
Degree Thesis, Åland University of Applied Sciences, Bachelor of Information
Technology

AUTHORIZATION OF USERS IN A
WEB APPLICATION

using OAuth-flow against Azure AD

Tomas Holmberg

2022:30

Datum för godkännande: 18.05.2022
Handledare: Björn-Erik Zetterman

EXAMENSARBETE
Högskolan på Åland

Degree Programme: Informationsteknik
Author: Tomas Holmberg
Title: Auktorisering av användare i en webbapplikation genom användning

av OAuth-flöde emot Azure AD
Academic Supervisor: Björn Erik-Zetterman
Commissioned by: Carus

Abstract

Syftet med detta examensarbete är att dokumentera auktorisering flödet vid en
webbapplikation som begär åtkomst av skyddade resurser. Alla applikationer är registrerade
hos Azure AD och är konfigurerade att ge en specifik organisations åtkomst.

Applikationerna är utvecklad i MSAL Javascript (frontend) och vi använder oss av Java
Spring Boot för vår backend API.

Resultatet är en webbapplikation som anropar backend API:et som svarar med “Hello
World” om användaren har behörighet.

Keywords
Javascript, API, Java, Spring Boot, Azure, JWT

Serial number: ISSN: Language: Number of pages:
2022:30 1458-1531 English 34 pages

Handed in: Date of presentation: Approved:
27.04.2022 13.05.2022 18.05.2022

2

DEGREE THESIS
Åland University of Applied Sciences

Degree Programme: Bachelor of Information Technology
Author: Tomas Holmberg
Title: Authorization of Users in a Web Application Using OAuth-flow

against Azure AD
Academic Supervisor: Björn Erik-Zetterman
Commissioned by: Carus

Abstract

The purpose of this thesis is to document the authorization flow at a web application
requesting access to protected resources. All applications are registered at Azure AD and are
set to allow a specific organization to access them.

The application is developed in MSAL JavaScript (frontend) and we are using Java Spring
Boot (backend).

The result is a web application calling the backend API, responding with “Hello World” if
the user has authority.

Keywords
Javascript, API, Java, Spring Boot, Azure, JWT

Serial number: ISSN: Language: Number of pages:
2022:30 1458-1531 English 34 pages

Handed in: Date of presentation: Approved:
27.04.2022 13.05.2022 18.05.2022

3

TABLE OF CONTENTS

1. INTRODUCTION 6
1.1 Purpose 6
1.2 Background 6

2. THEORY 7
2.1 Identity 7
2.2 Security 7
2.3 Azure AD 8

2.3.1 Role-based access control (Azure RBAC) 8
2.3.2 Security principal 8
2.3.3 Role definition 9
2.3.4 Scope 9
2.3.5 Role Assignments 10

2.4 Microsoft Identity Platform 11
2.5 OAuth2 13

2.5.1 OAuth 2.0 Scopes 13
2.5.2 How OAuth2 works 14
2.5.3 Grant type 15

2.6 JSON Web Token 15
2.6.1 When should JWTs be used? 16
2.6.2 The structure of JWT 16
2.6.3 How does JWT work? 18
2.6.4 Why should we use JWT 19

2.7 OpenID Connect 20
2.8 Spring Boot 21
2.9 Multi-Factor Authentication 21
2.10 Javascript 23
2.11 Cross-Origin Resource Sharing 23

3. REQUIREMENTS FOR SOFTWARE 24

4. IMPLEMENTATION 25
4.1 Registering applications at Azure 25
4.2 First Prototype 25
4.3 Implementing Azure to the code 26

4.3.1 Implementing Azure to our frontend 26
4.3.1 Implementing Azure to our backend APIs 26

4

4.4 Problems with CORS 27
4.5 User interface 27
4.6 Final product 28

5. CONCLUSION 32

KÄLLFÖRTECKNING/REFERENCE LIST 33

5

1. INTRODUCTION

1.1 Purpose

The purpose of this thesis is to document and develop a single-page web application with an

OAuth-flow against Azure Active Directory. The application provides a login functionality

that redirects to Microsoft's login to authenticate the user with a password and mobile

authentication that remembers the unit you are using for up to 30 days. You can then make a

call to the backend API. The API will be developed in Java Spring Boot, since it is a request

from the customer. It will handle the validation process of the token received from our

frontend, after validation is done it will give or deny access to one or multiple protected

resources depending on how the token is defined.

I’m also creating a test organization on Azure and registering everything to make sure the

applications can work together.

Our proof of concept is to get a response from the protected resource with a simple “Hello

World”.

