

Bachelor’s Thesis

Bachelor of Engineering, Information and Communications Technology

2022

Roope Westman

Automating a Small-Scale Cloud

Environment

Bachelor’s Thesis | Abstract

Turku University of Applied Sciences

Information and Communications Technology

2022 | Pages 31

Roope Westman

Automating a Small-Scale Cloud Environment

Cloud environments are a modern way to create easily scalable cost-efficient IT

infrastructures. The objective of this thesis was to create an automated small

scalable laboratory environment in the cloud. The environment should use cloud

service providers’ services and be made to replace a hardware-based

laboratory.

To achieve the objective of this thesis, the most common cloud service

providers were researched and compared with a particular focus on tools for

automating cloud environments. The sources used were internet articles and

resources offered by cloud service providers, such as guides and documents.

Based on the findings of the above mentioned comparison of cloud environment

automation tools, the plan was to build this environment using a declarative tool

such as AWS (Amazon Web Services) CloudFormation. However, this was

deemed too difficult to achieve with limited resources, and procedural tools

were used instead.

As a result, an automated environment was built using AWS Lambdas as the

main component. It is supported by other services such as AWS SQS, AWS

Step Functions, and AWS EventBridge.

Keywords:

Cloud computing, Automation, AWS, IaaS

Opinnäytetyö (AMK) | Tiivistelmä

Turun ammattikorkeakoulu

Tieto- ja Viestintätekniikka

2022 | 31 sivua

Roope Westman

Pienen mittakaavan pilviympäristön automatisointi

Pilviympäristöt ovat moderni tapa luoda helposti skaalautuvia ja

kustannustehokkaita tietoteknisiä infrastruktuureja. Tämän opinnäytetyön

tavoite oli luoda pilveen pieni automatisoitu skaalautuva laboratorioympäristö.

Ympäristön on tarkoitus käyttää pilvipalvelutarjoamia palveluita ja sen tarkoitus

on korvata laitteistopohjainen laboratorio.

Tämän opinnäytetyön tavoitteen saavuttamiseksi, on tutkittu ja vertailtu

yleisimpiä pilvipalvelutarjoajia erityisesti keskittyen pilviympäristöjen

automatisoinnissa käytettäviin työkaluihin. Käytettyjä tutkimuksen lähteitä olivat

internet-artikkelit ja pilvipalvelutarjoajien tarjoamat resurssit, kuten ohjeet ja

dokumentaatiot.

Tutkimus osuuden pohjalta oli tarkoitus rakentaa tämä ympäristö käyttämällä

deklaratiivista työkalua, kuten AWS (Amazon Web Services) CloudFormation.

Tämä kuitenkin katsottiin liian vaikeaksi saavuttaa rajoitetuilla resursseilla, ja

sen sijaan käytettiin proseduraalisia työkaluja.

Lopputuloksena rakennettiin automatisoitu ympäristö, jossa AWS Lambdat

toimii pääkomponenttina. Sen tukena muita palveluita, kuten AWS SQS, AWS

Step Functions ja AWS EventBridge.

Asiasanat:

Pilvipalvelut, Automaatio, AWS, IaaS

Content

List of abbreviations (or) symbols 6

1 Introduction 7

2 Cloud Service Providers 9

2.1 Differences 9

2.2 Pricing 10

2.3 Selecting the provider 11

3 Infrastructure as Code Tools 12

3.1 Considerations for IaC Tools 12

3.1.1 Declarative and Procedural Tools and Languages 12

3.1.2 Mutable vs Immutable Tools 13

3.2 Selection of the Orchestration Tool 14

3.3 Extra Tools 15

3.3.1 AWS Cloud Development Kit 15

3.3.2 AWS Lambda 16

3.3.3 AWS Software Development Kits 16

3.3.4 AWS Step Functions 16

3.3.5 AWS EventBridge 17

4 Server Automation/Orchestration 18

4.1 Requirements for the Environment 18

4.2 Experience Creating the Environment 18

4.3 Implementation Plan 19

4.3.1 Automatic Startup and Shutdown 20

4.3.2 Termination of Expired Instances 21

4.4 Integration to a Data Source 22

4.5 Tracking costs and Billing Details 23

4.6 Testing the Automation 23

5 Conclusion 27

References 29

Appendices

Appendix 1. Instructions for Setting Up Lab Environment

Figures

Figure 1. Gartner Magic Quadrant for Cloud Service Providers [4]. 9

Figure 2. Sequence Diagram of EC2 Creation. 20

Figure 3. Automatic Startup and Shutdown. 21

Figure 4. Termination of Instances. 22

Figure 5. Integration to a Service Portal. 22

Pictures

Picture 1. Example Workflow from AWS Step Functions. 17

Picture 2. Sending a Message to the SQS Queue. 23

Picture 3. CreateEC2 Logs from AWS CloudWatch. 24

Picture 4. Running Instance in AWS Console. 25

Picture 5. State Machines Execution Waiting for Termination Date. 25

Picture 6. SSH Connection to the Instance. 26

Picture 7. TerminateEC2 Lambda Logs. 26

Tables

Table 1. Cloud Provider Cost Comparison. 10

List of abbreviations (or) symbols

AMI Amazon Machine Image

AWS Amazon Web Services

CDK Cloud Development Kit

CPU Central Processing Unit

EC2 Elastic Compute Cloud

GB Gigabyte

IP Internet Protocol

IT Information Technology

IaC Infrastructure as Code

RAM Random Access Memory

RDP Remote Desktop Protocol

RSA Rivest–Shamir–Adleman

S3 Simple Storage Service

SDK Software Development Kit

SQS Simple Queueing System

SSD Solid State Drive

SSH Secure Shell

YAML Yet Another Markup Language

7

Turku University of Applied Sciences Thesis | Roope Westman

1 Introduction

This thesis aims to create a small, easily scalable laboratory environment that is

to be built using the services of a public cloud service provider. The main use

for this lab environment is to quickly test new technologies and software in

projects that last about a month or two. The environment should be as

autonomous as possible to reduce maintenance and labor costs, while still

meeting certain requirements regarding uptimes and costs which are specified

later.

This was ordered by a company that wants to increase their public cloud usage

while at the same time solving a problem they are having. The problem that the

company in question is facing is that their small-scale laboratory environment is

built upon physical hardware that is hard to maintain and requires lots of labor

to keep working. Because the infrastructure is not maintained by a specific

person or a team, it leads to some servers staying up for far longer than

originally planned. Physical hardware also requires a lot more time to set up

and install for it to be usable for testing. For example, you could order some

hardware and have issues with compatibility, user rights, or a myriad of other

issues and in a big company small issues like these can take up to months to

solve. [1], [2]

Implementation would be pretty similar to a classroom lab in the sense that a

virtual machine will be created on-demand with the specified parameters and all

the work is handled by automated programs. There are plenty of websites that

use this kind of technology to their advantage, for example, TryHackMe.com

has assignments that start up a virtual machine with the required files and

vulnerabilities for people to practice their cyber security and hacking skills. [3]

Objectives for this thesis are: to familiarize and learn to work with cloud

providers and tools, and successfully create an automated simple environment

that launches virtual instances and also automatically takes them down after a

specific period of time.

