

Bachelor’s thesis

Information and Communications Technology

2022

Samuli Gratscheff

Integrating Robotics With a Smart

Home Environment

Bachelor’s Thesis | Abstract

Turku University of Applied Sciences

Information and Communications Technology

2022 | 37 pages

Samuli Gratscheff

Integrating robotics with a smart home environment

This thesis researches the possibility of integrating a Robot Operating System

(ROS) with a smart home environment. The smart home environment used in the

implementation was Home Assistant because it is the most common open-source

smart home platform and is able to use most of the smart home appliances on

the market.

The connection between ROS and Home Assistant was made with MQTT

(Message Queuing Telemetry Transport) messaging protocol because of its

reliability and lightweightedness. To simulate a robot an ESP32 DevKit C

microcontroller was used. MATLAB was acting as a ROS master, both for its

reliability and ability to handle complex calculations if needed in the future.

The implementation was successful and showed that it is possible to connect

ROS with Home Assistant through MQTT messages. The implementation was a

proof of concept, but if taken further, it would be possible to make a robot that

could respond to any event registered by a smart home appliance.

Keywords:

Robot Operating System, smart home, MQTT, microcontroller, Home Assistant

Opinnäytetyö (AMK) | Tiivistelmä

Turun ammattikorkeakoulu

Tieto- ja viestintätekniikka

2022 | 37 sivua

Samuli Gratscheff

Robotiikan integrointi älykotiympäristöön

Opinnäytetyössä tutkitaan Robot Operating System (ROS) integroimista

älykotiympäristöön. Älykotiympäristönä toimii Home Assistant, joka on yleisin

avoimen lähdekoodin älykotialusta ja mahdollistaa suurimman osan markkinoilla

olevien älykotilaitteiden käyttämisen.

Yhteys ROSin ja Home Assistantin välillä luotiin käyttämällä MQTT (Message

Queuing Telemetry Transport) -viestintäprotokollaa, sen ollessa luotettava ja

kevyt. Robotin simuloimiseksi käytettiin ESP32 DevKitC -mikrokontrolleria.

MATLAB-ohjelmisto toimii ROS-masterina luotettavuuden sekä edistyneiden

toimintojen vuoksi, jos niitä tarvitaan tulevaisuudessa.

Toteutus oli onnistunut ja näytti yhteyden ROSin ja Home Assistantin välillä

olevan mahdollinen MQTT-viestejä käyttämällä. Toteutus oli ensisijaisesti todiste

konseptin toimivuudesta. Jos toteutuksen veisi pidemmälle, olisi mahdollista

tehdä robotti, joka reagoi mihin tahansa älykotilaitteen rekisteröimään

tapahtumaan.

Asiasanat:

