

MODERN WEBSITE DEVELOPMENT WITH STRAPI AND
NEXT.JS

Niko Pinnis

Thesis

Study Programme in Information and Communication Technology
Bachelor of Engineering

2022

Tieto- ja viestintätekniikan koulutus
Insinööri AMK

Opinnäytetyön tiivistelmä

Tekijä Niko Pinnis Vuosi 2022
Ohjaaja Anssi Ylinampa
Toimeksiantaja Panagiotis Sotiriou
Työn nimi Modernin verkkosivuston kehitys Strapi- ja Next.js-

ohjelmistoja käyttäen
Sivumäärä 44

Nykymaailman digitalisoitumisen myötä on tullut tärkeäksi yrityksille esittää toi-
mintaansa internetissä lisätäkseen omaa näkyvyyttään yleisölle. Yleisin keino
täyttää tämä tarve on sosiaalisen median käyttö, mutta monesti yritykset ylläpitä-
vät myös omia verkkosivustojaan, joissa ne esittävät ja myyvät omia tuotteitaan
ja palvelujaan. Tämän työn toimeksiantaja halusi pienelle liikkeelleen verkkosi-
vuston, jossa hän voi alustavasti esittää omia tuotteitaan ja jatkossa sivusto on
oltava mahdollista laajentaa verkkokaupaksi.

Tässä opinnäytetyössä esitetään toimeksiantajalle toteutettu verkkosivusto pai-
nopisteenä sen arkkitehtuuri ja käytetyt teknologiat. Tutkimusmenetelmänä so-
vellettiin konstruktiivista tutkimusmenetelmää. Työn teoriaosuus koostuu käytet-
tyjen teknologioiden kuvauksesta, joiden lähdeaineistona käytettiin kehittäjiensä
dokumentointia. Lisäksi aineistona on käytetty muita tuotokseen liittyviä digitaali-
sia julkaisuja sekä tekijän omaa osaamista ja kokemusta käytetyistä teknologi-
oista.

Tuloksena saatiin yksinkertainen, mutta toimiva verkkosivusto, joka täyttää sille
asetetut vaatimukset mukaan lukien mahdollisuuden jatkokehitykselle verkko-
kaupaksi. Tulos on toimeksiantajan tavoitteiden mukainen. Työssä käytetyt tek-
nologiat saavuttivat hyvin tavoitetun tuloksen, mutta käytetty arkkitehtuuri on tur-
han monimutkainen tämän nettisivun tarkoitukselle.

Avainsanat cms, Javascript, Next.js, Strapi, website

 Study Programme in Information and
 Communication Technology

Bachelor of Engineering

Abstract of Thesis

Author Niko Pinnis Year 2022
Supervisor Anssi Ylinampa
Commissioned by Panagiotis Sotiriou
Subject of thesis Modern Website Development with Strapi and

Next.js
Number of pages 44

The use of the Internet is becoming increasingly important for businesses in mod-
ern times. A combination of social media platforms, websites and e-commerce
services are used by most businesses as part of their normal operation. The aim
of this thesis study was to develop the website of a small store. The client for this
project wanted to increase the Internet presence and visibility of his business and
thus required a website that could initially present the store and its products. The
possibility for future development of the website to an e-shop, without major
changes, was also a requirement for this project.

A constructive research method was used in this study. The theoretical part con-
sists of a description of the technologies that were used to implement a website
for the client. Most of the source material used for this thesis are technical docu-
mentation along with some digital publications and the author’s own knowledge
and experience.

The client’s requirements were met by the outcome of this project. The develop-
ment to an e-shop in the future is possible with the technologies used. However,
the architecture used is too complex to use on a small business website and
some simplification will be required.

Key words Strapi, Nextjs, website, cms, Javascript

CONTENTS

1 INTRODUCTION .. 7

1.1 About this Project ... 7

1.2 Requirements .. 7

1.3 Scope... 8

1.4 Technologies Used .. 8

1.5 Architecture .. 9

2 BACKEND .. 11

2.1 Content Management Systems .. 11

2.2 Strapi ... 12

2.2.1 Content Type Definition ... 13

2.2.2 Content Management .. 14

2.2.3 Image Storage ... 15

2.2.4 API Customization ... 16

2.3 Strapi Implementation for this Project .. 17

2.3.1 Website Content .. 17

2.3.2 Website Global Parameters .. 17

2.3.3 Pages as Content .. 18

2.3.4 Page Blocks .. 19

2.3.5 Metadata ... 20

3 FRONTEND .. 21

3.1 Tailwind CSS ... 21

3.2 Next.js .. 21

3.3 Pages and Routes ... 22

3.3.1 Static Routes ... 22

3.3.2 Dynamic Routes .. 22

3.3.3 Connecting Pages to Collections... 23

3.4 Data Fetching .. 24

3.4.1 Using getStaticPaths ... 24

3.4.2 Using getStaticProps ... 24

3.4.3 Using getServerSideProps .. 26

3.4.4 Using getInitialProps ... 26

3.4.5 Client-side Fetching ... 27

3.5 Blocks .. 27

3.5.1 Simple Blocks .. 27

3.5.2 Data Driven Blocks .. 27

3.5.3 Categories Block ... 28

3.5.4 Products Block .. 29

3.6 Internationalization ... 30

3.7 SEO ... 31

3.8 Rendering Methods ... 31

3.9 Image Optimization .. 32

3.9.1 Next.js Image Optimization ... 32

3.9.2 Image Loading .. 33

3.10 Securing the CMS API Endpoints ... 33

3.11 API Routes ... 33

4 DEPLOYMENT ... 35

4.1 Hosting Options ... 36

4.1.1 Next.js Hosting .. 36

4.1.2 Strapi Hosting .. 36

4.2 Project Upload ... 37

5 DISCUSSION ... 41

BIBLIOGRAPHY ... 44

6

SYMBOLS AND ABBREVIATIONS

ISR Incremental Static Regeneration

CDN Content Delivery Network

JSON JavaScript Object Notation

REST Representational State Transfer

API Application Programming Interface

CRUD Create, Read, Update, Delete

SEO Search Engine Optimization

CMS Content Management System

SSL Secure Sockets Layer

TLS Transport Layer Security

HTTPS Hypertext Transfer Protocol Secure

CAPTCHA Completely Automated Public Turing test to tell Comput-

ers and Humans Apart

7

1 INTRODUCTION

In the first chapter of this thesis, an overall description of the general concept of

the project is given as well as its requirements, the technological stack that was

used, what decisions were made along the way and an overview of the architec-

ture.