8

Turku University of Applied Sciences Thesis | Roope Westman

This thesis will be built of two parts: theory and implementation. In the theory

segment, cloud service providers and their tools will be explored, and using

found resources, a baseline will be created for the implementation part. In the

implementation segment, the concrete portion of the work will be done using

methods best found for success.

Outside the scope of this thesis is the actual integration to a platform that you

could order these machines from. Possible implementations of this will be

discussed but will not be tested. This thesis also will not discuss security-related

issues or best practices and will mainly focus on automation.

9

Turku University of Applied Sciences Thesis | Roope Westman

2 Cloud Service Providers

There are three major cloud service providers that offer the most services,

availability, and reliability, and this thesis will focus only on these providers.

These three providers are Amazon Web Services, Microsoft Azure, and Google

Cloud as seen in Figure 1. There are also many smaller providers in the field

that may be excellent for specific use cases, but they usually don’t offer as a

wide selection of services as the major providers. [4]

Figure 1. Gartner Magic Quadrant for Cloud Service Providers [4].

2.1 Differences

The purpose of this comparison is not to give a full overview of all three of the

major cloud providers but to instead compare them in the scope of this project.

The most important points of comparison are tool availability and ease of use.

10

Turku University of Applied Sciences Thesis | Roope Westman

2.2 Pricing

These three major providers all offer a simple calculation tool for calculating the

price of the deployment. It should be noted that these prices change regularly

and better deals can most likely be made with sales representatives and/or by

increasing the order size and duration. There are many resources [5]–[7] that

have compared these prices but for this thesis new up-to-date calculations were

made using tools provided by the cloud providers. [8]–[10]

Calculations used in this thesis are made with prices according to 4.1.2022 and

all instances in the calculations have 8 vCPUs, 32GB of RAM, 174 hours of

monthly usage per instance, region is set as close as possible to London.

Google and AWS calculations use 30GB SSD for storage and Azure uses 64GB

SSD.

Table 1. Cloud Provider Cost Comparison.

As it is evident from Table 1, the prices of these providers don’t vary too wildly

as the hour cost per instance is almost the same on all, and major differences in

the end prices are mostly due to cost differences in storage solutions and

multiple different things affecting the per hour cost like the location of the data

center. All of these are still much cheaper than the alternative of running your

own physical infrastructure where it might take up to multiple days just to set up

the hardware and it is easier to optimize costs in a cloud environment with

AWS Google Azure

vCPU 8 8 8

RAM(GB) 32GB 32GB 32GB

Storage 30GB 30GB 64GB

hour cost per instance 0,27 € 0,30 € 0,32 €

instances 10, hours 174 per month 462,99 € 529,99 € 558,00 €

Storage 30,78 € 53,94 € included

Total 493,77 € 583,93 € 558,00 €

11

Turku University of Applied Sciences Thesis | Roope Westman

automatic shutdowns and with other services that cloud providers provide for

saving costs like different pricing plans for example.

2.3 Selecting the provider

Our use case for the cloud provider is a common use case that any of the major

cloud providers could provide the required services for, and as such it does not

matter too much which provider is chosen for the project from a technical

standpoint.

Selection criteria will weigh heavily on features and tools the provider provides.

Since price is too hard to measure in a corporate use without the use of sales

representatives, it will be left out of the selection criteria.

This project is going to use AWS and that is mostly because it offers more tools

for the job compared to the other major providers. AWS offers the use of both of

the biggest IaC tools, Terraform and its own proprietary AWS CloudFormation

while others offer only the use of Terraform. These tools will be explored later in

this thesis in Chapter 3 Infrastructure as Code Tools.

Another reason for the selection of AWS is because the company that this is

being provided for and the personnel working there are more familiar with AWS

than the other platforms and have already accounts and some infrastructure in

place for AWS automation.

12

Turku University of Applied Sciences Thesis | Roope Westman

3 Infrastructure as Code Tools

3.1 Considerations for IaC Tools

In this chapter, I will go through some of the considerations to keep in mind

when selecting the correct tools for the job. IaC (Infrastructure as Code) tools

can be categorized in a few ways but what it boils down to is configuration

orchestration and configuration management. Usually, these tools are used

together by first using an orchestration management tool to build the

infrastructure and then using configuration management to configure the

software on the provisioned infrastructure. [11]

The most important aspect to keep in mind regarding this project is that are the

tools used either declarative or procedural and mutable or immutable. Further

considerations might be that should the tool have an agent like Chef and

Puppet or be agentless like Ansible and SaltStack, but that does not concern

cloud environments and configuration orchestration tools as they will install the

agents on the clients if needed. [12]

3.1.1 Declarative and Procedural Tools and Languages

Procedural tools (ex. Chef and Ansible) use a language in which you define

step-by-step how to reach a certain goal and declarative tools (ex.

CloudFormation and Terraform) are tools where you state the desired end state

that you want to reach and the tool itself decides the best way to reach that said

end state.

The main difference that comes in using these tools is that when changing the

infrastructure the procedural tools do not keep track of the infrastructure and

you would always need to know it by yourself when making changes.

For example, say that you have an infrastructure with 5 instances and you want

to reach a state where you have 10 instances. You would first need to know

13

Turku University of Applied Sciences Thesis | Roope Westman

how many instances you have and add as many as are missing to the

infrastructure and write a new snippet of code or re-use and modify an old one.

This may lead to a case where your infrastructure may have more or fewer

instances than you wanted if they are not tracked properly.

In the declarative version of this example, you would state that you want 10

instances and the tool would add as many as are needed or remove any excess

instances if you have over 10 instances. [13]

This project will focus on using declarative tools as the main component

because of the infrastructure tracking nature of them and support these tools

with procedural tools if needed. For example, the infrastructure would be built

using a declarative tool such as CloudFormation and inside the infrastructure,

the instances could be modified using Ansible scripts.

3.1.2 Mutable vs Immutable Tools

Mutable infrastructure is the traditional way of handling servers and means that

the updates and modifications to a server modify the existing server and apply

to it. This has the benefit of infrastructure fitting the specific needs and can be

usually be updated and adapted faster to changes in requirements. Downsides

on the other hand include harder diagnosing and reproduction of technical

issues, more difficult version tracking, and added complexity of the

infrastructure. Tools that use mutable infrastructure are for example Chef,

Puppet, Ansible, and Saltstack.

Immutable infrastructure is the new way of handling server infrastructure and

the essence of it is that you deploy something once and cannot modify it without

deleting the instance and creating a new one with the updated modifications.

This has many benefits for larger infrastructures such as better version tracking

and easier rollbacks, more predictability, and reduced complexity of the servers

as they are never modified. Downsides include that data storage for these

servers must be externalized and you cannot modify existing servers in case of

14

Turku University of Applied Sciences Thesis | Roope Westman

errors. Tools that use immutable infrastructure are for example Terraform,

Kubernetes, and CloudFormation [14], [15]

This project will focus on using immutable infrastructure since the environment

will not have a dedicated user or support group which causes the infrastructures

predictability to drop drastically since there will be no one to make proper

documentation and version tracking.

3.2 Selection of the Orchestration Tool

Since the main goal is to set up an ever-changing environment, orchestration

management is the category that should be looked at first as they are made to

handle building and managing infrastructure as their main purpose. Building a

huge environment using state management tools like Ansible might be possible

but would require careful planning and would most likely have many issues to

overcome that IaC tools handle automatically.