1.2 Background

I was assigned to develop and document a web application and an API both registered at

Azure Active Directory, the important part of my work was to demonstrate the OAuth flow

against Azure. And the web application itself did not need to have much functionality, but

was required to handle login calls and make a call to the protected resource.

Since the web application does not have a lot of requirements I went to Microsoft and

grabbed one of their examples that provided you with an interface and sign-in functionality.

This way I was able to focus on what was important, to gain access to the protected

resources.

6

2. THEORY

2.1 Identity

The digital identity represents who we are when dealing with online activities and

transactions. Due to the rapid growth of online services, users need to manage an increasing

number of different identities (Warren et al., 2007).

A human-computer interaction refers to how a computer program or website is designed to

make it clear and simple for users to interact with it. Identity management systems must be

easy to use and have an intuitive interface. If the system is only designed to satisfy service

provider requirements, it should also take into account the requirements of users; otherwise, it

will be inconvenient and difficult to use for users when managing their identities (Alzomai,

2011).

2.2 Security

In today’s applications security is of great importance because applications are often available

over various networks and connected to the cloud. This increases the vulnerability to security

threats and breaches. So how do we make ourselves less vulnerable? Most identity

management systems will offer multi-factor authentication, we can have policies requiring

strong passwords or updating passwords every 6 months, keeping software up-to-date, and

the list goes on.

There are 3 categories of methodology to verify a user: something you know, something you

are, or something you have (Understanding the Three Factors of Authentication, n.d.).

7

https://paperpile.com/c/ZK2MNA/0F65
https://paperpile.com/c/ZK2MNA/8Q8m
https://paperpile.com/c/ZK2MNA/8Q8m
https://paperpile.com/c/ZK2MNA/stcK

2.3 Azure AD

Azure Active Directory (Azure AD) is Microsoft's cloud service for access management,

identity management, and application management. With this application, users or

organizations can have access to a cloud-based directory with the ability to manage users,

groups, devices, apps, and other IT resources with a single set of common tools. Currently,

Azure AD has four different types of licenses. Each type of license provides a different set of

features and capabilities (Ajburnle, n.d.).

2.3.1 Role-based access control (Azure RBAC)

First off you will be needing an Azure AD Premium P1 or P2 license to do this .1

Roles, in general, are really all about permissions to help manage your organization, resetting

passwords, adding more members, and so on. But we can also use it for role-based access

control. This way we can control access to resources by assigning roles on Azure. A role

assignment consists of three elements:

● security principal

● role definition

● scope

This is how permissions are enforced.

2.3.2 Security principal

The security principal is an object that represents a user, group, service principal, or managed

identity that is requesting access to a resource. We are capable of assigning a role to any of

these security principles, figure 1 shows all levels of the security principal.

Figure 1. Showing all levels of the Security principal (rolyon, n.d.-b)

1 https://azure.microsoft.com/en-us/pricing/details/active-directory/

8

https://paperpile.com/c/ZK2MNA/Lsf0
https://paperpile.com/c/ZK2MNA/VyDH

2.3.3 Role definition

Role definitions are a set of permissions that apply to a role. It is usually simply referred to as

a role. The role definition describes the actions that may be carried out by that role, such as

reading, writing, and deleting. Roles may be of a high level, such as those of the owner, or

they may be specific, such as those of the virtual machine reader. The Azure platform offers

several built-in roles as well as the ability to create our own custom roles, figure 2 shows an

example of a built-in role definition.

Figure 2. Showing an

example of how a

built-in definition can

look (rolyon, n.d.-b)

2.3.4 Scope

Scopes is the set of resources that the access applies to. You are capable of additionally

restricting the actions permitted by a role by defining a scope when assigning it. This can be

useful if you want to make someone a contributor, but only for one particular resource group.

It is possible to specify a scope in Azure at four different levels:

● management group

● subscription

● resource group

● resource

9

https://paperpile.com/c/ZK2MNA/VyDH

In order to construct scopes, the parent-child relationship is taken into consideration. This

means that you can assign roles at any of the levels of scope, figure 3 shows the different

levels of a scope.

Figure 3. Showing the different levels of Scope (rolyon, n.d.-b)

2.3.5 Role Assignments

Basically, a role assignment is a process of assigning a role definition to a security principal

at a particular scope in order to grant that principal access to certain resources. By creating a

role assignment, access can be granted, and by removing it, access can be revoked.