1.1 About this Project

The outcome of this project is a simple website for a souvenir store merchant to

display his store and a catalog of their products. The client is the owner of this

type of store in the island of Rhodes, which normally operates during the summer

tourist season limiting their revenue generation period from 7-to-8-months a year.

Maintaining a presence on the internet is important for businesses in modern

times, thus social media platforms have been used by the owner of the store to

promote his business. The owner is exploring the possibility of expanding his

business by also selling online through an e-shop. For the client was offered a

simple website to be built, for starters, that meets the requirements for future de-

velopment to an e-shop. The work on this project started during winter while the

physical store wasn’t operational, after its busy summer season. The owner did

not require to have an e-commerce solution ready this winter which granted a

flexible timeframe to experiment with an implementation beyond the requirements

of a small store. It was decided by the author of this thesis that a more generic

solution to be built, which would be more interesting from a technical perspective

but an over-engineered solution for a small business.

1.2 Requirements

The requirements of the client’s website not including the functionality of an e-

shop are few. It should display some basic information regarding the store, and

a browsable catalog of its products must be included. Due to the client’s lack of

knowledge, a convenient solution of adding and organizing products into catego-

ries, a simple panel was used, enabling the client to familiarize quick with the

panel and make changes to some simple information like a store announcement

8

or the open hours. The website should also include multiple languages support

since its visitors are expected to be from different countries.

This website is expected to serve a small number of visitors thus it should meet

the modern standards of performance, and it must have low running expenses

because of its a small number of visitors. Fulfilling the requirements should not

come at the expense of future development towards an e-shop website.

1.3 Research Method and Scope

In this Thesis the constructive research method was used. The problem to be

solved was defined at the beginning along with the requirements for its solution.

After that, the research was conducted for a suitable solution to be determined.

Finally, a project offering the solution was completed and evaluated.

Building a complete modern website from scratch is not a simple task. To limit

the work required for finishing this project, priority was given to producing a simple

thematic appearance for the frontend. Due to the author’s limited design skills, a

decision was made to keep things simple. For the backend implementation, a

solution was chosen that automates most of the back-end functionality while still

giving the author the tools to build everything that is needed.

1.4 Technologies Used

To build the frontend of the website, Next.js combined with TailwindCSS were

chosen, two very popular and powerful frontend frameworks. Next.js provides the

ability of dynamic page construction with content by using ReactJs, a widely used

frontend library which the author is already familiar with. By using TailwindCSS

only some CSS code was required to be written for the website saving a lot of

time in terms of working hours.

For the backend Strapi was deemed as a good fit to be the CMS of the project.

Strapi is built with JavaScript, a programming language used by ReactJs.

MySQL, which is a popular relational database, was selected as the database of

this project for reasons explained in the deployment section.

9

1.5 Architecture

The website in its core uses a JAMstack architecture (Figure 1). JAMstack stands

for JavaScript, API and Markup. This kind of architecture is relatively new and it

is gaining popularity for web application or website development. Because the

JAMstack is a large topic, only a short explanation of its core ideas are given in

this chapter.

JavaScript is the programming language that powers the frontend and the

backend in this case. The architecture is reliant on the data exchange between

the frontend and the backend, which is facilitated by JavaScript and JSON as the

data format (Biilmann, M. & Hawksworth, P. 2019, 8.)

The API part of JAMstack is about building and using HTTP APIs that are reusa-

ble by different presentation layers, such as web browsers and mobile applica-

tions to name a few (Biilmann, M. & Hawksworth, P. 2019, 9.)

The elemental/core part of the web is HTML. The letter M stands for Markup, so

it makes sense that JAMstack also has Markup in its core. Markup is delivered

by a different model than previous architectures. By using static site generators

and build-tools the HTML of a website can be combined with content and created

prior to a request turning it to a static file (Biilmann, M. & Hawksworth, P. 2019,

10.)

Figure 1. An example of a JAMstack workflow.

10

This project uses these concepts as the foundation of the website. Then the au-

thor builds on them by not only using data to describe content but also the struc-

ture of pages as well. The main idea is to store information about the appearance

of a website in a CMS, where it can be easily edited within predefined specifica-

tions by a person without programming skills. The concept is similar as many

widely used page builder tools but the architecture that is used for this project is

specific. Building something comparable that matches the creative capabilities of

current page builders was unnecessary and beyond the scope of this project/the-

sis.

All data used in this project are divided between two types, pages and content.

Pages describe what URLs exist on the website, their contents, and a basic layout

for their rendering. The content types consist of one or more collections of data

that can be referenced from a page and their contents embedded in the page

when it is built (Figure 2).

Figure 2. The flow of page rendering

11

2 BACKEND

2.1 Content Management Systems

For any website that requires its content to be dynamic there must be the ability

of creating, editing and deleting its content. The most common approach of cov-

ering this requirement is by using a Content Management System (CMS). Indi-

viduals without technical skills have the ability to edit the content of a website by

using such systems.

Most content management systems are coupled with a particular presentation

system such as a website frontend or the user interface of a desktop application.

Consequently, this coupling made them rigid and difficult to adapt to new delivery

formats like mobile apps or web applications that are developed outside of the

CMS platform (Tamturk 2016.)

To overcome this problem new systems for content management were developed

that did not include a way of presenting the content making them “headless”.

Such systems were named Headless Content Management Systems. The pur-

pose of a Headless CMS is to model content, enable the creation of content with

authoring and organizing content in a repository. These systems do not have an

opinion on how and where their content is displayed leaving that responsibility

completely at the content presentation system (Tamturk 2016.)

Headless CMSs should not be confused with decoupled CMSs. Those are a reg-

ular full-stack CMS with a presentation solution but also allow the content to be

leveraged by other systems (Tamturk 2016). A good example of a traditional CMS

is WordPress which is in wide use all over the world powering 43% of the web.

(WordPress.org 2022) In recent years WordPress has advanced towards becom-

ing a decoupled system with the development of its JSON REST API allowing

other systems to access its content.

The main advantage of a Headless CMS can also be a drawback. Since they

don’t feature a method of presenting their content, the presentation layer must be

built separately. This adds more requirements to the owner of the system, partic-

ularly the technical skills of whatever technology is used for constructing the front-

12

end. This can result in higher expenses during development and maintenance of

the application. Another potential issue is that the content sent to the CMS by the

front-end will not have an adequate amount of information about the visitors to

have the content properly personalized. This issue, however, can be addressed

with the use of the right business intelligence tools. Another issue is the lack of

content formatting. Unlike other Content Management Systems, without a

presentation solution the preview and editing of content cannot be done in the

context of a page or view requiring some anticipation work to achieve the desired

look. But this issue can also be solved if a preview system is implemented in the

front-end (Tamturk 2016.)