The three biggest tools at the moment are Terraform, Cloudformation, and

Pulumi. Out of these three Pulumi is the newest so it has a smaller community

to learn from and is the only one with costs associated with it regarding the

number of users and resources used, and because of that, it is not a great fit for

this project. [16], [17]

Terraform and CloudFormation both have big communities, years of

experience, and their own strengths. Terraform is an open-source project by

Hashicorp and CloudFormation is a service offered by Amazon Web Services.

Terraform supports multi-cloud and CloudFormation is only usable on AWS but

since we chose AWS as the cloud provider and the project is not planning to be

used in multi-cloud environments it is not a key factor.

This project is going to use CloudFormation. The main reasons for selecting

CloudFormation are that it supports automatic rollbacks if the deployment fails,

state management (keeping track of recourses under management) is handled

by AWS and it handles secrets more securely than Terraform. These features

15

Turku University of Applied Sciences Thesis | Roope Westman

are useful in reducing the building complexity of the project as Terraform does

not support these natively and you would have to get additional third-party

modules or they might not even exist. There are many features that Terraform

has that CloudFormation does not have but since this is a simple environment

most of those features are not important. Additional factors in the decision were

that the company in question has prior experience with CloudFormation and the

consensus among experts is to use CloudFormation when working with AWS.

[18], [19]

3.3 Extra Tools

These are tools that might be useful while building the infrastructure or

automating certain tasks and should be kept in mind

3.3.1 AWS Cloud Development Kit

The AWS CDK is a software development framework which purpose is to allow

users to define cloud infrastructure using more human-readable programming

languages such as JavaScript, Python, C#, and many others, and support for

other languages are in the works. Since CDK is an abstraction of

CloudFormation it compiles into CloudFormation templates as the final product.

Compared to writing templates with YAML in CloudFormation, CDK is easier for

humans to read and design as programming languages used by CDK are

concise and easier to comprehend. It also allows the use of programming

idioms like loops, conditionals, and many more which allow you to design a

more flexible infrastructure. Shorter programs are easier to maintain and it

removes a lot of the complexity of template files in the designing phase. [20],

[21]

16

Turku University of Applied Sciences Thesis | Roope Westman

The downsides of CDK are that since it is an abstraction of CloudFormation

users can experience unexpected behavior if they do not understand how

CloudFormation itself works and as such it should not be used to skip the

learning curve of provisioning in the cloud. A major downside also is that since

CDK is a young framework it is also still constantly changing and there might be

new builds that break deployments because of deprecated methods or

reworked constructs. [22]

3.3.2 AWS Lambda

AWS Lambda is a service that allows you to run code, applications, and

services without provisioning or managing servers yourself. AWS handles the

management of these servers and you only pay for the time that the resources

are used for. It is a powerful tool as it easily scales for high demand and is

highly integrated into other services offered by AWS. [23]

3.3.3 AWS Software Development Kits

AWS also offers SDKs for many programming languages that allow you to

access the Application Programming Interfaces offered by AWS and integrate

your preferred programming languages with AWS services. This can be used to

easily create and manage resources in your infrastructure [24]

3.3.4 AWS Step Functions

AWS Step Functions offers the creation of visual workflows that can be used to

build and automate IT processes and pipelines using other AWS services. As

seen in Picture 1, there is an easy-to-use visual interface for creating complex

automated workflows with high integration to other AWS services. [25]

17

Turku University of Applied Sciences Thesis | Roope Westman

Picture 1. Example Workflow from AWS Step Functions.

3.3.5 AWS EventBridge

AWS EventBridge allows the creation of rules that trigger specified events such

as Lambda functions, Step Functions, or other user-connected applications. For

example, you could set a backup function to launch every day at a specific time

without creating complicated scripts and event tracking software. Since there

are no servers to provision or manage and scaling is handled by AWS it is easy

to reduce operational costs compared to self-built systems. [26]

18

Turku University of Applied Sciences Thesis | Roope Westman

4 Server Automation/Orchestration

4.1 Requirements for the Environment

The major requirements for the environment are that instances in it are only

running during work hours (6:00 to 18:00) and that the lifetime of each instance

should be specified and be short-lived (1 to 3 mo.). The amount of users using

this environment is about 10-20, but this can easily be scaled up as the cloud is

easily scalable.

For now, it only needs to support basic operating systems such as different

Linux distributions and Windows versions.

Permissions for SSH and RDP access are also required and login to the Linux

instances will be done using RSA keys. AWS instances come with

predetermined accounts depending on the image type used, for example,

Windows default user is “Administrator” and Amazon’s Linux image comes with

the username “ec2-user”.

4.2 Experience Creating the Environment

In this concrete portion of the thesis, it was realized that the tools and methods

discussed in the theory segment of this thesis might be possible to do but would

require considerably more planning, time, or personnel to implement well.

What was learned first, was that using pure CloudFormation is not suited for this

type of project that well, as it is not as easy to write and there are easier tools to

use that create the CloudFormation templates for you with a lot less effort. One

such tool is AWS CDK. One major hurdle was that automating a constantly

changing CloudFormation template is not as easy as using other tools to

generate new templates based on new requirements. CloudFormation works

better on a more static infrastructure that is changed by hand or an automation

19

Turku University of Applied Sciences Thesis | Roope Westman

pipeline where CloudFormation is the end product of another automation

software, rather than being the core tool used for automation.

CDK was a great tool that had all the features that you would want when

building an environment like this, but unfortunately, it is still quite young in terms

of documentation and resources and that was the main reason it did not work

out. It was hard to diagnose where the issues were when problems were

encountered and there was not enough of a footprint of people experiencing the

same issues to easily find answers. It also has the option to use many

programming languages which makes it harder to find a solution for your

preferred language.

After failing to build the environment using CloudFormation and CDK, Lambdas

were the next step and also the place where success was found. Lambdas were

easy to use and implement in AWS and they are fast and cheap. The biggest

issue with using Lambdas is that we lose a lot of the benefits of using

declarative tools which were mentioned earlier in chapter 3.1.1, as Lambda is a

procedural tool it will create an instance even if an error is found later. This can

be solved using proper error handling but requires a lot of knowledge in

programming and much more testing than what a declarative tool would require.

But the ease of setting up the environment, all the ready-made integrations to

Lambda, make it easy to teach others and make it easily modifiable which are

great benefits that in this case outweigh the negatives.

The full details of the implementation can be found in Appendix 1.

4.3 Implementation Plan

The final plan for the implementation is represented in Figure 2 and it is to have

a message queueing service (AWS Simple Queue Service) wait for a package

with the required parameters for execution of the environment. When the AWS

SQS receives a payload, it executes a Lambda function that first creates a new

subnet, key pair, AWS EC2 instance, and after that, it creates a state machine

in AWS Step Functions linked to that EC2 instance and finally a state execution

20

Turku University of Applied Sciences Thesis | Roope Westman

for the state machine which waits for the termination date of the EC2 instance.

We also set up tags in all the elements of the environment for billing and easy

grouping in programming. An example of a tag could be: Name:

“awsLabAutoTerminate”, Value: “True” which could be used to allow the

termination of an element if set to “True” or disallow with set to “False”.

