Bachelor’s Thesis
Bachelor of Engineering, Information and Communications Technology

2022

Roope Westman

Automating a Small-Scale Cloud
Environment

TURKU AMK

TURKU UNIVERSITY OF
APPLIED SCIENCES

Bachelor’s Thesis | Abstract
Turku University of Applied Sciences
Information and Communications Technology

2022 | Pages 31
Roope Westman

Automating a Small-Scale Cloud Environment

Cloud environments are a modern way to create easily scalable cost-efficient IT
infrastructures. The objective of this thesis was to create an automated small
scalable laboratory environment in the cloud. The environment should use cloud
service providers’ services and be made to replace a hardware-based

laboratory.

To achieve the objective of this thesis, the most common cloud service
providers were researched and compared with a particular focus on tools for
automating cloud environments. The sources used were internet articles and

resources offered by cloud service providers, such as guides and documents.

Based on the findings of the above mentioned comparison of cloud environment
automation tools, the plan was to build this environment using a declarative tool
such as AWS (Amazon Web Services) CloudFormation. However, this was
deemed too difficult to achieve with limited resources, and procedural tools

were used instead.

As a result, an automated environment was built using AWS Lambdas as the
main component. It is supported by other services such as AWS SQS, AWS
Step Functions, and AWS EventBridge.

Keywords:

Cloud computing, Automation, AWS, laaS

Opinnaytety6é (AMK) | Tiivistelma
Turun ammattikorkeakoulu
Tieto- ja Viestintatekniikka

2022 | 31 sivua
Roope Westman

Pienen mittakaavan pilviympariston automatisointi

Pilviymparistét ovat moderni tapa luoda helposti skaalautuvia ja
kustannustehokkaita tietoteknisia infrastruktuureja. Taman opinnaytetyon
tavoite oli luoda pilveen pieni automatisoitu skaalautuva laboratorioymparisto.
Ympariston on tarkoitus kayttaa pilvipalvelutarjoamia palveluita ja sen tarkoitus

on korvata laitteistopohjainen laboratorio.

Taman opinnaytetydn tavoitteen saavuttamiseksi, on tutkittu ja vertailtu
yleisimpia pilvipalvelutarjoajia erityisesti keskittyen pilviymparistdjen
automatisoinnissa kaytettaviin tyokaluihin. Kaytettyja tutkimuksen lahteita olivat
internet-artikkelit ja pilvipalvelutarjoajien tarjoamat resurssit, kuten ohjeet ja

dokumentaatiot.

Tutkimus osuuden pohjalta oli tarkoitus rakentaa tama ymparistd kayttamalla
deklaratiivista tyokalua, kuten AWS (Amazon Web Services) CloudFormation.
Tama kuitenkin katsottiin lilan vaikeaksi saavuttaa rajoitetuilla resursseilla, ja

sen sijaan kaytettiin proseduraalisia tyokaluja.

Lopputuloksena rakennettiin automatisoitu ymparisto, jossa AWS Lambdat
toimii padkomponenttina. Sen tukena muita palveluita, kuten AWS SQS, AWS
Step Functions ja AWS EventBridge.

Asiasanat:

Pilvipalvelut, Automaatio, AWS, laaS

Content
List of abbreviations (or) symbols
1 Introduction

2 Cloud Service Providers
2.1 Differences

2.2 Pricing

2.3 Selecting the provider

3 Infrastructure as Code Tools

3.1 Considerations for [aC Tools

3.1.1 Declarative and Procedural Tools and Languages

3.1.2 Mutable vs Immutable Tools

3.2 Selection of the Orchestration Tool

3.3 Extra Tools
3.3.1 AWS Cloud Development Kit
3.3.2 AWS Lambda
3.3.3 AWS Software Development Kits
3.3.4 AWS Step Functions
3.3.5 AWS EventBridge

4 Server Automation/Orchestration
4.1 Requirements for the Environment
4.2 Experience Creating the Environment
4.3 Implementation Plan
4.3.1 Automatic Startup and Shutdown
4.3.2 Termination of Expired Instances
4.4 Integration to a Data Source
4.5 Tracking costs and Billing Details
4.6 Testing the Automation

5 Conclusion

References

10
11

12
12
12
13
14
15
15
16
16
16
17

18
18
18
19
20
21
22
23
23

27

29

Appendices

Appendix 1. Instructions for Setting Up Lab Environment

Figures

Figure 1. Gartner Magic Quadrant for Cloud Service Providers [4].

Figure 2. Sequence Diagram of EC2 Creation.
Figure 3. Automatic Startup and Shutdown.
Figure 4. Termination of Instances.

Figure 5. Integration to a Service Portal.

Pictures

Picture 1. Example Workflow from AWS Step Functions.
Picture 2. Sending a Message to the SQS Queue.
Picture 3. CreateEC2 Logs from AWS CloudWatch.

Picture 4. Running Instance in AWS Console.

Picture 5. State Machines Execution Waiting for Termination Date.

Picture 6. SSH Connection to the Instance.

Picture 7. TerminateEC2 Lambda Logs.

Tables

Table 1. Cloud Provider Cost Comparison.

20
21
22
22

17
23
24
25
25
26
26

10

List of abbreviations (or) symbols

AMI Amazon Machine Image
AWS Amazon Web Services
CDK Cloud Development Kit
CPU Central Processing Unit
EC2 Elastic Compute Cloud
GB Gigabyte

IP Internet Protocol

IT Information Technology
laC Infrastructure as Code
RAM Random Access Memory
RDP Remote Desktop Protocol
RSA Rivest—Shamir—Adleman
S3 Simple Storage Service
SDK Software Development Kit
SQS Simple Queueing System
SSD Solid State Drive

SSH Secure Shell

YAML Yet Another Markup Language

1 Introduction

This thesis aims to create a small, easily scalable laboratory environment that is
to be built using the services of a public cloud service provider. The main use
for this lab environment is to quickly test new technologies and software in
projects that last about a month or two. The environment should be as
autonomous as possible to reduce maintenance and labor costs, while still
meeting certain requirements regarding uptimes and costs which are specified

later.

This was ordered by a company that wants to increase their public cloud usage
while at the same time solving a problem they are having. The problem that the
company in question is facing is that their small-scale laboratory environment is
built upon physical hardware that is hard to maintain and requires lots of labor
to keep working. Because the infrastructure is not maintained by a specific
person or a team, it leads to some servers staying up for far longer than
originally planned. Physical hardware also requires a lot more time to set up
and install for it to be usable for testing. For example, you could order some
hardware and have issues with compatibility, user rights, or a myriad of other
issues and in a big company small issues like these can take up to months to
solve. [1], [2]

Implementation would be pretty similar to a classroom lab in the sense that a
virtual machine will be created on-demand with the specified parameters and all
the work is handled by automated programs. There are plenty of websites that
use this kind of technology to their advantage, for example, TryHackMe.com
has assignments that start up a virtual machine with the required files and

vulnerabilities for people to practice their cyber security and hacking skills. [3]

Objectives for this thesis are: to familiarize and learn to work with cloud
providers and tools, and successfully create an automated simple environment
that launches virtual instances and also automatically takes them down after a
specific period of time.

Turku University of Applied Sciences Thesis | Roope Westman

This thesis will be built of two parts: theory and implementation. In the theory
segment, cloud service providers and their tools will be explored, and using
found resources, a baseline will be created for the implementation part. In the
implementation segment, the concrete portion of the work will be done using

methods best found for success.

Outside the scope of this thesis is the actual integration to a platform that you
could order these machines from. Possible implementations of this will be
discussed but will not be tested. This thesis also will not discuss security-related

issues or best practices and will mainly focus on automation.

Turku University of Applied Sciences Thesis | Roope Westman

2 Cloud Service Providers

There are three major cloud service providers that offer the most services,
availability, and reliability, and this thesis will focus only on these providers.
These three providers are Amazon Web Services, Microsoft Azure, and Google
Cloud as seen in Figure 1. There are also many smaller providers in the field
that may be excellent for specific use cases, but they usually don'’t offer as a

wide selection of services as the major providers. [4]

Amazon Web Services

@ Micosoft

@ Google

@ Albaba Cloud

® Oracle

Tencent Cloud @
@ BM

ABILITY TO EXECUTE

COMPLETENESS OF VISION As of July 2021 © Gartner, Inc
Gartner

Figure 1. Gartner Magic Quadrant for Cloud Service Providers [4].
2.1 Differences
The purpose of this comparison is not to give a full overview of all three of the

major cloud providers but to instead compare them in the scope of this project.
The most important points of comparison are tool availability and ease of use.

Turku University of Applied Sciences Thesis | Roope Westman

10

2.2 Pricing

These three major providers all offer a simple calculation tool for calculating the
price of the deployment. It should be noted that these prices change regularly
and better deals can most likely be made with sales representatives and/or by
increasing the order size and duration. There are many resources [5]-[7] that
have compared these prices but for this thesis new up-to-date calculations were

made using tools provided by the cloud providers. [8]—[10]

Calculations used in this thesis are made with prices according to 4.1.2022 and
all instances in the calculations have 8 vCPUs, 32GB of RAM, 174 hours of
monthly usage per instance, region is set as close as possible to London.
Google and AWS calculations use 30GB SSD for storage and Azure uses 64GB
SSD.

Table 1. Cloud Provider Cost Comparison.