Robot Operating System, älykoti, MQTT, mikrokontrolleri, Home Assistant

Contents

List of abbreviations 7

1 Introduction 8

2 Technology background 9

2.1 Robot Operating System (ROS) 9

2.2 MQTT 10

2.3 Home Assistant 10

2.4 Node-RED 11

2.5 MATLAB 11

2.6 ESP32 Microcontroller 11

3 Requirements 12

3.1 Must have requirements 13

3.2 Should have requirements 13

3.3 Could have requirements 13

3.4 Will not have requirements 13

4 Architecture 14

5 Implementation 16

5.1 Necessary software and tools 16

5.1.1 MATLAB Installation 17

5.1.2 ROS Installation 17

5.1.3 Home Assistant installation 18

5.1.4 Node-RED and Mosquitto installation 18

5.2 Starting the ROS master 18

5.3 Connecting to ROS master 19

5.4 Creating a workspace and package 20

5.4.1 Creating a workspace 20

5.4.2 Creating a package 21

5.5 Setting the MQTT broker 21

5.6 Setting the MQTT ROS node 22

5.7 Connecting the ESP32 to ROS 25

5.7.1 Rosserial installation to Arduino IDE 26

5.7.2 Adding ESP32 board to Arduino IDE 26

5.7.3 Communication 29

6 Improvements and future work 33

7 Conclusion 34

References 35

Figures

Figure 1. ROS publisher and subscriber exchange. 9

Figure 2. Architecture. 14

Figure 3. ROS to Home Assistant message path. 15

Figure 4. Ubuntu Software repositorie permissions. 17

Figure 5. MATLAB ROS master launch command. 19

Figure 6. MATLAB ROS master information. 19

Figure 7. Node-RED flow. 22

Figure 8. Node-RED debug window. 22

Figure 9. MQTT Node running on terminal. 24

Figure 10. Node-RED inject node button. 24

Figure 11. MQTT node receiving message. 25

Figure 12. Node-RED debug receiving and sending a message. 25

Figure 13. Arduino IDE preferences. 27

Figure 14. Arduino IDE Board manager. 28

Figure 15. Selecting ESP32 Dev Module from the boards list in Arduino IDE. 28

Figure 16. LED on. 32

Figure 17. LED off. 32

Tables

Table 1. Requirements for implementation. 12

Table 2. Software and tools for the implementation. 16

List of abbreviations

IDE Integrated development environment

IP Internet Protocol

LCM Lightweight Communications and Marshalling

LED Light-emitting diode

MQTT Message Queuing Telemetry Transport

ROS Robotic Operating System

SSL Secure Sockets Layer

TCP Transmission Control Protocol

URI Uniform Resource Identifier

USB Universal Serial Bus

 8

Turku University of Applied Sciences Thesis | Samuli Gratscheff

1 Introduction

Home automation has become more common, and the amount of smart home

device manufacturers is growing fast. Manufacturers such as Philips, IKEA and

Sonoff have made smart home devices popular with their ease of use. The

problem with these systems is that compatibility with other manufacturers devices

is not clearly stated and might limit the users to a specific manufacturers devices.

For more freedom and still being able to use all these devices, Home Assistant

was used.

Robots are also becoming more common in households. Robots like iRobot’s

Roomba has been around since 2002 [1], but the catalogue has expanded to, for

example, window cleaning robots, pool cleaning robots and robot lawn mowers.

These robots also use their own respective apps and will not communicate with

other manufacturers devices. There are integrations in Home Assistant for some

of the most popular robots such as the iRobot devices made by the community.

Despite this, in this thesis a new robot will be developed with the Robot Operating

System (ROS).

This thesis will research whether it is possible to integrate robotics with a smart

home device environment. The thesis will also cover a demonstration, where a

simple robot will be integrated with a smart home environment.

This thesis is divided into five main chapters in addition to the introduction. In

chapter 2 the backgrounds of the technologies used in the implementation are

briefly described. Chapter 3 defines the requirements of the implementation using

the MoSCoW-method. Chapter 4 describes the architecture of the

implementation. Chapter 5 is the implemenetation, which describes the process

in a step-by-step basis. Chapter 6 describes the future possibilities and possible

improvements of the implementation.

 9

Turku University of Applied Sciences Thesis | Samuli Gratscheff

2 Technology background

In this chapter, the key technologies utilized in this thesis are briefly discussed.

2.1 Robot Operating System (ROS)

ROS is an open-source development kit, which includes a vast number of libraries

for robotics development. It provides a node-based communication as one of its

communication methods, which will be used in the demonstration [2]. In Figure 1

it is demonstrated how ROS nodes communicate with each other. ROS master

keeps track of the topics, publishers and subscribers. ROS master in itself is also

a node [3].

Figure 1. ROS publisher and subscriber exchange.

Source:https://se.mathworks.com/help/ros/ug/exchange-data-with-ros-publishers-and-

subscribers.html

ROS is a meta-operating system, and runs on UNIX-based operating systems,

mainly tested on Ubuntu and Mac OS X, although community has provided

support for other operating systems as well [4].

ROS has two major branches, ROS 1 and ROS 2. The branch used in this thesis

is ROS 1. ROS 2 does not use the same communication model as ROS 1, as it

does no longer have ROS master. It eliminates the problem that ROS 1 has, that

https://se.mathworks.com/help/ros/ug/exchange-data-with-ros-publishers-and-subscribers.html
https://se.mathworks.com/help/ros/ug/exchange-data-with-ros-publishers-and-subscribers.html

 10

Turku University of Applied Sciences Thesis | Samuli Gratscheff

if the ROS master is unavailable, the other nodes cannot communicate with each

other. Other changes include for example the use of newer C++ features used in

its API [5]. During this thesis, ROS 1 is used.

Other similar systems that utilize the subscriber/publisher model and used in

robotics include LCM and ZeroMQ. LCM was developed in MIT in 2006, and has

been used in robotics at Ford and Volvo [6]. ZeroMQ has been used at Microsoft

and Samsung and has a large number of supported programming languages [7].

ROS was chosen as the platform for clear documentation and active community.

The ROS version used in this thesis is Noetic 1.15.14.

2.2 MQTT

MQTT is also a messaging protocol based on publish/subscribe model, much

alike with ROS. Being lightweight, both messages and clients, it is a very suitable

protocol for Internet of Things and in the case of this thesis, robotics [8].

2.3 Home Assistant

Home Assistant is open-source software, designed to control smart home

devices. Home Assistant supports integrations for over 1900 smart home devices

and services, and it is constantly growing [9]. Home Assistant is recommended

to be run on a Raspberry Pi, but since no smart home devices were used in this

implementation, Home Assistant in a virtual machine will be run instead. Home

Assistant is not bound to certain manufacturers devices, and with the use of a

USB stick supporting Zigbee technology, it can connect to for example IKEA or

Philips smart home devices. Zigbee is a wireless technology developed by

Connectivity Standards Alliance [10]. It’s optimized for low power consumption,

which makes it suitable for smart home devices. Its mesh topology is scalable to

thousands of nodes, so it’s possible to build very large networks [11]. Home

Assistant supports many add-ons made by the developer or the community.

