

Bao Vu

INTEGRATION OF DEVICE DRIVER SW AND

SYSTEMC HW MODEL

Technology and Communication
2022

ACKNOWLEDGEMENTS

I would like to express my most gratitude to Dr. Chao Gao for his great help and

guidance on not only my thesis work but over the years of my study at VAMK.

Without his valuable support, encouragement, and supervision I could not have

gone this far. It has been always an honor to work under his supervision and be

his student.

I would also like to extend my sincere appreciation to Mr. Simo Knaapi, my line

manager, for facilitating the precious opportunity to work at the Nokia SoC SW

team and giving me thoughtful guidance and immediate help.

I am extremely thankful and wish to pay my greatest gratitude to Mr. Petri

Vaipuro, my thesis instructor, for his huge and effective support during my thesis

progress. He did not only guide me through every stage of my thesis work but carry

me through the real work at Nokia. I am honestly grateful to work with him.

I would like to pay my gratitude to Mr. Tero Maaranen, SoC SW Technical Leader,

Ms. Deepa Naik, SoC SW Technical Specialist, and all the members not only in the

SoC SW L1Low squad3 team but the fellows from the different teams in the Nokia

SoC Organization for their support and the chances I could learn from them.

From the bottom of my heart, I would like to send my love and thanks to my family

in Vietnam, they are always my inspiration. I would also like to spread my thanks

to all the teachers, staff, and friends I made at VAMK and Finland for their endless

support during my time studying and living abroad.

Bao Vu

Vaasa, Finland

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Quoc Bao Vu
Title Integration of Device Driver SW and SystemC HW Model
Year 2022
Language English
Pages 47
Name of Supervisor Dr. Chao Gao

The thesis aims to use SystemC TLM in Nokia SoC IP (HW and SW), focusing on
hardware and software integration work. The thesis presents the implementa-
tion process of an application that was used to integrate the Nokia L1Low driver
SW with the Nokia SystemC HW model in the early development phases.

An application named TLM bridge was carried out using SystemC TLM with the
interconnectivity features that allow the L1Low SoC SW driver to access the reg-
isters of the SystemC HW model. The idea and internal resources access right
used for this thesis were granted by Nokia Corporation.

Thanks to the features of the TLM bridge application, the integration work of the
Nokia L1low SW driver and SystemC HW model was successfully achieved. Fur-
thermore, the thesis identified drawbacks in Nokia SoC development with Sys-
temC TLM and proposed prospects for the improvement of current HW/SW inte-
gration work. The thesis work contributed to HW/SW integration process in the
Nokia L1Low SoC SW team.