Figure 2. Sequence Diagram of EC2 Creation.

4.3.1 Automatic Startup and Shutdown

As shown in Figure 3 we also use AWS EventBridge to create two events, one

for starting up EC2 instances and one for shutting down EC2 instances. Both of

these trigger their respective Lambda functions StartEC2 and StopEC2 at

specified times and will affect every EC2 instance tagged with either

“awsLabAutoStart” or “awsLabAutoStop”. So if there is a need to either not shut

down or start up an EC2 instance these tags can be manually removed or set to

the value “False” from the EC2 clients.

21

Turku University of Applied Sciences Thesis | Roope Westman

Figure 3. Automatic Startup and Shutdown.

4.3.2 Termination of Expired Instances

Termination of expired EC2 instances is handled with AWS Step Functions as

shown in Figure 4. These Step Functions have a state machine that waits for a

certain time, in our case the termination date, to arrive and when it does it

executes a Lambda function which deletes the EC2 instance and all the

components related to it and finally also deletes the state machine itself. This

script is also set up to affect only instances with the tag “awsLabAutoTerminate”

set to “True”, so if you want to avoid termination of an instance, set this flag to

false. There is also the possibility of setting machines to hibernate first and

terminate after a certain period and this would reduce the risk of accidental

deletion of data that is still being used.

22

Turku University of Applied Sciences Thesis | Roope Westman

Figure 4. Termination of Instances.

4.4 Integration to a Data Source

The idea is for this AWS environment to be integrated into an existing service

portal or ticketing system for ordering user rights and servers that would send

data payloads to the AWS SQS with the required parameters and in return

receive a payload with the required information to access the EC2 instance like

for example user info and IP addresses to connect to it as shown in Figure 5.

Figure 5. Integration to a Service Portal.

23

Turku University of Applied Sciences Thesis | Roope Westman

4.5 Tracking costs and Billing Details

Since one of the main features of this project was to reduce costs compared to

a hardware-based lab environment, there should be a way to track expenses

accumulated by the cloud environment. AWS allows the creation of cost reports

which can be organized by user-created tags or AWS-generated tags. These

cost reports then can be saved to an AWS S3 bucket as a .csv file and exported

from there to where it is needed or processed further. Since this project was

made using the free tier of AWS services no cost report can be made as an

example.

4.6 Testing the Automation

Since there is no integration in place from an endpoint to SQS a direct message

will instead be sent to the SQS queue using AWS console like shown in Picture

2. This message contains the AMI of an Amazon Linux machine and as such,

that is what will be deployed. By changing the AMI in the payload other

operating systems can also be deployed.

Picture 2. Sending a Message to the SQS Queue.

24

Turku University of Applied Sciences Thesis | Roope Westman

After the message is sent to the SQS queue it will be then sent to the Lambda

function “CreateEC2”. In the logs, seen in Picture 3, it can be seen that the

execution was successful and the instance, state machine, and its execution

were all created properly in under 3 seconds.

Picture 3. CreateEC2 Logs from AWS CloudWatch.

In the AWS console, Picture 4, it can also be seen that the instance was

created properly and received public and private IP addresses correctly and a

keypair was attached to it.

25

Turku University of Applied Sciences Thesis | Roope Westman

Picture 4. Running Instance in AWS Console.

In Picture 5, it can be seen that the state machine has also been created and is

waiting for the termination date of the instance that was set in the payload of the

message.

Picture 5. State Machines Execution Waiting for Termination Date.

26

Turku University of Applied Sciences Thesis | Roope Westman

As shown in Picture 6, to connect to the instance the public IP and an RSA key

file are used and the connection is successful. On Windows AMIs made by

Amazon, it is required to use the RSA key to decrypt the Administrator

password from the AWS Console and download the RDP configuration file for

connection to the EC2 instance.

Picture 6. SSH Connection to the Instance.

Picture 7 contains logs of a machine that was terminated but it can be seen that

the function works correctly by first deleting the instance, the subnet, and

keypair, and finally the state machine itself. This function takes a lot longer to

run since a subnet cannot be removed until the instance termination process is

completed.

Picture 7. TerminateEC2 Lambda Logs.

27

Turku University of Applied Sciences Thesis | Roope Westman

5 Conclusion

This thesis aimed to create an automated small-scale lab environment to

reduce the maintenance and labor cost requirements of a physical lab

environment and to familiarize and learn to work with cloud providers and the

tools they offer. Different cloud providers and their differences were also

explored, and the conclusion that was reached is that there are not that many

differences between the top three most used ones. Amazon Web Services was

chosen as the cloud provider used to implement the project mostly because it

offered more tools than the others. Also to help select the correct tools for this

project, different types of tools and their usage, strengths, and weaknesses

were also discussed.

The objective of creating a small-scale automated cloud environment was met,

but not with the tools originally in mind and most discussed in the theory

segment. A successful deployment of the environment was created using AWS

Lambdas, instead of the declarative tools like CloudFormation like was originally

planned. With more time and resources it could be possible to build a more

reliable and stable environment with fallbacks in case of errors, and checks to

make sure that only the wanted resources are existing using declarative tools.

In terms of time used, this robust environment is a good first effort that can be

improved upon and learned from in future projects and implementations.

The organization that this was made for was happy with the results and will

improve the work further and customize it to their own needs. This thesis also

offers a good base knowledge on the difference between the tools offered by

cloud service providers and their possible use-cases.

The reliability of this thesis might not be that high, as the author is not a

seasoned programmer nor had much knowledge of the cloud before making this

thesis. With more knowledge of programming and the cloud, it could be possible

to fix the issues the author found with the declarative tools in question, such as

issues using the CDK.

28

Turku University of Applied Sciences Thesis | Roope Westman

In the future, it could be worth it to look deeper into declarative tools and how

this environment could be deployed using them as they age and gain more

documentation and resources to learn from.

29

Turku University of Applied Sciences Thesis | Roope Westman

References

[1] J. Kirby, “Cloud Computing vs. Traditional IT Infrastructure | Micro Pro.”

https://micropro.com/blog/cloud-computing-vs-traditional-it-infrastructure/

(accessed Jan. 04, 2022).

[2] “Cloud Computing vs. Traditional IT Infrastructure | Leading Edge.”

https://www.leadingedgetech.co.uk/it-services/it-consultancy-

services/cloud-computing/how-is-cloud-computing-different-from-

traditional-it-infrastructure/ (accessed Jan. 04, 2022).

[3] “TryHackMe | Cyber Security Training.” https://tryhackme.com/ (accessed

Feb. 17, 2022).

[4] R. Bala, B. Gill, D. Smith, K. Ji, and D. Wright, “Gartner Reprint.”

https://www.gartner.com/doc/reprints?id=1-271OE4VR&ct=210802&st=sb

(accessed Jan. 04, 2022).

[5] S. Carey, “AWS vs Azure vs Google Cloud: What’s the best cloud

platform for enterprise? | Computerworld.”

https://www.computerworld.com/article/3429365/aws-vs-azure-vs-google-

whats-the-best-cloud-platform-for-enterprise.html (accessed Jan. 03,

2022).

[6] J. Solanki, “Cloud Pricing Comparison 2022: AWS vs Azure vs Google

Cloud.” https://www.simform.com/blog/compute-pricing-comparison-aws-

azure-googlecloud/ (accessed Jan. 04, 2022).

