

Phuc Le

Development of an eCommerce web-

site for Ngoc’s MaxiNutri Company

School of Technology
2022

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Phuc Le
Title Development of an eCommerce Website for Ngoc’s

MaxiNutri Company.
Year 2022
Language English
Pages 44
Name of Supervisor Mikael Jakas

Technology has evolved rapidly in recent years, especially in web develop-
ment and technology. Many new tools and technologies have enhanced
developers' experience, and building a website now is more popular and
much easier than it used to be. In 2013, Facebook announced React, and
it has become a part of the MERN stack (MongoDB, ExpressJS, React,
NodeJS) – one of the most popular stacks to build a web application in the
world.

The thesis aimed to learn the concepts and functionalities of the MERN
stack and implement it with an online shop application for Ngoc’s MaxiNu-
tri company. Each technology will be explained in detail, along with the as-
sistive packages and libraries to build the application, for example, Boot-
strap 5, JWT, React Route DOM v6, and Redux.

The development process was unified, and all the parts of the web appli-
cation were written in JavaScript. The user interface was created with Re-
act, and the database will be using an object-based NoSQL database
MongoDB and interact with the server using NodeJS and ExpressJS.

The result of the thesis is a fully functional eCommerce web application for
Ngoc’s MaxiNutri.

Keywords1 MERN, React, Redux, NodeJS, ExpressJS, MongoDB,
JWT, e-commerce, online store

ACKNOWLEDGMENTS

I would like to express my gratitude to the people who assisted and sup-

ported me in completing this thesis which is also a milestone.

Firstly, I would like to thank my supervisor, Mr. Mikael Jakas, who provided

me with feedback to complete my project.

Secondly, I would also like to thank my parent, the owner of Ngoc’s Max-

iNutri, for assisting me in providing information about the company and what

should be implemented and feedback.

Finally, I would like to thank my friends for assisting me in providing feed-

back on the demo of my application and supporting me with my questions

about the technologies I used in this application.

Tampere, May 21, 2022

Phuc Le

CONTENTS

ABSTRACT

ACKNOWLEDGMENTS .. 3

1 INTRODUCTION ... 8

2 FINAL PRODUCT DEMONSTRATION .. 10

3 THEORETICAL BACKGROUND .. 14

3.1 MERN ... 14

3.2 Front-end ... 14

3.2.1 ReactJS .. 15

3.2.2 Bootstrap ... 16

3.3 Back-end .. 17

3.3.1 NodeJS .. 17

3.3.2 ExpressJS .. 18

3.4 Database ... 19

3.4.1 MongoDB .. 19

3.4.2 Mongoose .. 20

4 PROJECT IMPLEMENTATION ... 21

4.1 Development Environment Setup .. 22

4.1.1 Version Control ... 22

4.1.2 Node Package and Framework Installation................................. 23

4.2 Application Logic .. 25

4.2.1 Front-end Logic ... 27

4.2.2 Back-end Logic ... 32

4.2.3 Database Implementation .. 37

4.3 Application Deployment .. 40

5 CONCLUSIONS ... 42

REFERENCES ... 43

5

LIST OF FIGURES AND TABLES

Figure 1 Final product - homepage route. .. 10

Figure 2 Final product - single product route. .. 11

Figure 3 Final product - cart route. ... 11

Figure 4 Final product - user profile route .. 12

Figure 5 Final product - admin tool route example. 12

Figure 6 Final product - Login and Register route. 13

Figure 7 Full-stack MERN architecture. ... 14

Figure 8 Angular vs. React vs. Vue download trends. 15

Figure 9 ReactJS component example using JSX and Hooks. 16

Figure 10 Using Bootstrap 5 inside React component. 17

Figure 11 Simple NodeJS server. .. 18

Figure 12 Simple ExpressJS server. .. 19

Figure 13 MongoDB compass user interface. .. 20

Figure 14 Object mapping between NodeJS and MongoDB via Mongoose.