AWS Google Azure
vCPU 8 8 8
RAM(GB) 32GB 32GB 32GB
Storage 30GB 30GB 64GB
hour cost perinstance 0,27 € 0,30€ 0,32€

instances 10, hours 174 per month 462,99 € 529,99 € 558,00€
Storage 30,78 € 53,94 € included
Total 493,77€ 583,93€ 558,00€

As it is evident from Table 1, the prices of these providers don’t vary too wildly
as the hour cost per instance is almost the same on all, and major differences in
the end prices are mostly due to cost differences in storage solutions and
multiple different things affecting the per hour cost like the location of the data
center. All of these are still much cheaper than the alternative of running your
own physical infrastructure where it might take up to multiple days just to set up

the hardware and it is easier to optimize costs in a cloud environment with

Turku University of Applied Sciences Thesis | Roope Westman

11

automatic shutdowns and with other services that cloud providers provide for

saving costs like different pricing plans for example.

2.3 Selecting the provider

Our use case for the cloud provider is a common use case that any of the major
cloud providers could provide the required services for, and as such it does not
matter too much which provider is chosen for the project from a technical

standpoint.

Selection criteria will weigh heavily on features and tools the provider provides.
Since price is too hard to measure in a corporate use without the use of sales

representatives, it will be left out of the selection criteria.

This project is going to use AWS and that is mostly because it offers more tools
for the job compared to the other major providers. AWS offers the use of both of
the biggest 1aC tools, Terraform and its own proprietary AWS CloudFormation

while others offer only the use of Terraform. These tools will be explored later in

this thesis in Chapter 3 Infrastructure as Code Tools.

Another reason for the selection of AWS is because the company that this is
being provided for and the personnel working there are more familiar with AWS
than the other platforms and have already accounts and some infrastructure in

place for AWS automation.

Turku University of Applied Sciences Thesis | Roope Westman

12

3 Infrastructure as Code Tools

3.1 Considerations for l1aC Tools

In this chapter, | will go through some of the considerations to keep in mind
when selecting the correct tools for the job. l1aC (Infrastructure as Code) tools
can be categorized in a few ways but what it boils down to is configuration
orchestration and configuration management. Usually, these tools are used
together by first using an orchestration management tool to build the
infrastructure and then using configuration management to configure the

software on the provisioned infrastructure. [11]

The most important aspect to keep in mind regarding this project is that are the
tools used either declarative or procedural and mutable or immutable. Further
considerations might be that should the tool have an agent like Chef and
Puppet or be agentless like Ansible and SaltStack, but that does not concern
cloud environments and configuration orchestration tools as they will install the

agents on the clients if needed. [12]

3.1.1 Declarative and Procedural Tools and Languages

Procedural tools (ex. Chef and Ansible) use a language in which you define
step-by-step how to reach a certain goal and declarative tools (ex.
CloudFormation and Terraform) are tools where you state the desired end state
that you want to reach and the tool itself decides the best way to reach that said

end state.

The main difference that comes in using these tools is that when changing the
infrastructure the procedural tools do not keep track of the infrastructure and

you would always need to know it by yourself when making changes.

For example, say that you have an infrastructure with 5 instances and you want

to reach a state where you have 10 instances. You would first need to know

Turku University of Applied Sciences Thesis | Roope Westman

13

how many instances you have and add as many as are missing to the
infrastructure and write a new snippet of code or re-use and modify an old one.
This may lead to a case where your infrastructure may have more or fewer

instances than you wanted if they are not tracked properly.

In the declarative version of this example, you would state that you want 10
instances and the tool would add as many as are needed or remove any excess

instances if you have over 10 instances. [13]

This project will focus on using declarative tools as the main component

because of the infrastructure tracking nature of them and support these tools
with procedural tools if needed. For example, the infrastructure would be built
using a declarative tool such as CloudFormation and inside the infrastructure,

the instances could be modified using Ansible scripts.

3.1.2 Mutable vs Immutable Tools

Mutable infrastructure is the traditional way of handling servers and means that
the updates and modifications to a server modify the existing server and apply
to it. This has the benefit of infrastructure fitting the specific needs and can be
usually be updated and adapted faster to changes in requirements. Downsides
on the other hand include harder diagnosing and reproduction of technical
issues, more difficult version tracking, and added complexity of the
infrastructure. Tools that use mutable infrastructure are for example Chef,

Puppet, Ansible, and Saltstack.

Immutable infrastructure is the new way of handling server infrastructure and
the essence of it is that you deploy something once and cannot modify it without
deleting the instance and creating a new one with the updated modifications.
This has many benefits for larger infrastructures such as better version tracking
and easier rollbacks, more predictability, and reduced complexity of the servers
as they are never modified. Downsides include that data storage for these

servers must be externalized and you cannot modify existing servers in case of

Turku University of Applied Sciences Thesis | Roope Westman

14

errors. Tools that use immutable infrastructure are for example Terraform,
Kubernetes, and CloudFormation [14], [15]

This project will focus on using immutable infrastructure since the environment
will not have a dedicated user or support group which causes the infrastructures
predictability to drop drastically since there will be no one to make proper

documentation and version tracking.

3.2 Selection of the Orchestration Tool

Since the main goal is to set up an ever-changing environment, orchestration
management is the category that should be looked at first as they are made to
handle building and managing infrastructure as their main purpose. Building a
huge environment using state management tools like Ansible might be possible
but would require careful planning and would most likely have many issues to

overcome that laC tools handle automatically.

The three biggest tools at the moment are Terraform, Cloudformation, and
Pulumi. Out of these three Pulumi is the newest so it has a smaller community
to learn from and is the only one with costs associated with it regarding the
number of users and resources used, and because of that, it is not a great fit for
this project. [16], [17]

Terraform and CloudFormation both have big communities, years of
experience, and their own strengths. Terraform is an open-source project by
Hashicorp and CloudFormation is a service offered by Amazon Web Services.
Terraform supports multi-cloud and CloudFormation is only usable on AWS but
since we chose AWS as the cloud provider and the project is not planning to be

used in multi-cloud environments it is not a key factor.

This project is going to use CloudFormation. The main reasons for selecting
CloudFormation are that it supports automatic rollbacks if the deployment fails,
state management (keeping track of recourses under management) is handled

by AWS and it handles secrets more securely than Terraform. These features

Turku University of Applied Sciences Thesis | Roope Westman

15

are useful in reducing the building complexity of the project as Terraform does
not support these natively and you would have to get additional third-party
modules or they might not even exist. There are many features that Terraform
has that CloudFormation does not have but since this is a simple environment
most of those features are not important. Additional factors in the decision were
that the company in question has prior experience with CloudFormation and the
consensus among experts is to use CloudFormation when working with AWS.
[18], [19]

3.3 Extra Tools

These are tools that might be useful while building the infrastructure or

automating certain tasks and should be kept in mind

3.3.1 AWS Cloud Development Kit

The AWS CDK is a software development framework which purpose is to allow
users to define cloud infrastructure using more human-readable programming
languages such as JavaScript, Python, C#, and many others, and support for
other languages are in the works. Since CDK is an abstraction of

CloudFormation it compiles into CloudFormation templates as the final product.

Compared to writing templates with YAML in CloudFormation, CDK is easier for
humans to read and design as programming languages used by CDK are
concise and easier to comprehend. It also allows the use of programming
idioms like loops, conditionals, and many more which allow you to design a
more flexible infrastructure. Shorter programs are easier to maintain and it
removes a lot of the complexity of template files in the designing phase. [20],
[21]

Turku University of Applied Sciences Thesis | Roope Westman

16

The downsides of CDK are that since it is an abstraction of CloudFormation
users can experience unexpected behavior if they do not understand how
CloudFormation itself works and as such it should not be used to skip the
learning curve of provisioning in the cloud. A major downside also is that since
CDK is a young framework it is also still constantly changing and there might be
new builds that break deployments because of deprecated methods or

reworked constructs. [22]

3.3.2 AWS Lambda

AWS Lambda is a service that allows you to run code, applications, and
services without provisioning or managing servers yourself. AWS handles the
management of these servers and you only pay for the time that the resources
are used for. It is a powerful tool as it easily scales for high demand and is

highly integrated into other services offered by AWS. [23]

3.3.3 AWS Software Development Kits

AWS also offers SDKs for many programming languages that allow you to
access the Application Programming Interfaces offered by AWS and integrate
your preferred programming languages with AWS services. This can be used to

easily create and manage resources in your infrastructure [24]

3.3.4 AWS Step Functions

AWS Step Functions offers the creation of visual workflows that can be used to
build and automate IT processes and pipelines using other AWS services. As
seen in Picture 1, there is an easy-to-use visual interface for creating complex

automated workflows with high integration to other AWS services. [25]

Turku University of Applied Sciences Thesis | Roope Westman

17

Edit TestStepFunction info

Q & 9 Undo C Redo @& Zoomin Q Zoom out @ Center

Actions Flow

MOST POPULAR

AWS Lambda

Wait state

Invoke
I Wait for Date

Amazon SNS l
Lambda: Invoke
H Lambda Invoke

Publish ‘

Amazon ECS

RunTask

AWS Step Functions

StartE: t Parallel state
artExecution H parallel
AWS Glue - N
StartJobRun P SRR R
Pl 505 SendMessage Chaice state
COMPUTE H 0:_}3/'0 5QS SendMessage " Iﬁ Choice
- —— ~
E Amazon Data Lifecycle ... » EEE =
E" Amazon EBS > DynamoDB: DeleteBackup

DeleteBackup

@ Amazon EC2 >

E AWS EC2 Instance Conn... &
& Elastic Inference > l
& Elastic Load Balancing V1 P

E Elastic Load Balancing V2 P

Picture 1. Example Workflow from AWS Step Functions.

