

Huy Vo

DESKTOP APPLICATION WITH
WINDOWS PRESENTATION

FOUNDATION FOR INVENTORY
MANAGEMENT

Bachelor’s thesis

Information Technology

Bachelor of Engineering

2022

Author (authors) Degree title

Time

Huy Vo

Bachelor of
Engineering

May 2022

Thesis title

Desktop application with Windows Presentation Foundation for
Inventory Management

41 pages
0 pages of appendices

Commissioned by

Not given

Supervisor

Timo Mynttinen

Abstract

For a long time, individuals and companies have been using pen and paper to record their
items in the inventory. To help with this, this thesis aimed to provide a look at developing a
desktop application for inventory management. The application was created using
Windows Presentation Foundation with Firestore from Google Cloud.

The thesis described the tools, language, architectural pattern, framework, and related
technologies used to create the application. Moreover, it also discussed the features of the
application. Finally, the design and implementation of the application were examined.

Keywords

WPF, MVVM, Firebase, Firestore, NoSQL

CONTENTS

1 INTRODUCTION .. 4

2 THEORY ... 5

2.1 Desktop application .. 5

2.2 .NET and .NET Framework .. 5

2.3 C# programming language ... 8

2.4 Windows Presentation Foundation ... 8

2.4.1 Introduction ... 8

2.4.2 Controls .. 11

2.4.3 Layout ... 11

2.4.4 Data binding .. 12

2.4.5 Windows ... 13

2.5 Model-View-ViewModel architectural pattern .. 14

2.5.1 Overview ... 14

2.5.2 Model-View-ViewModel in WPF .. 16

2.6 Database .. 16

3 IMPLEMENTATION .. 18

3.1 Design and create data model .. 18

3.2 ViewModel Class Hierarchy .. 23

3.3 Data and command binding .. 25

3.4 Background refetching .. 29

3.5 Sending reorder email .. 30

3.6 Result ... 30

4 CONCLUSION .. 37

REFERENCES .. 38

LIST OF FIGURES .. 40

4

1 INTRODUCTION

This thesis mainly concentrates on designing, implementing, and developing

an inventory management application. Windows Presentation Foundation is

used to create desktop user interfaces with .NET Framework. The user

interfaces are written in XAML format, and the logic is in C#. Moreover, the

Model-View-ViewModel architectural pattern is being applied to the

application, which, according to Wikipedia (Model-view-viewmodel 2022),

helps separate business logic from graphical interfaces. Every View inside the

application will be connected to a ViewModel, which handles binding, for

example, to commands and variables.

The application is also directly connected to a cloud database. This

architecture will provide a more flexible and straightforward way to develop,

deploy and scale “On Demand” horizontally based on what we need (Chandra

et al. 2012, 513). It can also help the backup and migration processes become

much more manageable.

After discussing the technologies used, it is also essential to see how the

application was created. The purpose of this desktop application is to apply

those techniques in solving real-life problems, and inventory management is

one of them. For a long time, individuals and companies have been using pen

and paper to record their items in the inventory. This method is easy, but

mistakes are easily made. There are already many products or similar

applications on the market; however, most of them cost a lot of money, which

is not affordable and efficient for small businesses and users. This application

implements some of the core functionalities of those on the market and

provides them for free. Moreover, the application includes user interfaces to

create and update items and orders. There will be one Window object, and

one ContentControl object acts as a homepage for the application so that

when a user navigates between applications, the ContentControl will bind with

different UserControl.

5

2 THEORY

This section describes the .NET framework, C# programming language, and

Windows Presentation Foundation. They are essential components for

creating a desktop application. Information about cloud databases is also

studied.

2.1 Desktop application

Nowadays, any service can be accessed using mobile, desktop, or web

applications. A mobile application is an application that is designed to run on a

phone, tablet or watch. However, publishing and getting the application listed

on trusted distribution platforms are also challenging. Publishing mobile

applications on Apple’s App Store or Google Play Store can cost money.

Furthermore, if the applications violate the law or regulation in some countries,

they will not be listed on distribution platforms in those countries. A web

application is an application that runs remotely on a web server. Still, it can

only be accessed using a web browser with an active internet connection.

Furthermore, the web applications need to always keep up with the web

browsers’ technologies; otherwise, some services can be failed and become

inaccessible.

A desktop application is a software program which runs stand-alone on a

computer and performs a specific task by an end-user. There are many ways

to install a desktop application without limitation, including a website, a

distributed platform, or a data storage device. If the task that a desktop

application performs does not require an internet connection, that desktop

application can run offline without any problem. Furthermore, desktop

applications can perform complex calculations better compared to web

applications.

2.2 .NET and .NET Framework

For Windows Operating System, desktop applications created using .NET, for

example, Windows Presentation Foundation, have backward compatibility,

which means applications built with previous .NET versions can work without

modification on later versions. Compared with native Windows API, which can

6

also be used to create a desktop application, .NET is a higher-level framework

that provides more framework classes and cross-platform features. Moreover,

.NET provides a better selection of class libraries.