 .. 20

Figure 15 The user architecture of the project. .. 21

Figure 16 The admin architecture of the project....................................... 21

Figure 17 Git workflow. .. 23

Figure 18 Structure of the application. ... 26

Figure 19 Reducer for login. .. 27

Figure 20 Action for the login. .. 28

Figure 21 Submit handler where login function is called. 28

Figure 22 Reducer for Add to Cart. .. 29

Figure 23 Action for Add to Cart... 29

Figure 24 Main index.js file inside front-end folder 30

Figure 25 The use of Bootstrap in the Footer component. 31

Figure 26 The use of Bootstrap in the ProductCarousel component. 31

Figure 27 Token authentication by JWT .. 34

Figure 28 Admin user authentication. .. 35

Figure 29 Error handler function. ... 35

Figure 30 Using Postman to test the GET /api/products route. 36

Figure 31 Application's user model. ... 37

Figure 32 Example of a user object in MongoDB. 38

Figure 33 Connection to a database. ... 38

Figure 34 Initial user data. ... 39

Figure 35 Function used to create the initial data. 40

Figure 36 Project UI inside Heroku. ... 41

Table 1 List of all routes made in the project. .. 32

7

LIST OF ABBREVIATIONS

API Application program interface

CSS Cascading Style Sheets

HTML Hypertext Markup Language

JSON JavaScript Object Notation

HTTP Hypertext Transfer Protocol

URL Uniform Resource Locator

JSX JavaScript XML

XML Extensive Markup Language

MERN MongoDB, ExpressJS, ReactJS, NodeJS

SEO Search Engine Optimization

VDOM Virtual DOM

SPA Single Page Application

JWT JSON Web Token

1 INTRODUCTION

The name of this thesis is “Develop an eCommerce Website for Ngoc’s

MaxiNutri Company.” Ngoc’s MaxiNutri was established in 2012 with only a

single and exclusive product line: “Shake Yogurt.” After five years of estab-

lishment and development, the establishment has developed other nutri-

tious milk lines such as corn milk, fresh cow’s milk, lotus seed milk, aloe

vera ginseng, and bubble milk tea. With the production motto: “Vì sức khỏe

người tiêu dùng (For the health of consumers),” the conscience and respon-

sibility of the food producer, and the highly closed production machinery

system, Ngoc’s MaxiNutri chooses the freshest input materials and fully le-

gal on food safety to produce a delicious and nutritious bottle of drinks to

serve customers.

Ngoc’s MaxiNutri always wants and is pleased to serve their customers safe

and clean milk. They always believe that with the conscience and enthusi-

asm of the establishment owner and staff, along with a closed machine sys-

tem, Ngoc’s MaxiNutri will bring the highest value of nutritious dairy products

to meet the need and beliefs of the customers. Now, when the customer

demand increases rapidly, and Ngoc’s MaxiNutri products have been dis-

tributed across Viet Nam, they need to expand their business model, reach-

ing new customers by selling online. This project aims to develop an online

store for the company.

The objectives of the thesis were to explain and demonstrate the concept

of the MERN stack and build an application using the MERN stack, which

can be used in real life. The thesis is divided into six parts; at the beginning

of the idea, the project’s outcome and functions are shown, then the leading

technologies used in the project are discussed in depth. After that, the ap-

plication requirements and project setup and implementation are discussed,

and finally, the conclusion.

A fully functional and ready-to-use online shop for Ngoc’s MaxiNutri was

built and deployed via Heroku. The thesis can be used as a tutorial about

9

the MERN stack application, targeting people who want to learn more about

MERN.

2 FINAL PRODUCT DEMONSTRATION

Figure 1 Final product - homepage route.

Figure 1 shows the website’s homepage; as we can see, the website is in

Vietnamese because, for the moment, the products are only sold in Vi-

etnam. Therefore, the English translations will be provided.

In this web application, users can use the following functions:

- See the information for all the products. (Figure 1)

- See the information for a specific product. (Figure 2)

- Search function.

- Add their favorite products to the cart. (Figure 3)

- Pay for the product.

- See the order history and change the information. (Figure 4)

- Receive the delivery status. (Figure 4)

- Log in, log out, and register as a new user. (Figure 6)

The admin tool was implemented, and the admin has the same right as the

average user, in addition, the admin can:

- Create, edit, and delete the product. (Figure 5)

11

- See, edit, and delete the user's information (except the user's pass-

word).

- Update the delivery progress

Figure 2 Final product - single product route.

Figure 3 Final product - cart route.

Figure 4 Final product - user profile route

Figure 5 Final product - admin tool route example.

13

Figure 6 Final product - Login and Register route.

Figures 2 to figure 6 shows the most web application functions. The appli-

cation using MERN stack JavaScript was developed successfully. React

and React Bootstrap was used for the front end and styling, NodeJS and

ExpressJS were used to create the back end, and MongoDB was used to

store the database.

The prototype built is stable, but before being deployed in the production

mode, there are still some areas for improvement that need to be tested

more by quality assurance. Moreover, new features such as English sup-

port, logging in with Gmail and Facebook, and setting more helpful infor-

mation could be implemented. If appropriately developed, Ngoc’s MaxiNutri

products will be more accessible by boosting sales.