2.2 Strapi

Strapi is an open-source Headless CMS development by a French company

called Strapi Solutions SAS. Its name is derived from the words “Bootstrap your

API”. Users are able to define content models and access them through its API.

The core feature of Strapi is that once a content model has been defined the

necessary REST API endpoints are automatically generated allowing CRUD op-

erations on the content by other systems to be performed. Content models can

be created through Strapi’s own administration panel or directly by creating the

required files in the source directory. After the creation of a content type the de-

fault API endpoints can be overridden and extended with as many endpoints as

needed.

Relational databases are used by Strapi to store all content data. The databases

supported by its major versions 3 and 4 are SQLite, MySQL/MariaDB and Post-

greSQL. Support for also MongoDB, a non-relational database (NoSQL), is in-

cluded in version 3, but starting from version 4 official support for it has been

dropped by its developers. Database table creation and querying are automati-

cally handled by Strapi, but manual queries can also be performed by the devel-

oper when necessary (Strapi SAS 2022.)

A plugin system is also featured by Strapi, by which developers are allowed to

create their own plugins for extending the functionality of their Strapi CMS imple-

mentation. Strapi has support included for a few official plugins. These are:

13

• GraphQL

• Internationalization (i18n)

• Users and Permissions (installed by default)

• Email (installed by default)

• Upload (installed by default)

GraphQL queries on the content are enabled by the use of the GraphQL plugin

which adds the necessary endpoint to the API. These queries are also autogen-

erated by default. With the Internationalization plugin content can be created and

requested separately for each language. The ‘Users and Permissions’ plugin

adds access control to the API endpoints based on the roles defined by the Strapi

administrator. Finally, email sending and media file upload features are added by

the Email and Upload plugins respectively.

The user management feature from the Users and Permissions plugin is not to

be confused with the user management system in the Strapi administration panel

itself. A user and role management system for the use of the admin panel is in-

cluded with Strapi, but its customization capabilities are limited when using the

community edition of Strapi. For the full customization functionality an Enterprise

license is required.

2.2.1 Content Type Definition

Content types are defined in Strapi by an administrator through the use of the

admin panel which is built from source when installing Strapi. This feature is pro-

vided by the built-in Content-type Builder plugin. Support for defining the fields of

a particular content model such as text, numbers, booleans, media (images,

video, etc.) and more is also included (Figure 3). Fields can be grouped together

as components to be reusable and relational fields can be added to connect con-

tent collections together with a relationship.

14

Figure 3. The available fields for collection type content

2.2.2 Content Management

After at least one content-type has been defined the admin panel can be used by

administrators to create and edit the content in the CMS. A simple table view of

the entries in a collection are offered by the user interface of the content manager

along with a search field, filters and pagination. The visible columns of the table

can be customized, but only entries of a single locale at a time are displayed on

the table.

By selecting an entry from the table or clicking the “Add New” button the admin-

istrator is taken to the content editing view which is also customizable (Figure 4).

All the necessary input elements to edit the data of the content are contained in

this view with validation for the input.

15

Figure 4. The new entry creation view in the admin panel

2.2.3 Image Storage

A built-in media library plugin for handling image storage is bundled with Strapi

and it is activated by default (Figure 5). A provider is used by the plugin to upload

files and, by default, a local file system storage provider is used to store files in

the public folder of the Strapi server. This behavior can be replaced by configuring

another provider for the plugin. Providers are maintained by the Strapi team for:

Amazon S3, Cloudinary and Rackspace (Strapi SAS 2022). Custom providers

can also be implemented by developers if necessary. For this project the local file

storage provider was sufficient, and it was used with the default configuration. By

default, the plugin has the images resized to different widths, by the use of an

image manipulation library called sharp. An optimized image size can be chosen

by the front-end for better performance when displaying images. This choice con-

tains some caveats that are explained in the deployment section.

16

Figure 5. The Strapi media library plugin

2.2.4 API Customization

Whenever a content-type is created or edited the server is restarted and a set of

default API endpoints and handlers are generated for the content-type. These

defaults are the bare minimum required for allowing CRUD operations to be per-

formed on the data by a HTTP-client. These endpoints can be replaced and ex-

tended by developers with their own implementations for adding custom access

control, database queries and any other features as needed.

For handling requests an internal middleware is used by Strapi. Other middleware

can be added by developers to all routes and the load order of Strapi’s internal

middleware can also be changed.

17

2.3 Strapi Implementation for this Project

In the implementation of the backend, content types were used to describe not

only the content of the website but its structure as well. To accomplish this the

pages of the website became a collection in the CMS with their entries describing

the view of each page. Every page of the website is identified by its own unique

slug, and this slug is used to fetch the data of a page from the CMS.

2.3.1 Website Content

The actual content in this project are two collections. One is used to store the

categories where the products belong to and the other is used to store the prod-

ucts themselves (Figure 6). One parent category for each category is supported

by the categories collection in order to define subcategories and products can

only belong to one category or subcategory. This relationship is deemed sufficient

by the client for the website.

Figure 6. The collection types for the content

2.3.2 Website Global Parameters

It is standard for modern websites to include a navigation header on the top of

every page, and a footer on the bottom with links for different pages, social media

sites and other useful information. Since these elements are common for every

page in the website a content-type of type “Single” was created, which as the

name implies, only has one entry in the CMS. In that single entry, named as

“TLOTG-Globals” (Figure 7), the header and footer data are defined and stored

18

for retrieval by the front-end of the website. Global data is split into components

describing the navbar, the footer, a system-bar and an announcement block.

Figure 7. The component structure of the global content-type

2.3.3 Pages as Content

The structure and content of each page, on the website, exist as an entry in the

Pages collection. A unique slug field that defines the URL of the page is included

in each page in the collection.

When used together with a component called “Dynamic-Route” a set of dynamic

URLs are formed, that the front-end can understand and display with the specific

content they point to. This dynamic component points to a collection and names

19

a field in the content that is to be used as a unique identifier for the formation of

the unique URLs (Figure 8).

A field named blocks is also included in the model of the pages collection. Be-

cause this field is of a “Dynamic-zone” type, any number and combination of com-

ponents from a group of components defined at the content-builder can be added

to it as an entry. The structure of a page is defined by the contents of this field.

Figure 8. The Pages collection

2.3.4 Page Blocks

For the front-end of the website React, which is a JavaScript library that features

components to render HTML documents, is used. That said, it makes sense for

components in the CMS to be used that describe React components so that ‘Re-

act’ can render them with the data provided from the CMS as component props.

These components called “blocks” are used in the Pages collection as described

above and the backbone of the website is formed by them.

