

Jesse Båtman

TULUS CLOUD MANUFACTURING

Technology
2022

ACKNOWLEDGEMENTS

I would like to express my utmost gratitude to my current employer, Jubic Oy, who

gave me a chance to learn exponentially during four years of studies. The people’s

knowledge and various projects that Jubic offered were highly crucial in becoming

an independent and proficient software developer. No other place could have pro-

vided the same experience.

I would also like to extend my appreciation to people who worked on Tulus Cloud

Manufacturing. Thanks to Mr. Jesse Ikola, a project manager from Jubic, who man-

aged this project professionally and provided invaluable feedback about technical

decisions. I am also grateful for Mr. Mikko Ylihärsilä, a CAM developer/consultant

during this project, who developed the NC Express service and mathematics for

part processing. The project would not be without them.

I am also very thankful to the people who help write and validate this thesis. I am

especially grateful for Mr. Aleksi Männistö, who tirelessly gave me feedback about

the language of this thesis during various stages of writing.

Vaasa, 24.5.2022

Jesse Båtman

VAASAN AMMATTIKORKEAKOULU
Tietotekniikka

TIIVISTELMÄ

Tekijä Jesse Båtman
Opinnäytetyön nimi Tulus Cloud Manufacturing
Vuosi 2022
Kieli englanti
Sivumäärä 56
Ohjaaja Ghodrat Moghadampour

Työn tavoitteena oli kuvailla Tulus Cloud Manufacturing-sovelluksen toteutettua
arkkitehtuuria ja integraatioita. Painopiste toteutetuista ominaisuuksista oli näi-
den tietoturvassa sekä testaamisessa. Lisäksi työssä käydään läpi mahdollista jat-
kokehitystä, integraatioiden laajuutta ja rakennetta.

Tulus Cloud Manufacturing on tarjousportaalisovellus Prima Powerin asiakkaille,
eli valmistajille. Sovellus mahdollistaa ohutmetallilevyistä työstettyjen osien auto-
maattisen käsittelyn. Cloud Manufacturing eroaa muista tarjousportaalista siten,
että asiakkaat saavat itse ladata haluamansa suunnittelutiedostot, määritellä eri-
tyisprosessit ja seurata tarjouksen kulkua tilauksen läpi lähes reaaliajassa. Käsitel-
lyistä osista sovellus osaa laskea arvioidun tarkan prosessointiajan, kulut ja hinnat
asiakaskohtaisesti, joita valmistaja pystyy käyttämään hyväksi.

Työssä kuvaillaan neljän integraation toteutusta, sekä niiden tietoturvaa ja testaa-
mista. NC Express-palvelun integraatio mahdollistaa ladattujen suunnittelutiedos-
tojen käsittelyn ja sovelluksen ydintoiminnan. Authentication Service-palvelun in-
tegraatio vastaa valmistajien eli ylläpidon käyttäjien hallinnasta. Palveluun voi-
daan esimerkiksi liittää aktiivisia sovelluslisenssejä.

Integraatio toiminnanohjausjärjestelmään mahdollistaa tarkan ja oikean tiedon
saamisen alustalle. Sähköpostipalvelun integraatio mahdollistaa muiden ominai-
suuksien toiminnallisuuksien toimivuuden, kuten sisäisen käyttäjänhallinnan.

Työssä testattiin näiden integraatioiden toimivuutta yksikkö- ja integraatiotesteillä
usealla tasolla. Testeillä voidaan automatisoida testaamista ja taata ominaisuuk-
sien toimivuus jatkokehityksissä.

Avainsanat React, TypeScipt, SaaS, ASP.NET Core, API

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Tietotekniikka

ABSTRACT

Author Jesse Båtman
Title Tulus Cloud Manufacturing
Year 2022
Language English
Pages 56
Name of Supervisor Ghodrat Moghadampour

The purpose of this thesis was to describe the general architecture and devel-
oped integrations of Tulus Cloud Manufacturing. The primary focus was on infor-
mation security and testing. The thesis also briefly describes the scale and struc-
ture of possible further integration development.

Tulus Cloud Manufacturing is a quotation platform for manufactured sheet metal
parts. The software is designed for manufacturers who are Prima Powers cus-
tomers. The software allows users to upload computer-aided design files that
contain instructions for manufacturing parts to be uploaded to the platform.
Cloud Manufacturing can calculate accurate estimates on processing times,
costs, and prices that the manufacturer can utilize in the quotation process.

The thesis describes the structure of four integrations and how they are secured
and tested. The core integration in Cloud Manufacturing is NC Express Service.
The service parses the design files and enables the core business logic of the soft-
ware to work. Integration to Authentication Service allows Prima Power to man-
age admin access to specific Cloud Manufacturing instances. This access can be
controlled manually or with license keys.

Integration to Enterprise Resource Planning (ERP) enables Cloud Manufacturing
to blend into the manufacturers’ process. ERP integration provides accurate in-
formation, such as material costs. Mailing service integration enables other appli-
cation features, such as internal user management, to work.

Developed integrations were tested on multiple levels using the unit and integra-
tion testing. Written tests ensure the feature functionality in further develop-
ment.