An example of a role assignment is shown in figure 4. This example illustrates the Marketing

team being assigned to the Pharma-Sales resource group and having the role of Contributor

assigned to their role. Therefore, the users in the Marketing group will be able to create or

manage any Azure resource in the Pharma-Sales resource group. Marketing users are not

provided access to resources outside of the pharma-sales resource group unless they are part

of another role assignment (rolyon, n.d.-a).

10

https://paperpile.com/c/ZK2MNA/VyDH
https://paperpile.com/c/ZK2MNA/26EA

Figure 4. Showing an example of a Roles assignment being built (rolyon, n.d.-a).

2.4 Microsoft Identity Platform

Embedding the Microsoft identity platform in your applications lets you build applications

that your customers and users can log into using their Microsoft identities or social accounts,

and provide authorized access to your APIs or Microsoft APIs like Microsoft Graph (rwike,

n.d.).

There are several segments that create the Microsoft identity platform, including

11

https://paperpile.com/c/ZK2MNA/26EA
https://paperpile.com/c/ZK2MNA/JOkw
https://paperpile.com/c/ZK2MNA/JOkw

● OpenID Connect and OAuth 2.0-compatible authentication service, which enables

developers to authenticate several different types of identities, including

1. Business or school accounts provisioned by Azure Active Directory

2. Accounts with Microsoft services such as Skype, Xbox, and Outlook

3. Social or local accounts when they are used with Azure AD B2C

● Open-source libraries: Authentication libraries for Microsoft (MSAL) and other

standards-compliant libraries

● Application management portal: The Azure portal allows users to register and

configure themselves on top of other Azure management capabilities

● Application configuration API and PowerShell: You can automate DevOps tasks by

programming your application's configuration using Microsoft graph API and

PowerShell.

● Developer content: A collection of technical documentation, quickstarts, tutorials,

how-to guides, and code samples.

For developers, Microsoft's identity platform integrates modern innovations in the identity

and security space, including passwordless authentication, step-up authentication, and

conditional access. Microsoft identity platform applications already take advantage of such

innovations, so you do not have to implement them yourself.

The Microsoft identity platform allows you to write code once and have it reach any user. It is

possible to create an application once and have it work across multiple platforms or to create

an application that acts both as a client and as a resource application (API). Figure 5 shows a

graph of the different applications you are capable of building using the Microsoft identity

platform.

12

Figure 5. Metro map showing several application scenarios in Microsoft identity platform (rwike, n.d.).

2.5 OAuth2

OAuth2 stands for “Open Authorization” and is today a standard design to allow an

application or website to access resources hosted by other web applications on behalf of a

user. Open Authorization does not share users' credentials but instead uses access tokens to

prove the identity between consumers and service providers (RFC 6749 - the OAuth 2.0

Authorization Framework, n.d.).

2.5.1 OAuth 2.0 Scopes

Scopes are an important concept in OAuth 2.0. They are used to specify exactly the reason

for which access to resources may be granted. Acceptable scope values, and which resources

they relate to, are dependent on the resource server, in our case, the resource server is Azure

Active Directory.

13

https://paperpile.com/c/ZK2MNA/JOkw
https://paperpile.com/c/ZK2MNA/OTu7
https://paperpile.com/c/ZK2MNA/OTu7

2.5.2 How OAuth2 works

At the most basic level, the Client must acquire its own credentials, a client id, and client

secret from the authorization server in order to identify and authenticate itself when

requesting an access token (Leiba, 2012).

1. The client requests authorization (request) from the authorization server, supplying

the client id and secret as identification. It also provides the scopes and an endpoint

URI to send the access token or the authorization code to.

2. The authorization server authenticates the client and verifies that the requested scopes

are permitted.

3. The resource owner interacts with the authorization server to grant access

4. The authorization server redirects back to the client with either an authorization code

or access token, depending on the grant type. A refresh token may also be returned.

5. With the access token, the client can now request access to the resource from the

resource server.

The simplest example of OAuth in action is one website saying “Hey, do you want to log in

to our website with another website’s login?”. Figure 6 summarizes this data flow

graphically.

Figure 6. An OAuth transaction. A Facebook user wants to import Gmail contacts into Facebook without giving

Facebook her email username or password (Leiba, 2012).

14

https://paperpile.com/c/ZK2MNA/AqAC
https://paperpile.com/c/ZK2MNA/AqAC

2.5.3 Grant type

Grant types will be described here, focusing on the most common grant types. Grants are the

set of steps a client has to perform to get resource access authorization (What Is OAuth 2.0

and What Does It Do for You? n.d.). The authorization framework provides several grant

types to address different scenarios.