Several blocks were defined and built to satisfy the needs of the project. A list of

the blocks that made it to production are:

• Hero, for the landing page. Features a Call-to-Action button

• Categories, to display product categories in a grid

20

• Products, to display products of a single category in a grid

• Contact, a simple contact form

• Markdown, to render markdown text as HTML

• FAQ, to display the FAQ section

• Google-Maps, to display a map with the location of the store

2.3.5 Metadata

Basic SEO information is added to all pages on the website by the Metadata

component (Figure 9). This component was used by the following content-types

listed in increasing priority:

• TLOTG-Globals single type

• Pages collection type

• Product Categories collection type

• Store Products collection type

The values in this component are read by the front-end in the above order and

overwrites are performed by a higher priority value, if such value exists.

Figure 9. The Metadata component

21

3 FRONTEND

3.1 Tailwind CSS

A plethora of utility classes for styling websites are offered by TailwindCSS, a

popular CSS framework. Almost every CSS property has a CSS class for it with

multiple variants for the property value and screen size. The classes can be over-

ridden and extended from a configuration file and the use of plugins is also sup-

ported by the framework.

By using TailwindCSS, every HTML element was given the styling it needed just

by reusing the classes the library offers. To reduce some repetitiveness, the

“@apply” directive was used to combine multiple Tailwind classes to a single cus-

tom class. This also helped reduce some of the verbosity in the ‘class’ attribute

of the HTML elements that using tailwind causes.

3.2 Next.js

Next.js, a React framework, was developed by a company called Vercel. It has

many features bundled in it allowing developers to create production ready full-

stack websites and web-applications. Some of the features included in the frame-

work are Image Optimization, Internationalization, A hybrid Static Site Generation

and Server-side Rendering, Typescript support, File-system routing, API routes,

Built-in CSS support and code-splitting and bundling (Vercel 2022a.) The frame-

work can be used in the development of full-stack web applications while using

any one of the popular databases and any Node.js server that meets the mini-

mum requirements can be used to run it.

Next.js was used to build the front-end for this project since it offers everything

that a website needs to run reliably and performantly. It also works well with sev-

eral Content Management Systems including Strapi. It can fetch all the necessary

data from the CMS already at build-time and its built-in API endpoint creation

support allowed for implementing a simple form submission logic without expos-

ing any sensitive keys to the front-end or using 3rd party services.

22

3.3 Pages and Routes

A filesystem-based routing system is featured by the framework. All the possible

URLs of the website are defined by the structure of directories and JavaScript

files inside the “pages” directory of the Next.js project source. Any URL that does

not satisfy these will result to a 404-error page by default unless a redirect or a

custom page has been configured. With this system several static routes can be

implemented for the website by a developer. However, it is often the case that

the server cannot know in advance the full URL of a route when that route de-

pends on external data, like in the case of content fetched from a CMS. In that

case the declaration of dynamic routes that accept one or more parameters is

supported by Next.js allowing for the creation of dynamic routes with nesting (Ver-

cel 2022b.)

3.3.1 Static Routes

As is stated above the static routes of the website are defined by the contents of

the ‘pages’ directory. Two routes in this project are dynamic, the categories and

the products route. The other routes are simple, and their URLs are static, mean-

ing that they could be implemented directly in their own files. For example, the

“About Us” page could be handled by a file named about.js at the root of the

pages directory which would fetch the page content from the CMS and display

the page. In this project a different approach was attempted using only dynamic

routes.

3.3.2 Dynamic Routes

A route becomes dynamic when square-brackets are added to the name of the

directory or file, which a developer wants to make dynamic, for example:

`/pages/post/[slug].js`.

In this simple example the last part ‘/[slug].js’ of the URL became a route param-

eter named slug and its value can be used to fetch a specific post from a CMS.

For more complex routes this can be extended so as to catch all the paths (be-

ginning with: /pages/post/) by the addition of three dots inside the square brackets

23

before the name of the parameter, for example: `/pages/post/[…slug].js`. In this

way URLs with deeper nesting paths can be handled. For example, the URL:

`http://domain.name/post/some-post/edit` will match:

`/pages/post/[…slug].js` with the parameters passed to […slug].js as the following

JavaScript object: { “slug”: [“some-post”, “edit”] }.

This type of catch-all route can be made optional by using double square brack-

ets. The main difference between optional and non-optional catch-all routes is

that if it’s optional, the route without a parameter is also matched resulting in an

empty parameter object passed to the handler. It’s important to note that, when

using dynamic routes if a URL matches both a dynamic and a static route prece-

dence is taken by the static route (Vercel 2022c.)

In this project only a single optional catch-all route at the root of the “pages” di-

rectory was used for all routing. The handler file is named “[[…slug]].js”. Enabling

the definition of all pages with their contents in the CMS, while the front-end is

set to fetch the data required to render all the pages. By using this method, the

implementation of pages with a unique slug becomes straightforward. There

might be also a dependency on a content collection regarding the retrieval of data

(dynamic routes), which differs of the way mentioned above. In this manner, dy-

namic content retrieval is implemented through a different component, which is

going to be analyzed in the next section.

3.3.3 Connecting Pages to Collections

There are two content types in this project that result in the generation of dynamic

routes at the front-end: categories and products. By using categories as the cho-

sen content-type, a solution to the above challenge is presented next. To define

the connection of a dynamic page with a content collection, a component named

‘DynamicRoute’ is added to the model of the pages collection (Figure 8). The

relation between the page and another collection (in this case product-categories)

is stored in the ‘targetCollection’ field of this component and the unique identifier

field (in this case the uid) in the target collection that is used for creating unique

URL paths is stored in the ‘identifier’ field. When Next.js processes the data of

the page it knows to request all the content of the collection and a list of all the

24

possible route endpoints can be built. The result for the example mentioned

above is the URL scheme: `/categories/category-uid` with a single entry of the

collection being referred to by category-uid.

3.4 Data Fetching

Several different data fetches are performed by Next.js to display the content in

this project. These requests are executed inside four functions exported by the

framework from the JavaScript files inside the ‘pages’ directory. Pages are pre-

rendered by using these functions that run on the server.

3.4.1 Using getStaticPaths

This function is needed to define a list of valid paths when using dynamic routing.

It runs only once at/during build time on the server, and an array of paths is re-

turned by it with their parameters and a fallback property. When this fallback prop-

erty is false then only paths in the array can be rendered, for this dynamic route,

with other paths resulting in a ‘404-error’ page being displayed. When fallback is

set to true then, instead of an error page, a fallback page is served while an at-

tempt is made by the server to generate a page for the route. Upon completion

the page is sent to the browser. Finally, when it is set to ‘blocking’ nothing is sent

while generating the page which is then cached and served upon completion. A

loading indicator can be used to inform the page visitor that the page is being

built (Vercel 2022d.)