Keywords React, TypeScript, SaaS, ASP.NET Core, API

CONTENTS

ACKNOWLEDGEMENTS

TIIVISTELMÄ

ABSTRACT

LIST OF FIGURES, TABLES, AND CODE SNIPPETS

LIST OF ABBREVIATIONS

1 INTRODUCTION .. 9

1.1 Jubic Oy ... 10

1.2 Prima Power .. 10

1.3 Tulus .. 11

1.4 NC Express ... 12

2 RELEVANT TECHNOLOGIES ... 13

2.1 ASP.NET Core .. 13

2.2 RESTful API .. 14

2.3 JSON .. 14

2.4 Entity Framework Core ... 15

2.5 React ... 15

2.6 TypeScript ... 16

2.7 Microsoft SQL Server .. 16

2.8 OpenID Connect .. 17

2.9 Docker ... 18

2.10 Kubernetes .. 19

3 APPLICATION .. 20

3.1 Application Description ... 20

3.2 Project Motivation .. 20

3.3 Objectives and Features ... 21

3.4 Application Infrastructure ... 21

3.5 Backup Strategies .. 24

3.6 Connection to Tulus .. 25

4 INTEGRATIONS AND FEATURES .. 27

4.1 NC Express Service .. 27

4.1.1 Uploading Design File .. 27

4.1.2 Parsing Design Files into Parts .. 29

4.1.3 Part Method Authorization ... 31

4.1.4 Part Processing Flow ... 32

4.2 Application Security .. 33

4.2.1 Security Requirements .. 34

4.2.2 User Authentication .. 35

4.2.3 Admin Authentication ... 36

4.2.4 Application Authorization ... 38

4.3 ERP Integration ... 39

4.3.1 Integration Requirements ... 39

4.3.2 Material CSV Import .. 40

4.3.3 Plans for Future ... 42

4.4 Emailing Integration .. 42

4.4.1 Password Recovery Example ... 43

4.4.2 Email Queue Structure .. 45

5 TESTING .. 46

5.1 White Box Testing ... 46

5.1.1 Unit Testing ... 46

5.1.2 Integration Testing .. 47

5.2 Testing Setup .. 47

5.3 NC Express Integration .. 48

5.4 Authentication and Authorization .. 49

5.5 ERP Data Import .. 50

6 CONCLUSIONS .. 52

6.1 Project Evaluation ... 52

6.2 Future Development ... 53

REFERENCES .. 54

LIST OF FIGURES, TABLES, AND CODE SNIPPETS

Figure 1. Application infrastructure schema. ... 22

Figure 2. Self-managed backup strategy. ... 25

Figure 3. Possible Tulus integration. ... 26

Figure 4. Upload design file sequence diagram. ... 29

Figure 5. NC Express service flow sequence diagram. .. 30

Figure 6. Part method authorization use case diagram. 32

Figure 7. Part processing flow diagram. ... 33

Figure 8. End-user login sequence diagram. ... 36

Figure 9. Admin user login sequence diagram. .. 37

Figure 10. API data authorization diagram. .. 38

Figure 11. Material CSV import sequence diagram. ... 40

Figure 12. Material CSV import options UI. .. 41

Figure 13. Password recovery sequence diagram. ... 43

Figure 14. Reset email template. .. 44

Figure 15. Email queue flow diagram. .. 45

Table 1. Design file upload requirement specification. .. 28

Table 2. Worker API requirement specification. .. 29

Table 3. Application security requirement specification. 35

Table 4. ERP integration requirement specification ... 39

Table 5. NC Express integration test cases. .. 48

Table 6. Authentication and authorization test cases. ... 49

Table 7. ERP data import test cases. ... 51

Code Snippet 1. NC Express service integration Test case 2. 49

Code Snippet 2. Authentication and authorization integration Test case 1. 50

Code Snippet 3. ERP data import Test case 1. .. 51

LIST OF ABBREVIATIONS

CM Cloud Manufacturing

CAM Computer-Aided Manufacturing

CAD Computer-Aided Design

NC Numerical Code

ASP.NET Active Server Pages.NET

IoT Internet of Things

MVC Model-View-Controller

API Application Programming Interface

JSON JavaScript Object Notation

CLR Common Language Runtime

EF Core Entity Framework Core

ORM Object-Relational Mapper

CRUD Create, Read, Update, Delete

VDOM Virtual Document Object Model

JSX JavaScript XML

HTML Hypertext Markup Language

MS SQL Microsoft SQL Server

OIDC OpenID Connect

OAuth Open Authorization

JWT JSON Web Token

SMTP Simple Mail Transfer Protocol

CI/CD Continuous Integration / Continuous Deployment

AWS Amazon Web Services

 9

1 INTRODUCTION

Competition in sheet metal manufacturing is fierce. Manufacturers are fighting for

ways to make the manufacturing process cheaper and faster than the competition.

As computer-aided manufacturing became more efficient and generally more

available, the improvements had to come from somewhere else. Traditionally

these improvements were based on factors, such as cheaper materials or shipping

costs. As a leading sheet metal machinery provider, Prima Power wants to en-

hance the order process for the manufacturers by simplifying and hastening the

quotation process.

As a result, Prima Power started developing Tulus Cloud Manufacturing. Cloud

Manufacturing is an online quotation and ordering platform for manufacturers

and customers. It aims to enhance the speed of turnover time between quotes

and orders. Cloud Manufacturing offers customers multiple requested features,

such as live status updates on orders, instant quotes, and part modifications. Cloud

Manufacturing gives manufacturers an entry point to the quotation process and

multiple tools to fasten the process.

Manufacturers often communicate with customers, especially smaller ones, by

email and phone. The customer would send a packet of design files to the manu-

facturers. The manufacturer must manually calculate the processing times, costs,

and prices. Cloud Manufacturing reduces the extra communication between the

parties. The manufacturer’s customer can upload the design files directly into

Cloud Manufacturing, which would process them into parts. These parts can be

used in the new quotation with instantaneous estimated pricing. The customer

would be able to test different materials and define any other processes that could

not be detected from the file.

Cloud Manufacturing is part of the Tulus software family. Tulus contains tools to

manage and enhance the experience of Prima Power machinery. Logically Cloud

 10

Manufacturing is mainly targeted at manufacturers who own Prima Powers ma-

chinery.

Integrations between different services are required to create flexible, fast, and

accurate software. Cloud Manufacturing uses multiple integrations to various

power features ranging from core business to messaging. This thesis primarily de-

scribes the developed integrations, focusing on information security and testing.

The integrations enable the manufacturers to integrate the Cloud Manufacturing

software into their existing processes more efficiently.

Cloud Manufacturing software is distributed using a Software as a Service (SaaS)

model. The SaaS model ensures that Prima Power manages the installation and

upkeep of the instance. This makes Cloud Manufacturing even more accessible for

manufacturers with Prima Power machinery.

Prima Power bought the development for this project as subcontracting work from

Jubic Oy.

1.1 Jubic Oy

Jubic is a modern software company located in Vaasa, Finland. Jubic was founded

in 2015 and currently consists of around 18 employees. Jubic specializes in the

development of industrial software solutions. Alongside development, Jubic offers

cloud and consultation services to its customers. Consultation may consist of in-

formation security, project management, or software acquisitions. Many of Jubic’s

customers are from the industrial sector, like Prima Power. (Jubic, 2022)

1.2 Prima Power

Prima Power specializes in the manufacturing of different types of sheet metal

machinery. Worldwide, Prima Power is one of the leading operators in this field.

Prima Power’s machinery can operate a wide range of tasks such as bending,

 11

punching, shearing, and lasering. These operations can run sequentially in com-

plex machinery combinations to maximize production throughput.

On February 4, 2008, Prima Industrie Group acquired Finnish Finn-Power Group.

Before the acquisition, Finn-Power Group produced primarily punch manufactur-

ing machines, whereas Prima Industrie Group owned Prima Electro produced laser

machines. Together with Prima Industrie Group brands, creating Prima Power.

Today Prima Power has facilities worldwide, including Finland, Italy, China, and the

United States, and serves customers in over 70 countries. Prima Power has more

than 400 employees in their Finnish unit located in Seinäjoki. (Prima Power, 2022)

1.3 Tulus

Tulus is a software family around Prima Powers machinery. Tulus software is tied

closely with sheet metal machinery provided by Prima Power. The software family

contains tools and software to expedite and improve different tasks regarding the

machinery. Tulus software is designed to work with each other seamlessly. (Prima

Power, Tulus, 2022)

Tulus Office is a software package for planning and managing machinery capacity.

Production planning, tracking machine states, and continuous manufacturing are

its primary uses. Office has three tiers: Basic, Classic, and Premium. These tiers

give users more advanced features such as two-way ERP integration and dynamic

nests. (Prima Power, Tulus Office, 2022)

Tulus Cell is software for managing machinery directly from the machine. Machine

operators mainly communicate with sheet metal machinery using Cell. The soft-

ware displays valuable information, such as task lists and helps with operations for

example, managing tools, sorting, and stacking parts. (Prima Power, Tulus Cell,

2022)

 12

Tulus Analytics is a web-based analytics application. Analytics provides an easy

way to track and analyze production and machinery performance. The application

aims to enhance product quality and reduce downtime. (Prima Power, Tulus Ana-

lytics, 2022)

Tulus Visual Monitoring is a web application for the machine operator. The appli-

cation gives real-time information about the state of the machine. The application

is used for identifying error reasons and location. (Prima Power, Tulus Visual Mon-

itoring, 2022)

1.4 NC Express

NC Express (NCX) is a CAM/CAD-like programming software for sheet metal draft-

ing and tooling. NC Express is highly integrated with Prima Powers machines and

other tools like Tulus Office. The integrations create a robust environment for ef-

ficient and well-optimized NC-code programming. NC-code is a collection of in-

structions for machinery to manufacture a given part. (Prima Power, NC Express

e3, 2022)

 13

2 RELEVANT TECHNOLOGIES

This section contains detailed information about technologies that power Cloud

Manufacturing.

2.1 ASP.NET Core

The application back-end is built using a free and open-sourced web framework

called ASP.NET Core which Microsoft originally developed. ASP.NET Core was ini-

tially released on June 7, 2016. ASP.NET Core is a modern successor of ASP.NET

and aims to be a lightweight, modular, and developer-friendly programming

framework.

ASP.NET Core applications are cross-platform and support compatibility with most

used operating systems, for example Windows, Linux, and Android. ASP.NET Core

provides tools and libraries to create internet-based web and IoT applications im-

plementing MVC architecture. ASP.NET Core applications are built on top of Com-

mon Language Runtime, allowing developers to use any programming language

that supports CLR. Most commonly, ASP.NET applications are written with C#, but

languages like F# and Visual Basic are also supported. (Microsoft, 2022)

MVC is shorthand for Model, View, Controller. MVC architecture is one of the most

common approaches to building a web application. Model stands for abstraction

over persistence layer, such as a database. This typically comes in the form of an

object-relational mapper or query builder. The controller is used to route specific

resources into URIs. These resources can be anything from raw JSON data to HTML

pages. View implements a way to add information to HTML directly. (Mozilla,

2022)

ASP.NET Core implements common design patterns such as dependency injection.