.NET, created by Microsoft, is a platform with tools and libraries to build

applications. .NET used to be a predominant implementation of the Common

Language Infrastructure (CLI), running mainly only on Microsoft Windows

(.NET Framework 2022). After that, it was replaced by a different .NET project

to provide cross-platform features.

Nowadays, .NET is used by developers to create many kinds of applications,

including mobile, web, or desktop applications. For example, ASP.NET Core

is a cross-platform framework for building modern web application. .NET is

widely used because it is free, open-source, trustworthy, easy to use, and

applications running on the framework can be implemented with many

different programming languages, for example, C#, Visual Basic .NET, or F#

(What is .NET? An open-source … 2022).

The shared library concept for .NET is called class libraries. They allow

functionality to be packaged into modules, also called components that can be

used by multiple applications. These modules can be used in multiple

applications or platforms. Class libraries can be used as a means of loading

functionality that is not needed or known at load time or run time. Moreover,

.NET class libraries can have access to all the application programming

interfaces (APIs) in a specific platform and take significant dependencies on

that execution environment. For example, the classic implementation of .NET

Framework is a platform-specific class library for Windows Operating

Systems. Compared to native Windows API, .NET Framework provides much

better libraries with many abstraction levels, so that developers do not need to

write low-level and complex code. .NET class libraries can also be portable.

Because different execution environments often use a different sub-set of

.NET implementation, to enable cross-platform, one of .NET’s approaches

was to create .NET Portable Class Libraries (PCL). They defined the

execution environment as a synthetic platform or platform intersection and

take dependencies on it. PCL allows developers to choose a set of platforms

that needed support, for example, .NET Framework and Xamarin.iOS.

7

However, the more platforms it needs to support, the less APIs are available.

Finally, to establish uniformity in .NET ecosystem. .NET Standard class

libraries are the combination of the advantages of platform-specific and

portable libraries. Consequently, ”they are platform-specific in the sense that

they expose all functionality from the underlying platform”. (Lander et al.

2022.)

Figure 1. The architecture of the .NET Framework (What is .NET Framework...)

Figure 1 shows how the C#, F# and Visual Basic code are translated to

Machine Code by using .NET Framework.

.NET Framework is the original implementation from .NET. Moreover, .NET

Framework consists of two major components: the Common Language

Runtime (CLR) and Class Library. CLR is an execution engine responsible for

running the applications. .NET Framework Class Library (FCL) is an

implementation of .NET Standard Library. FCL’s APIs are organized into a

8

hierarchy of namespaces. They will either belong to System.* or Microsoft.*

namespaces. FCL includes functions ranging from common including read

files or write files, to complex, such as initializing a new instance of SMTP

client to send email. (.NET Framework 2022.)

2.3 C# programming language

.NET Framework applications can be written in F#, Visual Basic .NET

(VB.NET), C# and even C++. F# is a functional-first, object-oriented

programming language, and can be considered as the best superset of C#.

However, there are many existing libraries which are not too compatible with

F#. Visual Basic .NET is also a high-level, object-oriented programming

language. VB .NET syntax use statements similar to English to specify actions

which are more familiar with developers who already have experience with

BASIC. Meanwhile, C#’s core syntax is similar to C-style languages such as

C, C++ and Java (C Sharp (programming… 2022).

According to Wagner, Bill et al. (2022), C# is a modern, object-oriented, and

robust programming language. Having roots in the C family, programmers

who know Java, JavaScript, C, or C++ can immediately take a grasp of C#

code. C# supports strongly typed variables, which is crucial for real-world

applications by reducing the risks of data loss from implicit conversions

(Corob-Msft et al. 2021).

2.4 Windows Presentation Foundation

Windows Presentation Foundation plays a vital role in creating the thesis

product, and the application strictly follows the architectural design.

2.4.1 Introduction

Windows Presentation Foundation (WPF) was initially developed and released

by Microsoft as a part of .NET Framework 3.0 in 2006, known as “Avalon.”

WPF is a UI framework for rendering user interfaces for Windows-based

applications and desktop client applications (Windows Presentation

Foundation 2022). Generally, WPF uses XAML on XML-based language for

creating user interfaces and utilizes data binding.

9

Figure 2 shows an example of a desktop application in debugging mode,

which was made using the WPF framework.

Figure 2. An example of a desktop application

As the latest approach from .NET to create a desktop application, WPF excels

its ancestor, WinForms, by providing more features, including integrating UI,

2D, and 3D graphics by utilizing DirectX with XAML support. Moreover, it

adapts well to the current trend of separating UI logic from back-end logic.

WPF’s UI element can be integrated from many different libraries. They can

also be created from scratch. As a result, it creates unlimited possibilities for

customization. WPF applications can also be hosted on a website. (George

2021; Hammad 2021.)