3.4.2 Using getStaticProps

This function is used to prerender a page on build time by using the props re-

turned to the page by this function. Data fetching from a CMS or any API can be

performed by it and a static page generated when the required data is not user

specific. Pages implementing this function are made very performant as their re-

sulting HTML can be cached by a CDN. When combined with Incremental Static

Regeneration (ISR) any page already cached can be set to invalidate after some

time by setting the ‘revalidate’ property at the returned props, which causes the

function to rerun and an updated version of the page to be created and cached

25

(Figure 10). This is important because if the data fetched can change at some

point in time and a complete rebuild of the project is not practical (Vercel 2022e.)

The pages of this website are served by using ISR, to make sure that updates in

the CMS are pushed to the front-end after a short time. This way content updates

can be received by the website without having to trigger a full rebuild of the front-

end.

Figure 10. The flowchart of the page generation handler

In this project getStaticProps gets called for every page in an optional catch-all

route handler called [[…slug]]. The slug is passed to the function as a parameter

(a string array) to be parsed. Before parsing the slug, the global website data is

fetched from the CMS. After it has determined whether the page slug is static or

26

dynamic, the CMS is queried for the page data and the returned data is pro-

cessed. In the case of a dynamic route the dynamic part of the slug (the last index

of the slug array) is used to fetch a single entry from the CMS of the collection as

indicated by the ‘DynamicRoute’ component of the page data. This data is then

passed as a prop to the page component and becomes available to all the blocks

in the page (Figure 10).

Next the structure of the page must be determined from the page data, specifi-

cally the blocks field. By iterating each block of the page, a list of other queries

that must be sent to the CMS are assembled and the requested data is then

fetched. In the end, the SEO metadata is merged according to a priority, which is

mentioned on section 2.3.5 and all the data needed by the page is returned as

props to the page rendering component (Figure 10).

In production this process is run for each path returned by getStaticPaths once

at build time and every time the page cache expires after that due to ISR. During

development the function is always called when navigating to a route. The pre-

view mode feature of the framework can be enabled by using an API route and

some cookies are set on the browser to indicate the preview mode. When the

preview mode is enabled the getStaticProps function gets called for each request

in production too.

3.4.3 Using getServerSideProps

This function is run on the server every time the page is requested, and it’s used

to execute server-side only code on every request and when the page data is

often changed. This function is not to implemented in any route of this project

since the content of the website is not expected to change often according to the

current requirements, and none of the website data is specific for a particular user

(Vercel 2022f.)

3.4.4 Using getInitialProps

By using this function server-rendering of pages and initial population of the data

in the browser are enabled, a feature useful for the SEO. However, it is recom-

27

mended by the Next.js documentation to use getStaticProps and getServer-

SideProps functions instead as these allow developers to have more control be-

tween static generation and server-side rendering. Automatic Static Optimization

is also disabled, when using this function, which is a Next.js feature that increases

page loading performance by allowing applications to emit both server-rendered

and statically rendered pages. This function is not used in this project (Vercel

2022g.)

3.4.5 Client-side Fetching

Data fetching functions for on the client-side are not included in Next.js as it does

not require any to function. Since the front-end is made with React, any data

fetching scheme compatible with React can be used. In this project only server-

side data fetching is used.

3.5 Blocks

In this project React components in the front-end and content components in the

CMS together define blocks. The structure of a page is formed by these blocks,

and they are stored in the ‘blocks’ dynamic zone field of the pages collection in

the CMS. Two types of these blocks are designed.

3.5.1 Simple Blocks

Only data stored for them is needed by simple blocks. This data is then used to

populate and customize the HTML of their corresponding React component. The

blocks used to construct pages such as the ‘Contact Us’ page and the ‘FAQ’ page

fall into this block type.

3.5.2 Data Driven Blocks

To render this type of blocks all or some entries are needed to be fetched from a

content collection of the CMS. To describe these data requirements, two repeat-

able components were defined in Strapi, to be used optionally in this type of a

28

block component. These components are named as Fetcher and Query compo-

nent (Figure 10).

A collection name is defined by the Fetcher component, which is needed to be

retrieved for the block to render. While a filter condition is defined by the Query

component, which is used to only fetch a part of the collection. The filter condition

was chosen to be a simple equality check between a field in the model of the

collection and a value provided.

The Fetcher component was used for the Categories block since all its entries

are needed by the block and the Query component was used for the Products

block because only the products of a particular category are needed.

3.5.3 Categories Block

The display of all product categories is handled by the Categories block and a

Strapi component (Figure 11) to describe is created. The component is then

added to the blocks field of the appropriate page. A single Fetch component is

used by this block to point the page generating code to the correct collection so

that all the entries can be fetched during the page build. The other data fields are

a simple title text field for the block, a switch to make the page show only parent

categories or all categories and a text field that contains the slug of the products

page in the pages collection so that the block can generate the link URLs to the

dynamic pages that list the products of each subcategory.

29

Figure 11. The categories Strapi component with the required values.

3.5.4 Products Block

For the display of products, a block named ‘Products Block’ and a Strapi compo-

nent (Figure 12) to describe it is created. In this block instead of a Fetch compo-

nent a Query component was needed because only some entries are needed to

be retrieved from the collection.

For the Query component 4 parameters were needed to be defined. The ‘Identi-

fier’ which is just a unique key for the query if the block has more than one Que-

ries. The name of the collection to be queried by the page generating code is

stored in the ‘From’ field. What the block is looking for in the collection is deter-

mined by the ‘Key’ and ‘Value’ pair.

The ’Key’ field of this component in the page entry (Figure 12) was filled with a

value containing a dot (category.uid). Nested queries to the Strapi API are repre-

sented by using a dot and in this case, when performing the query, a match is

determined by looking at the ‘uid’ field of the category entries and comparing it

with the value of the ‘Value’ field. When the ‘Value’ field is left empty the dynamic

30

part of the Dynamic Route is used instead. If the page being rendered is not dy-

namic that parameter does not exist, and the query is ignored.

Figure 12. The Products component with the required values filled.

3.6 Internationalization

Support for internationalization is a built-in feature of Next.js. A cookie is used by

it to track which locale is currently active. Locale detection is done automatically

for each visitor at the first visit, and the cookie is set. In order to serve pages with

a different locale all page routes are prepended by Next.js with the locale identifier

for the currently active locale, except for the default locale. A locale switch can

be done programmatically using the ‘next/router’ component or by clicking a

31

‘next/link’ component with the appropriate props set. The activation of the inter-

nationalized routes requires the configuration of the locales supported in the

‘next.config.js’ file of the project. When switching to an unsupported locale or nav-

igating to a non-existing page of a locale Next.js, it results in a fallback page of

the default locale. This feature worked well together with Strapi’s own Internation-

alization plugin making the insertion of another language in the website a simple

task.