1. Authorization Code grant, the authorization server returns a single-use authorization

code to the client, which is then exchanged for an access token. This is normally the

best option for traditional web applications where the exchange can securely happen

on the server-side. However, the client's secret cannot be stored securely, and

therefore the authentication during the exchange is limited to the use of the client id

alone.

2. Authorization code grant with proof key for code exchange (RFC 7636 - Proof Key

for Code Exchange by OAuth Public Clients, n.d.). This authorization flow is similar

to the previous one, but with additional steps to make it more secure for mobile/native

applications and SPAs.

2.6 JSON Web Token

“A JSON Web Token (JWT) is an open standard that defines a compact and

self-contained way to transmit information securely and reliably between parties as a

JSON object.” (RFC 7519)

Information transmitted by JWT can be verified and trusted since JWTs are digitally signed.

It is possible to sign JWTs using a secret with the HMAC algorithm or using a public/private

key pair with RSA or ECDSA.

In terms of these JWTs, they can be encrypted to ensure that there is also secrecy between the

parties. The importance of signing JWTs will be discussed in this portion. Signed tokens

allow users to verify the integrity of the claims that are contained in them, while encrypted

tokens conceal those claims from third parties. In the case of signing tokens using a

public/private key pair, the signature also provides a guarantee that the tokens were only

signed by the party holding the private key.

15

https://paperpile.com/c/ZK2MNA/reAm
https://paperpile.com/c/ZK2MNA/reAm
https://paperpile.com/c/ZK2MNA/LIj4
https://paperpile.com/c/ZK2MNA/LIj4

2.6.1 When should JWTs be used?

● In the majority of cases, JWT is used for authentication purposes. Following the first

login, every subsequent request will include a JWT, which will allow the user to

access all routes, services, and resources that are permitted by that token. JWT has

become a widely popular feature for Single Sign-On these days, largely because of its

small overhead and its ability to be used across all sorts of different domains with

ease.

● Exchange of information between parties, JWT is a good method for sending

information securely. Since JWTs can be signed, we can verify whether or not the

content has been modified in any way.

2.6.2 The structure of JWT

The JWT is made up of three parts, each separated by a dot, which is its compact form.

Therefore, a JWT is typically displayed in this manner: xxxxx.yyyyy.zzzzz.

● Header - In general, the header is composed of two parts, the type of token and the

signature algorithm that will be used. Figure 7 shows an example of a header.

Figure 7. Showing how a decoded header may look.

● The payload is the second part of the token, in which the claims can be found. A

claim is a statement that describes something about a person or organization (usually

the user) and includes additional data. There are three types of claims, as follows:

registered, public and private. Figure 8 shows an example of a payload

1. A registered set of claims is a predefined set of claims that are not

mandatory but are recommended to provide a set of useful and

interoperable claims. Among those types are issuer (iss), expiration

time (exp), subject (sub), and audience (aud).

16

2. Public claims are defined at will by those using them, so they can be

defined however they like. To ensure we eliminate collisions with the

JWT registry, they should be defined as URIs instead of JWT registry

entries or be defined as names that contain collision-resistant

namespaces.

3. A private claim is a claim which is made up of custom information to

share with other parties who agree to share it, and which is neither

registered nor public.

Figure 8. Showing how a decoded payload may look.

● Signature - It is necessary to use the encoded header and the encoded payload as well

as a secret and the algorithm provided in the header, in order to create the signature

part. With the signet, we are able to ensure that the message was not modified along

the way, and in the case of tokens signed with a private key, we can verify that the

sender of the JWT is who they claim to be. Figure 9 shows an example of a complete

token decoded at jwt.io.

17

Figure 9. Showing a decoded example token at jwt.io (jwt.io).

2.6.3 How does JWT work?

In an authentication process, a JSON Web Token will be returned to the user when they are

successfully logged in with their credentials. Because tokens are credentials, precautions

must be taken in order to ensure their security. The rule of thumb is that a token should not be

kept longer than needed, and sensitive session data should never be stored in the browser's

memory due to a lack of security (RFC 7519 - JSON Web Token (JWT), n.d.).

As soon as the user attempts to access a protected route or resource, the user agent should

send the JWT, usually as a part of the Authorization header using a Bearer scheme as the

bearer. This can be considered a stateless authorization mechanism. The server's protected

routes will check each Authorization header for a valid JWT, and if one is present, the user

18

https://paperpile.com/c/ZK2MNA/94sm

will be allowed to access the protected resource. If the JWT contains the necessary

information, the need to query the database for certain operations may also be reduced, but

this may not always be true.

When sending JWT tokens through HTTP headers, you need to prevent them from growing

too large. In some cases, bigger headers can be rejected by the server. You may need an

alternative solution if you want to embed all the user's permissions in a JWT token.