Mainly, mark-up and code-behind are supported by WPF. For instance,

application can create a user interface using XAML and bind it with a

controller (or code-behind) to affect its functionalities.

10

Figure 3. An example of creating user interfaces with WPF using XAML

Figure 3 illustrates the process of creating a UI using XAML, while Figure 4

demonstrates how code-behind files connect to XAML and implement its

behavior. In this case, the code-behind file affects the Windows MaxHeight

and MaxWidth properties. On the right side of Figure 3 is the design panel

which helps developers to visualize how the code from XAML file will look like.

Figure 4. An example of code-behind file

When creating the application, we can see three essential files: App.config,

and App.xaml with the App.xaml.cs code-behind file. App.config is responsible

for storing configurations and information about the packages being used

inside the application. App.xaml is responsible for declaring the resources for

the application. Moreover, we can set the start-up view for the application and

11

attach some functions inside the OnStartup event in App.xaml.cs code-behind

file.

2.4.2 Controls

According to Microsoft Docs “Control is an umbrella term that applies to a

category of WPF classes hosted in either a window or a page, have a user

interface, and implement some behavior” (George & Coulter 2021). Controls

are an essential component in a WPF application. It is what users can see and

interact with, subsequently providing the user experience.

Many built-in WPF controls are responsible for handling different tasks, from

showing data to the user to receiving user inputs. For example, the ListView

control allows the application to display a list of items, or Grid control can be

used to help layout other controls.

Additionally, WPF also provides a flexible way of creating the application by

allowing us to make our custom Controls. A custom control can be created by

building a markup file with some built-in Controls and a code-behind file to

adjust its behavior. Furthermore, the appearance of a Control can be

customized by using inline properties or a Style.

2.4.3 Layout

When creating a user interface, we need to arrange controls into a layout. The

main requirement of a layout is that it can be fitted with many different display

sizes. WPF provides a layout system that helps create responsive layout.

A layout system is responsible for relative positioning, which increases the

controls' ability to adapt to changing window size or display conditions. The

layout system acts as a negotiator between controls to decide the layout. The

negotiation process has two steps: “first, a control tells its parent what location

and size it requires; second, the parent tells the control what space it can

have”. (George & Coulter 2021)

12

Consequently, WPF provides several layout controls, including Canvas,

DockPanel, Grid, etc. Each of them has its way of managing its child controls.

For example, Grid will position its child controls into columns or rows.

2.4.4 Data binding

Data binding is one of the essential features of WPF. It enables the application

to show and allow interaction with data. According to George and Coulter

(2022), the process initiates a connection between the user interface and the

data it presents. Figure 5 shows the bridge connection between the binding

target and the binding source. If settings are appropriately configured, when

the property’s data change, it will trigger a notification that will update the

bound elements automatically.

Figure 5. Data binding (George & Aaron 2022)

Figure 5 also shows many different binding connections, or data flows,

between the binding target and source. OneWay binding is suitable for read-

only contents, where the target will be updated when the property is updated.

OneWayToSource is the opposite way of OneWay binding - this binding

should be used when the property needs to be updated from the user

interface. The most useful binding connection is TwoWay binding. If there is a

change in either the binding source or the target, the other end will also get

updated automatically. For many controls in WPF, OneWay binding is the

default property. However, some dependency properties, such as

TextBox.Text and CheckBox.IsChecked, are TwoWay binding (George &

Aaron 2022). For TwoWay and OneWayToSource binding, every time the

Dependency Property changes, it will trigger an UpdateSourceTrigger event,

which will notify the Property of the change, so the Property can also be

updated.

13

When data binding is used in XAML, elements will automatically check the

DataContext property to find the binding source. DataContext can also be set

using code-behind, but declaring in the XAML file will also help resolve or

debug faster in compile time.

2.4.5 Windows

In WPF, windows contain many controls, which help visualize and interact

which data. According to George (2022), a window can be divided into client

and non-client areas.

Figure 6 Components of a Window (George 2022)

Figure 6 shows the nine components of a window. The non-client area

includes an icon (1), title (2), minimize button (3), maximize button (4), close

button (5), system menu (6), and the border (4); these components are

common to most windows. Meanwhile, the client area (8) and resize grip (9),

is used by developers to add contents or controls the user can see and

interact with.

14

Figure 7. Window life events (George 2022)

Figure 7 shows the life events of a Window. When a Window is first opened, it

becomes the activated Window, which is capable of capturing user input.

When a user switches from that Window to another, the one that is presently

activated is deactivated, and the one that is deactivated is activated.

2.5 Model-View-ViewModel architectural pattern

2.5.1 Overview

Using an architectural pattern is always considered best practice in software

engineering, although sometimes it can result an overkill or overcomplicate

the application (Architectural pattern 2022). Nevertheless, architectural

designs help developers solve and define some essential cohesive elements

of software architecture.

Model-View-Controller (MVC) is a famous design pattern, which has been

widely used by developers and integrated into many programming languages.