Keywords SystemC TLM, TLM bridge, HW/SW integration

CONTENTS

ABSTRACT

1 INTRODUCTION .. 9

1.1 Nokia Solutions and Networks Oy .. 10

1.2 SystemC ... 10

2 THEORETICAL BACKGROUND ... 11

2.1 SystemC Features .. 11

2.1.1 Module .. 11

2.1.2 Constructor ... 11

2.1.3 Port, Signal and Process .. 12

2.1.4 Testbench .. 13

2.2 Design Methodology ... 13

2.2.1 Traditional System Design ... 13

2.2.2 SystemC Design ... 14

2.3 Transaction Level Modeling .. 15

2.3.1 Coding Style ... 17

2.3.2 Advantage ... 17

2.4 Practical Examples .. 18

2.4.1 Pure SystemC Design ... 18

2.4.2 SystemC TLM Design ... 22

2.4.3 Conclusion ... 28

3 SOC SYSTEMC DEVELOPMENT .. 30

3.1 Obstacles ... 30

3.2 SoC SystemC Design Components .. 30

3.2.1 SystemC HW Model Library .. 30

3.2.2 TLM Bridge .. 31

3.2.3 L1Low SW Driver ... 31

4 TLM BRIDGE IMPLEMENTATION .. 32

4.1 Idea and Goal .. 32

4.2 Interfaces .. 34

4.2.1 C/C++ Interfaces .. 34

4.2.2 SystemC TLM Interfaces .. 35

4.3 Simulation ... 36

4.3.1 Initialization ... 36

4.3.2 Execution ... 38

4.4 Outcome ... 42

4.4.1 Read Access Result .. 42

4.4.2 Write Access Result ... 43

4.4.3 Invalid Register Access Result ... 43

5 CONCLUSIONS AND FUTURE WORK ... 45

5.1 Conclusions ... 45

5.2 Future Work .. 45

REFERENCES .. 47

6

LIST OF FIGURES AND TABLES

Figure 1. Typical testbench flow ... 13

Figure 2. Traditional system design flow .. 14

Figure 3. SystemC design flow .. 15

Figure 4. TLM-based methodology ... 16

Figure 5. XOR from NAND ... 18

Figure 6. 8-bit word parity bit generator schematic ... 19

Figure 7. Parity generator SystemC flow .. 22

Figure 8. Even parity bit SystemC results ... 22

Figure 9. Parity bit generator SystemC TLM flow ... 28

Figure 10. Even parity bit SystemC TLM results ... 28

Figure 11. General system working diagram .. 33

Figure 12. Read and Write operations .. 35

Figure 13. Initialize transaction attributes .. 36

Figure 14. Statements executed in the elaboration stage 36

Figure 15. Top-level module ... 37

Figure 16. Initialization process .. 37

Figure 17. TransGen() thread .. 38

Figure 18. Transaction attributes extraction .. 38

Figure 19. Transaction attributes check ... 39

Figure 20. Register access process .. 39

Figure 21. Execution process .. 41

Figure 22. Read access output .. 42

Figure 23. Write access output ... 43

Figure 24. Invalid register address access .. 43

Figure 25. Invalid command access .. 44

7

LIST OF LISTINGS

Listing 1. SC_MODULE macro syntax .. 11

Listing 2. SC_CTOR syntax ... 12

Listing 3. NAND logic module definition ... 19

Listing 4. XOR logic module definition .. 20

Listing 5. Parity bit generator module definition ... 21

Listing 6. Top-level module ... 23

Listing 7. Control module .. 24

Listing 8. Generic payload transaction attributes set ... 25

Listing 9. HW module .. 26

Listing 10. Generic payload transaction attributes get .. 27

Listing 11. Definition of pargen() .. 27

file:///C:/Users/baovu/Documents/Thesis/Thesis_BaoVu_v2.docx%23_Toc102657597
file:///C:/Users/baovu/Documents/Thesis/Thesis_BaoVu_v2.docx%23_Toc102657601
file:///C:/Users/baovu/Documents/Thesis/Thesis_BaoVu_v2.docx%23_Toc102657602
file:///C:/Users/baovu/Documents/Thesis/Thesis_BaoVu_v2.docx%23_Toc102657603
file:///C:/Users/baovu/Documents/Thesis/Thesis_BaoVu_v2.docx%23_Toc102657604
file:///C:/Users/baovu/Documents/Thesis/Thesis_BaoVu_v2.docx%23_Toc102657605
file:///C:/Users/baovu/Documents/Thesis/Thesis_BaoVu_v2.docx%23_Toc102657606

8

LIST OF ABBREVIATIONS AND ACRONYMS

ANSI American National Standards Institute

ASIC Application Specific Integrated Circuit

API Application Programming Interface

BBU Baseband Unit

BTS Base Transceiver Station

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

HDL Hardware Description Language

HW Hardware

IC Integrated Circuit

IP Intellectual Property

L1 Layer 1 / Physical layer

MN Mobile Network

OSCI Open SystemC Initiative

SoC System on Chip

SW Software

TLM Transaction Level Modeling

9

1 INTRODUCTION

Today, the notion of System on Chip (SoC) is a reality and fully functioning system

that includes complex processors, peripherals, digital signal processors (DSP),

multi-layer buses, multiple memories, and other blocks that might be separate

ASICs. With an SoC, we can fulfill the primary goals such as overhead saving, en-

ergy waste reduction, and minimizing the system dimension which gives us a pow-

erful system within a small single processor /1/.

However, SoC is a highly integrated system with both HW and SW, the develop-

ment is complicated and time-consuming, and especially the SW development can

be only conducted when HW is ready, thus simulation is necessary. Furthermore,

Nokia SoC products are massive in design, fast in speed, and large in complexity.

A design is better to be described at higher levels of abstraction so that it enables

HW/SW integration and faster simulation.

The SystemC was chosen as one of the potential approaches for certain Nokia SoC

IPs simulation in the early phases of SoC development. The thesis with the inter-

connection work between the SoC software driver and the SoC SystemC hardware

(HW) model, which is a crucial step in the development process.

The thesis includes five chapters. The overview of SystemC and Transaction-Level

Modeling (TLM) components are introduced in Chapter 2, in which some simple

examples using SystemC and TLM are described.

The main topic is presented in Chapter 3 and Chapter 4. Chapter 3 highlights the

current problems of SoC development in Nokia and introduces the most essential

components that construct a Nokia SoC SystemC design. In Chapter 4, the imple-

mentation of the SoC SW driver/SystemC HW model integration approach within

Nokia’s SoC SystemC design development and the accomplishment is presented.

The last chapter proposes some points that could be better improved and further

developed in the future within the Nokia SoC SystemC design.

10

1.1 Nokia Solutions and Networks Oy

Nokia is a Finnish solutions and networks company founded in 1865. Nokia is rec-

ognized as a pioneer in the matter of technology evolution and provides cutting-

edge networks ranging in mobile, infrastructure, cloud, and enabling technologies

/2/.

In the past few years, the Mobile Industry has remarkably changed. Nokia has been

always a leading in mobile technology serving a million customers all around the

world. Along with a long history of network services, Nokia is constantly innovating

their network technologies. System on Chip is one of the innovations that leverage

Nokia to be a top leader in the field. In 2021, Nokia launched the next-generation

AirScale 5G portfolio which is empowered by the latest version of ReefShark Sys-

tem-on-Chip chipsets, the product is integrated into baseband, remote radio

heads, and mMIMO antennas with modern digital beamforming technology to de-

liver a massive 5G capacity, coverage range, and easy deployment /3/.

1.2 SystemC

SystemC is an ANSI standard C++ class library for system and hardware design. In

the other words, SystemC expands the capabilities of C++ with modeling of HW

descriptions enabled by adding a class library to C++. The class library is a library

of functions, data types, and other constructs that are valid C++ code without

modifying anything of C++. One highlight that can be mentioned is that SystemC

does not add new syntax to C++ but simply defines a new C++ class library /4/.

A system-level representation of a design is critical for managing the complexity

of large-scale designs, allowing us to easily perform all design optimizations and

investigations. SystemC also supports the Electronic System Level (ESL) design and

with TLM /5/.

11

2 THEORETICAL BACKGROUND

This chapter covers the essential concepts of SystemC, design methodology, and

TLM. These topics are necessary for one to get started exploring and designing a

system with SystemC and TLM. The chapter also presents some examples to indi-

cate the advantages of utilizing SystemC TLM.

2.1 SystemC Features

2.1.1 Module

Class sc_module is the base class for modules in which ports, signals, processes,

constructors, and other modules can be initiated. SC_MODULE is a macro that may

be used to prefix the definition of a module for convenience and this macro use is

not mandatory /6/. The SystemC module syntax is shown in Listing 1.

2.1.2 Constructor

As SC_MODULE is a C++ class, it requires a constructor. SC_CTOR is a macro that

provides facilitation for declaring or defining a constructor of a module.

It will only be used at a place where the rules of C++ permit a constructor to be

declared and can be used as the declarator of a constructor declaration or a con-

structor definition. The argument that shall be passed to SC_CTOR is the name of

the module class constructed /6/. Listing 2 is an example of a SC_MODULE con-

structor.