3 THEORETICAL BACKGROUND

In computer science, the term ‘stack’ is an abstract data type that serves as

a collection of elements. In web development, ‘stack’ refers to a combination

of different technologies related to Front-end Development, Back-end De-

velopment, Database, Cloud, and so on. There are many web stacks glob-

ally, and the MERN stack is one of the most popular stack options. There-

fore, the MERN stack has as many supports as possible in this thesis. In

this chapter, the MERN stack will be described and explained why it was

used in this project. Furthermore, other technologies that help us handle the

application’s state and authentication are discussed and examined. /1/

3.1 MERN

MERN stack is a JavaScript stack used for easier and faster deployment of

the full-stack web application. MERN stands for MongoDB, ExpressJS, Re-

actJS and NodeJS. Inside this stack, ExpressJS and NodeJS will make up

the middle tier. ReactJS will handle the front-end (The first layer), while Mon-

goDB takes the database and storage. Figure 7 below shows the architec-

ture of a Full-stack MERN web application. /2/

Figure 7 Full-stack MERN architecture. /2/

3.2 Front-end

The front-end or client-side development is the feature or UI that users can

directly interact with. In this project, several front-end technologies were

used and are explained below.

15

3.2.1 ReactJS

React is one of the most well-known open-source, efficient, component-

based, easy-to-use JavaScript libraries for building user interfaces. Face-

book created it on May 29, 2013, and it is maintained by Meta and a com-

munity of individual developers and companies.

Figure 8 Angular vs. React vs. Vue download trends. /3/

As Figure 8 shows, the number of developers using React is almost four

times that of developers using Vue and Angular.

ReactJS is a component-based JavaScript library. These components must

be reusable and formed in the 'src' folder with the Camel Case naming con-

version. React DOM library can render a particular element in the DOM. The

component element, value, and function can be passed through 'props.’ Be-

cause of this, ReactJS only rerenders the changes that have been made in

the component, but not the whole page, which is better for the performance.

Since ReactJS 16.8, 'Hooks' was implemented. Hooks let developers man-

age the React state and lifecycle features from function components. State

management is now much easier with this new feature because the user

has a simpler code that implements similar functionalities faster and more

effectively.

ReactJS also uses JSX, or JavaScript Syntax Extension, to extend the Ja-

vaScript syntax. JSX is a combination of HTML and JavaScript. In JSX, we

can structure component rendering using HTML. React was also used to

reuse all the components in the project. Figure 9 below shows an example

of a ReactJS part with Hooks using JSX. /3/

Figure 9 ReactJS component example using JSX and Hooks.

3.2.2 Bootstrap

Bootstrap is a free and open-source CSS framework directed at front-end

web development, responsive and mobile-first. Bootstrap contains HTML,

CSS, and JavaScript-based design templates for many features, such as

Buttons, Form, Navigation Bar, Background, and so on. Bootstrap 5 was

used with Bootwatch in this project to make the process more convenient

and reduce the amount of time spent on styling. /4/ Figure 10 below shows

an example of using React Bootstrap inside React; the example shows the

creation of a pre-styled button without any separate CSS file; as we see, the

syntax and the styling are handy with this styling method.

17

Figure 10 Using Bootstrap 5 inside React component.

3.3 Back-end

Back-end development or server-side development focuses on the data-

base, website architecture, logic, and everything that happens behind the

screen. It can be purchased from the store, log in, log out methods, and so

on. Back-end development also helps communicate with a database, in our

case MongoDB.

3.3.1 NodeJS

NodeJS is the most popular open-source and cross-platform JavaScript

runtime environment that can execute JavaScript code outside the web

browser.

NodeJS can help developers create a dynamic website by writing com-

mand-line tools and server-side scripting before sending the page to the

user’s web browser. By NodeJS, the term “JavaScript everywhere” is rep-

resented since the developer can write front-end code, back-end code, and

even databases with one programming language only: JavaScript, making

the development process more efficient and handier.

Ryan Dahl created NodeJS in 2009, about thirteen years after introducing

the first server-side JavaScript environment. Since then, NodeJS has

earned a good reputation in the tech industry. It plays a significant role in

the web development stack, and many companies have been using it as an

essential part, such as Netflix, Nasa, Trello, PayPal, LinkedIn, and so on.

/5/

NodeJS also provides tools such as NPM that help manage third-party li-

braries such as Mongoose, Express, and JWT. To make the development

much faster and more efficient. Figure 11 below shows an example of a

NodeJS web server.

Figure 11 Simple NodeJS server.