Node-RED and Mosquitto addons are used to to control the MQTT messages.

 11

Turku University of Applied Sciences Thesis | Samuli Gratscheff

2.4 Node-RED

Node-RED provides a node-based platform which reduces the amount of coding

needed to perform certain tasks. Node-RED editor works in the browser and is

built with node.js. Node-RED is light-weight and is easily run in a Raspberry Pi

and is ported to Home Assistant addon by the community. Node-RED has a large

palette of nodes and together with community made nodes the palette exceeds

225 000 modules [12].

Node-RED is used to receive and send MQTT messages in and out of Home

Assistant.

2.5 MATLAB

MATLAB is a programming language and a platform for data analysis, algorithms

and creating mathematical models [13]. For its advanced data analysis tools, it

will function as ROS master during this implementation. These tools are not used

in this thesis, but for future development, its possible uses could be for example

image recognition, which is not possible with the robot’s own hardware.

2.6 ESP32 Microcontroller

ESP32 is a low power, small microcontroller with integrated Wi-Fi and Bluetooth

connectivity [14], which makes it a good option to be used in small robots. The

specific ESP32 board used in the implementation is ESP32 DevKit-C.

 12

Turku University of Applied Sciences Thesis | Samuli Gratscheff

3 Requirements

The requirements are presented here with the MoSCoW -method. Special

attention was paid to keep the communication between devices lightweight, since

IoT devices are usually low powered and communicate over short distances.

Table 1. Requirements for implementation.

Requirement Importance Notes

Communication

between MATLAB, ROS

and Home Assistant

Must have Different parts of the

implementation must be able

to communicate with each

other.

Message protocols to be

lightweight

Must have Using MQTT messages as

the protocol of

communication in conjunction

with ROS messages.

Functionality to control

physical hardware with

ROS messages

Should have Physical hardware consists

on LEDs controlled by a

microcontroller unit.

Use an interactive way

of controlling the robot

Should have Control the robot with a

button in Home Assistant for

example, instead of code or

terminal commands.

Home automation with

IoT devices

Could have Different sensors added to

the Home Assistant

ecosystem, like motion

sensors and lights.

Own dedicated

hardware

Could have Instead of a virtual machine,

real physical hardware could

be used.

Advanced robot

functionality

Will not have The robot will not feature any

advanced features, like

image recognition or voice

control.

Some of the most critical requirements are discussed in more detail in the

following subchapters.

 13

Turku University of Applied Sciences Thesis | Samuli Gratscheff

3.1 Must have requirements

Communication between ROS, MATLAB, Home Assistant and ESP32 need to be

possible with lightweight messaging protocols. ROS itself rosmessages to

communicate between nodes, but for Home Assistant the protocol will be MQTT.

Communication between ESP32 and ROS must be possible over Wi-Fi.

3.2 Should have requirements

There should be functionality to control physical hardware with rosmessages. The

physical hardware does not have to be complex, as a proof of concept a simple

LED or a motor will suffice. Physical hardware will be connected to the ESP32

microcontroller.

3.3 Could have requirements

This implementation, if successful, will have endless number of possibilities for

more functionality. The robot can be built to be more complex, for example feature

movement, camera or proximity sensors. Implementation could have a Raspberry

Pi powered Home Assistant, instead of a Virtual Machine. In case of Home

Assistant being on a Raspberry Pi, there is the possibility to add an Zigbee USB

stick, and connect different smart home devices to Home Assistant, and control

them via rosmessages and MQTT.

3.4 Will not have requirements

This implementation will not have a robot including advanced functionality like

facial recognition, item recognition or voice control, even though MATLAB has

the processing power and tools for them.

 14

Turku University of Applied Sciences Thesis | Samuli Gratscheff

4 Architecture

In this chapter the architecture of the implementation is described. As seen in

Figure 2 below, most of the implementation was made with virtual machines for

convenience.

Figure 2. Architecture.

All different components of this demonstration are located inside the same local

area network. On this demonstration, Ubuntu and Home Assistant were set up

on virtual machines, but often Home Assistant is installed on a Raspberry Pi.

In ROS, all messages are sent to a specified topic. On Figure 3 the path the

message will take from a ROS node to Home Assistant is illustrated. ROS to

MQTT node contains code, that takes the rosmessage content, and uses MQTT

to send it forward to MQTT Broker, running on Home Assistant.