3.3.5 AWS EventBridge

AWS EventBridge allows the creation of rules that trigger specified events such
as Lambda functions, Step Functions, or other user-connected applications. For
example, you could set a backup function to launch every day at a specific time
without creating complicated scripts and event tracking software. Since there

are no servers to provision or manage and scaling is handled by AWS it is easy

to reduce operational costs compared to self-built systems. [26]

Turku University of Applied Sciences Thesis | Roope Westman

18

4 Server Automation/Orchestration

4.1 Requirements for the Environment

The major requirements for the environment are that instances in it are only
running during work hours (6:00 to 18:00) and that the lifetime of each instance
should be specified and be short-lived (1 to 3 mo.). The amount of users using
this environment is about 10-20, but this can easily be scaled up as the cloud is

easily scalable.

For now, it only needs to support basic operating systems such as different

Linux distributions and Windows versions.

Permissions for SSH and RDP access are also required and login to the Linux
instances will be done using RSA keys. AWS instances come with
predetermined accounts depending on the image type used, for example,
Windows default user is “Administrator” and Amazon’s Linux image comes with

the username “ec2-user”.

4.2 Experience Creating the Environment

In this concrete portion of the thesis, it was realized that the tools and methods
discussed in the theory segment of this thesis might be possible to do but would

require considerably more planning, time, or personnel to implement well.

What was learned first, was that using pure CloudFormation is not suited for this
type of project that well, as it is not as easy to write and there are easier tools to
use that create the CloudFormation templates for you with a lot less effort. One
such tool is AWS CDK. One major hurdle was that automating a constantly
changing CloudFormation template is not as easy as using other tools to
generate new templates based on new requirements. CloudFormation works

better on a more static infrastructure that is changed by hand or an automation

Turku University of Applied Sciences Thesis | Roope Westman

19

pipeline where CloudFormation is the end product of another automation

software, rather than being the core tool used for automation.

CDK was a great tool that had all the features that you would want when
building an environment like this, but unfortunately, it is still quite young in terms
of documentation and resources and that was the main reason it did not work
out. It was hard to diagnose where the issues were when problems were
encountered and there was not enough of a footprint of people experiencing the
same issues to easily find answers. It also has the option to use many
programming languages which makes it harder to find a solution for your

preferred language.

After failing to build the environment using CloudFormation and CDK, Lambdas
were the next step and also the place where success was found. Lambdas were
easy to use and implement in AWS and they are fast and cheap. The biggest
issue with using Lambdas is that we lose a lot of the benefits of using
declarative tools which were mentioned earlier in chapter 3.1.1, as Lambda is a
procedural tool it will create an instance even if an error is found later. This can
be solved using proper error handling but requires a lot of knowledge in
programming and much more testing than what a declarative tool would require.
But the ease of setting up the environment, all the ready-made integrations to
Lambda, make it easy to teach others and make it easily modifiable which are

great benefits that in this case outweigh the negatives.

The full details of the implementation can be found in Appendix 1.

4.3 Implementation Plan

The final plan for the implementation is represented in Figure 2 and it is to have
a message queueing service (AWS Simple Queue Service) wait for a package
with the required parameters for execution of the environment. When the AWS
SQS receives a payload, it executes a Lambda function that first creates a new
subnet, key pair, AWS EC2 instance, and after that, it creates a state machine
in AWS Step Functions linked to that EC2 instance and finally a state execution

Turku University of Applied Sciences Thesis | Roope Westman

20

for the state machine which waits for the termination date of the EC2 instance.

We also set up tags in all the elements of the environment for billing and easy

grouping in programming. An example of a tag could be: Name:

“awslLabAutoTerminate”, Value: “True” which could be used to allow the

termination of an element if set to “True” or disallow with set to “False”.

5Qs

CreateEC2 Lambda

Subnet

KeyPair

EC2

State Machine

Execution

I
I
Payload _ |

I

I
I
[
Payload I

Create

|
|
|
|
|
|
|
[

I
Create

| Create

I
|
|
|
|
|
|
|
|
|
:l
|
|
|
[

Create

Create

g

|
|
;
t
|
|
1

Figure 2. Sequence Diagram of EC2 Creation.

4.3.1 Automatic Startup and Shutdown

. I —

h 4

|
|
[
[
|
|
|
[
|
[
|
|
[
|
|
[
|
|
i
|
|
I

As shown in Figure 3 we also use AWS EventBridge to create two events, one

for starting up EC2 instances and one for shutting down EC2 instances. Both of

these trigger their respective Lambda functions StartEC2 and StopEC2 at

specified times and will affect every EC2 instance tagged with either

“awslLabAutoStart” or “awsLabAutoStop”. So if there is a need to either not shut

down or start up an EC2 instance these tags can be manually removed or set to

the value “False” from the EC2 clients.

Turku University of Applied Sciences Thesis | Roope Westman

21

EventBridge StantEC?2 Lambda StopEC?2 Lambda EC2 Instance

Wait for 6 AM

|
‘ Start Instance
I >
|
|
|
|

[
|
|
|
|
|
|
|
|

Wait for 6 PM

I

I

I

I

|

I

: . Stop Instance >
I I

I I

| |

Figure 3. Automatic Startup and Shutdown.

4.3.2 Termination of Expired Instances

Termination of expired EC2 instances is handled with AWS Step Functions as
shown in Figure 4. These Step Functions have a state machine that waits for a
certain time, in our case the termination date, to arrive and when it does it
executes a Lambda function which deletes the EC2 instance and all the
components related to it and finally also deletes the state machine itself. This
script is also set up to affect only instances with the tag “awsLabAutoTerminate”
set to “True”, so if you want to avoid termination of an instance, set this flag to
false. There is also the possibility of setting machines to hibernate first and
terminate after a certain period and this would reduce the risk of accidental
deletion of data that is still being used.

Turku University of Applied Sciences Thesis | Roope Westman

22

Step Function

TerminateECZ2 Lambda

ECZ Instance

KeyPair

|
|

[

Wait for Termination Date

Start

|

|

|

|

|
>

Terminate B | :

Terminate

Terminate

[
|
l
|
|
|
|
|
|
|
|
: | i Terminate
|

Figure 4. Termination of Instances.

4.4 Integration to a Data Source

X

The idea is for this AWS environment to be integrated into an existing service

portal or ticketing system for ordering user rights and servers that would send

data payloads to the AWS SQS with the required parameters and in return

receive a payload with the required information to access the EC2 instance like

for example user info and IP addresses to connect to it as shown in Figure 5.

Service Portal SQs

CreateEC2 Lambda

I
|
|
|
|

Figure 5. Integration to a Service Portal.

Turku University of Applied Sciences Thesis | Roope Westman

23

4.5 Tracking costs and Billing Details

Since one of the main features of this project was to reduce costs compared to
a hardware-based lab environment, there should be a way to track expenses
accumulated by the cloud environment. AWS allows the creation of cost reports
which can be organized by user-created tags or AWS-generated tags. These
cost reports then can be saved to an AWS S3 bucket as a .csv file and exported
from there to where it is needed or processed further. Since this project was
made using the free tier of AWS services no cost report can be made as an

example.

4.6 Testing the Automation

Since there is no integration in place from an endpoint to SQS a direct message
will instead be sent to the SQS queue using AWS console like shown in Picture
2. This message contains the AMI of an Amazon Linux machine and as such,
that is what will be deployed. By changing the AMI in the payload other

operating systems can also be deployed.

Amazon 5Q5 Queues awsLab5QS Send and receive messages

Send and receive messages

Send messages to and receive messages from a queue.

Send message info Clear content

Message body
Enter the message to

send to the queue

{"OrgUnit": "Org-External”, "CostOrg": "Org-Finance", "OrdererName": "Roope Westman", "OrderAuth™
"Roope Westman", "ec2ZName": "thesis-demo-ec2", "TerminationDate": "2022-02-27", "OrderDate":

"2022-02-27", "AMI": "ami-0bf84c42e04519c85", "InstanceType™ "t2.micro", "Subnet™ "new"} p

Delivery delay Info

0

Sec... ¥
Should be between 0 seconds and 15 minutes

Message attributes - Optional Info

Picture 2. Sending a Message to the SQS Queue.

Turku University of Applied Sciences Thesis | Roope Westman

24

After the message is sent to the SQS queue it will be then sent to the Lambda

function “CreateEC2”. In the logs, seen in Picture 3, it can be seen that the

execution was successful and the instance, state machine, and its execution

were all created properly in under 3 seconds.