3.3.2 ExpressJS

ExpressJS represents the “E” part of the MERN stack and is essential. Ex-

press is a minimal and flexible NodeJS web application framework that

boosts the features of the single-page application, websites, hybrids, or pub-

lic HTTP APIs. Since NodeJS is prevalent, many libraries have been devel-

oped to ease server-side development with NodeJS like Socket.io, Koa.js,

Meteor.js, Nest.js, and so on. Nevertheless, ExpressJS is the most popular

one for this purpose so far.

With the help of ExpressJS, an application can be built much faster than

pure NodeJS. ExpressJS makes routing for requests made by clients with

the GET, POST, PUT, DELETE method, and middleware-like authentication

simpler. Figure 12 below is an example of a simple server built with express

used to show ‘Hello World’ using ES6 syntax. /6/

19

Figure 12 Simple ExpressJS server.

In this thesis, ExpressJS developed different functions such as getting prod-

uct and user information, registering new users, logging in, and creating a

new order.

3.4 Database

“A database is an organized collection of structured information or data, typ-

ically stored electronically in a computer system. A database is usually con-

trolled by a database management system (DBMS). Together, the data and

the DBMS and the associated applications are referred to as a database

system, often shortened to the just database.” /7/

3.4.1 MongoDB

MongoDB represents the “M” part of the MERN stack and stores the data-

base for this thesis project. MongoDB is a document-oriented database pro-

gram classified as a NoSQL database program. In MongoDB, JSON-like

documents with schemas are used. In this thesis, MongoDB compass was

used because with this application; we can access our database much

faster without having to log in to the web application. Figure 13 below shows

the interface of MongoDB compass; we can see that MongoDB auto-gener-

ates the ‘_id’ for each child of the view; they also provide methods like ‘find,’

‘findById”, ‘save’., which is handy and make it easier to communicate with

the database. /8/

Figure 13 MongoDB compass user interface.

3.4.2 Mongoose

Mongoose is a JavaScript object data modeling library for MongoDB and

NodeJS. It manages relationships between data and provides schema vali-

dation and representation between objects in MongoDB /9/. Figure 14 below

shows the object mapping between NodeJS and MongoDB via Mongoose.

Figure 14 Object mapping between NodeJS and MongoDB via Mongoose.

21

4 PROJECT IMPLEMENTATION

Ngoc’s MaxiNutri eCommerce web application uses the MERN stack that

users can use to buy products from Ngoc’s MaxiNutri online. Figure 15 be-

low shows the average user architecture of the project.

Figure 15 The user architecture of the project.

As described in Figure 15, several functions need to be implemented. There

is a dashboard where users must sign up to use all the services. Otherwise,

they can only view all the products and a specific product. When a user logs

in to the application, they can perform features such as view their profile,

update their name, email, and password, and see all their previous orders

and the shipping status. By creating an account, users can also review the

product in the store. The architecture of the admin account is shown in Fig-

ure 16 below.

Figure 16 The admin architecture of the project.

4.1 Development Environment Setup

Choosing the right tools and a suitable environment is always important

when dealing with big projects. A good combination between the code editor

and other tools can increase work efficiency and productivity and save time.

Therefore, choosing good tools is one of the keys to making the work easier.

In this project, Visual Studio Code was used as a code editor. Visual Studio

Code (or VS Code) is a lightweight source code editor made by Microsoft

for Windows, Linux, and macOS. VS Code supports many features for de-

bugging, syntax highlighting, code refactor, Git, and auto-complete code,

making the coding faster and much more accessible. /10/

The VS code’s extensions that were helpful for this project are:

- ‘ES7+ React/Redux/React-Native snippets’ for auto-complete code

and Snippet for React JavaScript.

- ‘ES7+ React/Redux/React-Native snippets’ for formatting the code to

my chosen format.

- ‘Auto Rename Tag’ for automatically renaming paired XML tags.

- ‘Bracket Pair Colorizer’ for colorizing matching brackets.

- ‘Material Icon Theme’ for files/folders icon in Visual Studio Code.

4.1.1 Version Control

Version Control or Source Control is the tracking and managing of changes

to software code. Furthermore, the Version Control System is the program-

ming tool that helps software teams manage the source code changes over

time. In the Version Control, differences are identified by a ‘code,’ which is

the ‘version number’ of the source code. For example, an initial setup for a

project is the ‘version number 1’, and when the project’s contents change,

the version control tool will determine that and set it as ‘version number 2’.

With Version Control Tool, users can compare different versions, drawbacks

from an old version, or let multiple developers work on the same project.