#include <systemc>

SC_MODULE(module_name) {

//MODULE_BODY

};

Listing 1. SC_MODULE macro syntax

12

Listing 2. SC_CTOR syntax

2.1.3 Port, Signal and Process

Ports pass data to and from the processes of a module. Port mode can be in, out,

inout or even the data type as any legal C++ data type, SystemC data type, or user-

defined type. A signal is used to connect the port modules. The signal can be con-

sidered as the physical wire that interconnects devices to the physical implemen-

tation of the design. The data is carried by signals and ports determine the direc-

tion of data /6/.

A process is a method registered with the SystemC kernel. A process can have its

sensitivity list which contains a list of signals that can trigger the process itself to

run or cause other processes to be executed by sending new values to the signals

that the other processes are sensitive to. The process type defines how it is in-

voked and executed. There are three available SystemC processes: SC_METHOD,

SC_THREAD, and SC_CTHREAD. Each type has its own unique behavior /6/.

The ports are bound to the processes for input and output. Meanwhile, the signals

play the role of transmitting the data between the processes. All the definition of

ports, signals, and processes happens in the scope of SC_MODULE which we can

consider as a C++ class.

#include <systemc>

SC_MODULE(module_name) {

 SC_CTOR(module_name)

 : Initialization // C++ initialization list

 {

 // Subdesign_Allocation

 // Subdesign_Connectivity

 // Process_Registration

 // Miscellaneous_Setup

 }

};

13

2.1.4 Testbench

The test bench is used to stimulate the design under test and verify the design

results they can be implemented in different ways. A stimulus can be conducted

in the main program and the results checked in another process. The test bench

can be done according to the user application /6/.

The stimulus module provides inputs to the Device Under Test (DUT) and the Re-

sults Checking module looks at the device output and verifies the correctness of

the results. Figure 1 shows a typical testbench design flow /6/.

Figure 1. Typical testbench flow

2.2 Design Methodology

2.2.1 Traditional System Design

The simplest and most traditional approach to system design begins by writing a

C or C++ model of the system to verify system-level concepts and algorithms. Af-

ter the verification, parts of the C/C++ model implemented in the HW model are

14

manually converted to HDL for actual HW implementation. Figure 2 shows the

traditional system design flow /6/.

Figure 2. Traditional system design flow

There are obvious problems with this methodology /6/:

• Errors occur in manual conversion from C/C++ to HDL

• C/C++ system model and HDL model disconnection

• Multiple system tests

• Time-consuming

2.2.2 SystemC Design

Due to the problems of the traditional approach, the SystemC design methodology

is considered a better methodology for system-level design. The flow of the Sys-

temC design method is shown in Figure 3 /6/.

15

Figure 3. SystemC design flow

The advantages SystemC design over the traditional methodology /6/:

• Refinement methodology: Designs are not converted from C-level descrip-

tions to HDL but are slowly refined in small increments to add the neces-

sary HW and timing structures to the design. Using this refinement

method, designers can easily implement design modification and spot er-

rors during refinement.

• Written in a single language: the SystemC facilitates the designer ability to

design a system without being a multilingual expert. SystemC supports

modeling from system level to RTL if required.

2.3 Transaction Level Modeling

Even though SystemC brings such advantages for system-level modeling, it is not

sufficient to create an effective model. Modeling styles and interoperability rules

between different models also need to be defined. Transaction Level Modeling is

an idea first proposed by the University of California, Irvine, and is now widely

recognized as an effective abstract modeling method /5/.

16

Transaction-level modeling (TLM) is a technique for describing a system in terms

of function calls, which define a set of transactions on a set of channels. TLM de-

scriptions can be more abstract and therefore faster to simulate than register

transfer level (RTL) descriptions traditionally used as starting points for IC imple-

mentations. However, TLM can still be used to define a design in a less abstract

and more detailed way /8/. The TLM-based design methodology is described in

Figure 4 /9/.

Figure 4. TLM-based methodology

One of the key techniques used in this design process is the modeling of the sys-

tem at the transaction level. A transaction is a single object that contains the signal

and handshake sequences required by system components to exchange data /10/.

In TLM-2.0, four basic components enable transaction transmitted-received be-

tween modules /11/:

• Initiators: generate transactions.

• Targets: respond to transactions sent by the modules.

• Transaction: the object encapsulating everything needed for bidirectional

communication between modules.

17

• Sockets: act as the bridge between the initiator module and the target

module. Enabling modules to exchange the transaction.

2.3.1 Coding Style

A coding style is a set of programming language idioms that work well together,

not a specific level of abstraction or software programming interface. In the scope

of the thesis, only two specific named coding styles are discussed: loosely-timed

and approximately-timed /4/.

1. Loosely-timed

This coding style takes advantage of the blocking interface which allows only two

timing points to be linked with each transaction, according to the call to and return

from the blocking transport function /4/.

In other words, loosely-timed means as fast as possible. To achieve speed, the

loosely-time coding style supports “temporal decoupling”, which allows individual

processes to run before the simulation time, minimizing context switches occur-

ring during simulation, which has a significant impact on simulation speed /12/.

2. Approximately-timed

This coding style utilizes the non-blocking transport interface, which is sufficient

and appropriate for the architectural exploration and analysis use cases. The

added timing information is just accurate enough to perform modeling /12/.

2.3.2 Advantage

The goal of TLM is to significantly increase simulation speed while still providing

decent accuracy for design tasks. To achieve this, TLM offers a way to minimize

the number of events and the amount of information that has to be processed

during simulation /13/.

Noticeable advantages of TLM include:

18

• Fast and compact

• HW/SW models integration support

• The early platform for SW development, system exploration, and verifica-

tion

• Accelerates product release schedule.

2.4 Practical Examples

This section provides two examples of how to design a simple HW model using

SystemC and TLM to calculate the even parity bit for 8-bit and 32-bit input data.

In addition, the perspective about the advantages of SystemC TLM in system de-

sign over pure SystemC design is raised.

2.4.1 Pure SystemC Design

The design is implemented using NAND and XOR logic gates. Figure 5 indicates that

a XOR logic is achieved using a combination of four NAND gates /14/.