> Timestamp

¥ ¥ ¥ ¥ ¥ ¥ ¥ Y ¥ Y Y Y Y Y V¥ ¥ V¥ VY ¥ V¥ V¥ V¥ V¥ VYTV VYV

v 2822-82-27722:

TyniYCnXpxzGKtALrhlgCQL7GbUCDUMK LFmXe

¥ ¥ Vv V¥Yvwvevw

2022-92-27T22:
2022-92-27T22:
2022-92-27T22:
2022-92-27T22:
2022-92-27T22:
2022-92-27T22:
2822-82-27722:
2822-82-27722:
2822-82-27722:
2822-82-27722:
2822-82-27722:
2822-82-27722:
2822-82-27722:
2822-82-27722:
2622-82-27722:
2022-92-27T22:
2022-92-27T22:
2022-92-27T22:
2022-92-27T22:
2022-92-27T22:
2022-92-27T22:
2022-92-27T22:
2022-92-27T22:
1022-02-27T22:
2822-82-27722:
2822-82-27722:
2822-82-27722:
2822-82-27722:

2822-82-27722:

2822-82-27722:
2822-82-27722:
2822-82-27722:
2822-82-27722:
2822-82-27722:

2822-82-27722:

:1B.
t1B.

128,
121,
121,
121,
121,

586+02:
587+02:
.587+02:
.923+02:
.377+02:
.377+02:
.377+82:
.377+82:
.377+82:
.377+82:
.377+82:
.377+82:
.377+82:
.377+82:
.377+82:
.377+02:
.377+02:
.377+02:
.377+02:
.377+02:
.377+02:
.377+02:
.377+02:
.377+82:
.377+82:
.377+82:
.377+82:
.377+82:
.377+82:

.377+82:

.377+82:
914+82:
148+82:
223+02:
224+02:

224+02:

Message

No older events at this moment. Retry

START RequestId: 9BcdBffl-d1Ba-55a4-adea-d5648d1@achf Version: SLATEST

InstanceType = t2.micro
AMT = ami-857B4cd2e84519¢85
Subnet is valid: 10.9.8.8/24

----- BEGIN RSA PRIVATE KEY-----

MIIEpATBAAKCAQEAtOKFhGQzmIIEZYjcbHSKYNHIG2 FxmSNSmzAHPBaXVOK Fyll2X

ZSb2DNU2wTonQNIUKGaQqlx/5741TnSKgakncCasjZuz]9R2/ zn/ Afrxinb3cotd

LXC+CaxLtVgpQlmhg3TaRkMLB1WheuULE1bVy+ZA0Cs75HLSNQaVwWYG

352500
2m+QKOPiWIkL pDXZnqloScEGNVFUSabaQApQYESGyaliP]+E9zTBRHAGE /mUsTxsH
ut2bEvOZMNi9FMuiDISSQEQVAsavFZIdcEI16UsyoIBN1226tAs6Ms ik 7y 11095
kucRIVpBYFeSan6KZHaF AZEFBC] gl 8ZYFZFLQIDAQABAOIBAEX202AzHS 922F6U

BU1Jq@5e6tCN1tHCSBLFROgEqigIHNGQDDKIXFI7ry70XBZYG3gsqCBmLLIk/ th

u+/rHLYRNEG120LhyNCS /Krc060G6 T1eHBUKeANME S0 STER/NEE hwSAZSY 12
2VIX41CiatKLzBdIF46]gKA+qXL1]pilniZsyOQreMKeSSTIbIDAYURaZI0 e 0do
s4Ee6Q77et1YTeqloQoS rwAMMDkag+sVeYBxrgy SFZ8sAXyFvBzblia 3RRZDMNh

BXVM/engPaVEDARME sMu/ prS 2UEeklBy YiiphsyThbioxOng3 PzN2H /mx1DKIsep6

riH3TGECEYEA31KgkRbrxR11ugdBfDDs 41 7HeK1HZVORCEZMLDOVCTAROZ Im+c
E3HmdHsu2PknCs3 T+uz1%D11107 dbdutecBpEk 2hDr DT 3XOHH 187X 1+ TUnet
1p0bFui el AVNVFNGVRSnhZUMxhURIRTdSGMPUL@3VAPT /v iy BPPOhZUCEYEAB LT
VzL3PHULFhET FKBESEGDXTUOBLFAGY FXAV3BAEURT SH3Wk+AXDTGrVAZ67NeHsaY
5D505p3K02cADIBKY 46K 2by s55¢+18P TkSq9ud+IzNIFzbdRFclogTVpy BDAMaY
ynlumUo7cmeHzaKx54TIDD6xEDEXT5EnC492qz KCEYEABC UXP+cREMUNI Ty lizF/p
LPACSHLGS5r70ALICTRY 2t 48851 ABE2GBKBEInriX1625eNozMm+3BURS+ 2WRgY
SepzKATS/189PbOXUWDS BUCIDVHUMIMY V0 T2nfeqVxYSQI zqmoBuX I SVAF tuP
+Cey71EN/3UnbITQUIXIVFUCEVEAoUto3511geVDeaHNj +1eQSHSBucVeBBpUhy
qIhv1ValFXtoSLENsC/CT7yGR]gVmE IFkRaHCSXZg5 1YY LKp+EFBnIS3vHCKS
nmVGT7/Dg6CcBQonuy0T1FShHEL4FFMIMT FarhKn7bamIMHL7 cARISK+1pCPS3QB
1TLaDLKCgYBI+X]+tUuiastfmoA+5ppUSYNTHPZ1 Jd+kg3py TEFnSH+1vgkabsm
3A123CHn/ oznmuXybFiGDeBAUBDXHKVUNSUSdnGyVZ4@0SIRIiNyz4FUqybIUGIN

TyniYCnXpxzGKtALrh]gCQL7GbUCDUMKLFmXgnyDiZ+58xQ] ug+S0g==

"""" END RSA PRIVATE

New instance created: i e51ad49da33ga

State Machine created: arn:aws:states:eu-west-1:688585452604:stateMachine:thesis-demo-ec2-state-machine

Execution created

END ReguestlId: 98cd8ffl-dl8a-55a4-adea-d564@d1Bachf

REPORT Reguestld: 98cd3ffl-dl3a-55ad4-adea-d5648d10achf Duration: 2637.9@ ms Billed Duration: 2637 ms Memory

Picture 3. CreateEC2 Logs from AWS CloudWatch.

In the AWS console, Picture 4, it can also be seen that the instance was
created properly and received public and private IP addresses correctly and a

keypair was attached to it.

Turku University of Applied Sciences Thesis | Roope Westman

Instance summary for i-021de51ad49da339a (thesis-demo-ec2)

Updated less than a minute ago

L]

Connect

‘ Instance state ¥ || Actions ¥ ‘

Instance ID

i-021de51ad49da33%a (thesis-demo-
ec2)

IPv6 address

Hostname type

IP name: ip-10-0-0-107 .eu-west-
1.compute.internal

Instance type

t2.micro

AWS Compute Optimizer finding

@Opt-in to AWS Compute Optimizer for
recommendations. | Learn more [

Public IPv4 address

63.32.106.122 | open address [4

Instance state

@ Running

Private IP DNS name (IPv4 only)
ip-10-0-0-107.eu-west-

T.compute.internal

Elastic IP addresses

IAM Role

Info

Private IPv4 addresses

10.0.0.107

Public IPv4 DNS

ec2-63-32-106-122.eu-west-

1.compute.amazonaws.com | open address

(]

Answer private resource DNS name

VPCID

vpc-0e18bdbS1b4d1964d (awsLabVP(C)
e

Subnet 1D

subnet-Oacf7acf788033d43 (thesis-
demo-ec2-subnet) [A

Picture 4. Running Instance in AWS Console.

25

In Picture 5, it can be seen that the state machine has also been created and is

waiting for the termination date of the instance that was set in the payload of the

message.

terminate-thesis-demo-ec2

Details Execution input Execution output

Execution Status
@ Running

Execution ARN

Edit state machine ‘ ‘ New execution ‘ ‘ Stop execution

Definition

Started
Feb 27, 2022 10:09:21.188 PM

End Time

arn:aws:states:eu-west-1:680505452604:execution:thesis-demo-ec2-

state-machine:terminate-thesis-demo-ec2

Graph inspector

b

L]

Invoke TerminateEC2 lambda

Data flow simulator [‘ | Export ¥ ‘ ‘ Layout ¥
Details Step input Step output

Name Type

Wait for termination date Wait

Status
@ In Progress

Resource

Picture 5. State Machines Execution Waiting for Termination Date.

Turku University of Applied Sciences Thesis | Roope Westman

26

As shown in Picture 6, to connect to the instance the public IP and an RSA key
file are used and the connection is successful. On Windows AMIs made by
Amazon, it is required to use the RSA key to decrypt the Administrator
password from the AWS Console and download the RDP configuration file for

connection to the EC2 instance.

[E] ec2-user@ip-10-0-0-107:~ +
C:\Users\westm\Desktop>ssh -i thesis-demo-ec2-keypair.pem ec2-user@ec2-63-32-186-122.eu-west-1.compute.amazonaws.comn
Last login: Sun Feb 27 20:21:13 2022 from dsl-tkubngl2-54f95e-28.dhcp.inet.fi

S |
Amazon Linux 2 AMI

https://aws.amazon.com/amazon-Llinux-2/

8 package(s) needed for security, out of 14 available
Run "sudo yum update" to apply all updates.
[ec2-usergip-16-6-8-187 ~J$ |

Picture 6. SSH Connection to the Instance.