2.6.4 Why should we use JWT

As JSON is less verbose than XML , when it is encoded its size is also smaller, making JWT2

more compact than SAML . This makes JWT a good choice to be passed in HTML and3

HTTP environments.

Security-wise, SWT can only be symmetrically signed by a shared secret using the HMAC4

algorithm. However, JWT and SAML tokens can use a public/private key pair in the form of

an x.509 certificate for signing. Signing XML with an XML digital signature without5

introducing obscure security holes is very difficult when compared to the simplicity of

signing JSON.

JSON parsers are common in most programming languages because they map directly to

objects. Conversely, XML doesn’t have a natural document-to-object mapping. This makes it

easier to work with JWT than SAML assertions.

Regarding usage, JWT is used at the Internet scale. This highlights the ease of client-side

processing of the JWT on multiple platforms, especially mobile (Auth, n.d.).

5https://sectigo.com/resource-library/what-is-x509-certificate#:~:text=Share%20this-,An%20X.,internet%20com
munications%20and%20computer%20networking.

4https://www.geeksforgeeks.org/hmac-algorithm-in-computer-network/#:~:text=HMAC%20algorithm%20stand
s%20for%20Hashed,uses%20the%20Hashing%20concept%20twice.

3 https://developers.onelogin.com/saml
2 https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction

19

https://paperpile.com/c/ZK2MNA/zNhy

2.7 OpenID Connect

There are numerous types of authentication protocols that can be used for any application, but

OpenID Connect ((OpenID Connect Core 1.0 Incorporating Errata Set 1, n.d.)) is one of the

main ones (along with OAuth2). The OIDC provides identity services using standardized

message flow standards defined by OAuth2.

The design goal of OIDC is “making simple things simple and complicated things possible”.

As a result of OIDC, web developers can authenticate their users on a variety of websites and

applications without needing to maintain password files on their servers. As a result of this

method, the app builder has a secure way to verify the identity of the person logging into the

browser or native application that is connected to the application.

The authentication process of the user must be done at an identity provider where the

credentials or session of the user is checked. This can only be done with a trusted agent. The

native app will generally launch the system browser to perform this task. Embedded views

are not considered trusted as there is nothing that prevents the app from prying into the user's

password through the embedded view.

Additionally to authentication, consent can be requested from the user. Consent is the user’s

explicit permission to allow an application to access protected resources. The difference

between consent and authentication is that consent only needs to be provided once for a

resource. Consent remains valid until the user or administrator revokes it, figure 10 shows the

authentication flow to a web application registered at Azure.

20

https://paperpile.com/c/ZK2MNA/LAif

Figure 10. Showing the authentication flow of a user signing into their web application that is connected to

Azure AD (BarbaraSelden, n.d.).

2.8 Spring Boot

Both small services and monolithic applications can be developed with Spring Boot. There

are several types of web applications and services that can be used, including APIs or web

applications, command-line programs, and orchestration software. Ultimately, Spring Boot

orchestrates the Spring Framework. Dependency Injection and aspect-oriented programming

are among the features of the Spring Framework for application-level infrastructure. As a

result, building blocks become higher value concepts. This may include transactions, security,

and more, depending on the module (Spring Boot Infographic - Download Form, n.d.).

2.9 Multi-Factor Authentication

Multi-Factor Authentication is a process when the user signing in is prompted for an

additional form of identification, such as a code to their cell phone or a fingerprint scan. MFA

works by requiring two or more of the following authentication methods (Understanding the

Three Factors of Authentication, n.d.).

- password, “Something you know”

21

https://paperpile.com/c/ZK2MNA/jo8y
https://paperpile.com/c/ZK2MNA/19tv
https://paperpile.com/c/ZK2MNA/stcK
https://paperpile.com/c/ZK2MNA/stcK

- a trusted device that is not easily duplicated, like a phone or a hardware key

“Something you have”

- biometric authentication, like a fingerprint or a face scan “Something you are”

Applications or services that use MFA, do not need to be changed, since the verification

prompts are a part of Azure AD sign-in. With Azure AD there are seven different types of

multi-factor authentication options, such as Microsoft Authentication app, Windows Hello for

business, FIDO2 security key, Oath hardware token, Oath software token, SMS, and voice

call.

Azure's MFA can easily be configured to suit your organization by adding conditional access

policies to define events or applications that require MFA. Policies can allow regular sign-in

when the user is on the corporate network or a registered device but prompt for additional

verification factors when the user is remote or on a personal device. Figure 11 provides a

summary graphically of policies.