The main idea behind MVC is to separate the user interface (View) from

business logic (Model) and function to alter the state (Controller). Moreover, it

enables one View to switch between Controllers to fit it needs and one

Controller can be used by multiple View. As a result, it became harder for unit

test from View perspective. Model-View-Presenter is similar to MVC, but it

focuses more on presentation logic. Presenter will receive user input from

View and process with Model’s help before sending data back to View. Yet

15

View has reference to Presenter, and Presenter aware of View, which will

make unit testing become more difficult.

Model-View-ViewModel (MVVM), inspired by MVC and MVP, was invented by

Microsoft architects Ken Cooper and Ted Peters to simplify the event-driven

programming of user interfaces. Subsequently, it was incorporated into WPF.

In MVVM implementation, ViewModel doesn’t need to have any prior

knowledge about the View, therefore unit testing become much easier with

ViewModel. Nowadays, MVVM can be implemented with many frameworks,

including Vue.js, Reactjs, or Angular. (Model-view-viewmodel 2022.)

Figure 8. Model-View-ViewModel connection (Model-view-viewmodel 2022)

Model-View-ViewModel contains three essential components which are

Model, View, and ViewModel. Figure 8 shows how these three components

communicate with each other. Model and ViewModel are usually written in C#.

Firstly, the Model component represents the content of the data. The data's

classes and properties are declared inside the application in this component.

Secondly, the View component is what users can see on the screen. It shows

the applications’ content, including models, and users can interact with the

View by using mouse clicks or keyboard events. Figure 9 shows how a

double-click mouse event is handled using a code-behind file.

Figure 9. An example of handling mouse clicks event.

16

Finally, the essential component is ViewModel. ViewModel is responsible for

handling data binding between View and Model. Specifically, in WPF, markup

files contain one property, DataContext, which we can use to connect to

ViewModel.

2.5.2 Model-View-ViewModel in WPF

Sharing the same similarity with any other programming language or

framework, everything is simple when a WPF application is first created. As

the application grows, more features are added to the code base and the

complexity increases. As a result, the WPF community adapted the MVVM

pattern to help organize the codebase.

According to Smith (2009), data binding is the essential characteristic of WPF

to enable the potential of the MVVM pattern. WPF encouraged many aspects

of MVVM, such as utilizing the strong separation of displaying the data from its

state and behavior. When properties from a View get bound with a

ViewModel, bridge connections are automatically generated. Moreover,

command binding is an essential aspect of WPF, which empowers the MVVM

pattern. A function from a ViewModel can be exposed to a View and allowed

to be consumed by controls. Furthermore, ViewModel classes are easy to unit

test. By separating View and ViewModel, all states, behavior, and functionality

stay in a different set, making unit testing faster.

2.6 Database

According to Oracle (What is a database…), data or information, typically

saved electronically in a computer system, is organized into a collection called

a database. Moreover, on the market, many different databases are widely

used by developers. Each of the databases has its benefits and drawbacks.

However, Relational Databases and NoSQL are the most well-known ones.

In relational database, data is organized into tables, and the data inside a

table may have connections or relationships to a different table. An instance of

data is uniquely represented in a table row with the corresponding data type.

As a result, all the instances in one table have the same structure and make it

easier to add, remove, or edit the data. However, this will limit the flexibility for

17

data and generate possibility for errors whenever a column is added or

removed from the table. (Jatana et al. 2012, 2.)

According to Schaefer (What is NoSQL…), NoSQL, known as “non-SQL” or

“not only SQL” is preferred to databases that store data in different but more

modern formats than traditional relational tables. Consequently, it provides

flexible schemas for different usage and better horizontal scaling. NoSQL is

recommended for scenarios in which databases need to handle vast volumes

of data. As a result, NoSQL is selected for this thesis product because of its

flexibility in our case.

There are two options for choosing the place to host our database. The first

way is to host on the same local computer with the application, called an on-

premises database. This method has proven secure and reliable because we

will have access to the same machine, but it also means an increase in the

complexity of scaling or installing it.

Meanwhile, cloud databases have taken the world and become ubiquitous in

recent years. According to IBM (What is a cloud…), companies will provide

the database as a service, and users can access them through their cloud

platform. This method will eliminate all the complexity and hard work of

implementing, maintaining, and scaling the database. Furthermore, cloud

databases usually come with a pay-as-you-go subscription, which is beneficial

since we can pay for what we are using. Despite the benefits of cloud

databases, it also comes with a cost. Firstly, there will be a security risk since

the physical databases are in the cloud’s platform provider’s possession.

Additionally, connecting to the cloud database is usually through the internet,

exposing the database to cybersecurity threats. However, the disadvantages

of cloud databases cannot overwhelm the benefits it brings back.