Many other version control systems such as Git, Apache, Azure DevOps,

23

and so on. In this project, Git was used because it is one of the most popular

version control systems globally and is user-friendly. /11/

With Git, developers will work on a repository clone stored in the cloud. After

doing some work, the developer will create a commit and push that commit

to the cloud, creating another version of the original file. The Git Cloud that

we used in this project is GitLab because, among Bitbuckets and GitLab, it

is one of the most considerable Git Clouds in the world. Figure 17 demon-

strates how Git works.

Figure 17 Git workflow.

4.1.2 Node Package and Framework Installation

Some packages needed to be set up in this project, and the critical setup

for those packages are listed below.

• NodeJS version 16.13.0 was installed from the official website. The

application was initialized with the command ‘npm init’. After that, the

application's name, version, description, and author were set.

• MongoDB can be used online or locally using the MongoDB Com-

pass.

• A React Application version 17.0.2 was created with the "create-re-

act-app front-end" command.

• Mongoose can be installed with the “npm i mongoose’ command.

• Nodemon is a tool used to monitor the server-side and was installed

with the command “npm i nodemon”.

• Bcrypt is a library that helps users hash passwords, so we do not

save the original password to the database but the hash version.

Bcrypt was installed with the command “npm i bcrypt”.

• Redux is a library that helps the user manage and centralize the ap-

plication state. Redux was installed with the command “npm i redux”.

• React-router-dom is an npm package that enables developers to im-

plement dynamic routing in a web app using ReactJS. React-router-

dom was installed with the command “npm i react-router-dom”.

• Axios is an npm package that provides promise base HTTP clients

like PUT, GET, DELETE, and so on. for the browser and NodeJS.

Axios was installed with the command “npm i axios”.

• React-helmet is a document head manager for ReactJS. With this

extension, we can customize the title of a route. React-helmet was

installed with the command “npm i react-helmet”.

• React Developer Tool and Redux Developer Tool are used to man-

aging ReactJS’s state and can be downloaded on the official page.

• Multer is a middleware for handling uploading files in our project. Mul-

ter was installed with the command “npm i multer”.

• Express-async-handler is a middleware for handling exceptions in-

side async express routes and passing them to the error handlers.

We are using this middleware in all our back-end functions, so we do

not have to give the “try-catch” or “.catch” every time in our back-end

development. This middleware was installed with the command “npm

i express-async-handler”.

• Jsonwebtoken extension can be used to generate a token for login.

Jsonwebtoken was installed with the command “npm i Jsonwebt-

oken”.

25

• Dotenv is a module that loads environment variables from a “.env”

file into “process.env”. This module was installed with the command

“npm i dotenv”.

Those are the essential packages and frameworks for this project. The

less important ones are mentioned when discussing the implementation

of the logic.

4.2 Application Logic

After installing the tools and having been, we come to the coding part. Fig-

ure 18 shows the application structure; as we can see, files are divided into

two main folders: the front-end and the back-end. The front-end folder con-

sists of all the user's UI directly interacts with. The main code for the front

end is in the 'src' folder; the ‘build’ folder contains the final static build prod-

uct and the auto-generated ‘node_modules”. The back-end folder contains

all the logic and is split into multiple folders: ‘config’ handles the connection

with database, ‘controller” manage the functions for the application, ‘data’

holds the dummy data that we first push to the database, ‘middleware’ in-

cludes all the middleware for the application, ‘models’ is the place where

the models for the database is stored, ‘routes’ for different routes created,

and server.js is the central place where everything is connected. The role of

each folder will be discussed later in this section.

Figure 18 Structure of the application.

27

4.2.1 Front-end Logic

Every screen or route is divided into the “screens” folder, and every support

element, such as Header, Footer, or Search Box, is divided into the “com-

ponents” folder. By dividing everything into components, it is much easier to

maintain and speed up the whole process instead of writing everything into

one giant “HTML” file.

This project uses Redux to manage the state between components. Redux

is an open-source JavaScript library for managing and centralizing the ap-

plication state. /12/ With the everyday React state management, it is difficult

to pass a variable to multiple layers of components. Still, with Redux, states

are given into global storage (in our case, forms are stored in App.js), and

we have access to this store everywhere in our application, making the pro-

cess handier. Redux is used a lot in this application, and the document was

discussed in detail with two examples of Redux in the project, “Log in” and

“Add to Cart”.

Bootstrap is also discussed in detail since most components use Bootstrap

for styling.

Figure 19 Reducer for login.

Figure 20 Action for the login.

Figure 21 Submit handler where login function is called.

Figures 19, 20, and 21 above show the reducer and action for logging in.