Picture 7 contains logs of a machine that was terminated but it can be seen that
the function works correctly by first deleting the instance, the subnet, and
keypair, and finally the state machine itself. This function takes a lot longer to

run since a subnet cannot be removed until the instance termination process is

completed.
> Timestamp Message
No older events at this moment. Retry
> 2822-82-27722:82:22.958+02:02 START RequestId: 3lcdbbbe-ece: B89f5-6626731884ac Version: $LATEST
> 2822-92-27722:02:23.689+02:09 [{'TerminatingInstances': [{'CurrentState': {'Code': 32, 'Name': 'shutting-down'}, 'Instanceld': 'i-@6F5646b4756cfbo3", 'Pr
> 2@822-82-2 Deleting subnet
> 2822-92-2 Deleting KeyPair
> 2822-82-2 {'ResponseMetadata’: {'Requestld': '24f4c779-40a4-4@ds-b3f6-c41862b17d16", 'HTTPStatusCode': 209, 'HTTPHeaders': {'x-amzn-i1
> 1022-02-2 END RequestId: 3 ced-4e4c-895-8626731854ac
> 2022-02-27722:82:35.775+02:08 REPORT RequestId: 3lcdbbbe-eced-4edc-89F5-6626731884ac Duration: 16824.41 ms Billed Duration: 16825 ms Memory Size: 128 MB

Picture 7. TerminateEC2 Lambda Logs.

Turku University of Applied Sciences Thesis | Roope Westman

27

5 Conclusion

This thesis aimed to create an automated small-scale lab environment to
reduce the maintenance and labor cost requirements of a physical lab
environment and to familiarize and learn to work with cloud providers and the
tools they offer. Different cloud providers and their differences were also
explored, and the conclusion that was reached is that there are not that many
differences between the top three most used ones. Amazon Web Services was
chosen as the cloud provider used to implement the project mostly because it
offered more tools than the others. Also to help select the correct tools for this
project, different types of tools and their usage, strengths, and weaknesses

were also discussed.

The objective of creating a small-scale automated cloud environment was met,
but not with the tools originally in mind and most discussed in the theory
segment. A successful deployment of the environment was created using AWS
Lambdas, instead of the declarative tools like CloudFormation like was originally
planned. With more time and resources it could be possible to build a more
reliable and stable environment with fallbacks in case of errors, and checks to
make sure that only the wanted resources are existing using declarative tools.
In terms of time used, this robust environment is a good first effort that can be

improved upon and learned from in future projects and implementations.

The organization that this was made for was happy with the results and will
improve the work further and customize it to their own needs. This thesis also
offers a good base knowledge on the difference between the tools offered by

cloud service providers and their possible use-cases.

The reliability of this thesis might not be that high, as the author is not a
seasoned programmer nor had much knowledge of the cloud before making this
thesis. With more knowledge of programming and the cloud, it could be possible
to fix the issues the author found with the declarative tools in question, such as
issues using the CDK.

Turku University of Applied Sciences Thesis | Roope Westman

In the future, it could be worth it to look deeper into declarative tools and how
this environment could be deployed using them as they age and gain more

documentation and resources to learn from.

Turku University of Applied Sciences Thesis | Roope Westman

28

29

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

J. Kirby, “Cloud Computing vs. Traditional IT Infrastructure | Micro Pro.”
https://micropro.com/blog/cloud-computing-vs-traditional-it-infrastructure/
(accessed Jan. 04, 2022).

“Cloud Computing vs. Traditional IT Infrastructure | Leading Edge.”
https://www.leadingedgetech.co.uk/it-services/it-consultancy-
services/cloud-computing/how-is-cloud-computing-different-from-

traditional-it-infrastructure/ (accessed Jan. 04, 2022).

“TryHackMe | Cyber Security Training.” https://tryhackme.com/ (accessed
Feb. 17, 2022).

R. Bala, B. Gill, D. Smith, K. Ji, and D. Wright, “Gartner Reprint.”
https://www.gartner.com/doc/reprints?id=1-2710E4VR&ct=210802&st=sb
(accessed Jan. 04, 2022).

S. Carey, “AWS vs Azure vs Google Cloud: What’s the best cloud
platform for enterprise? | Computerworld.”
https://www.computerworld.com/article/3429365/aws-vs-azure-vs-google-
whats-the-best-cloud-platform-for-enterprise.html (accessed Jan. 03,
2022).

J. Solanki, “Cloud Pricing Comparison 2022: AWS vs Azure vs Google
Cloud.” https://www.simform.com/blog/compute-pricing-comparison-aws-

azure-googlecloud/ (accessed Jan. 04, 2022).

P. Yifat, “Azure vs AWS Pricing: Comparing Apples to Apples.”
https://cloud.netapp.com/blog/azure-vs-aws-pricing-comparing-apples-to-

apples-azure-aws-cvo-blg (accessed Jan. 04, 2022).

“AWS Pricing Calculator.” https://calculator.aws/#/createCalculator/EC2
(accessed Jan. 04, 2022).

Turku University of Applied Sciences Thesis | Roope Westman

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

30

“Pricing Calculator | Microsoft Azure.” https://azure.microsoft.com/en-

gb/pricing/calculator/?cdn=disable (accessed Jan. 04, 2022).

“Google Cloud Pricing Calculator.”
https://cloud.google.com/products/calculator/#id= (accessed Jan. 04,
2022).

P. Sangode, “Understanding terms - Infrastructure As Code,
Orchestration, Provisioning & Configuration Management (Ansible &
Terraform, as example).” https://www.linkedin.com/pulse/understanding-
terms-infrastructure-code-management-ansible-sangode (accessed Jan.
12, 2022).

S. G. Navdeep, “Top 10 Infrastructure as Code Tools to Boost Your
Productivity.” https://www.nexastack.com/en/blog/best-iac-tools
(accessed Jan. 05, 2022).

Y. Brikman, “Why we use Terraform and not Chef, Puppet, Ansible,
Saltstack, or CloudFormation.”
https://Isi.vc.ehu.eus/pablogn/docencia/AS/Act7%20Admin.%20centraliza
da%20infrastructure-as-
code,%20Configuration%20Management/Terraform%20Chef%20Puppet
%Z20Ansible%20Salt.pdf (accessed Jan. 04, 2022).

T. Cameron, “Mutable vs Immutable Infrastructure Comparison & Benefits
| Eplexity.” https://eplexity.com/blog/a-side-by-side-comparison-of-

immutable-vs-mutable-infrastructure/ (accessed Jan. 05, 2022).

A. Dadgar, “Immutable Infrastructure: Benefits, Comparisons & More.”
https://www.hashicorp.com/resources/what-is-mutable-vs-immutable-

infrastructure (accessed Jan. 05, 2022).

“Pricing | Pulumi.” https://www.pulumi.com/pricing/ (accessed Jan. 12,
2022).

Turku University of Applied Sciences Thesis | Roope Westman

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

31

“Terraform vs CloudFormation vs Pulumi vs AWS CDK | Pilotcore.”
https://pilotcoresystems.com/insights/terraform-vs-cloudformation-vs-

pulumi-vs-aws-cdk#aws-cdk-overview (accessed Jan. 12, 2022).

F. Triboix, “The Definitive Guide to Terraform vs. CloudFormation |
Toptal.” https://www.toptal.com/terraform/terraform-vs-cloudformation
(accessed Jan. 12, 2022).

A. Wittig, “CloudFormation vs Terraform 2021 | cloudonaut.”
https://cloudonaut.io/cloudformation-vs-terraform/ (accessed Jan. 12,
2022).

B. Hadzhiev, “AWS CDK vs CloudFormation - Comparison | bobbyhadz.”
https://bobbyhadz.com/blog/cdk-cloudformation-comparison (accessed
Feb. 22, 2022).

“What is the AWS CDK? - AWS Cloud Development Kit (CDK) v2.”
https://docs.aws.amazon.com/cdk/v2/guide/home.html (accessed Feb.
22, 2022).

“16. What are the pros and cons of CDK? - YouTube.”
https://www.youtube.com/watch?v=jjyNTNQdW?2s (accessed Feb. 22,
2022).

“Serverless Computing - AWS Lambda - Amazon Web Services.”

https://aws.amazon.com/lambda/ (accessed Feb. 22, 2022).

“SDKs and Programming Toolkits for AWS.”

https://aws.amazon.com/tools/ (accessed Feb. 22, 2022).

“‘“AWS Step Functions | Serverless Microservice Orchestration | Amazon
Web Services.” https://aws.amazon.com/step-functions/?step-
functions.sort-by=item.additionalFields.postDate Time&step-functions.sort-
order=desc (accessed Feb. 22, 2022).

“‘Amazon EventBridge | Event Bus | Amazon Web Services.”

https://aws.amazon.com/eventbridge/ (accessed Feb. 22, 2022).

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1

Instructions for setting up AWS lab environment

This guide assumes that you have basic knowledge in using Amazon Web

32

Services such as IAM, Lambda, EventBridge, SQS, and VPC. This is not meant

to be an in-depth guide for AWS and these components and is instead meant to

offer the building blocks for setting up an automated AWS lab environment.