3.7 SEO

The process of improving the organic traffic quality and quantity to a website is

called Search Engine Optimization (SEO). This is achieved by using a set of tech-

niques that make the website more likely to appear higher in the search results

of a search engine. As a complex and evolving process that is beyond the scope

of this thesis, SEO was not completely implemented, but the basics of SEO were

added on the project (Beal 2001.)

As described in a previous chapter, a metadata component was added to the

content data in the CMS. To use this data, a Node Package Manager (npm) pack-

age called ‘next-seo’ was also installed. A React component is provided by this

package, which can be added to every page of the website. By using this com-

ponent and passing into it all the SEO data available, much time and effort was

saved by not having to add a custom SEO implementation for the HTML docu-

ments.

To keep things simple, only the ‘Open Graph protocol’ props of this component

were filled with the metadata from the CMS together with the canonical URL prop

which is constructed through accessing the full-page URL by the ‘next/router’

component. The website page title and description tags are also filled from the

same metadata.

3.8 Rendering Methods

As described in the data fetching section, the rendering method used for a page

upon a request in Next.js is determined by which functions are exported from the

32

page handler. The getStaticProps should be used for static pages, so that they

can be cached directly as an HTML file, while the getServerSideProps must be

used when it’s critical keeping up to date the latest data for every request, result-

ing in a fresh server-rendered page. Exporting the entire website as static HTML

with every page prebuilt is possible when no server rendering takes place. This

way a Next.js application can be hosted without a Node.js backend, since only

static files are contained that can be served from a CDN.

Static page generation with ISR so as to serve the pages is used by this project

for quicker page loading time, while still reacting to changes in the content. The

use of the static export method was also considered, but due to its limitations this

option was of no use but it could be useful for other projects of course. Two critical

limitations of static export are the lack of API routes and internationalized routing,

both features are used in this website.

3.9 Image Optimization

3.9.1 Next.js Image Optimization

Built-in image optimization is offered by using the ‘next/image’ component, which

is an extension of the HTML element. A variety of props are available for

customizing how the image is placed and its use is straightforward when using

an image stored in the static assets of the project.

It is often the case that the image is found in an external URL and is therefore a

remote image. For security reasons the origin domain of remote images must be

listed in the Next.js config before loading them is permitted by this framework. It

may also be necessary (in some cases) overwriting the default loader and replac-

ing it with a custom loader so as to enable the function of image optimization. A

few image loaders for different image storage providers are a built-in feature of

the Image component and they are used to build the ‘scrset’ attribute of the

element.

33

3.9.2 Image Loading

All the images in this project are stored and retrieved from the CMS. Different

sizes are automatically created by Strapi for each image uploaded to its library,

but to ensure that the correctly sized image is used by Next.js, a small custom

loader for the Image component together with a wrapper component are written

so that the image URLs from Strapi can be matched to the screen sizes in the

loader.

3.10 Securing the CMS API Endpoints

Assigning roles for authenticated users from the Users and Permissions plugin

can be used to add access control to the Strapi API endpoints. But when the user

is accessing the API is ‘another server’ it’s simpler to implement an API key au-

thentication scheme instead of a password-based user authentication flow. When

first working on this project the author of this thesis started working with version

3 of Strapi which did not include a built-in API key authentication functionality.

This feature came out with version 4 of Strapi.

A simple API key validation was implemented by following a guide at the Strapi

documentation. With this addition the Strapi server now checks every request for

a secret token to validate it. It is important to note that this is not a permanent

solution as the secret API token is placed to the query parameters of the HTTP

request which makes it readable by anyone by whom the request passes through

(Ploesser 2021). A better solution could be putting the token in a HTTP header

since those are encrypted when using Transport Layer Security (TLS). This token

check is skipped when using the administration panel or the request is by an

authenticated user. Updating to Strapi Version 4 is a must for the final production

release, so as to ensure continued support by its developers, and the built-in API

key check used instead.

3.11 API Routes

One of the many features of Next.js is the ability to build an API backend for the

web application within Next.js itself. The API routes of the framework are defined

34

inside the `/pages/api` directory of the project and follow the same naming con-

vention as the pages with both static and dynamic endpoints. Each endpoint ex-

ports a handler function that accepts a request and a response object as its pa-

rameters. The API routes also support the use of middleware in a similar manner

of how Express, a popular Node.js back-end framework that implements middle-

ware. Naturally these functions only run in the server and can be employed se-

curely for a range of operations such as database queries or fetching data from

another API. Depending on how the project is deployed to a host these handler

functions can become and execute as serverless functions.

In this project only three API endpoints are needed to be implemented. Two of

them for enabling and disabling the preview mode and one for submitting the

contact form. The endpoint handler for the contact form is: `/pages/api/form-sub-

mission.js`. The handler function expects a POST request with the following body

data: email, name, subject, message. These values are then sent to the CMS by

a POST request, creating a new ‘form-submission’ content entry. The endpoint

contains a check for a honeypot field. Honeypot fields are empty inputs in the

form that are invisible to the user, but bots can see them and if they (these bots)

insert text into them and submit the form the server automatically recognizes

them as spam and rejects this kind of submissions.

35

4 DEPLOYMENT

The deployment of this project in production required two Node.js servers and a

database server. Version 3 of Strapi requires a Node.js version between 10.16.0

and any minor version of 14, while only the v12 and v14 Long Term Support

Node.js versions are supported. Below a table is presented with the minimum

database version requirements. The hardware requirements can be significant

for an API that receives heavy traffic, but by using prerendering and caching on

the front-end – these requirements are scaled down. The minimum requirements

are 1 CPU core and 2 GB of RAM but the recommended values are double. For

low traffic operation the amount of 2 GB of RAM is not always needed by the

server. This requirement comes from the heavy memory utilization (>1 GB) of the

admin dashboard generation on deployment, a process done once for each full

deployment. However, if the deployment is configured with a separate or no dash-

board deployment the actual minimum amount of memory is much lower. The

dashboard can also be pre-generated on the development machine and up-

loaded to any HTTP server since it’s just a React app bundle with static files.

Table 1. Strapi minimum version requirement for a database.

