" Disable interrupt on a GPIO pin

 */

static ssize_t

raspi_gpio_write (struct file *filp,

 const char *buf,

 size_t count,

 loff_t *f_pos)

{

 unsigned int gpio, len = 0, value = 0;

 char kbuf[BUF_SIZE];

 struct raspi_gpio_dev *raspi_gpio_devp = filp->private_data;

 unsigned long flags;

 gpio = iminor(filp->f_path.dentry->d_inode);

 len = count < BUF_SIZE ? count-1 : BUF_SIZE-1;

 if(copy_from_user(kbuf, buf, len) != 0)

 return -EFAULT;

 kbuf[len] = '\0';

 printk(KERN_INFO "Request from user: %s\n", kbuf);

 // Check the content of kbuf and set GPIO pin accordingly

 if (strcmp(kbuf, "out") == 0) {

 printk(KERN_ALERT "gpio[%d] direction set to ouput\n", gpio);

 if (raspi_gpio_devp->dir != out) {

 spin_lock_irqsave(&raspi_gpio_devp->lock, flags);

 gpio_direction_output(gpio, low);

 raspi_gpio_devp->dir = out;

 raspi_gpio_devp->state = low;

 spin_unlock_irqrestore(&raspi_gpio_devp->lock, flags);

 }

 } else if (strcmp(kbuf, "in") == 0) {

 if (raspi_gpio_devp->dir != in) {

 printk(KERN_INFO "Set gpio[%d] direction: input\n", gpio);

 spin_lock_irqsave(&raspi_gpio_devp->lock, flags);

 gpio_direction_input(gpio);

 raspi_gpio_devp->dir = in;

 spin_unlock_irqrestore(&raspi_gpio_devp->lock, flags);

Appendix 1

9 (13)

 }

 } else if ((strcmp(kbuf, "1") == 0) || (strcmp(kbuf, "0") == 0)) {

 sscanf(kbuf, "%d", &value);

 if (raspi_gpio_devp->dir == in) {

 printk("Cannot set GPIO %d, direction: input\n", gpio);

 return -EPERM;

 }

 if (raspi_gpio_devp->dir == out) {

 if (value > 0) {

 spin_lock_irqsave(&raspi_gpio_devp->lock, flags);

 gpio_set_value(gpio, high);

 raspi_gpio_devp->state = high;

 spin_unlock_irqrestore(&raspi_gpio_devp->lock, flags);

 } else {

 spin_lock_irqsave(&raspi_gpio_devp->lock, flags);

 gpio_set_value(gpio, low);

 raspi_gpio_devp->state = low;

 spin_unlock_irqrestore(&raspi_gpio_devp->lock, flags);

 }

 }

 } else if ((strcmp(kbuf, "rising") == 0) ||

(strcmp(kbuf, "falling") == 0)) {

 spin_lock_irqsave(&raspi_gpio_devp->lock, flags);

 gpio_direction_input(gpio);

 raspi_gpio_devp->dir = in;

 raspi_gpio_devp->irq_perm = true;

 if (strcmp(kbuf, "rising") == 0)

 raspi_gpio_devp->irq_flag = IRQF_TRIGGER_RISING;

 else

 raspi_gpio_devp->irq_flag = IRQF_TRIGGER_FALLING;

 spin_unlock_irqrestore(&raspi_gpio_devp->lock, flags);

 } else if (strcmp(kbuf, "disable-irq") == 0){

 spin_lock_irqsave(&raspi_gpio_devp->lock, flags);

 raspi_gpio_devp->irq_perm = false;

 spin_unlock_irqrestore(&raspi_gpio_devp->lock, flags);

 } else {

 printk(KERN_ERR "Invalid value\n");

 return -EINVAL;

 }

Appendix 1

10 (13)

 *f_pos += count;

 return count;

}

/*

 * raspi_gpio_init - Initialize GPIO device driver

 *

 * This function performs the following tasks:

 * Dynamically register a character device major

 * Create "raspi-gpio" class

 * Claim GPIO resource

 * Initialize the per-device data structure raspi_gpio_dev

 * Initialize spin lock used for synchronization

 * Register character device to the kernel

 * Create device nodes to expose GPIO resource

 */

static int __init

raspi_gpio_init(void)

{

 int i, ret, index = 0;

 struct timeval tv ;

 if (alloc_chrdev_region(&first,

0,

NUM_GPIO_PINS,

DEVICE_NAME) < 0) {

 printk(KERN_DEBUG "Cannot register device\n");

 return -1;

 }

 if ((raspi_gpio_class = class_create(THIS_MODULE,

DEVICE_NAME)) == NULL) {

 printk(KERN_DEBUG "Cannot create class %s\n", DEVICE_NAME);

 unregister_chrdev_region(first, NUM_GPIO_PINS);

 return -EINVAL;