Figure 5. XOR from NAND

The NAND logic is implemented as shown in Listing 3 and XOR logic using the NAND

module is implemented as shown in Listing 4.

19

Listing 3. NAND logic module definition

In Listing 3, we inspect the do_nand() process which is sensitive to input from the

ports, which means that any value changes on those ports caused by the XOR trig-

ger the do_nand() process.

Figure 6. 8-bit word parity bit generator schematic

An 8-bit word even parity bit is generated by combining seven XOR logic gates.

Figure 6 shows the generator scheme /15/.

#include "systemc"

SC_MODULE(nand)

{

 sc_in<bool> nA, nB;

 sc_out<bool> nF;

 void do_nand()

 nF.write(!(nA.read() && nB.read()));

 }

 SC_CTOR(nand)

 {

 SC_METHOD(do_nand);

 sensitive << nA << nB;

 }

};

20

Listing 4. XOR logic module definition

The implementation is done using the C++ programming language with the Sys-

temC data types. We can notice that SystemC is C++ based language and a designer

who is familiar with C++ programming can develop his HW model without using

any HDL programming.

The SystemC-based implementation of the parity bit generator (as shown in Listing

5) is following the block diagram in Figure 7 to generate an even parity bit for 8

input bits as “par_A0-7”.

#include "systemc"

#include "nand.h"

SC_MODULE(exor)

{

 sc_in<bool> A, B;

 sc_out<bool> F;

 nand n1, n2, n3, n4;

 sc_signal<bool> S1, S2, S3;

 SC_CTOR(exor) :

 n1("N1"), n2("N2"),

 n3("N3"), n4("N4")

 {

 n1.nA(A);

 n1.nB(B);

 n1.nF(S1);

 n2.nA(A);

 n2.nB(S1);

 n2.nF(S2);

 n3.nA(S1);

 n3.nB(B);

 n3.nF(S3);

 n4.nA(S2);

 n4.nB(S3);

 n4.nF(F);

 }

};

21

#include "systemc"

#include "exor.h"

SC_MODULE(pargen)

{

 sc_in<bool>

 par_A0, par_A1, par_A2, par_A3,

 par_A4, par_A5, par_A6, par_A7;

 sc_out<bool> P;

 exor exor1, exor2, exor3, exor4,

 exor5, exor6, exor7;

 sc_signal<bool> par_S1, par_S2, par_S3,

 par_S4, par_S5, par_S6;

 SC_CTOR(pargen) :

 exor1("EXOR1"), exor2("EXOR2"), exor3("EXOR3"),

 exor4("EXOR4"), exor5("EXOR5"), exor6("EXOR6"),

exor7("EXOR7")

 {

 exor1.A(par_A0);

 exor1.B(par_A1);

 exor1.F(par_S1);

 exor2.A(par_A2);

 exor2.B(par_A3);

 exor2.F(par_S2);

 exor3.A(par_S1);

 exor3.B(par_S2);

 exor3.F(par_S3);

 exor4.A(par_A4);

 exor4.B(par_A5);

 exor4.F(par_S4);

 exor5.A(par_A6);

 exor5.B(par_A7);

 exor5.F(par_S5);

 exor6.A(par_S4);

 exor6.B(par_S5);

 exor6.F(par_S6);

 exor7.A(par_S3);

 exor7.B(par_S6);

 exor7.F(P);

 }

};

Listing 5. Parity bit generator module definition

22

The process of generating parity bits is shown in Figure 7. In main.cpp, we have

objects of three modules: Stimulate, Parity Generator, Monitor. Additionally, we

bind the signals connecting these three modules to their ports.

The module named Stimulate module creates ports connecting to the signals de-

clared in main.cpp. This module is responsible for feeding values into the Parity

Generator module.

The Parity Generator module takes the input from Stimulate module and passes it

to the XOR module to generate a parity bit.

The Monitor module undertakes the task of tracking and printing the results.

Figure 7. Parity generator SystemC flow

The result, shown in Figure 8, shows that the correct even parity bits are gener-

ated. Correct 8-bit word even parity bits are achieved using a combination of

NAND, XOR logic designed in SystemC.

Figure 8. Even parity bit SystemC results

2.4.2 SystemC TLM Design

In this example, SystemC TLM involves the use of function calls to communicate

between SystemC processes. The focus of TLM is on communication between pro-

cesses.

23

This approach is implemented using a generic payload transaction supported by

SystemC TLM to illustrate the process of generating parity bit.

The design is built with two registers address:

• PARITY_REG_IN_ADDR (0x04): stores the unsigned int 32-bit word data in-

put

• PARITY_REG_OUT_ADDR (0x08): stores the parity bit output.

This design has three main modules that are top-level module, HW module, and

Control module. The top-level module initializes the HW module and the Control

module. It takes action to bind the initiator socket on the Control to the target

socket on the HW, which deliver payloads with the information needed for bidi-

rectional communication. This is a convenience feature supported by TLM sockets.

The initiation is identical to C++ programming, the exclusive thing is the socket

binding shown in Listing 6.

The initiator and target sockets need to be declared and constructed plainly within

the Control and HW modules.

#include "systemc"

#include <tlm>

#include "Module.h"

#include "testbench.h"

SC_MODULE(Top)

{

 Module *hw_module;

 Control *control;

 SC_CTOR(Top)

 {

 hw_module = new Module("module");

 control = new Control("control");

 control->initiator_socket_control.bind(hw_module->tar-

get_socket_control);

 }

};

Listing 6. Top-level module

24

In Listing 7, we examine the initiator socket, which is declared using the

namespace tlm_utils. All declarations in TLM-2.0 are in one of the two C++

namespaces tlm or tlm_utils. Socket types are simple initiator and target because

they are straightforward to implement. They are classes derived from the two un-

derlying socket types tlm_initiator_socket and tlm_target_socket. The socket tem-

plate argument states the typename of the parent module /11/.