 15

Turku University of Applied Sciences Thesis | Samuli Gratscheff

Figure 3. ROS to Home Assistant message path.

 16

Turku University of Applied Sciences Thesis | Samuli Gratscheff

5 Implementation

The basic idea of the implementation is to research the possibility of integrating

robots to the smart home environment. As ROS has become a popular platform

for robotics development and is used to teach robotics in universities [15], it was

decided to use it instead of a ready robot. There are multiple different smart home

solutions on the market, but Home Assistant has the ability to connect to most of

the smart home devices on the consumer market.

5.1 Necessary software and tools

From the tools needed in the implementation, Ubuntu and Home Assistant could

be installed on their own machines. All the devices are connected to the same

local area network, and doesn’t have the capability to be controlled from the

outside.

Table 2. Software and tools for the implementation.

Software / Tool Role

Windows PC As a host computer for the virtual machines, as

well as running MATLAB instance.

MATLAB Acts as ROS master.

Oracle VirtualBox Software for running the virtual machines.

Ubuntu 20.04 Focal VM Acts as the MQTT to ROS bridge node.

Home Assistant VM Home automation platform, runs Node-RED and

Mosquitto Broker.

ESP32 Microprocessor Acts as a basic robot. Connection between ROS

network and ESP32 is implemented with the

rosserial -package.

 17

Turku University of Applied Sciences Thesis | Samuli Gratscheff

5.1.1 MATLAB Installation

For students of Turku University of Applied Sciences MATLAB is provided for

free, with all the official addons. For this implementation, MATLAB needs the

ROS Toolbox addon installed. During the MATLAB installation process, the user

can choose to install any of the official addons. ROS Toolbox is in that list and

makes the installation easy. There was a possibility to use Ubuntu VM as a ROS

master, but with MATLAB needing the most processing power, processing the

information sent by the other nodes and sending the information nodes needing

it, I decided to keep MATLAB as the brains.

5.1.2 ROS Installation

ROS is installed with the ROS Toolbox in MATLAB. Before trying to install ROS

on ubuntu, its repositories have to be allowed to install software from more

sources than the main source.

Figure 4. Ubuntu Software repositorie permissions.

After this change has been made, ROS Noetic can be installed with the following

commands [16]:

 18

Turku University of Applied Sciences Thesis | Samuli Gratscheff

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main"
> /etc/apt/sources.list.d/ros-latest.list'

sudo apt install curl

curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo
apt-key add -

sudo apt update

sudo apt install ros-noetic-desktop-full

5.1.3 Home Assistant installation

When running Home Assistant on Virtual Box, no actual installation is needed.

From the Home Assistant website, there is the possibility to download the .vdi -

file containing Home Assistant, and can be opened with Virtual Box [17].

When starting the virtual machine, Home Assistant starts, and the admin account

creation process starts. Home Assistant is ready to use.

5.1.4 Node-RED and Mosquitto installation

Node-RED and Mosquitto Broker are both installed via the Home Assistants own

addon store. From the Node-REDs configuration tab, we need to give a credential

secret keyword and turn SSL to false. System security is not the focus of this

implementation but is an important part of all development. Should the

implementation be taken to real use, one should take care of keeping the system

secure.

5.2 Starting the ROS master

In this thesis MATLAB was chosen to act as the ROS master. The ROS master

keeps track of all the topics in use at the ROS environment. MATLAB was chosen

as the master, because of all MATLABs possibilities to handle complex

algorithms in case for example image processing. This way the robot itself can

use less demanding components, and MATLAB can be run on its own server.

 19

Turku University of Applied Sciences Thesis | Samuli Gratscheff

Starting the ROS master is initiated by one command: rosinit. The command

opens a new terminal window, as seen in Figure 6, which shows the details of

the ROS master.

Figure 5. MATLAB ROS master launch command.

Figure 6. MATLAB ROS master information.

The ROS_MASTER_URI is the address used by other ROS instances to connect

to the master.

5.3 Connecting to ROS master

ROS Nodes will be run on an Ubuntu virtual machine. Before ROS can be used

in any terminal, the setup script needs to be sourced:

source /opt/ros/noetic/setup.bash

After sourcing, ROS needs the address of the ROS master. The address can be

set by modifying the environment variable ROS_MASTER_URI. The current

value of the variable can be seen with the echo command:

 20

Turku University of Applied Sciences Thesis | Samuli Gratscheff

echo $ROS_MASTER_URI

To set the variable of the ROS master URI, export command is used:

export ROS_MASTER_URI=http://192.168.1.145:11311

Take note, that the IP address is the IP address of the machine that runs

MATLAB. Port 11311 is the default port all ROS masters use.

ROS also uses another environment variable, ROS_IP. This environment

variable needs to be set for the nodes in the ROS network and is the node

machines own IP address.