Firebase, developed by Google, is a cloud platform for developing web and

mobile applications. It helps developers or companies by providing a wide

range of services to build, improve and grow their applications’ infrastructure,

such as Authentication, Database, Storage, and Hosting. Firestore is

Firebase’s NoSQL cloud database. It has flexible hierarchical data structures

and impressive scalability capabilities.

18

3 IMPLEMENTATION

The practical part of this thesis shows how the application was structured and

developed. All the explained concepts from chapter 2 will be used in this

implementation.

3.1 Design and create data model

In C# programming language, a solid object-oriented programming language,

a class is a reference type. It is a prototype or blueprint for a variable. It also

contains the business logic, which determines how the data is processed

inside the application.

The purpose of the application is to manage items inside the inventory as well

as the orders and supplier for reordering. As a result, the focus classes are

the Item, Order, and Supplier for this application. Each will contain a unique Id

field generated from the Firestore database.

The Item model defines how the general item stored inside the application.

The class has seven fields. As shown in Figure 10, the Name and Type are

the item's name and which type can be identified. Location is where the item

is currently stored. Quantity is the current quantity of the item in stock, and

ReceivedDate is the date it arrived at the inventory. Finally, Reorder field is a

Reorder rule for the Item. If it is set, when the Item quantity gets below that

threshold, the application will automatically send an email to the Supplier with

a quantity.

19

Figure 10. Item class

As shown in Figure 11, the Order class is the prototype for orders created

inside the application. This class has two properties: Status and Type, which

have an enum data type for strict data value. The other properties are Id,

Name, SupplierId, and Items. As the name implies, they are responsible for

describing the character, supplier, and list of items from that order.

20

Figure 11. Order class

The Order class from Figure 11 is a blueprint for order data taken from

Firestore. Figure 12 shows the populated Order class used for ViewModel to

make it easier to query and access the data. In this class, all the Quantity and

ItemId inside List<ItemOrdered> are populated with accurate data when it is

queried.

Figure 12. Populated Order class

Supplier class describes some basics information for a supplier, as shown in

Figure 13. The email field in this class is necessary for reordering.

21

Figure 13. Supplier class

Lastly, another essential class in this application is the Global static class.

This class stores data and contains all the business logic for fetching,

updating, and deleting data from Firebase. Figure 14 shows the data stored

inside the Global class. These are ObservableCollection type for Order,

Reorder, Item, and Supplier. ObservableCollection type is used because it

has a built-in notify function to the View, which is convenient when an item

inside the array is add, deleted or the array is refreshed.

Figure 14. Data stored in the Global class

22

Figure 15. Method for fetching Order from Firestore

Figure 15 shows an example of fetching data from Firestore. Firstly, for all

actions, in addition to fetching, the application also needs to get a reference to

the database. The connection string to the database is stored in a JSON file.

Next, the CollectionReference is needed for the query. Now the application

can make the query into the Firestore database and store it in a snapshot. The

rest of the process includes parsing the data to be used in the application.

23

Figure 16. Log class

Besides the previous Model, there is also a Log class for logging all the

actions including ADD, UPDATE or DELETE. The class has four fields,

including Name, Action, Target, and Description, as shown in Figure 16.

3.2 ViewModel Class Hierarchy

The same features appear in most of the ViewModel functionality, especially

INotifyPropertyChanged. This is one of the most important features

implemented in WPF to help empower the MVVM pattern. If a property in a

ViewModel gets updated, the property can trigger

PropertyChangedEventHandler to notify WPF binding connection with the

View, as shown in Figure 17. Consequently, we can separate the logic into a

class base and let new ViewModel classes inherit it.

24

Figure 17. INotifyPropertyChanged base class

Figure 18 shows how OnPropertyChanged is used. When the ViewModel

gets a new value for the public property Name, it will update the private

member _name. Moreover, it will also trigger the OnPropertyChanged

function and inform the connected View.

Figure 18. OnPropertyChanged implementation

Figure 19 shows an example of a class hierarchy for complex scenarios. The

same logic in many ViewModel classes can be extracted and placed in many

small ViewModelBase types when the application grows.

25

Figure 19. Inheritance Hierarchy (Smith 2009)

3.3 Data and command binding

Introduced in Section 2.2.4, data binding is a strong characteristic of WPF.

Firstly, a View needs to bind with a ViewModel. This can be done by

assigning the DataContext property from a View with a ViewModel class. As

shown in Figure 20, a DataContext is declared in ManagerViewModel class.

26

Figure 20. DataContext binding

In Figure 21, in ManagerWindow there is one ContentControl, which can be

used to show the content of any type, and we can see its Content has a

binding with CurrentView. And inside our ViewModel class, this CurrentView

can be switched to any content using buttons.

Figure 21. ManagerWindow.xaml

Figure 22 shows a command bound with a button to change the Content. As

we can see, the CurrentView is updated every time we press a button.

27

Figure 22. ManagerViewModel class

As shown in Figure 23, when CurrentView is updated, OnPropertyChanged

is triggered, which notifies ManagerWindow View about the change.