The SC_THREAD process macro is used to register the associated function Pay-

loadGen() function with the kernel so that the SystemC scheduler can call back the

function during simulation /4/. The PayloadGen() member function generates a

stream of payload transactions that are sent to the HW module over the sockets

and the data carried by the payload is used to calculate and store parity bit.

In the thread process member function, the default transaction type for the socket

is tlm_generic_payload declared in tlm derived namespace. The generic payload

plays a vital role in interoperability between transaction-level models. The trans-

action encapsulated in the generic payload is then sent over the socket using the

TLM-2.0 blocking transport interface b_transport which transmits the transaction

argument by reference without a return value /11/.

Listing 8 shows the standard set of attributes /4/:

• set_command: Two kinds of commands supported that is read and write.

SC_MODULE(Control)

{

 tlm_utils::simple_initiator_socket<Control> initia-

tor_socket_control;

 SC_CTOR(Control) : initiator_socket_control("initia-

tor_socket_control")

 {

 SC_THREAD(PayloadGen);

 }

 void PayloadGen();

};

Listing 7. Control module

25

• set_address: The address to which data is read or written.

• set_data_ptr: The pointer to a data buffer within the Control module.

• set_data_length: The length of the data array in bytes.

• set_streaming_width: The width of a streaming burst. For non-streaming

transactions, the stream width equals the data length.

• set_byte_enable_ptr: The pointer to the byte enable array is set to the

value passed as an argument.

• set_dmi_allowed: The method set the DMI allows an attribute to the value

passed as an argument.

• set_response_status: The method indicates the current status of the tran-

sition. The response status should be initialized as TLM_INCOMPLETE_RE-

SPONSE to keep track of the transaction status.

The blocking transport call has the timing annotation to state the time when the

transaction is processed.

void Control::PayloadGen()

{

tlm::tlm_generic_payload* PLtrans = new tlm::tlm_generic_pay-

load;

...

PLtrans->set_command(cmd);

PLtrans->set_address(addr);

PLtrans->set_data_ptr(reinterpret_cast<unsigned char*>(&data));

PLtrans->set_data_length(4);

PLtrans->set_streaming_width(4);

PLtrans->set_byte_enable_ptr(0);

PLtrans->set_dmi_allowed(false);

PLtrans->set_response_status(tlm::TLM_INCOMPLETE_RESPONSE);

initiator_socket_control->b_transport(*PLtrans, delay);

...

}

Listing 8. Generic payload transaction attributes set

26

A target socket is declared and constructed in the HW module. The blocking

transport method is implemented inside the constructor by registering the socket

with a callback method called register_b_transport. Listing 9 declares the func-

tions and variables used for parity bit calculation and extraction of a generic pay-

load transaction.

The HW module uses the get method to extricate the payload transaction attrib-

utes set by the Control module. In Listing 10, the extraction of the six most im-

portant attributes is performed and checked to ensure that the Control module

does not utilize the characteristics that are not supported by the HW module.

The set_response_status is set to TLM_OK_RESPONSE to notify the transaction

was successful and the target module received the payload without errors.

SC_MODULE(Module)

{

 tlm_utils::simple_target_socket<Module> target_socket_con-

trol;

 SC_CTOR(Module) : target_socket_control("target_socket_con-

trol")

 {

 target_socket_control.register_b_transport(this, &Mod-

ule::b_transport_control);

 }

 virtual void b_transport_control(tlm::tlm_generic_payload&

PLtransExt, sc_time& delay);

 bool pargen(uint32_t data_param);

 void read(uint32_t* t_data, uint32_t t_address);

 void write(uint32_t t_address, uint32_t* t_data);

 uint32_t mem[MEM_SIZE];

}; Listing 9. HW module

27

If cmd is set to TLM_WRITE_COMMAND, the parity bit is generated by a function

named pargen() which takes 32-bit input data and generates an even parity bit.

The generator algorithm for even parity bit is given in Listing 11 /16/.

Listing 11. Definition of pargen()

Function pargen() uses a simple algorithm with a bit-shifting technique to compute

and return the even parity bit. The working flow of SystemC TLM design is depicted

in Figured 9.

bool pargen(uint32_t data_param)

{

 int y = data_param ^ (data_param >> 1);

 y = y ^ (y >> 2);

 y = y ^ (y >> 4);

 y = y ^ (y >> 8);

 y = y ^ (y >> 16);

 if(y & 1)

 return 1;

 else return 0;

}

void Module::b_transport_control(tlm::tlm_generic_payload&

PLtransExt, sc_time& delay)

{

 tlm::tlm_command cmd = PLtransExt.get_command();

 uint32_t* ptr = (uint32_t*)PLtransExt.get_data_ptr();

 uint32_t addr = PLtransExt.get_address();

 unsigned int len = PLtransExt.get_data_length();

 unsigned char* byt = PLtransExt.get_byte_enable_ptr();

 unsigned int wid = PLtransExt.get_streaming_width();

 uint32_t offset = addr/4;

 uint32_t Par;

 if (byt != 0 || len > 4 || wid != 4)

 SC_REPORT_ERROR("TLM-2",

 "Target does not support given"

 " generic payload "

 "transaction");

 if (addr == PARITY_REG_IN_ADDR) { ...

 else if (addr == PARITY_REG_OUT_ADDR) ...

 PLtransExt.set_response_status(tlm::TLM_OK_RESPONSE);

}

Listing 10. Generic payload transaction attributes get

28

Figure 9. Parity bit generator SystemC TLM flow

The results prove the program using the SystemC TLM generic payload transaction

works perfectly, as can be seen in Figure 10. The lines starting with Write or Read

CMD come from the HW module and show the data received, and the parity bits

generated and stored in the correct address. The other lines are written to the

Control module for checking purposes.

Figure 10. Even parity bit SystemC TLM results

2.4.3 Conclusion

The SystemC TLM design is reusable with other ideas, it is like a skeleton of a HW

model with multiple functionalities. In other words, we can use the same program

constructed by SystemC TLM for any computation with the same data input just

by changing the logic inside the member function in the HW module.