When the user signs up, the login function is called, passing the email and

29

password to the login action, then the HTTP POST request to /api/us-

ers/login is made and gives the email and password to the login route in the

back-end folder. If the process is successful, the login data, including id,

name, email, admin check, and token, will be embedded under the " data "

variable and saved to the store as “userInfo”. If the process fails, the server's

error message will be passed into the payload and shown in the “Message”

component.

Figure 22 Reducer for Add to Cart.

Figure 23 Action for Add to Cart

Figures 19, 20, and 21 above show the reducer and action for adding to the

cart. When the user clicks the “Add to cart” button, the page will navigate to

the cart route, which has the product’s id and quantity. First, the data of that

specific product is fetched from the server. After that, the

“CART_ADD_ITEM” action is called; it will find wherever the product has

been in the cart or not. If the product has not been in the cart, a new product

will be added; otherwise, find it in the cart and update it. After the process,

the final cartItems are updated to local storage.

Bootstrap 5, together with Bootswatch, is used almost in every front-end

component in this project. Bootswatch is a free theme for Bootstrap; with

this library setup, all the styling will be set to a theme, synchronizing every-

thing. Bootswatch theme was downloaded from the official website and

passed into the front-end's index.js file, as shown in Figure 24.

Figure 24 Main index.js file inside front-end folder

In Figure 24, on line 5, the “bootstrap.min.css” downloaded from

Bootswatch is imported. Also, on line 11, we can see that the Redux store

is imported, gaining the accessibility for the whole application to global var-

iables.

Regarding Bootstrap in this project, the component “ProductCarousel” and

“Footer” were considered.

31

Figure 25 The use of Bootstrap in the Footer component.

Figure 26 The use of Bootstrap in the ProductCarousel component.

In Figure 25 and Figure 26, the concept of Bootstrap 5 combined with

Bootswatch and “react-bootstrap” is clearly shown. In that Figure, Boot-

strap was used by applying the built-in classes to elements and compo-

nents, such as Row, Col, and Carousel.

4.2.2 Back-end Logic

The combination of NodeJS, ExpressJS, Mongoose, and other helper librar-

ies makes the whole application run in the back-end.

Routing or router in this web application is a mechanism where HTTP re-

quests are routed to the code that handles them. We determine what should

happen when a user visits a specific page in the route./13/ In this applica-

tion, courses are divided into four categories based on their use: or-

derRoutes, productRoutes, uploadRoutes, and userRoutes.

Table 1. List of all routes made in the project.

Route Purpose Access

POST /api/users/login Authorization user and get a token Public

POST /api/users Register a new user Public

GET /api/users/profile Get user profile Private

PUT /api/users/profile Update user profile Private

GET /api/users Get all users Admin

DELETE /api/users/:id Delete user Admin

GET /api/users/:id Get user by id Admin

PUT /api/users/:id Update user by id Admin

GET /api/products Fetch all products Public

GET /api/products/:id Fetch single product Public

DELETE /api/products/:id Delete single product Admin

POST /api/products/ Create single product Admin

33

PUT /api/products/:id Update single product’s content Admin

POST /api/products/:id/review Create new review Private

POST /api/orders Create new order Private

GET /api/orders/:id Get order by ID Private

GET /api/orders/:id/pay Update order to paid Private

GET /api/orders/myorders Get logged in user order Private

GET /api/orders/ Get all orders Admin

GET /api/orders/:id/deliver Update order to delivered Admin

All the routes made for this web application are shown in Table 1; the route

is split into three colors for three purposes: blue for the user route, purple

for the products, and orange for the order routes. The basic definition of the

functions of the HTTP route that this project use are as follows:

• GET: Obtain information about something.

Example: GET /api/users/profile means Obtaining the user profile’s

information.

• POST: Add or push information to the back end.

For example, POST /api/users/login means to push the information

entered to the server to log in to that user’s account.

• PUT: Replace or update the information in the database.

Example: PUT /api/users/profile means to update the user profile like

name, email, or password.

• DELETE: Delete information from the database.

Example: DELETE /api/users/:id means to delete the user account.

Authentication is one of the main functions of this application. Authentication

is the process of determining someone or something. Authentication tech-

nology in this project provides access control to the system for the customer

by checking to see if a customer’s credentials and token match with the

database /14/. There are many kinds of authentication, such as the face,

voice, fingerprint, or two factors. Still, the most common form of authentica-

tion in this application is being used via a login form, where the user can

enter their email and password to log in.

The authentication of this application is handled by "JSON web token" as a

middleware that is passed to the route requires login. When the user suc-

ceeds in logging into the application, the user’s id generates the token.