Dependency injection is an abstraction over accessing resources and services. De-

pendency injected services referenced during compile time are guaranteed to be

 14

accessed correctly during runtime. If implemented correctly, dependency injec-

tion can save valuable performance. (Microsoft, 2022)

2.2 RESTful API

Application programming interfaces (API) allow communication between two

components or modules. APIs are the mediator between clients and services. Ap-

plication programming interfaces handle more specific details such as caching and

create standardization for communication security. Typical API implementations

are RESTful and SOAP. (MuleSoft, n.d.)

RESTful is an API architectural style that allows interaction between web services.

REST defines constraints that developers can implement. REST APIs implement

endpoints that clients can communicate with. REST endpoints can be separated

into multiple uniform resource identifiers (URI) and have various types. The most

common request types are POST, GET, PUT and DELETE. REST supports numerous

communication formats, but JSON and XML are the most popular.

RESTful HTTP requests contain headers that have metadata. This metadata can

include authorization information, caching options, and cookies. Additional infor-

mation can be passed in query parameters or URI. This information is in text for-

mat. (Redhat, 2020)

2.3 JSON

JavaScript Object Notation (JSON) is a lightweight and language-agnostic file for-

mat. JSON’s popularity comes from its readability and performance. JSON is com-

monly used as a RESTful APIs information format. JSON consists of a collection of

keys and values, where keys are strings. Values support six types: string, number,

Boolean, list, object, and null. (Mozilla, 2022)

 15

2.4 Entity Framework Core

Entity Framework Core (EF Core) is an open-source Object-Relational Mapper

(ORM). EF Core is the successor for Entity Framework, originally designed to work

with .NET Framework. The first version of Entity Framework Core was released on

June 27, 2016, as part of Microsoft’s goals to modernize the .NET stack.

ORM is an abstraction over databases and allows the developer to convert pro-

gramming language code to SQL that the database understands. EF Core imple-

ments the most needed database operations like creating, reading, updating, and

deleting (CRUD) like other Object-Relational Mappers.

Entity Framework uses entities to create and track database tables. The entity

class is an active description of the table in a database. EF Core provides tooling to

create seamless migrations based on changes to entities. An instance of an entity

is a database record. The Entity Framework Core abstract creates, updates, and

deletes operations using tracked entities. Changes to tracked entities are reflected

to the database as soon as the database context is saved.

Database context is an API provided within EF Core. This allows live access to all

the registered entities and database operations. Together with ASP.NET Core, da-

tabase context can be accessed using dependency injection. Dependency injected

context handles database connection and disposition automatically. (Microsoft,

2021)

2.5 React

React is a free, open-source user interface library for JavaScript. React was re-

leased on May 29, 2013. Meta, formally known as Facebook, maintains React, but

it is very community-driven with an active developer community. React was ini-

tially developed for creating client-side rendered single-page websites and web

applications. Present-day React works as the backbone for multiple UI frameworks

 16

and libraries. These include mobile development such as React Native and server-

side rendered web applications such as Next.js and Remix. (React, n.d.)

React builds user interfaces using virtual DOM. VDOM is a virtual structure of the

application stored in memory. The state controls VDOM. React uses the state to

store information programmatically. Internally, React reconciles past and current

states to determine which parts of virtual DOM should be rendered. Only compo-

nents that have access to the changed state will re-render. (React, n.d.)

Virtual DOM is separated into logical components. Components can contain state

and return JSX. JSX is a syntax extension for JavaScript that allows HTML-like syn-

tax. JSX code is constructed from native HTML elements for example, div, header,

paragraph, and other React components. Components can pass state and func-

tions top-down to children using props.

Props are defined by passing information to components attributes, such as HTML

element attributes. Attributes in JSX cannot contain any hyphens. Element attrib-

utes with hyphens are converted using camelCase naming. For example, a “class-

name” attribute is converted to “className”. (React, n.d.)

2.6 TypeScript

TypeScript is a strongly typed, open-source programming language maintained by

Microsoft. TypeScript language was first published on October 1, 2012, to add

static types for JavaScript. TypeScript is a superset of JavaScript, and therefore any

JavaScript code will work in TypeScript. TypeScript compiles into JavaScript. Type-

Script improves code quality by enforcing types for variables, functions, and clas-

ses. (Typescriptlang, n.d.)

2.7 Microsoft SQL Server

Microsoft SQL Server (MS SQL) is a relational database management system. Mi-

crosoft initially released MS SQL on April 24, 1989, but it is still actively developed.

 17

The latest version was published in November 2019. MS SQL is used to store and

retrieve persistent data by other applications. MS SQL supports popular server op-

erating systems like Linux and Windows Server. (SQLServerTutorial, n.d.)

A relational database is based on a relational model, which represents and con-

nects data between tables. Relational databases have been the most used data-

bases in modern history because they are resilient and scalable. Relational data-

bases hold data in rows that are in tables. Rows contain columns that contain dif-

ferent types of data. Other database types are non-relational databases, such as

document-oriented databases, key-value- and graph stores. (Oracle, n.d.)

Column types are database-specific, but SQL databases commonly contain basic

types for example, integer, string, double, and date. Each database record consists

of a unique identifier, typically an integer type. This identifier column can be ref-

erenced in other tables records, creating the relationship between two records.

The SQL language is used for communicating with MS SQL. The SQL language is a

standardized relational database language developed by IBM. Most modern rela-

tional databases support and use SQL as the communication language. The most

common SQL commands are SELECT, INSERT, UPDATE, and DELETE, which imple-

ment the basic CRUD operations. (Loshin, 2022)

2.8 OpenID Connect

OpenID Connect (OIDC) is an authentication protocol on top of the OAuth 2.0

framework. OIDC adds an identity layer on top of the OAuth protocol. OIDC allows

client applications to verify and obtain basic information about users without di-

rect access to identity providers. OIDC eliminates the need for separate identity

management and enables the creation of a centralized identity provider. The iden-

tity provider and acceptor communicate via JSON using OAuth REST API. Identity

is given to the acceptor using JSON Web Tokens. OIDC is widely adopted by the

 18

world’s biggest technology companies, for example Google, Microsoft, and Face-

book. (Auth0, n.d.)

2.9 Docker

Docker is a software framework for building, managing, and running OS-level vir-

tualized packages called containers. Docker was initially developed for Linux as an

open-source virtualization solution but was later continued by Docker Inc. The first

version of Docker was released on March 20, 2013. Docker’s popularity has risen

in the last century for its ease of use when creating scalable and robust operating

environments. Applications built and packaged using docker are guaranteed to run

on any platform that supports Docker. (Docker, n.d.)

A Docker image is a file for executing code inside the container. It contains a set

of instructions to build the application. The instructions define all the necessary

dependencies and libraries for creating and executing the application. A Docker

image is always immutable, and they can often be compared to a virtual machine

snapshot. Docker image instructions are defined using the Dockerfile file. An im-

age can be built from the file using the “docker build” command.

Docker images can be stored in centralized repositories. Repositories can be pri-

vate or public, for example Docker Hub. Repositories allow easy distribution of the

application from the built environment to production. (Gillis, 2021)

Containers are used to create an instance of an image. Containers create a stable

and reliable runtime environment. Containerized application abstracts the under-

lying infrastructure to guarantee that applications run the same on different ma-

chines. Containers allow an easy way to modularize the program. Modular pro-

grams are split into multiple containers using container management software,

such as docker-compose or Kubernetes. This is an underlying ideology of micro-

service architecture. (Rubens, 2017)

 19

2.10 Kubernetes

Kubernetes is open-sourced system for managing containerized applications. Ku-

bernetes was released on June 7, 2014, by Google. Kubernetes offers tools and

architecture for managing, scaling, and deploying containerized application clus-

ters. Clusters consist of the master machines and possible worker machines. The

master machine coordinates the communication between nodes.