29

The pure SystemC design is a designated parity bit generator and refactoring of

the entire program is inevitable in case using it for other calculation purposes. In

the contrast, the TLM design gives us the ability to make some minor modifications

in function pargen() to perform a different calculation purpose. In general, Sys-

temC TLM provides us with a method to describe a system at an abstraction where

we can describe a system using high-level programming techniques such as func-

tion calls.

This shows that it is not enough to build efficient models using SystemC alone and

that TLM capabilities facilitate designers to describe complex systems dynamically

and efficiently using C++-based programming language.

30

3 SOC SYSTEMC DEVELOPMENT

This chapter outlines the obstacles that currently exist in the development process

and the role of the SystemC TLM implementation in Nokia SoC. The chapter pro-

vides an overview of the SystemC components, interfaces, and the SW implemen-

tation as well as the SystemC HW model.

3.1 Obstacles

Nokia masters both their SoC HW and SoC SW technology, resulting in almost eve-

rything needing to be done in-house, and delivery time being a strict part that had

to be followed. Launching a fully functional SoC product to market takes several

years and requires the work of multiple teams with experienced engineers.

The present difficulties in SoC development can be summarized as slow develop-

ment cycle, difficulties in debugging, and late HW arrival.

Thanks to the advantages of SystemC TLM, some of the difficulties can be ad-

dressed. An early SoC HW model can be provided for SoC SW development. Hence,

the development process is accelerated, and the existing resources of Nokia are

maximized.

3.2 SoC SystemC Design Components

This section introduces three main components that are constructing a Nokia SoC

SystemC design.

3.2.1 SystemC HW Model Library

The IP (HW) model library is the main component that plays the role of the SoC

HW containing a memory-mapped registers bank and the SystemC TLM interfaces.

Generally, the SystemC HW model is developed to serve the purpose of delivering

a virtual HW platform for SW development.

31

Testbenches are designed to test and evaluate the outputs of the model. The test

benches feed the inputs for the HW model to trigger the simulation. For instance,

one of the test cases sends a read register access request to the HW model with

necessary register access information, then checks and verifies if the HW model

returns the right value of the correct register.

In the beginning, test benches could be considered as SW driver simulations in the

early phases of development.

3.2.2 TLM Bridge

Basically, a TLM bridge performs the task of intermediary connection, i.e. receives

the register access information as a parameter through register read and write

operations, then, configures the access information and forwards it to the Sys-

temC HW model through the TLM sockets. In other words, the TLM bridge has

inter-connectable functionalities that allow the SW driver to access the SystemC

HW model registers.

3.2.3 L1Low SW Driver

L1low SW driver is low-level software implemented based on a predesigned archi-

tecture with comprehensible coding and naming conventions regulated by Nokia

SoC architects. The L1Low SW driver has two basic levels of APIs and UnitTest built

on top of it to access the HW:

• Functional API: The main data structure is specifically created for the HW

IP block. It stores the access information to the HW IP block which is di-

vided into two types: access to the regular register and access to memory.

• Register API: the main data structure for storing the register access infor-

mation is created. It describes the register fields and functions that are

called by functional API to get access to HW.

32

4 TLM BRIDGE IMPLEMENTATION

This chapter describes the implementation of the interfaces and the communica-

tion methods between components using the TLM bridge. The general system

working process is introduced first, and each part introduces the specific functions

and working principles used in each component in detail. The information given in

this chapter is the minimum and most essential, it does not comprehensively de-

scribe all the functionalities of the components.

4.1 Idea and Goal

Eventually, the SystemC HW model will be used by the SoC SW engineers who

design their SW driver utilizing the resources of SoC HW. However, the SW driver

cannot connect directly to the SystemC HW model since the main functionality of

the SW driver is pure C/C++ based source code built without relation to the Sys-

temC library and designed for the generic register access purpose not specifically

for the SystemC HW model. That is the reason for an application that enables the

SW driver and SystemC HW model to work together.

The goal of the TLM bridge is to provide necessary operations and interfaces for

communication with both the SystemC HW model and the L1Low SW driver

thereby creating a complete system.

Figure 11 shows how three main components work as a system.

33

Figure 11. General system working diagram

The three main blocks are marked with dash lines to distinguish each block from

the other in the entire system.

The SW driver sets register access information, including register addresses and

data values, and forwards the information to TLM bridge operations.

The TLM bridge handles the integration process by initializing and starting the sim-

ulation. Additionally, the TLM bridge configures register access requests by using

the access information set by the SW driver and sends them as a transaction to

the HW model.

The SystemC HW model processes register access requests with the necessary ver-

ification steps and executes accesses corresponding to the command that can be

read from or write to register.

34

The log message shows all the information about the result of the output of the

register, in both cases, whether the register is valid or not.

4.2 Interfaces

As an intermediary application, the TLM bridge should have interfaces to interact

with both the SW driver and the SystemC HW model. This section introduces the

feature of the C/C++ interface and the SystemC TLM interface.

4.2.1 C/C++ Interfaces

Two types of operations are designed to take the address and data value set by

the SW driver and a variable named csr as parameters. The csr variable stands for

Control/Status Register, which is a struct type variable used to store all the register

access information required by the SystemC HW model besides the address and

data of register such as:

• Status: indicates the write/read response (1 = OK, 0 = NOT OK)

• Len: indicates the length of data

• Rnw: indicates the command of access. (true = read, false = write)

The operations complement the necessary access information and then assign it

to csr for later transaction configuration. The complemented access information

done by the operations can be seen in Figure 12.

35

Figure 12. Read and Write operations

4.2.2 SystemC TLM Interfaces

The SystemC TLM interfaces enable the TLM bridge the ability to transform the

necessary access information set by readIPReg() and writeIPReg() operations into

transaction attributes that can be sent to the HW model to perform register ac-

cess.

1. TLM socket

The TLM bridge has an initiator socket named initiator_socket_control, which is

bound to the target_socket_control of the SystemC HW model for transaction ex-

changes. These sockets are the simple type of TLM sockets.