5.4 Creating a workspace and package

Packages are a way to easily organize code. Packages can be reused and

shared with others. For example, in this implementation we are creating an MQTT

handling node. We could share this node with other ROS users by sharing the

package. There are many community-made packages available on the internet.

Packages can be created standalone or organized in a workspace. Workspace

is simply a way to organize your ROS environment and makes it faster to get

code running if modifications are made to multiple packages.

5.4.1 Creating a workspace

The name of the workspace will be ’catkin_ws’. A workspace can be created with

the following commands:

mkdir -p ~/catkin_ws/src

cd ~/catkin_ws/

catkin_make

source devel/setup.bash

catkin_make command makes all the necessary files to your new workspace, and

setup.bash will overlay the workspace on your environment.

 21

Turku University of Applied Sciences Thesis | Samuli Gratscheff

All the commands in the previous steps are found in the installing and configuring

instructions from ROS wiki page [18].

5.4.2 Creating a package

Before creating the package, one needs to navigate to the workspaces source

directory (if workspace have been created, packages can be created without

workspaces):

cd ~/catkin_ws/src

In this implementation, a package will be created with a ready-made script, which

comes with the ROS installation. The structure of the package creation command

is as follows:

catkin_create_pkg <package_name> [depend1] [depend2] [depend3]

On the dependencies, rospy will be needed for us to write the code in python.

One can also choose to use C++ or both, by adding roscpp to the dependencies.

Std_msgs is a dependency used to format our ROS messages. MATLAB uses

the same message format. Creating the package happens with the following

command:

catkin_create_pkg mqtt_package rospy roscpp std_msgs

After the package has been created, package needs to be built, and added to our

ROS environment.

cd ~/catkin_ws

catkin_make

. ~/catkin_ws/devel/setup.bash

5.5 Setting the MQTT broker

Previously Mosquitto Broker was installed via the Home Assistants addon store.

Node-RED is used to control the MQTT messages and topics. The following flow

is created with Node-RED, as seen in Figure 7:

 22

Turku University of Applied Sciences Thesis | Samuli Gratscheff

Figure 7. Node-RED flow.

The first HomeAssistantOut node is for debugging purposes. On the bottom, a

message can be sent from the inject nodes rectangular button. By sending a

message ”Hello from HA!” to MQTT topic ’HomeAssistantOut’, MQTT broker can

be seen working from the debug window, shown in Figure 8.

Figure 8. Node-RED debug window.

The ’HomeAssistant’ node listens to messages in ’HomeAssistant’ topic, where

the MQTT messages from ROS will be sent. In ROS the mqtt node will subscribe

to the ’HomeAssistantOut’ topic.

5.6 Setting the MQTT ROS node

ROS messages need to be converted to MQTT messages and sent to Home

Assistant. The node is created by writing a python program. The code needs to

be created inside our package. The code is in the following location on the Ubuntu

ROS instance:

 23

Turku University of Applied Sciences Thesis | Samuli Gratscheff

catkin_ws/src/mqtt_package/scripts/mqtt.py

With the following code the connection between ROS and Home Assistant can

be tested:

#!/usr/bin/env python

from paho.mqtt import client as mqtt_client

from std_msgs.msg import String

import rospy

Set the credentials for MQTT connection.

mqtt_username = "username"

mqtt_pw = "password"

mqtt_ip = "192.168.1.33" #location of the MQTT Broker / HomeAssistant

mqtt_port = 1883

#MQTT Callback function, it runs when the MQTT subscriber receives a

message.

def on_message(mqtt_client,userdata,message):

 rospy.loginfo(message.payload.decode())

ROS Message Callback function, it only runs when the listener() function

notices a new rosmessage in /mqtt_in topic.

def callback(msg):

 rospy.loginfo("Callback initiated.")

 rospy.loginfo(rospy.get_caller_id() + "I got a message: %s", msg.data)

 rospy.loginfo("Sending info to HomeAssistant...")

 client.publish("HomeAssistant", "Callback function works. Message: " +

msg.data) #This message appears to HomeAssistant, if successful

#Listens for new rosmessages in /mqtt_in topic, aand calls the callback

function if it receives one.

def listener():

 rospy.Subscriber("mqtt_in", String, callback)

 client.on_message = on_message # Prints the ROS message that was sent

to topic /mqtt_in

 rospy.loginfo("listener running")

 client.loop_forever()

 rospy.spin() # Keeps the script running until stopped

#The main function. MQTT is first initialized, and then tries to start the

listener. Sleep used to see the logmessages.

if __name__ == '__main__':

 rospy.init_node("mqtt", anonymous=False)

 pub = rospy.Publisher('mqtt_in', String, queue_size=10)

 Rate = rospy.Rate(1)

 24

Turku University of Applied Sciences Thesis | Samuli Gratscheff

 rospy.loginfo("Setting up the MQTT Client...")

 client = mqtt_client.Client("ROS_MQTT_CLIENT")

 client.username_pw_set(mqtt_username,mqtt_pw)

 client.connect(mqtt_ip,mqtt_port)

 client.subscribe("HomeAssistantOut")

 rospy.loginfo("MQTT Connected")

 Rate.sleep()

 try:

 listener()

 except rospy.ROSInterruptException:

 pass

Script can be run with the following command in Ubuntu terminal:

rosrun mqtt_package mqtt.py

If there are no errors, the following should appear to the terminal:

Figure 9. MQTT Node running on terminal.