Figure 23. CurrentView property

When we want to bind a collection of objects to a control, for example,

ListView or ListBox, we also need to implement INotifyPropertyChanged.

However, WPF provides us with ObservableCollection<T> class, which can

28

automatically notify controls when an item gets added or removed, or the

whole collection is refreshed.

Every markup file for View will have a code-behind file for handling events.

However, we can also expose a function from ViewModel and use it as a

command. This approach allows the function to access variables from the

ViewModel directly. It can be done by creating a nested class inherited

ICommand interface. (Smith 2009)

Figure 24. RelayCommand class inherits from Icommand

As shown in Figure 24, this nested class has two properties _execute and

_canExecute. _execute is implemented with type Action<object>, which can

be used to pass a method as a parameter, and _canExecute with type

Predicate<object> which “represents the method that defines a set of criteria

and determines whether the specified object meets those criteria” (Predicate

delegate (system)). Action<object> and Predicate<object> are two

29

important delegates from the .NET framework. We can see how the

RelayCommand is implemented in Figure 25.

Figure 25. RelayComand implementation

3.4 Background refetching

To ensure the data inside the application is always synchronized with the

cloud database, DispatcherTimer is implemented inside the application. This

will create a timer that is integrated into a prioritized queue of work items for a

specific thread. From that, a function can be added to the Tick event

of DispatcherTimer, and this Tick event will occur when the time elapsed.

Figure 26. DispatcherTimer

A Dispatcher is created on a thread when user starts the application.

Moreover, that dispatcher will become the only Dispatcher associated with

that thread. The responsibility of InitializeDispatchTimer in Figure 26 is to

find and remove any event handler in Tick before adding a new one, so there

will only be one event handler running at a time. As a result, every time user

30

switches between tabs, the application will pass a function to refetch data from

cloud database.

3.5 Sending reorder email

If there is a reorder rule for an Item, when the Quantity of the Item meets the

threshold, the application will send reorder email to a Supplier.

Figure 27. Reorder function

As shown in Figure 27, the application itself will become a SmtpClient and

open port 587 to send email.

3.6 Result

This sub chapter shows the final resulting application. The startup position of

the application is set to the middle of the screen where the mouse is at. The

application is separated into four different tabs: Home, Orders, Suppliers, and

History.

31

Figure 28. App.xaml

As we can see in Figure 28, when a user first opens the application, they are

prompted to ManagerWindow.xaml, which is the Home Tab. This tab has a list

of items in inventory and a UserControl to add a new item, as shown in

Figure 29.

Figure 29. Home Tab

Moreover, the user can see and edit the item by double-clicking on the list,

shown in Figure 30. On the top of the search bar, there are many fields for

32

user to add to create a new item. At the end of any tab, there is a TextField to

indicate when the data was reloaded.

Figure 30. Item and Reorder rule

If the Quantity of Item goes below the Minimum, the application will send an

email to the Supplier. Figure 31 shows Order’s tab with a window to create a

new order.

Figure 31. Order Tab with New Order window

33

Figure 32 shows detail about an order, which includes Name, OrderedItem,

Supplier, OrderDate, Status and Type. Figure 31 shows

Figure 32. View Order

Figure 33 shows an example email for reordering. The supplier’s name and

contact information are taken from Suppliers tab.

Figure 33. Reorder email to supplier

34

The Order tab and Supplier Tab share the command layout, containing a list

of Orders or Suppliers and a button to add a new one, as shown in Figure 34.

Figure 34. Supplier Tab

In Home, Orders or Suppliers tabs, there is a search bar for searching items in

the list, as shown in Figure 35.

Figure 35. Searching for Item

35

Figure 36 shows how data are organized inside Firestore cloud database.

Figure 36. Firestore database

Figure 37 shows an example of unit testing in practice. As we can see, the

ManagerViewModel is selected for testing.

Figure 37. Unit testing

36

Figure 38 shows the History tab which contains all the logs in the application.

Figure 38. History tab

37

4 CONCLUSION

The target of this thesis was to build a simple desktop application for

managing storage. Finally, the goal was met, and the application can run on

the desktop. The code is available to the public at

https://github.com/vominhhuy71/Thesis, so anyone can use it freely and

customize it based on one’s needs. Although this is a simple application for

managing inventory, several improvements can be considered including:

• Adding more eye-candy and animation to the user interfaces. This will

help creating a better user experience.

• Creating a redundant database inside the application in case the

application isn’t connected to the Internet.

• Adding more unit testing to increase the reliability of the application.

• Creating a dedicated API server for the application. This API server can

be used for sending email to the supplier, solving some edge cases,

such when two users modify the data at the same time, and adding

authentication system to the application. This API server will

undoubtedly reduce the workload of the application, but it will also

increase the complexity of the application’s architecture.

• The application can be enhanced to manage workload or documents,

based on users’ needs.

• The records of items imported and exported from inventory can be

implemented with blockchain technology to maintain data integrity.