2. Transaction configure function

A function named prepCsRTrans() is based on the necessary access information

complemented by operations to initialize the seven attributes of a transaction. The

attribute initialization is shown in Figure 13. These attributes are later extracted

by the SystemC HW model and used to perform the register access process.

36

Figure 13. Initialize transaction attributes

4.3 Simulation

In this section, the phases of simulation such as initialization and execution are

described. When the operations from the C/C++ interfaces finish complementing

the necessary access information, the TLM bridge will start the simulation phases.

4.3.1 Initialization

At this stage, the statements prior to sc_start() are executed. Particularly, the SW

driver sets the address and data value of the register access request and passes it

to the TLM bridge operations, and then the TLM bridge operations complement

the necessary access information and assign it to the csr. After that, the top-level

module is initialized which carries the assigned csr to later give it to the TLM bridge

module. Figure 14 shows the statements executed before sc_start().

Figure 14. Statements executed in the elaboration stage

37

In the top-level module, the modules of the HW and TLM bridge are initialized and

the sockets of these modules are bound with each other as shown in Figure 15.

Figure 15. Top-level module

The TLM bridge uses the csr for later transaction attribute configuration. The pro-

cess of the initialization phase can be viewed in Figure 16.

Figure 16. Initialization process

38

4.3.2 Execution

After the initialization phase is completed successfully, the sc_start() will start the

execution phase. In this phase, the TLM bridge triggers a thread called TransGen(),

where the prepCsRTrans() function configures a transaction with seven attributes

based on the complete access information carried by csr. The transaction is then

sent to the HW model over the initiator socket using the blocking transport

method b_transport through. Figure 17 shows the implementation of the

TransGen() thread.

Figure 17. TransGen() thread

The blocking transport method b_transport_model implemented in the HW model

first takes the transaction through the target socket and extracts all the transac-

tion attributes initialized by the TLM bridge, as shown in Figure 18.

Figure 18. Transaction attributes extraction

The values extracted from the transaction are assigned to local variables for con-

venient processing of register accesses. Figure 19 shows some attributes checking

39

will be performed to ensure that the TLM bridge does not attempt to use features

that are not supported by the HW model.

Figure 19. Transaction attributes check

Once the transaction attributes are checked, the HW model proceeds with the

register access process by first checking if the address of the register being ac-

cessed is in range by a function named AddValid(). Figure 20 shows the implemen-

tation of the register access process handled by the HW model.

Figure 20. Register access process

40

If the register address is not supported by the HW model, the access is discarded

and notification of an invalid address is prompted. If the address is valid, the access

is handled accordingly to the command.

As a result, if the read command is recognized, the HW model will read the current

data value in the target register through a function called readmem() which reads

the data value and saves it to the transaction data pointer attribute. This data

value is later received and printed at the TLM bridge.

If the write command is recognized, the HW model writes the desired data value

to the target register by a function named writemem(). In the case of a write com-

mand, the HW model prints the access result through the AccessInfo() function

which not only displays the current value of the target register but that of other

registers. The entire execution process is shown in Figure 21.

41

Figure 21. Execution process

42

4.4 Outcome

In this section, we examine the results of the entire integration process. The out-

puts of three registers of the SystemC HW model are discussed. The results prove

that the SW driver successfully accessed the SystemC HW model register using the

TLM bridge. Register names and outputs do not reflect those of the final product.

The outputs are involved in three 32-bit registers which are SUB_IP_CODE,

SUB_IP_VERSION, SUB_IP_INSTANCE, and their addresses are 0x0, 0x4, and 0x8,

respectively.

4.4.1 Read Access Result

Figure 22 shows the default values of these three registers, initialized by the HW

model printed in the first three lines. If the address and the command are verified

and the register access request is accepted, the data value of the target register

will be printed byte by byte in LSB (byte) to MSB order. Since this is a 32-bit regis-

ter, a total of 4 bytes is printed. The target register is SUB_IP_INSTANCE.

Figure 22. Read access output

43

4.4.2 Write Access Result

In Figure 23, we inspect the result of a write access request to the target register

SUB_IP_VERSION with an address is 0x4. The same address checking and register

access processing as the read access is handled by the HW model. After the write

access executes, a new value 0xBA0FFA9 is written to the target register.

Figure 23. Write access output

4.4.3 Invalid Register Access Result

The HW model always detects invalid register accesses, which can be either an

attempt to access a register that does not exist as shown in Figure 24, or an access

attempt without a valid command as shown in Figure 25.

Figure 24. Invalid register address access

44

Figure 25. Invalid command access

When either invalid register address or command is detected, the HW model will

send an error response to the TLM bridge, and the simulation will be stopped.

45

5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In SoC development, integration is always a crucial process to enable the full func-

tionality of the final SoC product. As the Nokia SoC product is a complicated sys-

tem, both HW and SW will be utilized in several telecommunication network de-

vices such as baseband unit (BBU) or base station (BS) serving from thousands to

millions of mobile client devices. For that reason, not only SoC HW and SW driver

design is focused but the integration of HW/SW is an indispensable process in SoC

development.

Due to the lack of real SoC HW at this early stage of development, the SystemC

library with TLM features supported is a significant approach to provide an early

SoC HW model for SoC SW driver continuous development. Therefore, an applica-

tion named TLM bridge was developed as an interconnect tool to integrate the

SoC SW driver with the SystemC HW model.

In the Nokia SoC SystemC design, the goal of the TLM bridge is to provide an inter-

mediary application that enables communication capability between the low-level

SW driver and high-level abstraction SystemC HW model. The application met

most expectations and allowed the SW driver fully access the target register of the

SystemC HW model without any fatal errors or unexpected accesses.