In another terminal, a message can be sent to /mqtt_in topic with the following

command:

rostopic pub -1 mqtt_in std_msgs/String hello

And from Node-RED, an MQTT message can be sent to ROS by clicking the

inject nodes button:

Figure 10. Node-RED inject node button.

If everything is working, the following will appear on the terminal running the

listener:

 25

Turku University of Applied Sciences Thesis | Samuli Gratscheff

Figure 11. MQTT node receiving message.

And in Node-RED’s debug window, the message from ROS (hello) can be seen

and that the inject node sent the ”Hello from HA!” message to ROS:

Figure 12. Node-RED debug receiving and sending a message.

Now a functioning MQTT handler node has been setup in ROS.

5.7 Connecting the ESP32 to ROS

Connecting microcontrollers to ROS is done by using a ROS package called

rosserial [19]. As of August 2020, ESP32 was officially announced to be

supported by micro-ROS and should be used if ROS2 is the platform of choice

[20].

 26

Turku University of Applied Sciences Thesis | Samuli Gratscheff

5.7.1 Rosserial installation to Arduino IDE

ESP32 microcontroller unit will be connected to ROS network with rosserial

package. Since ESP32 is compatible with Arduino IDE, we can use the

rosserial_arduino package. Arduino IDE must be installed on the computer,

before installing the package [21].

Rosserial can be installed with the following commands:

sudo apt-get install ros-kinetic-rosserial-arduino

sudo apt-get install ros-kinetic-rosserial

After the rosserial installation, necessary libraries can be installed with the

following commands:

cd catkin_ws/src

git clone https://github.com/ros-drivers/rosserial.git

cd catkin_ws

catkin_make

catkin_make install

Next the ros_lib folder has to be created, and enable Arduino IDE to interact with

ROS:

cd <sketchbook>/libraries

rosrun rosserial_arduino make_libraries.py .

5.7.2 Adding ESP32 board to Arduino IDE

Before a program can be written to connect the ESP32 microcontroller to ROS,

Arduino IDE must be installed to use ESP32. For Arduino IDE to be able to install

ESP32 board, we need to add the following address to the preferences of the

IDE:

 27

Turku University of Applied Sciences Thesis | Samuli Gratscheff

Figure 13. Arduino IDE preferences.

This allows the Arduino IDE board manager to find the ESP32. In the boards

manager, we install the ESP32:

 28

Turku University of Applied Sciences Thesis | Samuli Gratscheff

Figure 14. Arduino IDE Board manager.

Now the ESP32 Dev module can be selected from the boards list:

Figure 15. Selecting ESP32 Dev Module from the boards list in Arduino IDE.

ESP32 is ready to be programmed and connected to ROS network.

 29

Turku University of Applied Sciences Thesis | Samuli Gratscheff

5.7.3 Communication

Rosserial needs a serial node running on ROS. On a new terminal, execute the

following command to start the rosserial listener to listen TCP messages:

rosrun rosserial_python serial_node tcp

This node waits for a connection on port 11411. The code which is running on

ESP32, will use this port to communicate with the serial node.

With the following code, a led can be turned on or off, by sending a message to

/message topic. If the number is 1, the LED is on, and in all other cases it is off.

#include <WiFi.h>

#include <ros.h>

#include <std_msgs/String.h>

#include <std_msgs/Int16.h>

#include <std_msgs/Float64.h>

#include <std_msgs/Empty.h>

//////////////////////

// WiFi Definitions //

//////////////////////

const char* ssid = "WiFi name";

const char* password = "WiFi password";

IPAddress server(192, 168, 1, 240); // ip of your ROS server (Not the master

IP, but the one running serial node)

IPAddress ip_address;

int status = WL_IDLE_STATUS;

WiFiClient client;

class WiFiHardware {

 public:

 WiFiHardware() {};

 void init() {

 // do your initialization here. this probably includes TCP server/client

setup

 client.connect(server, 11411);