1 Setting up Lambdas
1.1StartEC2
1.2StopEC2
1.3CreateEC2
1.4TerminateEC2

2 Setting up SQS

3 Setting up Amazon EventBridge
3.1Automatic Start Up
3.2Automatic Shut Down

3.3Setting up VPC for Lambda

4 Code explanations
4.1StartEC2
4.2StopEC2
4.3CreateEC2
4.4TerminateEC2

Turku University of Applied Sciences Thesis | Roope Westman

33
33
33
34
38

41

43
43
45
47

51
51
53
55
62

Appendix 1

1 Setting up Lambdas
1.1 StartEC2
Create a Lambda function and set the:

¢ Runtime as Python 3.9

e Architecture as x86_64

e Permissions required by this lambda are:
o ec2:Describelnstances

ec2:Startlnstances

logs:CreateLogGroup

logs:CreateLogStream

logs:PutLogEvents

o O O O

Insert the following code and deploy

import boto3
ec2 = boto3.resource('ec2')

def lambda handler (event, context):
filters = [{

'Name': 'tag:awsLabAutoStart',
'Values': ['True'],

},

{
'Name': 'instance-state-name',

'Values': ['stopped'],
}1

instances = ec2.instances.filter (Filters=filters)

stoppedInstances = [instance.id for instance in instances]
if len(stoppedInstances) > O0:
startingUp =

ec2.instances.filter (InstanceIds=stoppedInstances) .start ()
print (startingUp)

1.2 StopEC2
Create a Lambda function and set the:

¢ Runtime as Python 3.9

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1

e Architecture as x86_64

e Permissions required by this lambda are:
o ec2:Describelnstances

ec2:Stoplnstances

logs:CreateLogGroup

logs:CreateLogStream

logs:PutLogEvents

o O O O

Insert the following code and deploy

34

import boto3
ec2 = boto3.resource('ec2')

def lambda handler (event, context):
filters = [{

'"Name': 'tag:awsLabAutoShut',
'Values': ['True'],

},

{
'Name': 'instance-state-name',
'Values': ['running'],

H

instances = ec2.instances.filter (Filters=filters)

runningInstances = [instance.id for instance in instances]
if len(runningInstances) > O0:
shuttingDown =

ec2.instances.filter (InstanceIds=runningInstances) .stop ()
print (shuttingDown)

1.3 CreateEC2
Create a Lambda function and set the:

¢ Runtime as Python 3.9

e Architecture as x86_64

e Permissions required by this lambda are:
o states:DescribeStateMachine

states:DescribeExecution

states:UpdateStateMachine

states: TagResource

states:StartExecution

states:CreateStateMachine

0O O O O O

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1

ec2:DeleteTags
ec2:CreateKeyPair
ec2:CreateTags
ec2:Runinstances
ec2:ModifySubnetAttribute
ec2:AssociateSubnetCidrBlock
ec2:CreateSubnet
ec2:DescribeSubnets
sqgs:DeleteMessage
sgs:ListQueues
sgs:GetQueueUrl
sqs:ListDeadLetterSourceQueues
sqgs:ChangeMessageVisibility
sqgs:ReceiveMessage
sgs:GetQueueAttributes
sgs:ListQueueTags
iam:PassRole
logs:CreateLogGroup
logs:CreateLogStream
logs:PutLogEvents

0O O 0O OO0 00 0o O o O o o o o o o o

¢ Requires a Role made for state machines that allow:

o lambda:lnvokeFunction

e Needs a VPC to deploy subnets to

Insert the following code and deploy

35

import json
import boto3
import os

ec2 = boto3.resource('ec2')
ec2Client = boto3.client('ec2')
stepfunc = boto3.client('stepfunctions')

def create subnet (VPC, ec2Name) :
subnetNumber = 0
while 1:
try:

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 36

subnet =
ec2.create_subnet (CidrBlock='10.0.{}.0/24"'.format (subnetNumber),
VpcId=VPC)
print ('Subnet is wvalid:
10.0.{}.0/24"' . format (subnetNumber))
break
except Exception as e:
print (e)
print ('Trying next subnet')
subnetNumber += 1
TAGS=[

'Key': 'Name',
'Value': ec2Name+'-subnet',

'Key': 'awsLab',
'Value': 'True',

]

subnet.create_tags (Tags = TAGS)

ec2Client.modify subnet attribute(SubnetId = subnet.id ,
MapPublicIpOnLaunch = { 'Value': True })

return subnet.id

def create keys (ec2Name) :
keyName = ec2Name+'-keypair'
key pair = ec2.create key pair (KeyName=keyName)
keyPairOut = str(key pair.key material)
print (keyPairOut) #DELETE THIS
return keyPairOut, keyName

def create tags(ec2Name, CostOrg) :
TAGS=[
{
'Key': 'Name',
'Value': ec2Name,

b,

'Key': 'awsLab',
'Value': 'True',
},
{
'Key': 'CostOrg',

'Value': CostOrg,

'Key': 'awsLabAutoShut',
'Value': 'True’',

b,

{
'Key': 'awsLabAutoStart',
'Value': 'True’',

b,

{
'Key': 'awsLabAutoTerminate',
'Value': 'True’',

by

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 37

1
return TAGS

def create state machine (TerminationDate, ec2Name, ROLEARN) :
definition_set = {
"StartAt": "Wait for termination date",
"States": {
"Wait for termination date": {
"Type": "Wait",
"Next": "Invoke TerminateEC2 lambda",
"Timestamp": TerminationDate+"T00:00:00z"
},
"Invoke TerminateEC2 lambda": {
"Type": "Task",

"Resource": "arn:aws:states:::lambda:invoke",
"OutputPath": "§",
"Parameters": {

"FunctionName": "arn:aws:lambda:eu-west-

1:680505452604: function:TerminateEC2: SLATEST",
"Payload.$": "$"
},

"End": True

}

DEFINITION = json.dumps(definition_set)

TAGS=[
{
'key': 'Name',
'value': ec2Name+'-state-machine',
},
{
'key': 'awsLab',
'value': 'True',
}

]

response = stepfunc.create_ state machine(
name=ec2Name+'-state-machine',
roleArn=ROLEARN,
definition=DEFINITION,
tags=TAGS
)

return response['stateMachineArn']

def create execution (instanceId, stateMachine, ec2Name) :
input set = {
"machineid": instanceld,
"stateMachineArn": stateMachine,
"ec2Name" : ec2Name

}
INPUT = json.dumps (input_set)

execution response = stepfunc.start execution(
name='terminate-"'+ec2Name,

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 38

stateMachineArn=stateMachine,
input=INPUT
)

def lambda handler (event, context):

data = json.loads (event['Records'][0]['body'])

AMI = data['AMI']

INSTANCE TYPE = data['InstanceType']
KEY NAME = "placeholder-key-pair"
SUBNET = data['Subnet']

print('InstanceType = ', INSTANCE TYPE)
print ('AMI = ', AMI)
if SUBNET == "new":

SUBNET_ID = create subnet ("vpc-0el8bdb91b4dl964d",
data['ec2Name'])
KEY VALUE, KEY NAME = create keys(data['ec2Name'])
else:
pass

instance = ec2.create_instances(
ImageId=AMI,
InstanceType=INSTANCE TYPE,
KeyName=KEY NAME,
SubnetId=SUBNET_ID o
MaxCount=1,
MinCount=1

)

TAGS = create_ tags(data['ec2Name'], data['CostOrg'])
instance[0] .create_tags (Tags=TAGS)
print ("New instance created:", instance[0].id)

roleArn = 'arn:aws:iam::680505452604:role/LabStepFunctionRole’

stateMachine = create_state machine(data['TerminationDate'],
data['ec2Name'], roleArn)

print ("State Machine created: " + stateMachine)

create execution(instance[0].id, stateMachine, data['ec2Name'])
print ("Execution created")

print("Public IP is: "+ instance[0] .public_dns name)

1.4 TerminateEC2
Create a Lambda function and set the:

¢ Runtime as Python 3.9

e Architecture as x86_64

e Permissions required by this lambda are:
o states:DeleteStateMachine

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1

ec2:Terminatelnstances
ec2:Describelnstances
ec2:DescribeSubnets
ec2:DeleteSubnet
ec2:DeleteKeyPair
logs:CreateLogGroup
logs:CreateLogStream
logs:PutLogEvents

0O O O 0O O 0O O O

Insert the following code and deploy

39

import boto3
ec2client = boto3.client('ec2')
ec2 = boto3.resource('ec2')

stepfunc = boto3.client('stepfunctions')

def delete subnet (ec2Name) :

filters = [{
'Name': 'tag:Name',
'Values': [ec2Name+'-subnet'],

H

subnets = list(ec2.subnets.filter (Filters=filters))
subnets[0] .delete ()

def delete key pair (ec2Name) :
ec2client.delete key pair (KeyName=ec2Name+'-keypair')

def lambda handler (event, context):
filters = [{

'Name': 'tag:awsLabAutoTerminate',
'Values': ['True'],

}H

machineids = [event['machineid']]

instances = ec2.instances.filter (Filters=filters)
terminatingInstance =

ec2.instances.filter (InstancelIds=machineids) . terminate ()
print (terminatingInstance)

instance = ec2.Instance (event['machineid'])
instance.wait _until terminated()

delete subnet (event['ec2Name'])
print ('Deleting subnet')

delete key pair (event['ec2Name'])
print ("Deleting KeyPair")

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1

response = stepfunc.delete_ state machine(
stateMachineArn=event|['stateMachineArn']

)

print (response)

40

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 41

2 Setting up SQS

Create an SQS with these options:

e Type: Standard
e Access Policy: Basic
o Define which accounts have rights to access this SQS

AmazonSQS > Queues > Create queue

Create queue

Details
Type
Choose the queue type for your application or cloud infrastructure.