A node is a machine inside the cluster. The master machine inside the cluster con-

trols nodes. The responsibility of a node is to define rules for pods running inside

the nodes. These rules include networking settings, device and pod capacities, and

pod information. Pod information consists of application and image versions and

active statuses.

A pod is the smallest unit of a cluster. It represents a single instance of application

deployment. A pod consists of one or multiple containers. Each pod has an IP ad-

dress assigned, and they can communicate with each other using a local network.

External communication outside the pod requires an exposed port. (Kubernetes,

n.d.)

 20

3 APPLICATION

This chapter explains general application information, requirements, and infra-

structure.

3.1 Application Description

Tulus Cloud Manufacturing is an ordering platform for sheet metal manufactured

parts. Cloud Manufacturing is intended to be a part of the Tulus software family

and provide the manufacturer with an interface for managing customers’ manu-

facturing orders. Cloud Manufacturing provides tools for the fast turn-over time

between a quotation and order and gives precise estimates about processing

times, costs, and pricing.

Cloud Manufacturing gives the customers the ability to upload custom design files.

Cloud Manufacturing provides accurate pricing estimates for customers after the

design file has been uploaded and processed. Integration with NC Express allows

the initial estimations to be precise to genuine part processing calculations. Mis-

calculated estimates can be corrected easily with tools provided by Cloud Manu-

facturing.

Prima Power distributes Cloud Manufacturing independently from other Tulus

software, using a SaaS model. Software as a Service model means that Prima

Power maintains the Cloud Manufacturing instances and all the required services.

Service is intended for manufacturers that use Prima Powers’ sheet metal machin-

ery.

3.2 Project Motivation

Traditionally, sheet metal manufacturing sales flow goes through the manufactur-

ers’ sales department via email and phone. After contact, the sales teams contact

the CAM programmer, who calculates processing times for each given design file.

 21

The sales will then contact the customer with the options for the part manufac-

turing. Customers might add or modify existing options, such as new material,

which will require recalculation of processing times. This process is lengthy and

costly and requires attention from multiple parties.

Cloud Manufacturing changes the traditional flow. Customers can upload design

files directly into Cloud Manufacturing instead of contacting the sales. Customers

can then freely adjust the materials and manufacturing thicknesses and possibly

get an instantaneous price estimation. This process saves time and money for both

parties. What traditionally took days takes minutes in Cloud Manufacturing.

3.3 Objectives and Features

A key objective of Cloud Manufacturing is to simplify quotation and order flow.

Simplification reduces operation fees and ultimately adds revenue. To achieve the

goal, the application implements the following features:

• Tools for uploading and managing design files.

• Accurate quotation estimation instantaneously after adding parts.

• Tools for managing quotations and orders for both parties.

• Tools for managing customer accounts and instance admin access via Au-

thentication Service.

• Tools for managing context parameters, for example machines, materials,

tools, and pricing configurations.

3.4 Application Infrastructure

Cloud Manufacturing uses external integrations to implement the key features.

This infrastructure allows easy and scalable deployment plans for multiple in-

stances of Cloud Manufacturing. The infrastructure enables customer-specific

configurations. These configurations can easily be managed in a centralized de-

ployment plan.

 22

Cloud Manufacturing is designed to be platform-independent if needed. Regular

deployment of Cloud Manufacturing contains a self-hosted database and volume,

managed by Kubernetes. Cloud Manufacturing can be deployed independently

from Kubernetes and configured to use hosted databases and data storage. An

example of hosted data storage can be Microsoft’s Azure Files or Amazon’s S3

storage.

Figure 1. Application infrastructure schema.

Application infrastructure is described in Figure 1. The Grey zone in this figure il-

lustrates the Cloud Manufacturing container pod. The container is based on an

image built using CI/CD pipelines. The pipelines are tied to the Cloud Manufactur-

ing version control. The Cloud Manufacturing user interface is built using React.

The back-end is built using ASP.NET Core and serves the assets generated in the

front end.

The light blue zone containing a grey zone describes one instance of Cloud Manu-

facturing. One instance of Cloud Manufacturing is the Kubernetes node which in-

cludes a Cloud Manufacturing container, storage, and MS SQL. The Kubernetes

node can be characterized as one instance of Cloud Manufacturing. Storage is a

volume mount for the node. This volume mount stores uploaded assets, such as

 23

images, resource files, and design files. The Cloud Manufacturing pod has read and

write access to the storage.

The ingress controller of the pod exposes HTTP and HTTPS traffic to Cloud Manu-

facturing container. Only resources inside the pod can access the database. Cloud

Manufacturing integrations and external services communicate via HTTP(s) proto-

col through the Cloud Manufacturing container.

Users in the infrastructure schema represent application end-users. OIDC is con-

nected with users and Cloud Manufacturing. OIDC symbol in infrastructure refer-

ences to Prima Powers Authentication Service. Authentication Service is a central-

ized identity provider that implements the OpenID Connect protocol. This service

is used to authenticate manufacturers’ admin users. Authentication Service is con-

nected to license services. This service directly manages access to Cloud Manufac-

turing.

NC Express service is an API client with direct access to licensed NC Express e3

instances. NC Express is responsible for parsing manufacturing parts out of up-

loaded design files. The NC Express client enables the core functionality of Cloud

Manufacturing to work. The NC Express client communicates with worker REST

API using the HTTP protocol. NC Express Clients are instance independent, mean-

ing one client can handle multiple instances simultaneously.

The SMTP symbol represents email integration. Cloud Manufacturing uses exter-

nal mailing services to send account-related confirmation operations through

email. These emails are constructed using HTML email templates. Email integra-

tion will be expanded to cover notifications and newsletters in the future.

The ERP symbol represents the ERP integration. Enterprise resource planning soft-

ware manages essential parts of the company, for example manufacturing, supply

chain, services, human resources, and procurements. ERP is critical for gathering

accurate information such as material availability and costs. Cloud Manufacturing

 24

currently implements a CSV data import feature for materials. The ERP integration

will be expanded in the future to be automatic and possibly two-way using REST

APIs.

Application Insights is a monitoring tool in Azure. It provides tools to monitor live

application performances, detect anomalies, track users, and diagnose issues. Ap-

plication Insights has broad support for platforms for example .NET, Java, and

Node.js. Cloud Manufacturing uses Application Insight to analyze general perfor-

mance and log errors. One instance of Application Insights is used to gather all

Cloud Manufacturing instances statistics. Cloud Manufacturing does not include

instance-specific data, such as user information in Application Insight logging.

3.5 Backup Strategies

The software provider is responsible for data recovery when the software is dis-

tributed using the SaaS model. During the development, two data recovery strat-

egies were designed. These strategies are based on how the instance has been set

up.

The first backup strategy is to use managed services. Instead of using self-hosted

services in the persistence layer, Cloud Manufacturing uses services provided by

cloud platforms, such as Azure or Amazon Web Services. Cloud Manufacturing

container would be deployed independently without persistence layer, and Cloud

Manufacturing would use services Azure SQL Database as database and Azure Files

for volume. These services offer data recovery as a service.

When deploying with Kubernetes, the primary backup strategy would be to de-

velop a separate backup service. The backup plan is described in Figure 2.

 25

Figure 2. Self-managed backup strategy.

The backup service would be located inside the node’s instance and would have

access to the persistence layer. The service would be configured on pod level to

run periodically. The service would pack the data from volume and database into

a zip archive. This zip archive would be uploaded to managed remote data storage

like an AWS S3 bucket. Data lifetime would be configured on the remote data stor-

age level.

3.6 Connection to Tulus

Cloud Manufacturing is part of the Tulus software family. The development of Tu-

lus integration is not within the scope of this thesis. Figure 3 describes the possible

extent of integration.

 26

Figure 3. Possible Tulus integration.