[7] P. Yifat, “Azure vs AWS Pricing: Comparing Apples to Apples.”

https://cloud.netapp.com/blog/azure-vs-aws-pricing-comparing-apples-to-

apples-azure-aws-cvo-blg (accessed Jan. 04, 2022).

[8] “AWS Pricing Calculator.” https://calculator.aws/#/createCalculator/EC2

(accessed Jan. 04, 2022).

30

Turku University of Applied Sciences Thesis | Roope Westman

[9] “Pricing Calculator | Microsoft Azure.” https://azure.microsoft.com/en-

gb/pricing/calculator/?cdn=disable (accessed Jan. 04, 2022).

[10] “Google Cloud Pricing Calculator.”

https://cloud.google.com/products/calculator/#id= (accessed Jan. 04,

2022).

[11] P. Sangode, “Understanding terms - Infrastructure As Code,

Orchestration, Provisioning & Configuration Management (Ansible &

Terraform, as example).” https://www.linkedin.com/pulse/understanding-

terms-infrastructure-code-management-ansible-sangode (accessed Jan.

12, 2022).

[12] S. G. Navdeep, “Top 10 Infrastructure as Code Tools to Boost Your

Productivity.” https://www.nexastack.com/en/blog/best-iac-tools

(accessed Jan. 05, 2022).

[13] Y. Brikman, “Why we use Terraform and not Chef, Puppet, Ansible,

Saltstack, or CloudFormation.”

https://lsi.vc.ehu.eus/pablogn/docencia/AS/Act7%20Admin.%20centraliza

da%20infrastructure-as-

code,%20Configuration%20Management/Terraform%20Chef%20Puppet

%20Ansible%20Salt.pdf (accessed Jan. 04, 2022).

[14] T. Cameron, “Mutable vs Immutable Infrastructure Comparison & Benefits

| Eplexity.” https://eplexity.com/blog/a-side-by-side-comparison-of-

immutable-vs-mutable-infrastructure/ (accessed Jan. 05, 2022).

[15] A. Dadgar, “Immutable Infrastructure: Benefits, Comparisons & More.”

https://www.hashicorp.com/resources/what-is-mutable-vs-immutable-

infrastructure (accessed Jan. 05, 2022).

[16] “Pricing | Pulumi.” https://www.pulumi.com/pricing/ (accessed Jan. 12,

2022).

31

Turku University of Applied Sciences Thesis | Roope Westman

[17] “Terraform vs CloudFormation vs Pulumi vs AWS CDK | Pilotcore.”

https://pilotcoresystems.com/insights/terraform-vs-cloudformation-vs-

pulumi-vs-aws-cdk#aws-cdk-overview (accessed Jan. 12, 2022).

[18] F. Triboix, “The Definitive Guide to Terraform vs. CloudFormation |

Toptal.” https://www.toptal.com/terraform/terraform-vs-cloudformation

(accessed Jan. 12, 2022).

[19] A. Wittig, “CloudFormation vs Terraform 2021 | cloudonaut.”

https://cloudonaut.io/cloudformation-vs-terraform/ (accessed Jan. 12,

2022).

[20] B. Hadzhiev, “AWS CDK vs CloudFormation - Comparison | bobbyhadz.”

https://bobbyhadz.com/blog/cdk-cloudformation-comparison (accessed

Feb. 22, 2022).

[21] “What is the AWS CDK? - AWS Cloud Development Kit (CDK) v2.”

https://docs.aws.amazon.com/cdk/v2/guide/home.html (accessed Feb.

22, 2022).

[22] “16. What are the pros and cons of CDK? - YouTube.”

https://www.youtube.com/watch?v=jjyNTNQdW2s (accessed Feb. 22,

2022).

[23] “Serverless Computing - AWS Lambda - Amazon Web Services.”

https://aws.amazon.com/lambda/ (accessed Feb. 22, 2022).

[24] “SDKs and Programming Toolkits for AWS.”

https://aws.amazon.com/tools/ (accessed Feb. 22, 2022).

[25] “AWS Step Functions | Serverless Microservice Orchestration | Amazon

Web Services.” https://aws.amazon.com/step-functions/?step-

functions.sort-by=item.additionalFields.postDateTime&step-functions.sort-

order=desc (accessed Feb. 22, 2022).

[26] “Amazon EventBridge | Event Bus | Amazon Web Services.”

https://aws.amazon.com/eventbridge/ (accessed Feb. 22, 2022).

Appendix 1 32

Turku University of Applied Sciences Thesis | Roope Westman

Instructions for setting up AWS lab environment

This guide assumes that you have basic knowledge in using Amazon Web

Services such as IAM, Lambda, EventBridge, SQS, and VPC. This is not meant

to be an in-depth guide for AWS and these components and is instead meant to

offer the building blocks for setting up an automated AWS lab environment.

1 Setting up Lambdas 33

1.1 StartEC2 33

1.2 StopEC2 33

1.3 CreateEC2 34

1.4 TerminateEC2 38

2 Setting up SQS 41

3 Setting up Amazon EventBridge 43

3.1 Automatic Start Up 43

3.2 Automatic Shut Down 45

3.3 Setting up VPC for Lambda 47

4 Code explanations 51

4.1 StartEC2 51

4.2 StopEC2 53

4.3 CreateEC2 55

4.4 TerminateEC2 62

Appendix 1 33

Turku University of Applied Sciences Thesis | Roope Westman

1 Setting up Lambdas

1.1 StartEC2

Create a Lambda function and set the:

• Runtime as Python 3.9

• Architecture as x86_64

• Permissions required by this lambda are:

o ec2:DescribeInstances

o ec2:StartInstances

o logs:CreateLogGroup

o logs:CreateLogStream

o logs:PutLogEvents

Insert the following code and deploy

import boto3

ec2 = boto3.resource('ec2')

def lambda_handler(event, context):

 filters = [{

 'Name': 'tag:awsLabAutoStart',

 'Values': ['True'],

 },

 {

 'Name': 'instance-state-name',

 'Values': ['stopped'],

 }]

 instances = ec2.instances.filter(Filters=filters)

 stoppedInstances = [instance.id for instance in instances]

 if len(stoppedInstances) > 0:

 startingUp =

ec2.instances.filter(InstanceIds=stoppedInstances).start()

 print (startingUp)

1.2 StopEC2

Create a Lambda function and set the:

• Runtime as Python 3.9

Appendix 1 34

Turku University of Applied Sciences Thesis | Roope Westman

• Architecture as x86_64

• Permissions required by this lambda are:

o ec2:DescribeInstances

o ec2:StopInstances

o logs:CreateLogGroup

o logs:CreateLogStream

o logs:PutLogEvents

Insert the following code and deploy

import boto3

ec2 = boto3.resource('ec2')

def lambda_handler(event, context):

 filters = [{

 'Name': 'tag:awsLabAutoShut',

 'Values': ['True'],

 },

 {

 'Name': 'instance-state-name',

 'Values': ['running'],

 }]

 instances = ec2.instances.filter(Filters=filters)

 runningInstances = [instance.id for instance in instances]

 if len(runningInstances) > 0:

 shuttingDown =

ec2.instances.filter(InstanceIds=runningInstances).stop()

 print (shuttingDown)