5.2 Future Work

Despite the flawless functionality of the application, some challenges still need to

be addressed to improve the operation of the TLM bridge. The limitation is that if

the SW driver sends multiple register accesses with different csr configurations, it

will cause a module initialization error because SystemC does not allow reinitiali-

zation of modules carrying the csr during the execution stage. My proposal to solve

this problem is to modify the way register access information is passed from the

46

SW driver to the TLM bridge operations so that the program does not have to ini-

tialize the module and refresh the simulation kernel over again.

Another promising alternative is to use a standard Unix UDP socket as a server for

the SW driver client exchanging register access information with the SystemC HW

model without the constraints of multiple simulation initialization. The TLM bridge

maps the access information received from the UDP socket and sends access re-

quests to the SystemC HW model.

47

REFERENCES

/1/ Anysilicon. What is a System on Chip (SoC)? Accessed 03.04.2022.

https://anysilicon.com/what-is-a-system-on-chip-soc/.

/2/ Nokia. Company. Accessed 03.04.2022. https://www.nokia.com/about-

us/company/.

/3/ Nokia. Nokia launches next-generation AirScale 5G portfolio powered by

ReefShark technology. Accessed 03.04.2022. https://www.nokia.com/about-

us/news/releases/2021/06/24/nokia-launches-next-generation-airscale-5g-port-

folio-powered-by-reefshark-technology/.

/4/ IEEE 1666-2011. 2011. IEEE Standard for Standard SystemC Language Ref-

erence Manual. IEEE Standards Association.

/5/ The European Space Agency. System-Level Modeling in SystemC. Accessed

03.04.2022. https://www.esa.int/Enabling_Support/Space_Engineering_Technol-

ogy/Microelectronics/System-Level_Modeling_in_SystemC.

/6/ Accellera. 2012. SystemC 2.0 User’s Guide. Accessed 03.04.2022.

https://github.com/accellera-official/systemc/tree/master/docs/sysc/archived.

/7/ Bhasker, J. 2002. A SystemC Primer. Treeline Drive, Allentown, PA. Star Gal-

axy Publishing.

/8/ Tech Design Forums. Transaction level modeling. Accessed 03.04.2022.

https://www.techdesignforums.com/practice/guides/transaction-level-model-

ling-tlm/.

/9/ Black, D.C., Donovan J., Bunton, B. & Keist A. 2009. SystemC: From the

Ground up. 2nd ed. Spring Street, New York, USA. Springer Science & Business Me-

dia.

https://anysilicon.com/what-is-a-system-on-chip-soc/
https://www.nokia.com/about-us/company/
https://www.nokia.com/about-us/company/
https://www.nokia.com/about-us/news/releases/2021/06/24/nokia-launches-next-generation-airscale-5g-portfolio-powered-by-reefshark-technology/
https://www.nokia.com/about-us/news/releases/2021/06/24/nokia-launches-next-generation-airscale-5g-portfolio-powered-by-reefshark-technology/
https://www.nokia.com/about-us/news/releases/2021/06/24/nokia-launches-next-generation-airscale-5g-portfolio-powered-by-reefshark-technology/
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/System-Level_Modeling_in_SystemC
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/System-Level_Modeling_in_SystemC
https://github.com/accellera-official/systemc/tree/master/docs/sysc/archived
https://www.techdesignforums.com/practice/guides/transaction-level-modelling-tlm/
https://www.techdesignforums.com/practice/guides/transaction-level-modelling-tlm/

48

/10/ Hsiung, P.A. 2004. Transaction-Level Modeling in SystemC. Accessed

03.04.2022. https://www.cs.ccu.edu.tw/~pahsiung/courses/soc/notes/Sys-

temC_TLM.pdf.

/11/ Aynsley, J. 2008. Tutorial 1 – Sockets, Generic Payload, Blocking Transport.

Accessed 03.04.2022. https://www.doulos.com/knowhow/systemc/tlm-20/tuto-

rial-1-sockets-generic-payload-blocking-transport/.

/12/ Aynsley, J. 2009. What is TLM-2.0? Accessed 03.04.2022.

https://www.youtube.com/watch?v=ocniBsPNRwk.

/13/ Debes, E. 2011. Computing Systems for Signal Processing. Accessed

03.04.2022. https://www.lri.fr/~de/Archi%20M2R%20Orsay%20Eric%20De-

bes%20Part%202.pdf.

/14/ Wikimedia Commons. 2009. A way of building an XOR gate from only NAND

gates. Accessed 03.04.2022. https://commons.wiki-

media.org/wiki/File:XOR_from_NAND.svg.

/15/ Gate Overflow. 2017. ISRO 2008- ECE Odd parity. https://gateover-

flow.in/120122/Isro-2008-ece-odd-parity.

/16/ GeeksforGeeks. Finding the Parity of a number Efficiently. Accessed

03.04.2022. https://www.geeksforgeeks.org/finding-the-parity-of-a-number-effi-

ciently/

https://www.cs.ccu.edu.tw/~pahsiung/courses/soc/notes/SystemC_TLM.pdf
https://www.cs.ccu.edu.tw/~pahsiung/courses/soc/notes/SystemC_TLM.pdf
https://www.doulos.com/knowhow/systemc/tlm-20/tutorial-1-sockets-generic-payload-blocking-transport/
https://www.doulos.com/knowhow/systemc/tlm-20/tutorial-1-sockets-generic-payload-blocking-transport/
https://www.youtube.com/watch?v=ocniBsPNRwk
https://www.lri.fr/~de/Archi%20M2R%20Orsay%20Eric%20Debes%20Part%202.pdf
https://www.lri.fr/~de/Archi%20M2R%20Orsay%20Eric%20Debes%20Part%202.pdf
https://commons.wikimedia.org/wiki/File:XOR_from_NAND.svg
https://commons.wikimedia.org/wiki/File:XOR_from_NAND.svg
https://gateoverflow.in/120122/Isro-2008-ece-odd-parity
https://gateoverflow.in/120122/Isro-2008-ece-odd-parity
https://www.geeksforgeeks.org/finding-the-parity-of-a-number-efficiently/
https://www.geeksforgeeks.org/finding-the-parity-of-a-number-efficiently/