Throughout building the application, I have had the opportunities to apply

everything I have learnt, including complicated concepts and techniques, into

practice. To create this application, knowledge about desktop application,

object-oriented programming, WPF’s controls and data binding were required.

Besides, architectural patterns like Model-View-ViewModel were necessary to

ensure the scalability of the application. Additionally, I learned a lot about the

advantages and disadvantages of Windows Presentation Foundation. It is a

good framework for building a desktop application, but it can only work in

Windows operating system.

https://github.com/vominhhuy71/Thesis

38

REFERENCES

Corob-Msft et al., 2021. Type conversions and type safety. WWW document.
Available at: https://docs.microsoft.com/en-us/cpp/cpp/type-conversions-and-
type-safety-modern-cpp?view=msvc-170 [Accessed 8 March 2022]

D. G. Chandra, R. Prakash & S. Lamdharia, 2021. "A Study on Cloud
Database," 2012 Fourth International Conference on Computational
Intelligence and Communication Networks, 2012, pp. 513-519, DOI:
10.1109/CICN.2012.35. PDF Document. Available at:
https://ieeexplore.ieee.org/abstract/document/6375167 [Accessed 6 March
2022]

George, A. D., & Coulter, D., 2021. Desktop Guide (WPF .NET). WWW
document. Available at: https://docs.microsoft.com/en-
us/dotnet/desktop/wpf/overview/?view=netdesktop-6.0 [Accessed 13 March
2022]

George, A.D., 2021. Introduction to WPF | Microsoft Docs. WWW document.
Available at: https://docs.microsoft.com/en-us/dotnet/desktop/wpf/introduction-
to-wpf?view=netframeworkdesktop-4.8 [Accessed 2 April 2022].

George, A.D. & Aaron, 2022. Data binding overview (WPF .NET) | Microsoft
Docs. WWW document. Available at: https://docs.microsoft.com/en-
us/dotnet/desktop/wpf/data/?view=netdesktop-6.0 [Accessed 4 April 2022].

George, A.D., 2022. Overview of WPF windows (WPF .NET) | Microsoft Docs.
WWW document. Available at: https://docs.microsoft.com/en-
us/dotnet/desktop/wpf/windows/?view=netdesktop-6.0 [Accessed 4 April
2022].

Hammad, M., 2021. Difference between WPF and Winforms. Web site.
Available at: https://www.geeksforgeeks.org/difference-between-wpf-and-
winforms/ [Accessed 13 March 2022]

Ibm.com n.d. What is a cloud database?. Web site. Available at:
https://www.ibm.com/cloud/learn/what-is-cloud-database [Accessed 2 April
2022].

Lander, R. et al., 2022. .NET class libraries. Microsoft Docs. WWW document.
Available at: https://docs.microsoft.com/en-us/dotnet/standard/class-libraries
[Accessed 21 April 2022].

Jatana, N. et al., 2012. A Survey and Comparison of Relational and Non-
Relational Database. PDF Document. Available at:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.678.9352&rep=rep
1&type=pdf [Accessed 28 March 2022].

Microsoft n.d. What is .NET? An open-source developer platform. WWW
document. Available at: https://dotnet.microsoft.com/en-us/learn/dotnet/what-
is-dotnet [Accessed 8 March 2022]

https://docs.microsoft.com/en-us/cpp/cpp/type-conversions-and-type-safety-modern-cpp?view=msvc-170%20
https://docs.microsoft.com/en-us/cpp/cpp/type-conversions-and-type-safety-modern-cpp?view=msvc-170%20
https://ieeexplore.ieee.org/abstract/document/6375167
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/overview/?view=netdesktop-6.0
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/overview/?view=netdesktop-6.0
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/introduction-to-wpf?view=netframeworkdesktop-4.8%20
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/introduction-to-wpf?view=netframeworkdesktop-4.8%20
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/?view=netdesktop-6.0%20
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/data/?view=netdesktop-6.0%20
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/windows/?view=netdesktop-6.0%20
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/windows/?view=netdesktop-6.0%20
https://www.geeksforgeeks.org/difference-between-wpf-and-winforms/
https://www.geeksforgeeks.org/difference-between-wpf-and-winforms/
https://www.ibm.com/cloud/learn/what-is-cloud-database
https://docs.microsoft.com/en-us/dotnet/standard/class-libraries
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.678.9352&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.678.9352&rep=rep1&type=pdf
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet

39

Predicate delegate (system), n.d. WWW document. Available at:
https://docs.microsoft.com/en-us/dotnet/api/system.predicate-1?view=net-6.0
[Accessed 9 April 2022].

Schaefer, L., n.d. What is NoSQL? NoSQL databases explained. MongoDB.
Web site. Available at: https://www.mongodb.com/nosql-explained [Accessed
16 April 2022].