1.3 CreateEC2

Create a Lambda function and set the:

• Runtime as Python 3.9

• Architecture as x86_64

• Permissions required by this lambda are:

o states:DescribeStateMachine

o states:DescribeExecution

o states:UpdateStateMachine

o states:TagResource

o states:StartExecution

o states:CreateStateMachine

Appendix 1 35

Turku University of Applied Sciences Thesis | Roope Westman

o ec2:DeleteTags

o ec2:CreateKeyPair

o ec2:CreateTags

o ec2:RunInstances

o ec2:ModifySubnetAttribute

o ec2:AssociateSubnetCidrBlock

o ec2:CreateSubnet

o ec2:DescribeSubnets

o sqs:DeleteMessage

o sqs:ListQueues

o sqs:GetQueueUrl

o sqs:ListDeadLetterSourceQueues

o sqs:ChangeMessageVisibility

o sqs:ReceiveMessage

o sqs:GetQueueAttributes

o sqs:ListQueueTags

o iam:PassRole

o logs:CreateLogGroup

o logs:CreateLogStream

o logs:PutLogEvents

• Requires a Role made for state machines that allow:

o lambda:InvokeFunction

• Needs a VPC to deploy subnets to

Insert the following code and deploy

import json

import boto3

import os

ec2 = boto3.resource('ec2')

ec2Client = boto3.client('ec2')

stepfunc = boto3.client('stepfunctions')

def create_subnet(VPC, ec2Name):

 subnetNumber = 0

 while 1:

 try:

Appendix 1 36

Turku University of Applied Sciences Thesis | Roope Westman

 subnet =

ec2.create_subnet(CidrBlock='10.0.{}.0/24'.format(subnetNumber),

VpcId=VPC)

 print('Subnet is valid:

10.0.{}.0/24'.format(subnetNumber))

 break

 except Exception as e:

 print (e)

 print ('Trying next subnet')

 subnetNumber += 1

 TAGS=[

 {

 'Key': 'Name',

 'Value': ec2Name+'-subnet',

 },

 {

 'Key': 'awsLab',

 'Value': 'True',

 }

]

 subnet.create_tags(Tags = TAGS)

 ec2Client.modify_subnet_attribute(SubnetId = subnet.id ,

MapPublicIpOnLaunch = { 'Value': True })

 return subnet.id

def create_keys(ec2Name):

 keyName = ec2Name+'-keypair'

 key_pair = ec2.create_key_pair(KeyName=keyName)

 keyPairOut = str(key_pair.key_material)

 print(keyPairOut) #DELETE THIS

 return keyPairOut, keyName

def create_tags(ec2Name, CostOrg):

 TAGS=[

 {

 'Key': 'Name',

 'Value': ec2Name,

 },

 {

 'Key': 'awsLab',

 'Value': 'True',

 },

 {

 'Key': 'CostOrg',

 'Value': CostOrg,

 },

 {

 'Key': 'awsLabAutoShut',

 'Value': 'True',

 },

 {

 'Key': 'awsLabAutoStart',

 'Value': 'True',

 },

 {

 'Key': 'awsLabAutoTerminate',

 'Value': 'True',

 },

Appendix 1 37

Turku University of Applied Sciences Thesis | Roope Westman

]

 return TAGS

def create_state_machine(TerminationDate, ec2Name, ROLEARN):

 definition_set = {

 "StartAt": "Wait for termination date",

 "States": {

 "Wait for termination date": {

 "Type": "Wait",

 "Next": "Invoke TerminateEC2 lambda",

 "Timestamp": TerminationDate+"T00:00:00z"

 },

 "Invoke TerminateEC2 lambda": {

 "Type": "Task",

 "Resource": "arn:aws:states:::lambda:invoke",

 "OutputPath": "$",

 "Parameters": {

 "FunctionName": "arn:aws:lambda:eu-west-

1:680505452604:function:TerminateEC2:$LATEST",

 "Payload.$": "$"

 },

 "End": True

 }

 }

 }

 DEFINITION = json.dumps(definition_set)

 TAGS=[

 {

 'key': 'Name',

 'value': ec2Name+'-state-machine',

 },

 {

 'key': 'awsLab',

 'value': 'True',

 }

]

 response = stepfunc.create_state_machine(

 name=ec2Name+'-state-machine',

 roleArn=ROLEARN,

 definition=DEFINITION,

 tags=TAGS

)

 return response['stateMachineArn']

def create_execution(instanceId, stateMachine, ec2Name):

 input_set = {

 "machineid": instanceId,

 "stateMachineArn": stateMachine,

 "ec2Name": ec2Name

 }

 INPUT = json.dumps(input_set)

 execution_response = stepfunc.start_execution(

 name='terminate-'+ec2Name,

Appendix 1 38

Turku University of Applied Sciences Thesis | Roope Westman

 stateMachineArn=stateMachine,

 input=INPUT

)

def lambda_handler(event, context):

 data = json.loads(event['Records'][0]['body'])

 AMI = data['AMI']

 INSTANCE_TYPE = data['InstanceType']

 KEY_NAME = "placeholder-key-pair"

 SUBNET = data['Subnet']

 print('InstanceType = ', INSTANCE_TYPE)

 print('AMI = ', AMI)

 if SUBNET == "new":

 SUBNET_ID = create_subnet("vpc-0e18bdb91b4d1964d",

data['ec2Name'])

 KEY_VALUE, KEY_NAME = create_keys(data['ec2Name'])

 else:

 pass

 instance = ec2.create_instances(

 ImageId=AMI,

 InstanceType=INSTANCE_TYPE,

 KeyName=KEY_NAME,

 SubnetId=SUBNET_ID,

 MaxCount=1,

 MinCount=1

)

 TAGS = create_tags(data['ec2Name'], data['CostOrg'])

 instance[0].create_tags(Tags=TAGS)

 print("New instance created:", instance[0].id)

 roleArn = 'arn:aws:iam::680505452604:role/LabStepFunctionRole'

 stateMachine = create_state_machine(data['TerminationDate'],

data['ec2Name'], roleArn)

 print("State Machine created: " + stateMachine)

 create_execution(instance[0].id, stateMachine, data['ec2Name'])

 print("Execution created")

 print("Public IP is: "+ instance[0].public_dns_name)

1.4 TerminateEC2

Create a Lambda function and set the:

• Runtime as Python 3.9

• Architecture as x86_64

• Permissions required by this lambda are:

o states:DeleteStateMachine

Appendix 1 39

Turku University of Applied Sciences Thesis | Roope Westman

o ec2:TerminateInstances

o ec2:DescribeInstances

o ec2:DescribeSubnets

o ec2:DeleteSubnet

o ec2:DeleteKeyPair

o logs:CreateLogGroup

o logs:CreateLogStream

o logs:PutLogEvents

Insert the following code and deploy

import boto3

ec2client = boto3.client('ec2')

ec2 = boto3.resource('ec2')

stepfunc = boto3.client('stepfunctions')

def delete_subnet(ec2Name):

 filters = [{

 'Name': 'tag:Name',

 'Values': [ec2Name+'-subnet'],

 }]

 subnets = list(ec2.subnets.filter(Filters=filters))

 subnets[0].delete()

def delete_key_pair(ec2Name):

 ec2client.delete_key_pair(KeyName=ec2Name+'-keypair')

def lambda_handler(event, context):

 filters = [{

 'Name': 'tag:awsLabAutoTerminate',

 'Values': ['True'],

 }]

 machineids = [event['machineid']]

 instances = ec2.instances.filter(Filters=filters)

 terminatingInstance =

ec2.instances.filter(InstanceIds=machineids).terminate()

 print(terminatingInstance)

 instance = ec2.Instance(event['machineid'])

 instance.wait_until_terminated()

 delete_subnet(event['ec2Name'])

 print('Deleting subnet')

 delete_key_pair(event['ec2Name'])

 print("Deleting KeyPair")