 }

 // read a byte from the serial port. -1 = failure

 30

Turku University of Applied Sciences Thesis | Samuli Gratscheff

 int read() {

 // implement this method so that it reads a byte from the TCP connection

and returns it

 // you may return -1 is there is an error; for example if the TCP

connection is not open

 return client.read(); //will return -1 when it will works

 }

 // write data to the connection to ROS

 void write(uint8_t* data, int length) {

 // implement this so that it takes the arguments and writes or prints

them to the TCP connection

 for(int i=0; i<length; i++)

 client.write(data[i]);

 }

 // returns milliseconds since start of program

 unsigned long time() {

 return millis(); // easy; did this one for you

 }

};

int i;

char hello[13] = "hello world!";

char callback[13] = "callback";

void chatterCallback(const std_msgs::Int16 &msg) {

 Serial.print("Callback function enabled");

 if (msg.data == 1) {

 digitalWrite(18,HIGH);

 Serial.print("Callback up");

 }

 else {

 digitalWrite(18, LOW);

 Serial.print("Callback down");

 }

}

ros::Subscriber<std_msgs::Int16> sub("message", &chatterCallback);

ros::NodeHandle_<WiFiHardware> nh;

std_msgs::String str_msg;

ros::Publisher chatter("chatter", &str_msg);

void setupWiFi()

{

 WiFi.begin(ssid, password);

 Serial.print("\nConnecting to "); Serial.println(ssid);

 31

Turku University of Applied Sciences Thesis | Samuli Gratscheff

 uint8_t i = 0;

 while (WiFi.status() != WL_CONNECTED && i++ < 20) delay(500);

 if(i == 21){

 Serial.print("Could not connect to"); Serial.println(ssid);

 while(1) delay(500);

 }

 Serial.print("Ready! Use ");

 Serial.print(WiFi.localIP());

 Serial.println(" to access client");

}

void setup() {

 Serial.begin(115200);

 setupWiFi();

 delay(2000);

 nh.initNode();

 nh.subscribe(sub);

 nh.advertise(chatter);

 pinMode (18, OUTPUT);

}

void loop() {

 str_msg.data = hello;

 chatter.publish(&str_msg);

 nh.spinOnce();

 delay(1);

}

On a new terminal, a message can be sent to the /message topic with the

following command:

rostopic pub message std_msgs/Int16 1 –-once

 32

Turku University of Applied Sciences Thesis | Samuli Gratscheff

By changing the number from 1 to any other, we can turn the LED off.

Figure 16. LED on.

Figure 17. LED off.

 33

Turku University of Applied Sciences Thesis | Samuli Gratscheff

6 Improvements and future work

Being a proof of concept, the implementation done in this thesis can be improved

in multiple ways. The robot itself can be developed to as advanced as the

developer sees fit. MATLABs advanced features can be used for image

recognition, artificial intelligence or machine learning to further advance the robot.

Home Assistant makes it possible for the robot to interface with smart home

devices. Depending on the purpose of the robot, it can react to temperature,

lighting or motion with sensors attached to Home Assistant.

ROS makes it possible for multiple robots to communicate with each other, if

attached to the same ROS network. This would make for example cleaning robots

able to communicate what areas have already been cleaned, or if one robot

senses an area it cannot reach, request a different robot to take over with proper

equipment.

There is also the possibility of expanding the implementation to utilize ROS 2 and

micro-ROS.

 34

Turku University of Applied Sciences Thesis | Samuli Gratscheff

7 Conclusion

The main goal of this thesis was to research whether it is possible to integrate

robotics with a smart home environment, more specifically ROS and Home

Assistant. An ESP32 microcontroller was used to act as a proof of concept robot,

even though it does not have any robot-like functionalities. The research was

carried out through an implementation.

The implementation was a success and created groundwork for future

improvement. Communication with ROS network is possible with Home Assistant

via MQTT messages and rosserial package makes it possible for the ESP32

microcontroller to communicate with ROS network via Wi-Fi.

During the implementation, it became clear that in the future, it would be

preferable to use ROS 2 instead of ROS 1, as micro-ROS is the most important

advantage of ROS 2 considering this implementation. ROS 2 also does not need

a separate ROS master, which makes it more resistant to errors. In ROS 1, if the

ROS master is not reachable by other nodes, the whole system is not able to

operate.

 35

Turku University of Applied Sciences Thesis | Samuli Gratscheff

References

[1] iRobot, “iRobot - Roomba,” 2022. [Online]. Available:

https://witt.zone/irobot/roomba-fi. [Accessed 16 April 2022].

[2] Open Robotics, “ROS Home,” 2021. [Online]. Available: www.ros.org.

[Accessed 16 April 2022].

[3] Open Robotics, “ROS Wiki: Master,” 2018. [Online]. Available:

wiki.ros.org/Master. [Accessed 16 April 2022].