Database Minimum version

SQLite 3

PostgreSQL 10

MySQL 5.6

MariaDB 10.1

MongoDB 3.6

Because a persistent file storage solution is required by the project as Strapi’s

media uploads are stored there, using a hosting service that features saving files

to a filesystem makes unnecessary the setup of a separate image provider for

the upload plugin and using a 3rd party service. Ephemeral file systems are used

by many hosts, for example Heroku, that wipes/deletes files generated after their

deployment, and since the upload plugin creates new files in the public folder, for

the uploads, those files won’t remain for too long.

36

A Node.js server with a minimum version of 12.22.0 is required by Next.js. When

using static export an Apache or a Nginx server are enough since only static files

are served. This website is not expected to generate a lot of daily traffic with its

current features, so the hardware resource requirements are low.

4.1 Hosting Options

While writing this report, the author had already done a full deployment of the

project, but only as staging deployment. In order to limit the expenses, only the

hosting options that minimize the deployment cost were considered at this stage.

4.1.1 Next.js Hosting

Based on the requirements and the current features of the website, so as to host

the Next.js application, the simplest hosting option is to utilize the hosting service

of its creator Vercel. A free hosting tier is featured in Vercel’s pricing scheme for

mostly static websites with low traffic. Unfortunately, the hosting of commercial

websites is prohibited by the free tier, which is why it can only be used for staging

purposes unless an upgrade to pro tier is justified. Some of Vercel’s many fea-

tures are preview deployments, analytics, global edge functions and more. A

website is also secured by Vercel with a free SSL certificate enabling HTTPS

connections for the website.

In addition to Vercel the front-end can also be hosted on any host that supports

the minimum required Node.js version. Since the popularization of Node.js

backends many hosting options for Node.js backends are offered by different

companies. A more thorough analysis of the available options is needed when

the website must go live later. A few examples of hosting platforms are AWS,

Azure, Google Cloud, Heroku, Render, Netlify, Digital Ocean, Cloudflare, Linode.

4.1.2 Strapi Hosting

For the deployment of Strapi a host that also offers databases is recommended

to be used. By having these hosted together, the expected distance and connec-

37

tion delay between the server and the database is minimized. Like the deploy-

ment of the front-end, the aim at this stage is to be able to host everything with

the minimum expenses, even freely is an option.

One option is to host Strapi at Heroku. Both Node.js and PostgreSQL are offered

by Heroku in its free tiers. The free tiers again have some limitations. Namely the

memory is limited to 512 MB, which is sufficient, but the server goes to sleep

mode after 30 minutes of inactivity causing a delay for responding to the next

request when the server is waking up. Additionally, the database capacity is lim-

ited to 10000 rows and 1 GB of storage. These limitations are not a problem at

this stage making Heroku a good choice, but a different option is available.

The author was granted access to another hosting provider that with a paid plan.

The hosting service provider is called TopHost, a company that offers multiple

hosting and domain name registration services. With TopHost it was possible to

host Strapi in a Linux server using a single randomly named hostname with one

subdomain. After Strapi was deployed it was configured to serve the admin dash-

board at the hostname, the API server was configured to listen at the subdomain

“api.”. MySQL databases with unlimited capacity are also offered by TopHost, so

a new production database was created and connected to the Strapi deployment.

The Linux server is managed through Plesk Web Host Edition. From the panel it

was also possible to generate an SSL certificate using Let’s Encrypt, a free cer-

tificate generation service. This procedure also automatically configures the Linux

containers Apache or Nginx server to reverse proxy the Strapi server securing it

with a HTTPS connection. A persistent filesystem is used for the Linux container,

which permits using the same settings as in development for the media upload

plugin and storing all images locally on the server.

4.2 Project Upload

The deployment of Next.js to Vercel is easy and straightforward. All that is

needed, is creating a new project at Vercel’s dashboard and importing the GitHub

repository of the front-end. Then after defining the necessary environmental var-

iables that are to be embedded in the server-side code, by clicking ‘Deploy’ the

38

platform builds the website and adds it as a deployment. After the initial deploy-

ment, every time a push of a new commit to the ‘Main’ branch at GitHub is made,

Vercel deploys the latest version automatically. Another Git branch can also be

specified for creating a separate deployment, when needed to test some change

or a new feature.

Deploying the Strapi server is not that simple. The hosting provider does not have

automated tools for Node.js application deployments so some things must be

done manually. The Strapi backend is deployed with a random and temporary

hostname, since the client had not yet registered a domain name for his website.

This temporary domain is used to serve the admin dashboard. The next step was

creating a subdomain for the domain. The subdomain’s name starts with ‘api’

since it hosts the Strapi API backend. The upload of the project with all the rele-

vant project files to the server filesystem is done by using an FTP connection.

The hosting package has 2 GB of RAM, so it is possible to run a build command

on the host in order to build the dashboard. The next step after uploading the files

of the project, is the installation of the Node.js dependencies using the command

‘npm install’. A shortcut button for the installation is located at the Node.js man-

agement view (Figure 13). Then in turn, the necessary environmental variables

for production deployment are set and the Strapi deployment is ready to run.

Figure 13. Plesk panel for Node.js configuration

39

The startup file for running the application can be set at the panel, so a ‘server.js’

(Figure 14) file is created at the application root. The Strapi server is enabled by

executing this file with Node.js.

Figure 14. Contents of server.js

After confirming that Node.js is running the last step is to secure the connections

to the server with an SSL/TLS certificate. A handy panel for this as well is pro-

vided by Plesk (Figure 15). After in turns: selecting the domain and the subdo-

main, clicking the generate button the certificate is ready, and the server is con-

figured to be used. The server is also set to redirect requests from HTTP to

HTTPS with a 301 redirect.

Figure 15. The Plesk panel for SSL certificate settings.

40

After these steps both Node.js servers are up and running in a production envi-

ronment. Before the website can receive any visitors, the production database

must be populated with pages and content.

41

5 DISCUSSION

The completion of this project took about 2 and a half months. The result appears

to be modest but there were several hurdles during development with most of

them being of non-technical nature. This thesis was written during a pandemic

when governments implemented movement restrictions and people were gener-

ally cautious and had to stay indoors with their families. This factor alone limited

the ability to interact with the client who also at some point fell sick during the

pandemic. The client also didn’t have photos/images of any use for the website

and due to the fact that the store had being closed for winter, thus it was not in a

condition to be photographed. Despite these problems the requirements set at

the start of the project were met. The website can display the product collection

of the store thus giving it some visibility as the client initially wanted.