Appendix 1 40

Turku University of Applied Sciences Thesis | Roope Westman

 response = stepfunc.delete_state_machine(

 stateMachineArn=event['stateMachineArn']

)

 print(response)

Appendix 1 41

Turku University of Applied Sciences Thesis | Roope Westman

2 Setting up SQS

Create an SQS with these options:

• Type: Standard

• Access Policy: Basic

o Define which accounts have rights to access this SQS

Go to the SQS and select ‘configure a Lambda function trigger’ on the SQS

Appendix 1 42

Turku University of Applied Sciences Thesis | Roope Westman

Select the correct Lambda function that creates the EC2 instance when

receiving a payload

Appendix 1 43

Turku University of Applied Sciences Thesis | Roope Westman

3 Setting up Amazon EventBridge

3.1 Automatic Start Up

Create a new EventBridge rule with these options:

• Define a Cron expression pattern to trigger every day

o For example: 0 4 * * ? * triggers every day at 4 AM UTC

▪ Cron in AWS is always defined in UTC!

• Set the rule to trigger the correct Lambda function

Appendix 1 44

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 45

Turku University of Applied Sciences Thesis | Roope Westman

3.2 Automatic Shut Down

Create a new EventBridge rule with these options:

• Define a Cron expression pattern to trigger every day

o For example: 0 16 * * ? * triggers every day at 4 PM UTC

▪ Cron in AWS is always defined in UTC!

• Set the rule to trigger the correct Lambda function

Appendix 1 46

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 47

Turku University of Applied Sciences Thesis | Roope Westman

3.3 Setting up VPC for Lambda

This part is for setting up a VPC that allows connection to the instances via the

internet. It is optional but info from VPC used should be inserted into CreateEC2

Lambda

Go to AWS Console and create a new VPC or modify an old one

The CIDR from here should be used to replace the one in CreateEC2 Lambda

The VPC should have both DNS hostnames and DNS resolutions set to

Enabled from the Actions menu

Appendix 1 48

Turku University of Applied Sciences Thesis | Roope Westman

The VPC also needs an Internet Gateway, the only required field is the name

After the gateway is created, attach it to the VPC from the Actions menu

Appendix 1 49

Turku University of Applied Sciences Thesis | Roope Westman

Next, create a Route Table and select the VPC created

Edit the routes and add a route to 0.0.0.0/0 from the gateway created earlier

Appendix 1 50

Turku University of Applied Sciences Thesis | Roope Westman

Finally, edit the default security group attached to the VPC or create a new one

and add rules for SSH and RDP to all the networks or specify further if needed

for security reasons

Appendix 1 51

Turku University of Applied Sciences Thesis | Roope Westman

4 Code explanations

4.1 StartEC2

import boto3

ec2 = boto3.resource('ec2')

Import required libraries and set the ec2 resource of boto3 to an easier variable

name

def lambda_handler(event, context):

Start the function for lambda_handler, this function name can be different, but

then it must also be changed in the Lambda runtime settings

 filters = [{

 'Name': 'tag:awsLabAutoStart',

 'Values': ['True'],

 },

 {

 'Name': 'instance-state-name',

 'Values': ['stopped'],

 }]

Create a filter for later use, in this case, tags are used for filtering the instances

that we want to start

 instances = ec2.instances.filter(Filters=filters)

Select the instances with the filter

Appendix 1 52

Turku University of Applied Sciences Thesis | Roope Westman

 stoppedInstances = [instance.id for instance in instances]

Create a list from instance IDs in the instances variable

 if len(stoppedInstances) > 0:

 startingUp =

ec2.instances.filter(InstanceIds=stoppedInstances).start()

 print (startingUp)

Iterate over the instances, start them up, and print which instances were started

Appendix 1 53

Turku University of Applied Sciences Thesis | Roope Westman

4.2 StopEC2

import boto3

ec2 = boto3.resource('ec2')

Import required libraries and set the ec2 resource of boto3 to an easier variable

name

def lambda_handler(event, context):

Start the function for lambda_handler, this function name can be different, but

then it must also be changed in the Lambda runtime settings

 filters = [{

 'Name': 'tag:awsLabAutoShut',

 'Values': ['True'],

 },

 {

 'Name': 'instance-state-name',

 'Values': ['running'],

 }]

Create a filter for later use, in this case, tags are used for filtering the instances

that we want to stop

 instances = ec2.instances.filter(Filters=filters)

Select the instances with the filter

 runningInstances = [instance.id for instance in instances]

Appendix 1 54

Turku University of Applied Sciences Thesis | Roope Westman

Create a list from instance IDs in the instances variable

 if len(runningInstances) > 0:

 shuttingDown =

ec2.instances.filter(InstanceIds=runningInstances).stop()

 print (shuttingDown)

Iterate over the instances, start them up, and print which instances were

stopped

Appendix 1 55

Turku University of Applied Sciences Thesis | Roope Westman

4.3 CreateEC2

import json

import boto3

import os

ec2 = boto3.resource('ec2')

ec2Client = boto3.client('ec2')

stepfunc = boto3.client('stepfunctions')

Import required libraries and set the ec2 and stepfunctions resources of boto3

to easier variable names

def create_subnet(VPC, ec2Name):

Function create_subnet, required VPC id and EC2 name parameters

 subnetNumber = 0

 while 1:

 try:

 subnet =

ec2.create_subnet(CidrBlock='10.0.{}.0/24'.format(subnetNumber),

VpcId=VPC)

 print('Subnet is valid:

10.0.{}.0/24'.format(subnetNumber))

 break

 except Exception as e:

 print (e)

 print ('Trying next subnet')

 subnetNumber += 1

This loop tries to assign a valid subnet number that is not reserved. Not

optimized well but works until all subnets are taken.