Figure 11. Depending on the policies defined by the organization the user will be allowed, prompted, or blocked

when trying to sign in (Justinha, n.d.).

22

https://paperpile.com/c/ZK2MNA/Ns6N

2.10 Javascript

JavaScript is a flexible, dynamic, prototype-based, easy-to-learn, easy-to-use, and versatile

programming language that is used primarily on the world wide web. It should be noted that

in spite of its initial focus on assisting in the generation of dynamic content for the web, the

language has found its way into numerous other applications as well.

2.11 Cross-Origin Resource Sharing

As the name suggests, Cross-Origin Resource Sharing is a mechanism that relies on an HTTP

header to allow servers to point browsers to other origin sites (such as domains, schemes, or

ports) from which resources can be loaded. Moreover, CORS also relies on a mechanism by

which browsers conduct a "preflight" request to the server hosting the cross-origin resource,

in order to test whether the server will permit the actual request to go through. When the

browser sends the preflight request, it sends headers that indicate the HTTP (Fielding, 1999)

method that will be used in the request as well as headers that will be used in the request

itself, figure 12 shows a demonstration of a preflight request and the actual request

(Cross-Origin Resource Sharing (CORS), n.d.).

Figure 12. Explanation of a preflight request and actual request between browser and server (Chapter 4.

Handling Preflight Requests, n.d.).

23

https://paperpile.com/c/ZK2MNA/D2HS
https://paperpile.com/c/ZK2MNA/wd1h
https://paperpile.com/c/ZK2MNA/1BhS
https://paperpile.com/c/ZK2MNA/1BhS

3. REQUIREMENTS FOR SOFTWARE

The requested application that was assigned to me was to include a frontend with login

functionality and authenticate the user against Azure. After authentication, we should then

receive a token that could be used to request access to protected resources (API). The

backend API should then validate the token against Azure to grant or deny access to the user

doing the request. Figure 13 shows how Carus would like the flow to work.

1. Web Application with login functionality and authentication against Azure

2. Getting an Access Token from Azure

3. Requesting resources from the API

4. Sending the token to a backend API

5. API validating the token against Azure

6. API sending back the requested resource.

Figure 13. Image provided to me from an employee at Carus.

24

4. IMPLEMENTATION

This chapter describes the actual implementation of the software done in this project.

4.1 Registering applications at Azure

First thing needed is a tenant (organization) existing or new that is up to you. When our

tenant is set up we are able to register applications, you are able to specify who can use your

application, this is called a sign-in audience, but the default option is “Accounts in this

organizational directory only”. Once registered your applications are given a unique client-id

(application-id). You have now established a trust relationship between your application and

the Microsoft identity platform, your application now trusts Microsoft and not the other way

around.

When registering APIs we have the same process as before, the difference is that we add

scopes to this application. First, if we set our Application ID URI, the default one will be

“api://<application-client-id>” but there is also other supported patterns. Now we can add a

scope to our application, there are two important fields such as the name and who can

consent. The naming convention is usually “resource.operation.constraint” for example

Employees.Read.All. And that is it, your API has now been exposed and you are able to

connect it to your other applications.

4.2 First Prototype

Microsoft is providing a lot of examples for different scenarios. I chose an example with

MSAL JavaScript that provides a frontend and a backend API. But since we want a Spring

Boot backend we had to remake the provided backend and implement our own.

Before deleting the API we checked that the registered applications at Azure actually

communicated.

25

4.3 Implementing Azure to the code

Azure is a set of services provided by Microsoft, which have different cloud integrations to

use. In the following chapters the consumed integrations will be described.

4.3.1 Implementing Azure to our frontend

This chapter will display how easy it is to configure our frontend application with our SPA

application ID, and who has the authority to sign in to it or the tenant (the organization). Now

everyone in your organization has the authority to log in to the web application. This does not

mean everyone has the authority to use the resources, figure 14 shows the connection

between Azure AD and the web application.

Figure 14. Showing the implementation of Azure on our frontend.

4.3.1 Implementing Azure to our backend APIs

So with defining the API client-id (application-id) along with the tenant-id and the app-id-uri

in our application properties we are now allowing users from this organization to use this

API, figure 15 shows the connection between Azure AD and the API.

Figure 15. Showing the implementation of Azure in our backend.

If we don’t want people to have access to all our resources. It is possible to use a group(role)

claim from the token to assign what a person is allowed to use. So for example we can use

groups to decide who is allowed to use what. This way we are able to have consumers,

26

developers, etc. sign in to the same web application but assign what resources they are

allowed to use. We talked about this in chapter 2.6.1.