® You can't change the queue type after you create a queue.

© standard Info

FIFO Info
At least-once deliv reserved irst-in-first-out delivery, message ordering is preserved
= Atleast once d - Firstin ut d

« Best-effort ordering « Exactly-once processing

Name

awsLabsQs

A queue name sitive and can have up to 80 characters. You can use alphanumeric characters, hyphens (-), and underscores (_).

Access policy
Define who can access your queve. Info

Choose method

O Basic
Usesi

Advanced
Use a JSON object to define an advance

ple criteria to define a ba:

Define who can send messages to the queue JSON (read-only)
© Only the queue owner
only r of the queue can send mess o the queue. ~2008-10-17",
Only the specified AWS accounts, IAM users and roles “Id": "_default_policy_ID",
Only the specified AWS account 1Ds, IAM users and roles can send messages to the queue. “Statement”: [
{
Define who can receive messages from the queue “Sid": "_ouner_statement”,

© Only the queue owner
Only the owner of the queue can receive messages from the queue. :
"1 680505452684
Only the specified AWS accounts,

Only the specified AWS account IDs, IAN

sers and roles

and roles can rec

ssages from the queue.

"Resource”: “arn:aws:sqs:eu-west-1:680505452604:ausLabsQs”
i

Go to the SQS and select ‘configure a Lambda function trigger’ on the SQS

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 42

SNS subscriptions Lambda triggers Dead-letter queue Monitoring Tagging Access policy Encryption
Dead-letter queue redrive tasks
Lambda triggers (0) info Configure Lambda function trigger
Q 1 &
ARN v Status

No AWS Lambda triggers

Set incoming messages to trigger a Lambda function.

Configure Lambda function trigger

Select the correct Lambda function that creates the EC2 instance when

receiving a payload
Trigger AWS Lambda function

Lambda function

Set incoming messages to trigger a Lambda function.

Region

eu-west-1

Specify an AWS Lambda function available for this queue.
arm:aws:lambda:eu-west-1:680505452604:function: CreateEC2 v

Cancel

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 43

3 Setting up Amazon EventBridge
3.1 Automatic Start Up
Create a new EventBridge rule with these options:

¢ Define a Cron expression pattern to trigger every day
o Forexample: 04 **? * triggers every day at4 AM UTC
= Cronin AWS is always defined in UTC!

e Set the rule to trigger the correct Lambda function

Define pattern

Build or customize an Event Pattern or set a Schedule to invoke Targets.

Event pattern Info O Schedule Info
Build a pattern to match events Invoke your targets on a schedule

Fixed rate every Dave
dys

CRON expression have six required fields, which are separated by white space. Learn more about

Cron expression . .
o P CRON expression. [Enter CRON expression below to see the next 10 trigger date(s).

Dg**2*

Mext 10 trigger date(s) GMT v

Tue, 22 Feb 2022 04:00:00 GMT
Wed, 23 Feb 2022 04:00:00 GMT
Thu, 24 Feb 2022 04:00:00 GMT
Fri, 25 Feb 2022 04:00:00 GMT
Sat, 26 Feb 2022 04:00:00 GMT
Sun, 27 Feb 2022 04:00:00 GMT
Man, 28 Feb 2022 04:00:00 GMT
Tue, 01 Mar 2022 04:00:00 GMT
Wed, 02 Mar 2022 04:00:00 GMT

Thu, 03 Mar 2022 04:00:00 GMT

» Sample event(s)

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 44

Select targets

Select target(s) to invoke when an event matches your event pattern or when schedule is triggered (limit of 5 targets
per rule).

Select target(s) to invoke when an event matches your event pattern or when schedule is triggered (limit of 5 targets per

rule).

Lambda function v
Function

StartEC2 v

» Configure version/alias
» Configure input

P Retry policy and dead-letter queue

Add target

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 45

3.2 Automatic Shut Down
Create a new EventBridge rule with these options:

e Define a Cron expression pattern to trigger every day
o Forexample: 016 * * ? * triggers every day at 4 PM UTC
= Cronin AWS is always defined in UTC!

e Set the rule to trigger the correct Lambda function

Define pattern

Build or customize an Event Pattern or set a Schedule to invoke Targets.

Event pattern Info © Schedule Info
Build a pattern to match events Invoke your targets on a schedule

Fixed rate every

CRON expression have six required fields, which are separated by white space. Learn more about

Cron expression .
° P CRON expression. [Enter CRON expression below to see the next 10 trigger date(s).

016**?2*

Mext 10 trigger date(s) GMT v

Tue, 22 Feb 2022 16:00:00 GMT

Wed, 23 Feb 2022 16:00:00 GMT
Thu, 24 Feb 2022 16:00:00 GMT
Fri, 25 Feb 2022 16:00:00 GMT

Sat, 26 Feb 2022 16:00:00 GMT

Sun, 27 Feb 2022 16:00:00 GMT
Maon, 28 Feb 2022 16:00:00 GMT
Tue, 01 Mar 2022 16:00:00 GMT
Wed, 02 Mar 2022 16:00:00 GMT
Thu, 03 Mar 2022 16:00:00 GMT

» Sample event(s)

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 46

Select targets

Select target(s) to invoke when an event matches your event pattern or when schedule is triggered (limit of 5 targets
per rule).

Select target(s) to invoke when an event matches your event pattern or when schedule is triggered (limit of 5 targets per

rule).

Lambda function v
Function

StopEC2 v

» Configure version/alias
P Configure input

» Retry policy and dead-letter queue

Add target

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 47

3.3 Setting up VPC for Lambda

This part is for setting up a VPC that allows connection to the instances via the
internet. It is optional but info from VPC used should be inserted into CreateEC2
Lambda

Go to AWS Console and create a new VPC or modify an old one

VPC settings

Name tag - optional

Creates a tag with a key of '"Name' and a value that you specify.

awsLabVPC

IPv4 CIDR block Info

© IPv4 CIDR manual input
IPAM-allocated IPv4 CIDR block

IPv4 CIDR

10.0.0.0/16

IPv6 CIDR block Infa

© No IPv6 CIDR block
IPAM-allocated IPvE CIDR block
Amazon-provided IPv6 CIDR block
IPv6 CIDR owned by me

Tenancy Info

Default v

The CIDR from here should be used to replace the one in CreateEC2 Lambda

The VPC should have both DNS hostnames and DNS resolutions set to
Enabled from the Actions menu

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1

48

Your VPCs (1/2) info ‘ C H Actions & ‘m

Q
= Name v VPC ID
- vpc-04¢
awsLabVPC vpc-Oe

Create flow log

Edit CIDRs

Edit DHCP options set
Edit DN5 hostnames

Edit DNS resolution
Manage middlebox routes
Manage tags

Delete VPC

The VPC also needs an Internet Gateway, the only required field is the name

Create internet gateway

&

ailable

ailable

An internet gateway is a virtual router that connects a VPC to the internet. To create a new internet gateway specify the name

for the gateway below.

Internet gateway settings

Name tag
Creates a tag with a key of '"Name' and a value that you specify.

awsLabGateway

After the gateway is created, attach it to the VPC from the Actions menu

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 49

igw-0b3e9879d50bf1f09 / awsLabGW

Attach to VPC

Details info
Manage tags

Delete
Internet gateway |D State
igw-0b3e9879d50bf 1109 © Detached
VPCID Owner

- 680505452604

Next, create a Route Table and select the VPC created

Create route table ..

A route table specifies how packets are forwarded between the subnets within your VPC, the internet, and your VPN

connection.
Route table settings

Name - optional
Create a tag with a key of 'Name' and a value that you specify.

awsLabRT

VPC
The VPC to use for this route table.

vpc-0e18bdbS1b4d1964d (awsLabVPC) v

Edit the routes and add a route to 0.0.0.0/0 from the gateway created earlier

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1

Edit routes

Destination

10.0.0.0/16

Q, 0.0.0.0/0

Add route

X

Target

Q local

Q, igw-024bf0a8700347cbd

Status

@ Active

50

Propagated

No

No Remove

Finally, edit the default security group attached to the VPC or create a new one

and add rules for SSH and RDP to all the networks or specify further if needed

for security reasons

Edit inbound rules

Inbound rules control the incoming traffic that's allowed to reach the instance

Inbound rules info

Security group rule ID

sgr-09b63c3f3388833fd

sgr-ObDaefbbc9dc3e62f

sgr-0bb52d83b1d2389b7

Add rule

Type Info

All traffic

RDP

SSH

Protocol
Info
v
v TCP
v TCP

Port range

Info

Source Info

Custom ¥

Custom ¥

Custom ¥

Q

5g-
0d385d87efgb9e2ab

Q

Q

X

Description - optional Info

Allow RDP

Allow SSH

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1

4 Code explanations

4.1 StartEC2

51

import boto3

ec2 = boto3.resource('ec2')

Import required libraries and set the ec2 resource of boto3 to an easier variable

name

|def lambda handler (event, context):

Start the function for lambda_handler, this function name can be different, but

then it must also be changed in the Lambda runtime settings

filters = [{

'Name': 'tag:awsLabAutoStart',
'Values': ['True'],

},

{
'Name': 'instance-state-name',

'Values': ['stopped'],
}

Create a filter for later use, in this case, tags are used for filtering the instances

that we want to start

instances = ec2.instances.filter (Filters=filters)