The rest of the Tulus software could use Cloud Manufacturing data to enrich the

experience. Tulus Office and Tulus Cell could use order data to schedule machinery

based on needs. Tulus Office could update quotation and order statuses and de-

livery estimates. Tulus Office could automatically download the design file from

Cloud Manufacturing and provide it directly to NC Express. The CAM programmer

would not need to find the file separately since it is automatically linked.

 27

4 INTEGRATIONS AND FEATURES

This chapter introduces requirements and descriptions about different internal

and external services.

4.1 NC Express Service

NC Express service is part of the core functionality of Cloud Manufacturing. Nc Ex-

press service allows Cloud Manufacturing to process design files into parts. Parsed

parts contain essential information about the part, such as the list of features, part

image preview, and geometry. This functionality enables other internal services,

for example costing and pricing, to work.

NC Express services are instance independent. One NC Express Instance can pro-

cess multiple Cloud Manufacturing instances simultaneously. One Cloud Manufac-

turing instance is not limited to one NC Express Instance. Having multiple NC Ex-

press instances for one Cloud Manufacturing instance can significantly decrease

processing times in heavy load times.

4.1.1 Uploading Design File

The first step in using the NC Express service is uploading and storing design files.

Cloud Manufacturing users can upload design files into separate folders or under

one general folder. The uploaded design files are stored in the part library. Each

user has access to their own company’s part library, whereas admin users have

access to the admin-only part library and each company’s library.

Table 1 describes the requirements of the design file upload process. Essential re-

quirements are user accessibility, security, process swiftness, and user interface

clarity. Requirement specifications define priority ranging from 1 to 3, from most

to least important. All the requirements are listed as priority one and are “must-

have” features. It is crucial that uploaded files can be directly used in new quota-

tions after the upload is done and the NC Express service has processed the file.

 28

Table 1. Design file upload requirement specification.

Number Description Priority

1
Users can upload one or many design files simultane-
ously

1

2 Users can drag and drop files to be uploaded 1

3 Users get instant feedback about file upload status 1

4
A newly added part can be used in the quotation after
upload

1

5 Users can delete part(s) 1

6 Users can see parts within the company’s scope 1

7 Admin users can see all parts and customers’ parts 1

8 Simple to use 1

The design file upload process is shown in Figure 4. The file upload endpoint ex-

pects a file to be transferred as form-data instead of JSON request. After the Cloud

Manufacturing back-end receives design files, they are immediately validated. Un-

familiar file formats are instantly rejected. NC Express Service can parse neutral

CAD file formats such as STEP, STL, and DXF and native formats such as AutoCAD,

Inventor, and Solid Edge. (Prima Power, NC Express e3, 2022)

A new processing job is created once the resource receives a valid file, and the file

is successfully stored on the volume. The job indicates to worker API that the new

file is ready to be processed.

 29

Figure 4. Upload design file sequence diagram.

While the NC Express service processes a new design file, the browser polls the

design file API to get accurate information about the processing job status. Polling

rate is around 3 seconds to match the average processing time.

4.1.2 Parsing Design Files into Parts

After design file validation, a new processing job is created. This job is used to track

NC Express processing status. The Worker API is constructed to provide NC Express

service access to design files and processing jobs.

Table 2. Worker API requirement specification.

Number Description Priority

1 NCX Service can communicate with CM using worker API 1

2 NCX requires an API key for authorization 1

3
API provides a method for listing available processing
jobs

1

4 API provides a method for taking the next processing job 1

5 API provides a method for updating the processing job 1

6 API provides a method for downloading design file 1

7 NCX can finish or reject the active processing job 1

8 Worker API consumes JSON 1

 30

Table 2 lists requirements around the worker API, which provides NC Express ser-

vice with methods for reading and updating processing jobs and downloading de-

sign files based on processing job id. All the listed requirements are marked as

priority one meaning it is a “must-have” feature. Figure 5 shows a detailed pro-

cessing flow between NC Express service and Cloud Manufacturing.

The worker API authorizes incoming API requests using an API key. The worker API

key is a randomly generated string. The key is stored in application configuration

and is unique to a specific Cloud Manufacturing instance. Authorized users with a

regular authorization token are not authorized to use the worker API.

Figure 5. NC Express service flow sequence diagram.

After the processing job is finished, the worker API requires NC Express to provide

a list of new parts from the design file. The NC Express parts include a list of fea-

tures in part, part sizes, feature patterns, and base64 encoded PNG image. A PNG

 31

image is used for previewing the general shape of the elements. Cloud Manufac-

turing constructs detailed and interactive vector-based graphics using feature

shapes provided by NC Express.

The NC Express parts are then parsed and transformed into Cloud Manufacturing

parts. The transformation formats information from NC Express, adds additional

meta information to the part and optimizes data into multiple database tables and

volumes.

Cloud Manufacturing timeouts automatically process jobs if the NC Express service

encounters a critical error during processing and cannot finish or reject the job.

This timeout period can be configured per instance and defaults to 5 minutes. Ad-

min users can rerun or delete denied processing jobs. Deleting only the processing

job causes design file deletion.

4.1.3 Part Method Authorization

User actions around processed parts are complex. Many of the actions are limited

to the context of the part and HTTP requester. The method authorization is based

on the user role, while the context specifies which information can be accessed or

modified. An example of context limitation would be when a user tries to calculate

an estimation of the part while the part has no defined manufacturing material.

Role-based actions for parts can be seen in Figure 6.

 32

Figure 6. Part method authorization use case diagram.

Multiple basic activities are accessible by both admin and end-users. Admin users

can modify processing times, override default manufacturing machines and mate-

rial sheet sizes, and recalculate part processing times that end users can not. End-

user actions are limited to parts owned by the company.

4.1.4 Part Processing Flow

Figure 7 describes part flow after it is received from NC Express service. Only ini-

tialized parts can be added to a new quotation. The initialized part has manufac-

turing material and thickness defined. Initialization can be done dynamically while

creating a new quote.

 33

Figure 7. Part processing flow diagram.

Initialization allows Cloud Manufacturing to calculate correct processing times and

add the right processes to parts. Initialized parts include all the necessary infor-

mation to calculate quotation costs and prices. Initialized parts can be re-used in

further quotations, allowing the software to estimate more accurately in the fu-

ture.

4.2 Application Security

Application security is one of the most critical aspects of software development,

mainly when the application handles business-critical information or customer in-

 34

formation. Cloud Manufacturing is designed to be a secure web application. Ap-

plication is secure when only the right amount of data is given out based on user

authorization, resources require authentication, and there are no apparent design

flaws.

Cloud Manufacturing uses JSON Web Tokens (JWT) as a primary identity provider.

JWT is a compact and self-contained token that Cloud Manufacturing signs. Signed

JWT is used to authenticate and authorize application APIs. Applications that use

JWT as primary authentication solution can add custom information in the shape

of claims. Usually, these claims consist of users’ unique identifiers, names, and

other relevant information. (Auth0, n.d.)

The application that signs JWT can quickly validate signed tokens and ensure that

the given data is not modified. This certainty disposes of the need to query the

database every time a token is authorized. (Auth0, n.d.)

Cloud Manufacturing has two user roles, normal and admin. Admin users are the

manufacturer’s employees who have bought a license for the software. Regular

users are customers of the company that bought Cloud Manufacturing. Admin us-

ers are limited from Prima Powers Authentication Service. Therefore, Prima Power

can manage how many users access admin privileges. The managing company can

decide how many end-users they want to allow on the platform. Admin users have

full access to manage end users.

4.2.1 Security Requirements

Table 3 lists the general security requirements for Cloud Manufacturing. Needs are

targeted around authentication and authorization. Security requirements for

other APIs are not listed here since they are all different based on use-case.

 35

Table 3. Application security requirement specification.