4.4 Problems with CORS

I had issues during the implementation of CORS, running solutions back and forth between

Google searches with no result. I did this for more than a week and had over 6000 lines of

code changed and removed, then I finally realized I had two configurations, one that

implemented CORS and the other overriding the first one to remove CORS again, figure 16

shows my current implementation of CORS.

Figure 16. Showing the implementation of CORS in the backend.

4.5 User interface

Not really much to say about the interface. We took it from Microsoft and didn’t do any

design changes. What we really wanted was the popup login. See figure 17.

Figure 17. Showing Microsoft popup-login

27

4.6 Final product

When a user successfully logged in to our web application, the application received this token

(see figure 18) from Azure.

Figure 18. Showing the token we are receiving after successfully logging in

Using the token, another call can be made to get resources that are available for this specific

user, identified by the given token. The next step is to try to access resources at our backend

by clicking “Call web API” which initiates the “callApi” function (see figure 19).

28

Figure 19. Showing our frontend calling the backend API

This function sets the Authorization header with the token, as discussed in chapter 2.9.3.

What actually happens in the call API function, is that a new header is added to the response

to the backend, sent from the user/frontend (as seen in figure 19). By sending the

token/bearer, another API can consume data in another call.

Now our Controller (see figure 20) picks up the token sent from our frontend, the object

BearerObjectAuthentication named token, and consumes the given secret to make the next

step, controlling the access token validity.

29

Figure 20. Showing our backend controller

The following step is trying to validate the token in our function “validateToken” (see figure

21).

Figure 21. Showing our backend validating the JWT token.

30

Unfortunately, my backend is not working correctly and I’m not able to validate my token.

I’ve used jwt.io to make sure my token is valid, but I’m not sure how to break down my

token to the correct format that is necessary for my function. I am however able to do this in

my the frontend, but then I’m not able to pass it to my API since it is no longer a token.

So for demonstration purposes, I will use a Microsoft code example so we can see what a6

final result would look like. Microsoft is however using JavaScript in their backend, so it is

not what is requested from us. Figure 22 will show how a successful call would have looked.

Figure 22. Showing a successful call to the backend with a response of the username of the caller.

6 https://docs.microsoft.com/en-us/azure/active-directory/develop/sample-v2-code

31

5. CONCLUSION

Azure AD on paper seems to be the perfect way to distribute your resources within your

organization and even to your customers. You can easily add and revoke access to groups or

users. It’s easy to add new resources at Azure, and you can easily implement Azure to your

existing resources to connect them.

JWT might be one of the best ways to validate and send information between parties. It’s

almost impossible to modify anything within the token since it is signed, in our case by

Azure. I say almost because, yes, you are able to modify the token, but it would no longer be

valid after the modification and is therefore useless. Also if you would gain access to the

secret signing key from Azure, then you are able to modify the token, and it would still be

valid.

Since the backend right now is written in JavaScript we would like to change this to the

desired Java Spring as requested by the customer.

32

REFERENCE LIST

Ajburnle. (n.d.). What is Azure Active Directory? Retrieved May 2, 2022, from

https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis

Alzomai, M. H. (2011). Identity management : strengthening one-time password authentication

through usability [Phd, Queensland University of Technology]. https://eprints.qut.edu.au/46213/

Auth. (n.d.). JSON Web Tokens. Auth0 Docs. Retrieved April 26, 2022, from

https://auth0.com/docs/secure/tokens/json-web-tokens

BarbaraSelden. (n.d.). OpenID Connect authentication with Azure Active Directory. Retrieved May 2,

2022, from https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/auth-oidc

Chapter 4. Handling preflight requests. (n.d.). Retrieved May 10, 2022, from

https://livebook.manning.com/book/cors-in-action/chapter-4/13

Cross-Origin Resource Sharing (CORS). (n.d.). Retrieved April 21, 2022, from

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Fielding, R. (1999). Hypertext transfer protocol-HTTP/1.1. IETF RFC 2616.

http://www.ietf.org/rfc/rfc2616.txt. https://ci.nii.ac.jp/naid/10030667381/

Justinha. (n.d.). Azure AD Multi-Factor Authentication overview. Retrieved May 10, 2022, from

https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-mfa-howitworks

Leiba, B. (2012). OAuth Web Authorization Protocol. IEEE Internet Computing, 16(1), 74–77.