 TAGS=[

 {

 'Key': 'Name',

 'Value': ec2Name+'-subnet',

 },

 {

Appendix 1 56

Turku University of Applied Sciences Thesis | Roope Westman

 'Key': 'awsLab',

 'Value': 'True',

 }

]

 subnet.create_tags(Tags = TAGS)

Create and assign tags to subnet

 ec2Client.modify_subnet_attribute(SubnetId = subnet.id ,

MapPublicIpOnLaunch = { 'Value': True })

Set the subnet attribute MapPublicIpOnLaunch to “True” to map public IP

addresses when new instances are created on it

 return subnet.id

Return subnet ID for future use

def create_keys(ec2Name):

 keyName = ec2Name+'-keypair'

 key_pair = ec2.create_key_pair(KeyName=keyName)

 keyPairOut = str(key_pair.key_material)

 print(keyPairOut) #DELETE THIS WHEN IT IS NO LONGER NEEDED

 return keyPairOut, keyName

Function create_keys to create a keypair for the instance. Requires EC2 Name

as a parameter. Prints the RSA key to logs, but this should be removed when

there is a proper place to send the key. Returns RSA key and its name.

def create_tags(ec2Name, CostOrg):

 TAGS=[

 {

 'Key': 'Name',

 'Value': ec2Name,

Appendix 1 57

Turku University of Applied Sciences Thesis | Roope Westman

 },

 {

 'Key': 'awsLab',

 'Value': 'True',

 },

 {

 'Key': 'CostOrg',

 'Value': CostOrg,

 },

 {

 'Key': 'awsLabAutoShut',

 'Value': 'True',

 },

 {

 'Key': 'awsLabAutoStart',

 'Value': 'True',

 },

 {

 'Key': 'awsLabAutoTerminate',

 'Value': 'True',

 },

]

 return TAGS

Function create_tags, creates tags for the EC2 instance, required parameters

are EC2 Name and CostOrg. Tags can be changed to suit needs.

def create_state_machine(TerminationDate, ec2Name, ROLEARN):

Function create_state_machine, required parameters are Termination Date,

EC2 Name, and ARN of the role made for state machines

 definition_set = {

 "StartAt": "Wait for termination date",

 "States": {

 "Wait for termination date": {

 "Type": "Wait",

 "Next": "Invoke TerminateEC2 lambda",

 "Timestamp": TerminationDate+"T00:00:00z"

 },

 "Invoke TerminateEC2 lambda": {

 "Type": "Task",

 "Resource": "arn:aws:states:::lambda:invoke",

 "OutputPath": "$",

 "Parameters": {

Appendix 1 58

Turku University of Applied Sciences Thesis | Roope Westman

 "FunctionName": "arn:aws:lambda:eu-west-

1:680505452604:function:TerminateEC2:$LATEST",

 "Payload.$": "$"

 },

 "End": True

 }

 }

 }

 DEFINITION = json.dumps(definition_set)

Definitions for the state machine

 TAGS=[

 {

 'key': 'Name',

 'value': ec2Name+'-state-machine',

 },

 {

 'key': 'awsLab',

 'value': 'True',

 }

]

Tags for the state machine

 response = stepfunc.create_state_machine(

 name=ec2Name+'-state-machine',

 roleArn=ROLEARN,

 definition=DEFINITION,

 tags=TAGS

)

 return response['stateMachineArn']

Creates the state machine and returns the state machines ARN

def create_execution(instanceId, stateMachine, ec2Name):

Function create_execution, required parameters are instance ID, state machine

ARN, EC2 Name.

Appendix 1 59

Turku University of Applied Sciences Thesis | Roope Westman

 input_set = {

 "machineid": instanceId,

 "stateMachineArn": stateMachine,

 "ec2Name": ec2Name

 }

 INPUT = json.dumps(input_set)

Input set for the execution

 execution_response = stepfunc.start_execution(

 name='terminate-'+ec2Name,

 stateMachineArn=stateMachine,

 input=INPUT

)

Creates an execution order for the state machine

def lambda_handler(event, context):

Start the function for lambda_handler, this function name can be different, but

then it must also be changed in the Lambda runtime settings

 data = json.loads(event['Records'][0]['body'])

Assign body from the payload to data variable for easy access

 AMI = data['AMI']

 INSTANCE_TYPE = data['InstanceType']

 KEY_NAME = "placeholder-key-pair"

 SUBNET = data['Subnet']

Appendix 1 60

Turku University of Applied Sciences Thesis | Roope Westman

Create variables and assign them placeholder or final values

 print('InstanceType = ', INSTANCE_TYPE)

 print('AMI = ', AMI)

Print info to logs

 if SUBNET == "new":

 SUBNET_ID = create_subnet("vpc-0e18bdb91b4d1964d",

data['ec2Name'])

 KEY_VALUE, KEY_NAME = create_keys(data['ec2Name'])

 else:

 pass

If a subnet was not defined in the payload create a new subnet to a specific

VPC

 instance = ec2.create_instances(

 ImageId=AMI,

 InstanceType=INSTANCE_TYPE,

 KeyName=KEY_NAME,

 SubnetId=SUBNET_ID,

 MaxCount=1,

 MinCount=1

)

Create the EC2 instance

 TAGS = create_tags(data['ec2Name'], data['CostOrg'])

 instance[0].create_tags(Tags=TAGS)

 print("New instance created:", instance[0].id)

Assign tags to the instance

Appendix 1 61

Turku University of Applied Sciences Thesis | Roope Westman

 roleArn = 'arn:aws:iam::680505452604:role/LabStepFunctionRole'

 stateMachine = create_state_machine(data['TerminationDate'],

data['ec2Name'], roleArn)

 print("State Machine created: " + stateMachine)

Call the create_state_machine function

 create_execution(instance[0].id, stateMachine, data['ec2Name'])

 print("Execution created")

Call the create_execution function

 print("Public IP is: "+ instance[0].public_dns_name)

Print the public DNS name to logs, should be replaced by a proper destination

Appendix 1 62

Turku University of Applied Sciences Thesis | Roope Westman

4.4 TerminateEC2

import boto3

ec2client = boto3.client('ec2')

ec2 = boto3.resource('ec2')

stepfunc = boto3.client('stepfunctions')

Import required libraries and set the ec2 and stepfunctions resources of boto3

to easier variable names

def delete_subnet(ec2Name):

 filters = [{

 'Name': 'tag:Name',

 'Values': [ec2Name+'-subnet'],

 }]

 subnets = list(ec2.subnets.filter(Filters=filters))

 subnets[0].delete()

Function delete_subnet, deletes subnets based on a Name tag

def delete_key_pair(ec2Name):

 ec2client.delete_key_pair(KeyName=ec2Name+'-keypair')

Function delete_key_pair deletes keypairs based on Key Pair Name

def lambda_handler(event, context):

Start the function for lambda_handler, this function name can be different, but

then it must also be changed in the Lambda runtime settings

 filters = [{

 'Name': 'tag:awsLabAutoTerminate',

Appendix 1 63

Turku University of Applied Sciences Thesis | Roope Westman

 'Values': ['True'],

 }]

Create a filter for later use, in this case, tags are used for filtering the instances

that we want to terminate

 machineids = [event['machineid']]

Put machine ID from the payload to machineids variable

 instances = ec2.instances.filter(Filters=filters)

Select the instances with the filter

 terminatingInstance =

ec2.instances.filter(InstanceIds=machineids).terminate()

 print(terminatingInstance)

Terminate instances that match the machineids variable and print the result

 instance = ec2.Instance(event['machineid'])

 instance.wait_until_terminated()

Wait until the instance is terminated, this is done to successfully delete the

subnet

 delete_subnet(event['ec2Name'])

 print('Deleting subnet')

Appendix 1 64

Turku University of Applied Sciences Thesis | Roope Westman

Call function delete_subnet

 delete_key_pair(event['ec2Name'])

 print("Deleting KeyPair")

Call function delete_key_pair

 response = stepfunc.delete_state_machine(

 stateMachineArn=event['stateMachineArn']

)

 print(response)

Delete the state machine which is responsible for calling this function and print

the result