[4] Open Robotics, “ROS Wiki: Introduction,” 2018. [Online]. Available:

http://wiki.ros.org/ROS/Introduction. [Accessed 16 April 2022].

[5] D. Thomas, “Changes between ROS 1 and ROS 2,” 2015. [Online].

Available: http://design.ros2.org/articles/changes.html. [Accessed 16 April

2022].

[6] “LCM: Lightweight Communications and Marshalling,” [Online]. Available:

https://lcm-proj.github.io/. [Accessed 16 April 2022].

[7] T. Z. Authors, “ZeroMQ Home,” 2022. [Online]. Available:

https://zeromq.org/. [Accessed 16 April 2022].

[8] MQTT.org, “MQTT - The standard of IoT Messaging,” 2022. [Online].

Available: https://mqtt.org. [Accessed 16 April 2022].

[9] Home Assistant Inc., “Integrations - Home Assistant,” 2022. [Online].

Available: https://www.home-assistant.io/integrations/#all. [Accessed 16

April 2022].

[10] Connectivity Standards Alliance, “CSA - Connectivity Standards Alliance,”

2022. [Online]. Available: https://csa-iot.org/. [Accessed 24 April 2022].

 36

Turku University of Applied Sciences Thesis | Samuli Gratscheff

[11] Connectivity Standards Alliance, “Zigbee | Complete IOT Solution,” 2022.

[Online]. Available: https://csa-iot.org/all-solutions/zigbee/. [Accessed 16

April 2022].

[12] O. F. a. N.-R. contributors, “Node-RED,” 2022. [Online]. Available:

https://nodered.org. [Accessed 16 April 2022].

[13] The MathWorks Inc., “MATLAB - MathWorks,” 2022. [Online]. Available:

https://se.mathworks.com/products/matlab.html?s_tid=hp_ff_p_matlab.

[Accessed 16 April 2022].

[14] Espressif Systems, “ESP32 Wi-Fi & Bluetooth MCU | Espressif Systems,”

2022. [Online]. Available:

https://www.espressif.com/en/products/socs/esp32. [Accessed 24 April

2022].

[15] University of Turku, “TIERS | University of Turku | Advanced courses in

robotics and autonomous systems,” 2022. [Online]. Available:

https://tiers.utu.fi/courses/master. [Accessed 24 April 2022].

[16] M. Luqman, “noetic/Installation/Ubuntu - ROS Wiki,” 30 September 2021.

[Online]. Available: http://wiki.ros.org/noetic/Installation/Ubuntu. [Accessed

24 April 2022].

[17] Home Assistant Inc., “Linux - Home Assistant,” 2022. [Online]. Available:

https://www.home-assistant.io/installation/linux. [Accessed 24 April 2022].

[18] K. Scott, ”Installing and Configuring ROS Environment,” 15 June 2020.

[Online]. Available:

http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment.

[Accessed 15 April 2022].

[19] M. P. Paul Bouchier, “rosserial - ROS wiki,” 2022. [Online]. Available:

http://wiki.ros.org/rosserial. [Accessed 17 April 2022].

 37

Turku University of Applied Sciences Thesis | Samuli Gratscheff

[20] F. Finocchiaro, “micro-ROS porting to ESP32,” 2020. [Online]. Available:

https://micro.ros.org/blog/2020/08/27/esp32/. [Accessed 17 April 2022].

[21] R. Zickler, “rosserial_arduino/Tutorials/Arduino - ROS Wiki,” 18 March

2020. [Online]. Available:

http://wiki.ros.org/rosserial_arduino/Tutorials/Arduino%20IDE%20Setup.

[Accessed 17 April 2022].

	List of abbreviations
	1 Introduction
	2 Technology background
	2.1 Robot Operating System (ROS)
	2.2 MQTT
	2.3 Home Assistant
	2.4 Node-RED
	2.5 MATLAB
	2.6 ESP32 Microcontroller

	3 Requirements
	3.1 Must have requirements
	3.2 Should have requirements
	3.3 Could have requirements
	3.4 Will not have requirements

	4 Architecture
	5 Implementation
	5.1 Necessary software and tools
	5.1.1 MATLAB Installation
	5.1.2 ROS Installation
	5.1.3 Home Assistant installation
	5.1.4 Node-RED and Mosquitto installation

	5.2 Starting the ROS master
	5.3 Connecting to ROS master
	5.4 Creating a workspace and package
	5.4.1 Creating a workspace
	5.4.2 Creating a package

	5.5 Setting the MQTT broker
	5.6 Setting the MQTT ROS node
	5.7 Connecting the ESP32 to ROS
	5.7.1 Rosserial installation to Arduino IDE
	5.7.2 Adding ESP32 board to Arduino IDE
	5.7.3 Communication

	6 Improvements and future work
	7 Conclusion
	References