Smith, J., 2009. Patterns - WPF apps with the model-view-viewmodel design
pattern. E-magazine article. MSDN Magazine Issues. Available at:
https://docs.microsoft.com/en-us/archive/msdn-
magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-
design-pattern [Accessed 5 April 2022].

Wagner, B. et al., 2022. A Tour of C# - C# Guide | Microsoft Docs. WWW
document. Available at: https://docs.microsoft.com/en-us/dotnet/csharp/tour-
of-csharp/ [Accessed 8 March 2022]

What is a database? Oracle, n.d. Web site. Available at:
https://www.oracle.com/database/what-is-database/ [Accessed 28 March
2022].

What is .NET framework? A software development framework, n.d. WWW
document. Available at: https://dotnet.microsoft.com/en-us/learn/dotnet/what-
is-dotnet-framework [Accessed 10 April 2022].

Wikipedia contributors, February 2022. .NET Framework. WWW document.
Available
at: https://en.wikipedia.org/w/index.php?title=.NET_Framework&oldid=107102
3204 [Accessed 8 March 2022]

Wikipedia contributors, March 2022. C Sharp (programming language). WWW
document. Available
at: https://en.wikipedia.org/w/index.php?title=C_Sharp_(programming_langua
ge)&oldid=1075778688 [Accessed 8 March 2022]

Wikipedia contributors, February 2022. Windows Presentation Foundation.
WWW document. Available
at: https://en.wikipedia.org/w/index.php?title=Windows_Presentation_Foundati
on&oldid=1072647910 [Accessed 13 March 2022]

Wikipedia contributors, February 2022. Architectural pattern. WWW
document. Available at:
https://en.wikipedia.org/w/index.php?title=Architectural_pattern&oldid=106947
7266 [Accessed 23 March 2022]

Wikipedia contributors, February 2022. Model-view-viewmodel. WWW
document. Available at:
https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%
93viewmodel&oldid=1074534894 [Accessed 27 March 2022]

https://docs.microsoft.com/en-us/dotnet/api/system.predicate-1?view=net-6.0%20
https://www.mongodb.com/nosql-explained
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://www.oracle.com/database/what-is-database/
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet-framework
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet-framework
https://en.wikipedia.org/w/index.php?title=.NET_Framework&oldid=1071023204
https://en.wikipedia.org/w/index.php?title=.NET_Framework&oldid=1071023204
https://en.wikipedia.org/w/index.php?title=C_Sharp_(programming_language)&oldid=1075778688
https://en.wikipedia.org/w/index.php?title=C_Sharp_(programming_language)&oldid=1075778688
https://en.wikipedia.org/w/index.php?title=Windows_Presentation_Foundation&oldid=1072647910
https://en.wikipedia.org/w/index.php?title=Windows_Presentation_Foundation&oldid=1072647910
https://en.wikipedia.org/w/index.php?title=Architectural_pattern&oldid=1069477266
https://en.wikipedia.org/w/index.php?title=Architectural_pattern&oldid=1069477266
https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93viewmodel&oldid=1074534894
https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93viewmodel&oldid=1074534894

40

LIST OF FIGURES

Figure 1. The architecture of the .NET Framework (What is .NET

Framework...) ... 7

Figure 2. An example of a desktop application ... 9

Figure 3. An example of creating user interfaces with WPF using XAML 10

Figure 4. An example of code-behind file ... 10

Figure 5. Data binding (George & Aaron 2022) .. 12

Figure 6 Components of a Window (George 2022) .. 13

Figure 7. Window life events (George 2022) .. 14

Figure 8. Model-View-ViewModel connection (Model-view-viewmodel 2022) 15

Figure 9. An example of handling mouse clicks event. 15

Figure 10. Item class .. 19

Figure 11. Order class .. 20

Figure 12. Populated Order class ... 20

Figure 13. Supplier class .. 21

Figure 14. Data stored in the Global class.. 21

Figure 15. Method for fetching Order from Firestore 22

Figure 16. Log class ... 23

Figure 17. INotifyPropertyChanged base class .. 24

Figure 18. OnPropertyChanged implementation .. 24

Figure 19. Inheritance Hierarchy (Smith 2009) ... 25

Figure 20. DataContext binding .. 26

Figure 21. ManagerWindow.xaml ... 26

Figure 22. ManagerViewModel class ... 27

Figure 23. CurrentView property .. 27

Figure 24. RelayCommand class inherits from Icommand 28

Figure 25. RelayComand implementation .. 29

Figure 26. DispatcherTimer .. 29

Figure 27. Reorder function .. 30

Figure 28. App.xaml ... 31

Figure 29. Home Tab ... 31

Figure 30. Item and Reorder rule ... 32

Figure 31. Order Tab with New Order window ... 32

Figure 32. View Order .. 33

Figure 33. Reorder email to supplier .. 33

41

Figure 34. Supplier Tab .. 34

Figure 35. Searching for Item ... 34

Figure 36. Firestore database .. 35

Figure 37. Unit testing .. 35

Figure 38. History tab ... 36