Number Description Priority

1 Internal API is protected 1

2 User authorization uses JSON Web Tokens 1

3 A token is provided in a request authorization header 1

4 End-users authenticate using username and password 1

5
Admin-users authenticate using an authentication ser-
vice

1

6
Admin user is limited to instances of CM defined in the
authentication service

1

7 Admin users can add, update, or delete end users 1

8 API segregates responses based on user role 1

9 API segregates responses based on user company 1

10 End users can reset their password 2

11
Admin users can create passwordless mail invitations for
the end-user

2

Application security requirement specification lists priorities for each item. Priority

goes from 1 to 3, from the most to the least important. Items 10 and 11 are marked

as a secondary priority because the application can be easily used securely without

them. All the features listed in Table 3 are implemented. The implementation of

item 10 is shown in Figure 11.

4.2.2 User Authentication

Cloud Manufacturing has internal user management for end-users. Admin users

manage End-users. End users are customers of the company that bought an in-

stance of Cloud Manufacturing. End-users use the email and password form on

the login page for authentication. Figure 8 describes the end-user login flow.

 36

Figure 8. End-user login sequence diagram.

Cloud Manufacturing uses a pseudo-random encryption function, plain text pass-

word, and salt to create a secure encrypted password. Generated passwords and

salts are stored in the database. This stored password is compared to the inputted

password when the user tries to authenticate.

If the authentication is successful, the user gets JSON Web Token and user infor-

mation. JWT is stored in the browser local storage and is added as an authentica-

tion header for every API request. If the authentication fails, API responds with an

unauthorized HTTP error. Login API does not give detailed information about the

failed request. This protects the API from user scanning vulnerabilities.

4.2.3 Admin Authentication

Admin users authenticate into Cloud Manufacturing using Prima Powers Authen-

tication Service. The authentication Service is OpenID Connect Identity Service.

Authentication Service allows Prima Power to allocate admin access to Cloud Man-

ufacturing instances.

 37

Figure 9. Admin user login sequence diagram.

Figure 9 describes the authentication flow for admin users. Admins can access Au-

thentication Service by accessing the Manufacturer tab on the login page and click-

ing the Authentication Service link. Redirection adds a state and nonce to browser

cookies to protect users from cross-site request forgery attacks. These cookies will

be validated further down the process. The user is redirected back to Cloud Man-

ufacturing when the correct credentials have been input. Redirection adds access

code to URI fragment.

The access code is then sent to the Cloud Manufacturing back-end, where the ac-

cess token is validated using OpenID token endpoint. The Authentication Service

responses with identity- and access tokens if the code is correct. The identity token

contains all the necessary information about the users, such as email, first name,

and last name. This information can be used to create or update the Cloud Manu-

facturing account and grant access.

 38

4.2.4 Application Authorization

Cloud Manufacturing authorizes users to different resources based on multiple

factors. User identity is obtained by decoding bearer tokens in the API request

headers. Most API authorization follows the pattern seen in Figure 10, which

shows the flow of an API request and response.

Figure 10. API data authorization diagram.

When the API controller receives the new request, the application first checks the

general status of authorization. General Authorization indicates whether the user

is logged in or not. This is the most basic authorization level and is on by default in

all internal APIs. Role authorization checks whether the requestee’s role matches

the required role. Cloud Manufacturing commonly uses this to separate user ac-

cess to specific API resources.

After the controller has authorized the request, it can reach the service. Owner-

ship authorization is used to verify that the requestee has access to the requested

data. Cloud Manufacturing uses ownership authorization to ensure that regular

users only have access to the information they or their company owns. For admins,

ownership authorization grants direct access to all the data.

Information access limits the API response data. This is based on role and owner-

ship authorization. Data limitation is expanded with data transfer objects that en-

sure no confidential information is passed in response. An example of information

access is a processed part. Regular users do not have access to processing times

as admins do.

 39

4.3 ERP Integration

Enterprise resource planning is a software system solution for business. ERP man-

ages essential parts of the company, such as manufacturing, supply chain, services,

human resources, and procurements. ERP often provides automation and intelli-

gence to all day-to-day business operations. Most of the organization’s data is

stored in the ERP system. This provides a single source of truth across the business.

(Oracle, n.d.)

4.3.1 Integration Requirements

ERP integration is an essential part of using Cloud Manufacturing in production.

The integration allows Cloud Manufacturing to receive accurate, up-to-date infor-

mation. Currently, Cloud Manufacturing has one-way integration in CSV file im-

port. CSV was chosen as the form of data transfer because of its simplicity and

general availability. Table 4 contains requirements for material import implemen-

tation.

Table 4. ERP integration requirement specification

Number Description Priority

1 Efficient and easy way to update materials 1

2 Admin user can upload CSV file 1

3 Admin can configure mapping from CSV fields 1

4 Admin can configure CSV fields unit and format 1

5 Admin can preview upcoming changes 1

6
The system adds new materials and updates existing ma-
terials

1

7 The system saves the used configuration for CSV format 1

8 System loads used configuration based on CSV format 1

The essential feature in implementing integration was simplicity and generaliza-

tion of data. Data import should be easy to use to encourage users to use it while

 40

giving options to expand and customize the structure as much as possible. Data

structure customization comes in the form of different units or currencies.

4.3.2 Material CSV Import

Material prices and availability are often very volatile. Therefore, it was required

to have a way to add and update material availability and prices. Most ERP systems

allow users to print a CSV file of the stock, allowing a way to update Cloud Manu-

facturing without having direct access to the ERP system.

Figure 11. Material CSV import sequence diagram.

Figure 11 describes the ERP material CSV data import flow. Cloud Manufacturing

analyses the CSV file after it has been uploaded. The header row is used to find

older configurations from the API. If the configuration is found, it is used to parse

the file client. The configuration consists of selector text that consists of regular

 41

expression and column-specific unit mappings. Units are pre-mapped to the

wanted output format.

A regular expression (RegEx) is a pattern matching method for texts. Regex is often

used to validate user input or find or replace text based on a pattern. Regular ex-

pressions are constructed between two slashes. (Mozilla, 2022)

When the Cloud Manufacturing instance is set up, import configurations are con-

figured by the installation party. After initial setup, import requires no further user

configuration. Material import configuration is shown in Figure 12.

Figure 12. Material CSV import options UI.

Admin can confirm data import after validating the output to be correctly format-

ted. After confirming CSV data import, it updates the software to use new materi-

als. The new configuration would be saved for further usage if the configurations

were changed. This approach gives the users an ability to use multiple CSV struc-

tures.

 42

4.3.3 Plans for Future

Only having CSV data import as sole ERP integration limits the platform. There are

plans to add support for automated and two-way ERP integrations when the plat-

form gets more pilot customers. These integrations would significantly increase

the platform value since no manual work would be needed after the integration is

configured and connected.

The technical implementation of automated ERP integration would consist of in-

tegration API. The API would implement features to update targeted values, such

as materials, machine parameters, or tools. ERP would implement the logic behind

the integration, for example, how frequent the updates are and what information

should be updated.

The primary use case for two-way ERP integration is ordered synchronization,

where new orders would be added and updated to ERP. Technically, two-way in-

tegration would be implemented using an HTTP client that sends the wanted data

to ERP API. The ERP would need to implement an API that accepts Cloud Manufac-

turing information in a standardized format.

4.4 Emailing Integration

Modern cloud services are highly connected to end-user devices and communica-

tion services. The connection is commonly used to verify user authentication, no-

tifications, newsletters, and account recovery. This connection would engage us-

ers to be more active. Email integration is the minimum requirement for web ap-

plications.

Cloud Manufacturing implements mailing integration over SMTP protocol. The

Simple Mail Transfer Protocol is TCP based communication protocol between mail-

ing services. The protocol enables emails to be sent and received. Port 25 is com-

monly used in SMTP communication. (GeeksForGeeks, 2021)

 43

Cloud Manufacturing implements an authentication method using email integra-

tion for end-users. These methods consist of invitation and reset password. Cloud

Manufacturing could, in the future, implement features such as platform notifica-

tions and newsletters over email integration. Admin users can recover the account

using Authentication Services recovery tools.