When that user calls any API that JWT protects, that token will be decoded

and checked to see if that user has permission to perform that API call. The

authentication for the user is shown below in Figure 27 in this application.

Figure 27 Token authentication by JWT

In Figure 27, firstly, we check if there is an authorization request using

“Bearer,” and after that, use jwt. To verify the method to decode the token,

in this step, the token will be solved with a secret jwt word saved in our

environment variable. Finally, the findById method provided by Mongoose

is used to see if there is any user id in the database that match the token. If

the id is found, the next() function is called and continues to the next step.

35

Otherwise, the error will be shown if the token is wrong or does not exist in

the database.

This application also has an authentication for the admin user, which is

shown in figure 28 below.

Figure 28 Admin user authentication.

In Figure 28 above, the admin is checked by seeing if the “isAdmin” property

is contained in the request header.

Two functions are used to respond to the error created, as shown in Figure

29 below.

Figure 29 Error handler function.

The function will return the status code and error message in those func-

tions.

Postman was used to testing all the back-end routes before using that API

call in the front-end.

“Postman is an application used for API testing. It is an HTTP client that test

HTTP request, utilizing a graphical user interface, through which we obtain

different types of responses that need to be subsequently validated.” /15/

Figure 30 Using Postman to test the GET /api/products route.

In Figure 30, the UI of the Postman application is shown; here, we can see

the method is GET with the input is “{{URL}}/api/products”, the “URL” is port

“https://localhost:5000” as we are running the back-end on port 5000. The

response is shown at the bottom of the Figure on the Body tab; the “Pretty”

option will format JSON and XML responses so we can view them more

straightforward; the “Raw” view is a bunch of text without any space or line

breaks, which is the actual response from the server. Postman also provides

other options such as “Cookies”, “Headers” and “Test results” so users can

have more information about the API that they are testing. In this project,

authentication can also be checked with Postman using the “Authorization”

option from the menu, which is handy for private APIs that require a login

method beforehand.

37

4.2.3 Database Implementation

This application uses MongoDB and Mongoose for the database section.

To save new data to MongoDB, we need to create models to define the

architecture of the specific document that will be stored in the database.

This application has three models, one for the order, one for the product,

and one for the user. Figure 31 below shows a part of the user model as an

example in this application.

Figure 31 Application's user model.

In Figure 31, a Mongoose schema named userSchema was formed and

represented the structure of the user, including name, password, email, and

admin check. In userSchema, clarification of the type of the object and the

“required” can also be set, making the database in a better format.

When data is pushed to MongoDB, the key or “_id” as named by MongoDB

will automatically generate, as shown in Figure 32 below.

Figure 32 Example of a user object in MongoDB.

After creating an account in MongoDB and going into the project, a unique

Mongo URL is generated from the MongoDB website. A copy of that URL is

passed into the environment variable file and used to connect to the data-

base. Figure 33 below shows how to connect to the database in this project.

Figure 33 Connection to a database.

An async operation was used since everything needs to be asynchronous

when dealing with the database. The method used for connection is the

mongoose.connect() provided by the mongoose. The MONGO_URL can be

seen also from the .env file.

Before importing the initial data for the application, some initial data has

been created based on our models. Figure 34 below shows the data that is

prepared for users.

39

Figure 34 Initial user data.

As shown in Figure 34 above, each object follows the standard of the user

model we created, and the password is hashed with bcryptjs, a library that

helps hash the password. Using a set algorithm, hashing a password means

turning the original password into a scrambled representation of itself using

the combination of the password and the provided key. /16/ The key this

application uses is the number “10” The result is shown in Figure 32 above;

the original password is hashed to another one, making the database safer

for users.

After we have the initial data, a method named “importData” is called to push

our data to the database. This function is shown in Figure 35.

Figure 35 Function used to create the initial data.

In Figure 35, first, we clear the database with “.deleteMany()”; after that,

push all the users we have with “.insertMany()”, then the admin id is at-

tached to all the sample products we have in the database and push to

MongoDB.

4.3 Application Deployment

To deploy this application, Heroku was used. Heroku is a cloud service plat-

form used for application development and deployment; with Heroku, de-

ployment is now much simple than before. Since the Heroku platform man-

ages hardware and servers, users only need to focus on their applications

and do not need the infrastructure that supports them. /17/ Figure 36 shows

this project in Heroku.

41

Figure 36 Project UI inside Heroku.