 }

Appendix 1

11 (13)

 for (i = 0; i < MAX_GPIO_NUMBER; i++) {

 if (i != 0 && i != 1 && i != 5 && i != 6 &&

 i != 12 && i != 13 && i != 16 && i != 19 &&

 i != 20 && i != 21 && i != 26) {

 raspi_gpio_devp[index] = kmalloc(sizeof(struct raspi_gpio_dev),

 GFP_KERNEL);

 if (!raspi_gpio_devp[index]) {

 printk("Bad kmalloc\n");

 return -ENOMEM;

 }

 if (gpio_request_one(i, GPIOF_OUT_INIT_LOW, NULL) < 0) {

 printk(KERN_ALERT "Error requesting GPIO %d\n", i);

 return -ENODEV;

 }

 raspi_gpio_devp[index]->dir = out;

 raspi_gpio_devp[index]->state = low;

 raspi_gpio_devp[index]->irq_perm = false;

 raspi_gpio_devp[index]->irq_flag = IRQF_TRIGGER_RISING;

 raspi_gpio_devp[index]->irq_counter = 0;

 raspi_gpio_devp[index]->cdev.owner = THIS_MODULE;

 spin_lock_init(&raspi_gpio_devp[index]->lock);

 cdev_init(&raspi_gpio_devp[index]->cdev, &raspi_gpio_fops);

 if ((ret = cdev_add(&raspi_gpio_devp[index]->cdev,

(first + i),

1))) {

 printk (KERN_ALERT "Error %d adding cdev\n", ret);

 for (i = 0; i < MAX_GPIO_NUMBER; i++) {

 if (i != 0 && i != 1 && i != 5 && i != 6 &&

 i != 12 && i != 13 && i != 16 && i != 19 &&

 i != 20 && i != 21 && i != 26) {

 device_destroy (raspi_gpio_class,

 MKDEV(MAJOR(first),

 MINOR(first) + i));

 }

Appendix 1

12 (13)

 }

 class_destroy(raspi_gpio_class);

 unregister_chrdev_region(first, NUM_GPIO_PINS);

 return ret;

 }

 if (device_create(raspi_gpio_class,

 NULL,

 MKDEV(MAJOR(first), MINOR(first)+i),

 NULL,

 "raspiGpio%d",

 i) == NULL) {

 class_destroy(raspi_gpio_class);

 unregister_chrdev_region(first, NUM_GPIO_PINS);

 return -1;

 }

 index++;

 }

 }

 // Configure interrupt

 do_gettimeofday(&tv) ;

 epochMilli = (uint64_t)tv.tv_sec *(uint64_t)1000 +

 (uint64_t)(tv.tv_usec/1000);

 printk("RaspberryPi GPIO driver initialized\n");

 return 0;

}

/*

 * raspi_gpio_exit - Clean up GPIO device driver when unloaded

 *

 * This functions performs the following tasks:

 * Release major number

 * Release device nodes in /dev

 * Release per-device structure arrays

Appendix 1

13 (13)

 * Detroy class in /sys

 * Set all GPIO pins to output, low level

 */

static void __exit

raspi_gpio_exit(void)

{

 int i = 0;

 unregister_chrdev_region(first, NUM_GPIO_PINS);

 for (i = 0; i < NUM_GPIO_PINS; i++)

 kfree(raspi_gpio_devp[i]);

 for (i = 0; i < MAX_GPIO_NUMBER; i++) {

 if (i != 0 && i != 1 && i != 5 && i != 6 &&

 i != 12 && i != 13 && i != 16 && i != 19 &&

 i != 20 && i != 21 && i != 26) {

 gpio_direction_output(i, 0);

 device_destroy (raspi_gpio_class,

 MKDEV(MAJOR(first), MINOR(first) + i));

 gpio_free(i);

 }

 }

 class_destroy(raspi_gpio_class);

 printk(KERN_INFO "RaspberryPi GPIO driver removed\n");

}

module_init(raspi_gpio_init);

module_exit(raspi_gpio_exit);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Vu Nguyen <quangngmetro@gmail.com>");

MODULE_DESCRIPTION("GPIO device driver for Raspberry Pi B rev2

 platform);

Appendix 2

1 (3)

Source code for output testing of GPIO device driver

/*

 * Name : output_test.c

 * Author : Vu Nguyen <quangngmetro@gmail.com>

 * Version : 0.1

 * Copyright : GPL

 * Description : This is a test application which is used for testing

 * GPIO output functionality of the raspi-gpio Linux device driver

 * implemented for Raspberry Pi revision B platform. The test

 * application first sets all the GPIO pins on the Raspberry Pi to

 * output, then it sets all the GPIO pins to "high"/"low" logic

 * level based on the options passed to the program from the command

 * line

 * Usage example:

 * ./output_test 1 // Set all GPIO pins to output, high state

 * ./output_test 0 // Set all GPIO pins to output, low state

 */

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <string.h>

#define NUM_GPIO_PINS 21

#define MAX_GPIO_NUMBER 32

#define BUF_SIZE 4

#define PATH_SIZE 20

int main(int argc, char **argv)

{

 int i = 0, index = 0, value;

 int fd[NUM_GPIO_PINS];

 char path[PATH_SIZE];

 char buf[BUF_SIZE];

 if (argc != 2) {

Appendix 2

2 (3)

 printf("Option low/high must be used\n");

 exit(EXIT_FAILURE);

 }

 // Open all GPIO pins

 for (i = 0; i < MAX_GPIO_NUMBER; i++) {

 if (i != 0 && i != 1 && i != 5 && i != 6 &&

 i != 12 && i != 13 && i != 16 && i != 19 &&

 i != 20 && i != 21 && i != 26) {

 snprintf(path, sizeof(path), "/dev/raspiGpio%d", i);

 fd[index] = open(path, O_WRONLY);

 if (fd[index] < 0) {

 perror("Error opening GPIO pin");

 exit(EXIT_FAILURE);

 }

 index++;

 }

 }

 // Set direction of GPIO pins to output

 printf("Set GPIO pins to output, logic level :%s\n", argv[1]);

 strncpy(buf, "out", 3);

 buf[3] = '\0';

 for (index = 0; index < NUM_GPIO_PINS; index++) {

 if (write(fd[index], buf, sizeof(buf)) < 0) {

 perror("write, set pin output");

 exit(EXIT_FAILURE);

 }

 }

 // Set logic state of GPIO pins low/high

 value = atoi(argv[1]);

 if (value == 1) {

 strncpy(buf, "1", 1);

 buf[1] = '\0';

 } else if (value == 0) {

 strncpy(buf, "0", 1);

 buf[1] = '\0';

 } else {

Appendix 2

3 (3)

 printf("Invalid logic value\n");

 exit(EXIT_FAILURE);

 }

 for (index = 0; index < NUM_GPIO_PINS; index++) {

 if (write(fd[index], buf, sizeof(buf)) < 0) {

 perror("write, set GPIO state of GPIO pins");

 exit(EXIT_FAILURE);

 }

 }

 return EXIT_SUCCESS;

}

Appendix 3

1 (2)

Source code for input testing of GPIO device driver

/*

 * Name : input_test.c

 * Author : Vu Nguyen <quangngmetro@gmail.com>

 * Version : 0.1

 * Copyright : GPL

 * Description : This is a test application which is used for testing

 * GPIO input functionality of the raspi-gpio Linux device driver

 * implemented for Raspberry Pi revision B platform. The test

 * application first sets all the GPIO pins on the Raspberry Pi to

 * input, then it reads all the GPIO pins logic level and print these

 * value to the terminal.

 */

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <string.h>

#define NUM_GPIO_PINS 21

#define MAX_GPIO_NUMBER 32

#define BUF_SIZE 3

#define PATH_SIZE 20

int main(int argc, char **argv)

{

 int i = 0, index = 0;

 int fd[NUM_GPIO_PINS];

 char path[PATH_SIZE];

 char buf[BUF_SIZE];

 char readBuf[2];

 // Open all GPIO pins

 for (i = 0; i < MAX_GPIO_NUMBER; i++) {

 if (i != 0 && i != 1 && i != 5 && i != 6 &&

 i != 12 && i != 13 && i != 16 && i != 19 &&

Appendix 3

2 (2)

 i != 20 && i != 21 && i != 26) {

 snprintf(path, sizeof(path), "/dev/raspiGpio%d", i);

 fd[index] = open(path, O_RDWR);

 if (fd[index] < 0) {

 perror("Error opening GPIO pin");

 exit(EXIT_FAILURE);

 }

 index++;

 }

 }

 // Set direction of GPIO pins to input

 printf("Set pins to input\n");

 strncpy(buf, "in", 2);

 buf[2] = '\0';

 for (index = 0; index < NUM_GPIO_PINS; index++) {

 if (write(fd[index], buf, sizeof(buf)) < 0) {

 perror("write, set pin input");

 exit(EXIT_FAILURE);

 }

 }

 // Read logic level of GPIO pins and display them to the terminal

 index = 0;

 for (i = 0; i < MAX_GPIO_NUMBER; i++) {

 if (i != 0 && i != 1 && i != 5 && i != 6 &&

 i != 12 && i != 13 && i != 16 && i != 19 &&

 i != 20 && i != 21 && i != 26) {

 if (read(fd[index], readBuf, 1) < 1) {

 perror("write, set pin input");

 exit(EXIT_FAILURE);

 }

 readBuf[1] = '\0';

 printf("GPIO pin: %d Logic level: %s\n", i, readBuf);

 index++;

 }

 }

 return EXIT_SUCCESS;

}