4.4.1 Password Recovery Example

Password recovery is the most used method when dealing with account restora-

tion. A forgotten password can be restored by accessing the registered account’s

email. This pattern guarantees that the requestee is authorized to access the ac-

count. Figure 13 describes the integration between Cloud Manufacturing and

SMTP mailing service with a password recovery example.

Figure 13. Password recovery sequence diagram.

Recovery and restoration API resources have no authorization requirements since

users have no way to authenticate themselves. API allowing anonymous requests

 44

needs to be highly secured since bad actors often use them as attack vectors.

Cloud Manufacturing enhances security by limiting the data given as a resource

response and using request rate limiters. Even if a user with a given email is not

found, the API returns HTTP ok code. This is to avoid user scanning using the API

resource.

A randomly generated reset token is created when a valid and existing user email

is input. This token is used to authenticate password reset requests further in se-

quence. Cloud Manufacturing uses email-supported HTML templates, which only

support limited HTML tags and attributes. The templates are stored in the projects

file system. HTML template contains variables that are programmatically popu-

lated. As seen in Figure 14, the email template for resetting password contains

variables such as users’ email and recovery URL.

Figure 14. Reset email template.

SMTP mails are constructed using the populated template as the body and email

address as the recipient. The mail is added to the queue system, which manages

the connection to SMTP service and sending.

 45

The restoration email contains a link to a new password view where the user can

input a new password. After the form submission, the newly added password is

re-hashed and stored in the database, and the user token is deleted. The user can

instantly log into Cloud Manufacturing using the new password.

Generated user tokens are invalidated after a day if they are not used. The clean-

up happens as a recurring background task.

4.4.2 Email Queue Structure

SMTP mail requests are added to a queue to avoid unnecessary TCP connections

to the mailing service. This dramatically increases the efficiency of the systems

since the emails are sent in batches. The drawback of this implementation is that

there will be a slight delay in sent mails. Cloud Manufacturing balances this by

accessing and clearing the queue every 30 seconds. This was concluded to be an

excellent middle ground between response times and performance. The email

queue flow is described in Figure 15.

Figure 15. Email queue flow diagram.

 46

5 TESTING

This chapter explains different testing levels and how they are implemented into

Cloud Manufacturing.

5.1 White Box Testing

White box testing is a method for testing internal structures of the software. White

box testing is available when the tester has access to internal components. Soft-

ware developers and cyber security professionals do white box testing to find a

bug or exploit from a software. White box testing is often pre-emptive, whereas

black-box testing is often malicious. (Imperva, n.d.)

White box testing is commonly used in software development to write a test. Writ-

ten tests can be used to create test coverage. Test coverage describes the scope

of the testing. Test coverage should be remarkably high on critical software com-

ponents. Multiple types of tests differ in the level of testing. Most used tests in

software projects are unit and integration testing. Other types of tests consist of

end-to-end, performance, and acceptance tests. (Imperva, n.d.)

White box testing is extensively used in Cloud Manufacturing. Integration tests are

used in Cloud Manufacturing to test integrations, whereas singular functions and

methods are tested with unit tests. Tests are both back-end and front-end. This

thesis only contains a limited number of tests related to integrations and features

described in the document.

5.1.1 Unit Testing

A unit test is a technique for testing an isolated method or function. Unit testing

is a programmatic way to write test cases to determine the method’s functionality.

Unit tests reduce bugs in new and further developed features, reduce needs for

manual testing, and improve general code design.

 47

Unit test, by definition, follows a typical pattern that is mostly universal between

programming languages. The unit test contains a test case, which is a base function

and expected result. Based on the expected value, a test is either failed or passed.

(TutorialPoint, n.d.)

Cloud Manufacturing has unit tests for both back-end and front-end. Most back-

end unit tests involve part costing logic, whereas front-end unit tests focus on UI

components and business logic. Cloud Manufacturing uses the xUnit package for

back-end unit tests, and the front-end uses jest and react testing-library.

5.1.2 Integration Testing

An integration test is a testing technique for testing two or more modules. The

goal of integration testing is to determine whether two components communicate

reliably. Integration testing can also be used to measure performance. Integration

testing is often used to test client-server or server-database functionality. (Tutori-

alPoint, n.d.)

Cloud Manufacturing uses integration testing to test internal and external RESTful

APIs. The test confirms the functionality to be accurate with specs. Integration

tests are also used for testing authorization levels on API.

5.2 Testing Setup

Tests run whenever the source control detects changes to the code base. The tests

are used to determine whether the code is working as intended. All the tests are

required to pass successfully before building the application image. Different types

of tests run on different virtualized environments since they require different con-

figurations and take additional time to finish. This setup allows the tests to run

parallel.

Integration test run inside docker-compose. The environment creates a testing da-

tabase and fixture API with access to controllers and service methods. The fixture

 48

API allows every integration test to be in a stale state. The stale state ensures that

every test is in an identical form before running the test. After each test, the API

uncommits any changes from the database and starts the next test.

The unit tests are running in a separate virtualized environment. Unit tests do not

require much processing power, and therefore they do not take long to finish.

Front-end and back-end tests run on the same environment to save time on setup

times.

5.3 NC Express Integration

Integration to NC Express is primarily tested with integration testing. The NC Ex-

press service integration test cases are shown in Table 5. Most of the specific tests

are only defined one way. For example, in Test case 6, multiple tests are created

to cover all the expected values.

Table 5. NC Express integration test cases.

Case Objective

1 API token required for any worker API request

2 Correct API token returns an OK response

3 Invalid API token returns an unauthorized response

4 GET “jobs/next” Endpoint returns the next available processing job

5 GET “jobs/{id}/file” Endpoint returns blob

6 GET “jobs” Endpoint return list of jobs

7 PUT “jobs/{id}” Endpoint requires correct next status and values

 49

Code Snippet 1. NC Express service integration Test case 2.

The integration test created from Test case 2 is shown in Code Snippet 1. The unit

test uses an HTTP client to execute a GET request on worker API. The test provides

the correct API key and incorrect HTTP header. The test expects the HTTP response

to be OK.

5.4 Authentication and Authorization

Authentication and authorization are tested with integration and unit tests. Unit

tests focus on smaller methods, such as password hashing and matching functions,

whereas integrations focus on RESTful API and database. Table 6 contains the main

objectives of testing authentication and authorization.

Table 6. Authentication and authorization test cases.

Case Objective

1 Internal login accepts only the correct username and password

2 After login, given authorization token gives access to internal API

3 Internal API is not accessible without an authorization token

4 A normal user is not able to access admin API

5 A normal user does not receive admin-only information from API

6 OIDC login requires correct fields in the request

7 OIDC login does not accept incorrect code

private readonly string _ncxKey = "1676734cdb7111ec9d640242ac120002";

private readonly string _headerName = "x-api-key";

[Fact]

public async Task WorkerRequest_CorrectKey()

{

Client.DefaultRequestHeaders.Add(_headerName, _ncxKey);

 var response = await Client.GetAsync("/api/worker/jobs");

 response.StatusCode.Should().Be(HttpStatusCode.OK);

}

 50

Code Snippet 2. Authentication and authorization integration Test case 1.

Tests mainly focus on internal authentication and authorization. Authentication

Service integration is tested based on OpenID Connect 1.0 specification. The inte-

gration test for Test case 1 is shown in Code Snippet 2.

The test sends the correct username and password into the internal authentica-

tion API endpoint. The test expects an OK HTTP response and requires the re-

sponse body to have a token field with a non-null value and email to match the

given username. Test case 2 ensures that the API can find a user with a username

and can compare password hashes correctly.

5.5 ERP Data Import

ERP integration is tested on integration and unit test level. Unit tests are located

in the front-end, and integration tests are between the server and database. The

front-end unit testing focuses on user interface rendering correctly. This is to test

both the UI logic and the business logic behind UI logic. Table 7 contains a list of

private readonly string _username = "test@cloud-manufacturing.com";

private readonly string _password = "TestPassword1!";

[Fact]

public async Task LoginRequest_CorrectPassword()

{

 var request = new LoginRequest { Username = _username, Password = _password };

 var response = await Client.PostAsJsonAsync($"/api/auth/login", request);

 response.StatusCode.Should().Be(HttpStatusCode.OK);

 var body = await response.Content.ReadAsAsync<LoginResponse>();

 body.Token.Should().NotBeNull();

 body.User.Email.Should().Be(_username);

}

 51

main objectives when testing ERP data import, and the table includes the scope of

the tests.