As for the technical implementation the following conclusions are drawn. The

choice of the tech-stack is a good one for a custom-built website. However, as

stated in the introduction, this dynamic page architecture is too complicated for a

small store. Making changes to the structure of the pages on the website is usu-

ally not required after the pages are built and approved by the client. At most only

some specific text, for example store announcements and open hours can be

modified by the owner of the website. The main focus of the website is the display

of products and their categories in the CMS and Strapi which takes care of provid-

ing an interface for their entry. After that the products are simply displayed in their

respective dynamic pages whose endpoint URLs can be statically defined in the

filesystem. The complexity and thus the possibility for technical issues is reduced

by using a more straightforward approach. If the project had to be rebuilt with the

current requirements, the filesystem routing of Next.js should be used to define

the pages instead of the current method and the CMS should only store the cus-

tomization data of each page.

The architecture used in this project is more suitable for a corporate website

where developers can build content blocks to be used for example by marketing

specialists who are then able to readjust the look and the content of the website

without being so depended to developers. After the project was finished one such

42

example was found by the author of this thesis, a corporate website using this

approach, by a French company (Finary) in the financial sector.

Since the website is originally intended to evolve to an e-shop, a lot of work is

needed in some areas of the website. For starters, an overhaul is needed for the

appearance of the website. As it stands, the client’s business is not properly rep-

resented to its visitors by the website and will probably result in a poor conversion

rate if opened to the public in its current state. Also, the appropriate photographs

have to be uploaded for all products and the store itself. A task that falls on the

client and that limited the design options during development since barely any

visual material were available. The SEO of the website is very basic but allows

the proper display of the store in search results. However, there are improve-

ments to be made such as presenting the opening hours and inserting more struc-

tured data to the pages of the website. A functioning contact form is included on

the website, but it lacks modern spam prevention methods, namely a CAPTCHA

challenge. A notification should trigger with every form submission, typically in

the form of an email message, which has not been implement yet.

Upgrading this website to an e-shop requires some new features to be added.

The elementary features that certainly are required are an inventory system, a

user registration and a login system, an ordering system, a payment processing

system and automated emails. Even a simple e-shop has enough complexity in

its implementation and the design should not only be secure and reliable but also

should have the appropriate built enabling its future expansion or modification,

for example – adding more features as mentioned above.

Building this project was a great learning experience for the author of this thesis

as it gave an opportunity to practice important HTML, CSS and JavaScript skills

while working on something interesting. Deeper knowledge was also gained

about the Next.js framework, and together with Strapi this was the author’s first

complete full-stack project using these tools.

With the website requiring an image upload and a storage solution some new

knowledge about responsive image storage and display in a full-stack website

was gained. Experience was also gained about the hosting process of a website

backend. Having used services like Vercel before, the chance to use a tool like

43

Plesk, which allowed tinkering with setting up subdomains, webmail, SSL certifi-

cates, file transfer over FTP and more was very welcomed.

In conclusion, despite the difficulties, this project was completed while valuable

experience was gained from the work. Thanks to the deeper understanding of the

technologies gained from this project, the author is now better equipped to face

the challenges of expanding the website to an e-shop, after this thesis, according

to the original plan.

44

BIBLIOGRAPHY

Beal, V. 2001. SEO (Search Engine Optimization). Accessed 23 January 2022
https://www.webopedia.com/definitions/seo/ ()

Biilmann, M. & Hawksworth, P. 2019. Modern Web Development on the JAM-
stack. first edition. Sebastopol, CA: O’Reilly Media.

Heroku 2022. Heroku Pricing. Accessed 21 April 2022 https://www.her-
oku.com/pricing

Ploesser, K. 2021. REST API Design Best Practices for Parameter and Query
String Usage. Accessed 23 January 2022 https://www.moesif.com/blog/tech-
nical/api-design/REST-API-Design-Best-Practices-for-Parameters-and-Query-
String-Usage

Strapi SAS 2021. Strapi corporate Nextjs template. Accessed 3 November 2021
https://strapi.io/starters/strapi-starter-next-js-corporate

Strapi SAS 2022. Strapi version 3 documentation. Accessed 12 January 2022
https://docs-v3.strapi.io/developer-docs/latest/guides/api-token.html

Tamturk, V. 2016. The Ultimate Guide for Headless Content Management Sys-
tems. Accessed 20 January 2022 https://www.cms-connected.com/News-Ar-
chive/December-2016/The-Ultimate-Guide-for-Headless-Content-Management

Vercel 2022a. Nextjs documentation. Accessed 1 February 2022
https://nextjs.org/docs

Vercel 2022b. Nextjs documentation Pages. Accessed 1 February 2022
https://nextjs.org/docs/basic-features/pages

Vercel 2022c. Nextjs documentation Dynamic Routes. Accessed 1 February
2022 https://nextjs.org/docs/routing/dynamic-routes

Vercel 2022d. Nextjs documentation getStaticPaths. Accessed 1 February 2022
https://nextjs.org/docs/basic-features/data-fetching/get-static-paths

Vercel 2022e. Nextjs documentation getStaticProps. Accessed 1 February 2022
https://nextjs.org/docs/basic-features/data-fetching/get-static-props

Vercel 2022f. Nextjs documentation getServerSideProps. Accessed 1 February
2022 https://nextjs.org/docs/basic-features/data-fetching/get-server-side-props

Vercel 2022g. Nextjs documentation getInitialProps. Accessed 1 February 2022
https://nextjs.org/docs/api-reference/data-fetching/get-initial-props

WordPress.org 2022. Accessed 18 February 2022 https://wordpress.org

https://www.webopedia.com/definitions/seo/
https://www.heroku.com/pricing
https://www.heroku.com/pricing
https://www.moesif.com/blog/technical/api-design/REST-API-Design-Best-Practices-for-Parameters-and-Query-String-Usage
https://www.moesif.com/blog/technical/api-design/REST-API-Design-Best-Practices-for-Parameters-and-Query-String-Usage
https://www.moesif.com/blog/technical/api-design/REST-API-Design-Best-Practices-for-Parameters-and-Query-String-Usage
https://strapi.io/starters/strapi-starter-next-js-corporate
https://docs-v3.strapi.io/developer-docs/latest/guides/api-token.html
https://www.cms-connected.com/News-Archive/December-2016/The-Ultimate-Guide-for-Headless-Content-Management
https://www.cms-connected.com/News-Archive/December-2016/The-Ultimate-Guide-for-Headless-Content-Management
https://nextjs.org/docs
https://nextjs.org/docs/basic-features/pages
https://nextjs.org/docs/routing/dynamic-routes
https://nextjs.org/docs/basic-features/data-fetching/get-static-paths
https://nextjs.org/docs/basic-features/data-fetching/get-static-props
https://nextjs.org/docs/basic-features/data-fetching/get-server-side-props
https://nextjs.org/docs/api-reference/data-fetching/get-initial-props
https://wordpress.org/