As we can see from Figure 36 above, the UI of Heroku is quite like other Git

systems such as GitHub or GitLab. The application was deployed to Heroku

with the npm script command “NPM_CONFIG_PRODUCTION=false npm

install --prefix front-end && npm run build --prefix front-end”.

After pushing the project to Heroku, the environment variables needed to

be defined again via the “Setting” option in the Heroku task pane since we

have put our environment variable in the file “.env” to “.gitignore”.

After completing everything, now the application is deployed via the domain

https://ngocmaxinutri.herokuapp.com/; with the business upgrade, the “her-

okuapp” can be removed. Furthermore, the eCommerce application was

completed.

5 CONCLUSIONS

The thesis aimed to study and build a full-stack web application that can

strengthen my coding skills and make a place for my family company to sell

our products online. The project was well implemented in approximately four

months, from the end of January 2022 until May 2022.

With this application, customers can order products online, have the track-

ing status, and the owner can easily update the product and manage users,

orders, and products.

The web application is easy to use but is not easy to implement, especially

for a junior developer with basics in Embedded systems. One of the most

challenging parts was working with the MongoDB database and model

schema. Thanks to Bootstrap, no CSS was a need.

Although the application has been completed, some implementations can

still be made for the user experience and the UI. Firstly, implementing the

Dark Mode, embedding a password manager to track the password are

needed, updating the filter for the product, and creating a Google advertise-

ment to promote the brand. Finally, an automation test for the web applica-

tion is required so that no manual testing needs to be done.

43

REFERENCES

/1/ Roznovsky, Alexander Roznovsky. Choosing a technical stack for
web application development. Accessed 8.5.2022.
https://light-it.net/blog/choosing-a-technology-stack-for-web-applica-
tion-development/.

/2/ MongoDB. MERN Stack Explained. Accessed 8.5.2022.
 https://www.mongodb.com/mern-stack

/3/ ReactJS. React – A JavaScript library for building user interfaces.

Accessed 8.5.2022.
 https://reactjs.org/.

/4/ Alexandre Ouellette. 2021. What is Bootstrap: A Beginner’s Guide.

Accessed 8.5.2022.
 https://careerfoundry.com/en/blog/web-development/what-is-boot-

strap-a-beginners-guide/.

/5/ Tutorials Point. Node.js – Introduction. Accessed 9.5.2022.
 https://www.tutorialspoint.com/nodejs/nodejs_introduction.html.

/6/ Express. Hello, world example. Accessed 9.5.2022.
 https://expressjs.com/en/starter/hello-world.html

/7/ Oracle. What is Database? Accessed 15.5.2022.
 https://www.oracle.com/database/what-is-database/.

/8/ David Taylor. 2022. What is MongoDB? Introduction, Architecture,

Features & Example. Accessed 9.5.2022.
 https://www.guru99.com/what-is-mongodb.html

/9/ Ado Kukic and Stanimira Vlaeva. 2022. MongoDB & Mongoose:

Compatibility and Comparison. Accessed 9.5.2022.
 https://www.mongodb.com/developer/article/mongoose-versus-

nodejs-driver/.

/10/ Visual Studio Code. Documentation. Accessed 10.5.2022.
 https://code.visualstudio.com/docs

/11/ Bit Bucket. What is version control? Accessed 10.5.2022
 https://www.atlassian.com/git/tutorials/what-is-version-con-

trol#:~:text=Version%20con-
trol%2C%20also%20known%20as,to%20source%20code%20over
%20time.

/12/ ReduxJs. Getting Started with Redux. Accessed 16.05.2022
 https://redux.js.org/introduction/getting-started

/13/ DivPusher. What is routing? Accessed 18.05.2022
 https://divpusher.com/glossary/routing/#:~:text=Rout-

ing%20or%20router%20in%20web,user%20visits%20a%20cer-
tain%20page.

/14/ Mary E. Shacklett. Authentication. Accessed 20.05.2022
 https://www.techtarget.com/searchsecurity/definition/authentication

/15/ Gustavo Romero. What is Postman API test? Accessed 20.05.2022
 https://www.encora.com/insights/what-is-postman-api-test

/16/ Samuel Gibbs. Passwords and hacking: the jargon of hashing, salt-

ing, and SHA-2 explained. Accessed 21.05.2022
 https://www.theguardian.com/technology/2016/dec/15/passwords-

hacking-hashing-salting-sha-2#:~:text=When%20a%20pass-
word%20has%20been,key%2C%20using%20a%20set%20algo-
rithm.

/17/ Konstantin Rusev. What is Heroku, and what is it used for? Access

21.05.2022
 https://mentormate.com/blog/what-is-heroku-used-for-cloud-devel-

opment/