Table 7. ERP data import test cases.

Case Objective Scope

1 The view shows the correct number of rows Front-end

2 The view formats the data with regex selector Front-end

3 The view contains the correct CSV header row Front-end

4 The view fetches old configurations with the CSV header. Front-end

5 The view saves the new configuration after submitting Front-end

6 Backend updates new materials according to the request Back-end

7 Backend update request requires correct parameters Back-end

8
The backend allows saving and updating of import con-
figurations

Back-end

Code Snippet 3. ERP data import Test case 1.

The code snippet for Test case 1 is shown in Code Snippet 3. The test defines con-

tents and Regex variables to describe the CSV file contents and selector for for-

matting the output. After variable definitions, the test calls the “createCompo-

nent” function, a utility function for creating the react component. The utility func-

tion is used since multiple unit tests initialize the same component with the same

props. The unit test expects total formatted rows to match with total rows and

failed rows not to be found since they are not shown if the value is 0.

test('loads correct output number', async () => {

const contents = ['1, DC01, 2.0', '2, DC02, 3.0'];

 const regex = '^(?<productId>.*?),(?<resource>.*?),(?<cost>.*?)\r';

 render(createComponent(contents, regex));

 expect(screen.getByTestId('total-formatted')).toHaveTextContent('2');

 expect(screen.getByTestId('total-failed')).toBeNull();

});

 52

6 CONCLUSIONS

The primary purpose of this thesis was to describe the general architecture and

developed integrations of Tulus Cloud Manufacturing. The key aspects of this the-

sis were information security and testing. Secure and functional Cloud Manufac-

turing was deployed for the first pilot customers as the result of this thesis. The

development of this project will continue based on pilot customer feedback and

planned features.

6.1 Project Evaluation

Based on given feedback from the client (Prima Power) and employer (Jubic Oy),

the project was a success. After around 11 months of part-time and mostly solo

development of the software, a working product was produced which can be used

to enhance the quotation process. This project has been a great learning oppor-

tunity for everyone involved in the development process.

A few things could be improved based on this project experience. During the early

stages of development, a lack of direct contact with an expert who understood the

existing process of sheet metal manufacturers resulted in unnecessary work. In

later stages, multiple refactors of data structures and UIs had to be done because

they were impractical or outright wrong. In addition, the inclusion of pilot custom-

ers’ knowledge should have been used more in the early stages of development.

More test cases could have been written during the development phase. There

were multiple cases where the application did not work as intended by adding or

updating a feature. This could have been prevented if there had been better test-

ing coverage.

Every project has something to improve on. In general, the project was a success.

This is partly because of excellent management from both development parties.

Product owners at Prima Power were extraordinarily active during the develop-

ment, resulting in faster and more precise development goals.

 53

6.2 Future Development

Development in software, such as Cloud Manufacturing, never ends if it is in use.

Multiple features have been planned, and some of them have specifications. The

thesis lists some of the upcoming development, for example, the Tulus integration

and two-way ERP integration. The development ranges from back-end to front-

end, with many bug fixes from existing features.

Some of the future development will focus on application distribution. The current

infrastructure supports tens of instances while adding some manual work. There

are plans to make application deployment almost automatic with technologies

such as Amazon EKS, Helm, and Terraform. The new distribution pattern enables

Prima Power to manage hundreds of instances with minimal work.

 54

REFERENCES

Auth0. OpenID Connect Protocol. Accessed 1.4.2022.
https://auth0.com/docs/authenticate/protocols/openid-connect-protocol

Auth0. JSON Web Tokens. Accessed 31.3.2022. https://auth0.com/docs/se-
cure/tokens/json-web-tokens

Docker. Accessed 30.3.2022. https://www.docker.com/

GeeksForGeeks. Simple Mail Transfer Protocol. 5.11.2021. Accessed 3.4.2022.
https://www.geeksforgeeks.org/simple-mail-transfer-protocol-smtp/

Gillis A. Docker Image. May 2021. Accessed 2.4.2022. https://www.tech-
target.com/searchitoperations/definition/Docker-image

Imperva. White Box Testing. Accessed 17.5.2022. https://www.im-
perva.com/learn/application-security/white-box-testing/

Jubic Oy. Accessed 28.3.2022. https://jubic.fi/

Kubernetes. Accessed 30.3.2022. https://kubernetes.io/

Loshin P. What is SQL? February 2022. Accessed 3.4.2022. https://www.tech-
target.com/searchdatamanagement/definition/SQL

Microsoft. ASP.NET Core Introduction. 26.3.2022. Accessed 29.3.2022.
https://docs.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core

Microsoft. EF Core. 25.5.2021. Accessed 29.3.2022. https://docs.mi-
crosoft.com/en-us/ef/core/

Mozilla. JSON. Accessed. 27.3.2022. 29.3.2022. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/JSON

Mozilla. MCV. 18.2.2022. Accessed 1.4.2022. https://developer.mozilla.org/en-
US/docs/Glossary/MVC

Mozilla. Regular expressions. 7.5.2022. Accessed 1.4.2022. https://devel-
oper.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

MuleSoft. What is an API? Accessed 29.3.2022. https://www.mulesoft.com/re-
sources/api/what-is-an-api

Oracle. What is ERP? Accessed 1.4.2022. https://www.oracle.com/erp/what-is-
erp/

 55

Oracle. What is a relational database? Accessed 3.4.2022. https://www.ora-
cle.com/database/what-is-a-relational-database/

Prima Power. Accessed 28.3.2022. https://www.primapower.com/fi/

Prima Power. NC Express e3. Accessed 28.3.2022.
https://www.primapower.com/fi/technologies/software/machine-program-
ming/nc-express-e3

Prima Power. Tulus Analytics. Accessed 28.3.2022.
https://www.primapower.com/fi/technologies/software/production-reporting-
and-monitoring/Tulus-analytics

Prima Power. Tulus Cell. Accessed 28.3.2022.
https://www.primapower.com/fi/technologies/software/hmi/Tulus-cell

Prima Power. Tulus Office. Accessed 28.3.2022.
https://www.primapower.com/fi/technologies/software/production-plan-
ning/Tulus-office

Prima Power. Tulus software. Accessed 28.3.2022.
https://www.primapower.com/fi/technologies/software

Prima Power. Tulus Visual Monitoring. Accessed 28.3.2022.
https://www.primapower.com/fi/technologies/software/hmi/Tulus-visual-moni-
toring

React.js. Accessed 29.3.2022. https://reactjs.org/

Reactjs. What is virtual DOM? Accessed 29.3.2022. https://reactjs.org/docs/faq-
internals.html

Reactjs. Why JSX? Accessed 29.3.2022. https://reactjs.org/docs/introducing-
jsx.html

Redhat. What is a REST API? 8.5.2020. Accessed 29.3.2022.
https://www.redhat.com/en/topics/api/what-is-a-rest-api

Rubens P. What are containers, and why do you need them? 27.6.2017. Accessed
2.4.2022. https://www.cio.com/article/247005/what-are-containers-and-why-
do-you-need-them.html

SQLServerTutorial. What is SQL Server? Accessed 29.3.2022.
https://www.sqlservertutorial.net/getting-started/what-is-sql-server/

TutorialPoint. Unit Testing. Accessed 17.5.2022. https://www.tutori-
alspoint.com/software_testing_dictionary/unit_testing.htm

 56

TutorialPoint. Integration Testing. Accessed 17.5.2022. https://www.tutori-
alspoint.com/software_testing_dictionary/integration_testing.htm

Typescriptlang. Accessed 29.3.2022. https://www.typescriptlang.org/