Select the instances with the filter

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 52

stoppedInstances = [instance.id for instance in instances]

Create a list from instance IDs in the instances variable

if len(stoppedInstances) > O0:
startingUp =
ec2.instances.filter (InstanceIds=stoppedInstances) .start()
print (startingUp)

Iterate over the instances, start them up, and print which instances were started

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 53

4.2 StopEC2

import boto3

ec2 = boto3.resource('ec2')

Import required libraries and set the ec2 resource of boto3 to an easier variable
name

|def lambda handler (event, context):

Start the function for lambda_handler, this function name can be different, but

then it must also be changed in the Lambda runtime settings

filters = [{

'"Name': 'tag:awsLabAutoShut',
'Values': ['True'],

},

{
'Name': 'instance-state-name',
'Values': ['running'],

}]

Create a filter for later use, in this case, tags are used for filtering the instances

that we want to stop

instances = ec2.instances.filter (Filters=filters)

Select the instances with the filter

runningInstances = [instance.id for instance in instances]

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 54

Create a list from instance IDs in the instances variable

if len(runningInstances) > O0:
shuttingDown =
ec2.instances.filter (Instancelds=runningInstances) .stop ()
print (shuttingDown)

Iterate over the instances, start them up, and print which instances were

stopped

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 55

4.3 CreateEC2

import json
import boto3
import os

ec2 = boto3.resource('ec2')
ec2Client = boto3.client('ec2')
stepfunc = boto3.client('stepfunctions')

Import required libraries and set the ec2 and stepfunctions resources of boto3

to easier variable names

def create subnet(VPC, ec2Name) :

Function create subnet, required VPC id and EC2 name parameters

subnetNumber = 0
while 1:
try:
subnet =
ec2.create subnet (CidrBlock='10.0.{}.0/24"'.format (subnetNumber),
VpcId=VPC)
print ('Subnet is valid:
10.0.{}.0/24"' . format (subnetNumber))
break
except Exception as e:
print (e)
print ('Trying next subnet')
subnetNumber += 1

This loop tries to assign a valid subnet number that is not reserved. Not

optimized well but works until all subnets are taken.

TAGS=[

'Key': 'Name',

'Value': ec2Name+'-subnet',
},
{

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1

'Key': 'awsLab',
'Value': 'True',
}

1
subnet.create_ tags(Tags = TAGS)

56

Create and assign tags to subnet

ec2Client.modify subnet attribute(SubnetId = subnet.id ,
MapPublicIpOnLaunch = { 'Value': True })

Set the subnet attribute MapPubliclpOnLaunch to “True” to map public IP

addresses when new instances are created on it

| return subnet.id

Return subnet ID for future use

def create_ keys (ec2Name) :
keyName = ec2Name+'-keypair'

return keyPairOut, keyName

key pair = ec2.create key pair (KeyName=keyName)
keyPairOut = str(key pair.key material)
print (keyPairOut) #DELETE THIS WHEN IT IS NO LONGER NEEDED

Function create _keys to create a keypair for the instance. Requires EC2 Name

as a parameter. Prints the RSA key to logs, but this should be removed when

there is a proper place to send the key. Returns RSA key and its name.

def create tags(ec2Name, CostOrg):
TAGS=[
{
'Key': 'Name',
'Value': ec2Name,

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1

'Key': 'awsLab',
'Value': 'True',

'Key': 'CostOrg',
'Value': CostOrg,

{
'Key': 'awsLabAutoShut',
'Value': 'True',

},

{
'Key': 'awsLabAutoStart',
'Value': 'True',

},

{
'Key': 'awsLabAutoTerminate',
'Value': 'True',

},
1
return TAGS

Function create_tags, creates tags for the EC2 instance, required parameters

are EC2 Name and CostOrg. Tags can be changed to suit needs.

|def create state machine (TerminationDate, ec2Name, ROLEARN) :

Function create_state _machine, required parameters are Termination Date,

EC2 Name, and ARN of the role made for state machines

definition_set = {
"StartAt": "Wait for termination date",
"States": {
"Wait for termination date": {
HTypeH: HWaitH ,
"Next": "Invoke TerminateEC2 lambda",
"Timestamp'": TerminationDate+"T00:00:00z"
},
"Invoke TerminateEC2 lambda": {
HTypeH: HTaskH ,
"Resource": "arn:aws:states:::lambda:invoke",
"OutputPath": "$",
"Parameters": {

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 58

"FunctionName": "arn:aws:lambda:eu-west-
1:680505452604: function:TerminateEC2: SLATEST",
"Payload.$": "$"
},
"End": True
}
}

}
DEFINITION = json.dumps (definition_set)

Definitions for the state machine

TAGS=|[
'key': 'Name',

'value': ec2Name+'-state-machine',

'key': 'awsLab',
'value': 'True',

Tags for the state machine

response = stepfunc.create_ state machine(
name=ec2Name+'-state-machine',
roleArn=ROLEARN,
definition=DEFINITION,
tags=TAGS
)

return response['stateMachineArn']

Creates the state machine and returns the state machines ARN

|def create execution(instanceld, stateMachine, ec2Name):

Function create execution, required parameters are instance ID, state machine
ARN, EC2 Name.

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1

59

input_set = {
"machineid": instancelId,
"stateMachineArn": stateMachine,
"ec2Name" : ec2Name

}

INPUT = json.dumps (input_set)

Input set for the execution

execution_ response = stepfunc.start execution (
name='terminate-"'+ec2Name,
stateMachineArn=stateMachine,
input=INPUT
)

Creates an execution order for the state machine

|def lambda handler (event, context):

Start the function for lambda_handler, this function name can be different, but

then it must also be changed in the Lambda runtime settings

data = json.loads (event['Records'] [0]['body'])

Assign body from the payload to data variable for easy access

AMI = data['AMI']

INSTANCE _TYPE = data['InstanceType']
KEY NAME = "placeholder-key-pair"
SUBNET = data['Subnet']

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 60

Create variables and assign them placeholder or final values

print('InstanceType = ', INSTANCE TYPE)
print ('AMI = ', AMI)

Print info to logs

if SUBNET == "new":
SUBNET ID = create_subnet ("vpc-0el8bdb91b4d1964d",
data['ec2Name'])
KEY VALUE, KEY NAME = create keys(data['ec2Name'])
else:
pass

If a subnet was not defined in the payload create a new subnet to a specific

VPC

instance = ec2.create_instances(
ImageId=AMI,
InstanceType=INSTANCE TYPE,
KeyName=KEY NAME,
SubnetId=SUBNET 1ID,
MaxCount=1,
MinCount=1

Create the EC2 instance

TAGS = create_ tags(data['ec2Name'], data['CostOrg'])
instance[0] .create_tags (Tags=TAGS)
print ("New instance created:", instance[0].id)

Assign tags to the instance

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 61

roleArn = 'arn:aws:iam: :680505452604:role/LabStepFunctionRole’

stateMachine = create_state machine (data['TerminationDate'],
data['ec2Name'], roleArn)

print ("State Machine created: " + stateMachine)

Call the create_state _machine function

create execution(instance[0].id, stateMachine, data['ec2Name'])
print ("Execution created")

Call the create execution function

print("Public IP is: "+ instance[0] .public_dns name)

Print the public DNS name to logs, should be replaced by a proper destination

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1

4.4 TerminateEC2

62

import boto3

ec2client = boto3.client('ec2')
ec2 = boto3.resource('ec2')
stepfunc = boto3.client('stepfunctions')

Import required libraries and set the ec2 and stepfunctions resources of boto3

to easier variable names

def delete subnet (ec2Name) :
filters = [{
'Name': 'tag:Name',
'Values': [ec2Name+'-subnet'],

H

subnets = list(ec2.subnets.filter (Filters=filters))
subnets[0] .delete()

Function delete_subnet, deletes subnets based on a Name tag

def delete key pair (ec2Name) :
ec2client.delete key pair (KeyName=ec2Name+'-keypair')

Function delete_key pair deletes keypairs based on Key Pair Name

|def lambda handler (event, context):

Start the function for lambda_handler, this function name can be different, but
then it must also be changed in the Lambda runtime settings

filters = [{
'Name': 'tag:awsLabAutoTerminate',

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 63

'Values': ['True'],

H

Create a filter for later use, in this case, tags are used for filtering the instances

that we want to terminate

machineids = [event['machineid']]

Put machine ID from the payload to machineids variable

instances = ec2.instances.filter (Filters=filters)

Select the instances with the filter

terminatingInstance =
ec2.instances.filter (InstanceIds=machineids) . terminate ()
print (terminatingInstance)

Terminate instances that match the machineids variable and print the result

instance = ec2.Instance (event['machineid'])
instance.wait until terminated()

Wait until the instance is terminated, this is done to successfully delete the

subnet

delete subnet (event['ec2Name'])
print ('Deleting subnet')

Turku University of Applied Sciences Thesis | Roope Westman

Appendix 1 64

Call function delete _subnet

delete key pair(event['ec2Name'])
print ("Deleting KeyPair")

Call function delete_key pair

response = stepfunc.delete state machine (
stateMachineArn=event|['stateMachineArn']

)

print (response)

Delete the state machine which is responsible for calling this function and print

the result

Turku University of Applied Sciences Thesis | Roope Westman