OpenID Connect Core 1.0 incorporating errata set 1. (n.d.). Retrieved May 2, 2022, from

https://openid.net/specs/openid-connect-core-1_0.html

RFC 6749 - the OAuth 2.0 authorization framework. (n.d.). Retrieved May 2, 2022, from

https://datatracker.ietf.org/doc/html/rfc6749

RFC 7519 - JSON Web Token (JWT). (n.d.). Retrieved May 2, 2022, from

https://datatracker.ietf.org/doc/html/rfc7519

RFC 7636 - proof Key for Code Exchange by OAuth Public Clients. (n.d.). Retrieved April 21, 2022,

33

http://paperpile.com/b/ZK2MNA/Lsf0
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
http://paperpile.com/b/ZK2MNA/8Q8m
http://paperpile.com/b/ZK2MNA/8Q8m
https://eprints.qut.edu.au/46213/
http://paperpile.com/b/ZK2MNA/zNhy
https://auth0.com/docs/secure/tokens/json-web-tokens
http://paperpile.com/b/ZK2MNA/jo8y
http://paperpile.com/b/ZK2MNA/jo8y
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/auth-oidc
http://paperpile.com/b/ZK2MNA/1BhS
https://livebook.manning.com/book/cors-in-action/chapter-4/13
http://paperpile.com/b/ZK2MNA/wd1h
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
http://paperpile.com/b/ZK2MNA/D2HS
http://paperpile.com/b/ZK2MNA/D2HS
https://ci.nii.ac.jp/naid/10030667381/
http://paperpile.com/b/ZK2MNA/Ns6N
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-mfa-howitworks
http://paperpile.com/b/ZK2MNA/AqAC
http://paperpile.com/b/ZK2MNA/LAif
https://openid.net/specs/openid-connect-core-1_0.html
http://paperpile.com/b/ZK2MNA/OTu7
https://datatracker.ietf.org/doc/html/rfc6749
http://paperpile.com/b/ZK2MNA/94sm
https://datatracker.ietf.org/doc/html/rfc7519
http://paperpile.com/b/ZK2MNA/LIj4

from https://datatracker.ietf.org/doc/rfc7636/

rolyon. (n.d.-a). Overview of Azure Active Directory role-based access control (RBAC). Retrieved

May 9, 2022, from

https://docs.microsoft.com/en-us/azure/active-directory/roles/custom-overview

rolyon. (n.d.-b). What is Azure role-based access control (Azure RBAC)? Retrieved May 2, 2022, from

https://docs.microsoft.com/en-us/azure/role-based-access-control/overview

rwike. (n.d.). Microsoft identity platform overview - Azure - Microsoft identity platform. Retrieved

April 21, 2022, from

https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-overview

Spring Boot infographic - download form. (n.d.). JAX London 2022. Retrieved May 2, 2022, from

https://jaxlondon.com/spring-boot-infographic-download-form/

Understanding the three factors of authentication. (n.d.). Retrieved May 2, 2022, from

https://www.pearsonitcertification.com/articles/article.aspx?p=1718488

Warren, J., Roddick, J., Steketee, C., Brankovic, L., Coddington, P., & Wendelborn, A. (2007).

Usability and Privacy in Identity Management Architectures (J. Warren, J. Roddick, C. Steketee,

L. Brankovic, P. Coddington, & A. Wendelborn (Eds.); pp. 143–152). Australian Computer

Society.

What is OAuth 2.0 and what does it do for you? (n.d.). auth0. Retrieved May 2, 2022, from

https://auth0.com/intro-to-iam/what-is-oauth-2/

34

http://paperpile.com/b/ZK2MNA/LIj4
https://datatracker.ietf.org/doc/rfc7636/
http://paperpile.com/b/ZK2MNA/26EA
http://paperpile.com/b/ZK2MNA/26EA
https://docs.microsoft.com/en-us/azure/active-directory/roles/custom-overview
http://paperpile.com/b/ZK2MNA/VyDH
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
http://paperpile.com/b/ZK2MNA/JOkw
http://paperpile.com/b/ZK2MNA/JOkw
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-overview
http://paperpile.com/b/ZK2MNA/19tv
https://jaxlondon.com/spring-boot-infographic-download-form/
http://paperpile.com/b/ZK2MNA/stcK
https://www.pearsonitcertification.com/articles/article.aspx?p=1718488
http://paperpile.com/b/ZK2MNA/0F65
http://paperpile.com/b/ZK2MNA/0F65
http://paperpile.com/b/ZK2MNA/0F65
http://paperpile.com/b/ZK2MNA/0F65
http://paperpile.com/b/ZK2MNA/reAm
https://auth0.com/intro-to-iam/what-is-oauth-2/

