

Dang Bao Nghi Nguyen

WEBGPU - THE NEW POWERFUL
SUCCESSOR, THE FUTURE OF WEB

API

Bachelor’s thesis

Information Technology

Bachelor of Engineering

2022

Author (authors) Degree title

Time

Nghi Nguyen Bachelor of
Engineering

May 2022

Thesis title

WebGPU - The New Powerful Successor,
The Future of Web API

35 pages
0 pages of appendices

Commissioned by

Supervisor

Timo Hynninen

Abstract

The objective of this thesis was to create an application by using new Web API technology

called WebGPU to show how well and optimize this API compared to WebGL. The project

was designed to have two end results application to show what this new type of WebGPU

technology is capable of and deliver us a glimpse of beneficial from WebGPU when using

for other purposes.

The introduction of the APIs laid the foundation for many acomplishments, and web
platform was one of which increased drastically. In addition, with the most recent powerful
smart devices, that inspired the path for developers to utilize this opportunity to design and
implement so many great things.

Keywords

TypeScript, JavaScript, WebGPU, Pipeline, Matrix

CONTENTS

1 INTRODUCTION .. 4

2 THEORY ... 4

2.1 WebGPU ... 4

2.2 WebGPU or WebGL? .. 5

2.3 WebGPU Shading Language .. 5

2.4 JavaScript Language ... 6

2.5 TypeScript ... 6

2.6 Compute Pipeline .. 7

2.7 Vertex, fragment .. 7

3 IMPLEMENTATION .. 8

3.1 Colour Inversion ... 8

3.1.1 Create JPEG image and read Pixel Data Input .. 9

3.1.2 Access GPU device .. 12

3.1.3 Buffer .. 12

3.1.3.1 Width Height buffer .. 12

3.1.3.2 Pixels buffer ... 13

3.1.3.3 Result buffer .. 13

3.1.3.4 Read buffer .. 13

3.1.4 Bind Group Layout and Bind Group .. 13

3.1.4.1 Bind Group Layout .. 13

3.1.4.2 Bind Group .. 14

3.1.5 Shader Module and Compute Pipeline ... 15

3.1.5.1 Shader Module .. 15

3.1.5.2 Compute Pipeline .. 15

3.1.6 WebGPU Shading Language – WGSL ... 16

3.1.7 Compute Pass .. 17

3.1.8 Read the result ... 18

3.1.9 Project Testing .. 18

3.2 3D Object Rendering .. 19

3.2.1 Concept of Rendered 3D Object ... 19

3.2.2 Using GPU resource ... 20

3.2.3 Rendering Object .. 20

3.2.4 Shader .. 20

3.2.5 Object Initialization ... 21

3.2.6 Renderer .. 24

3.2.7 Animation Loop ... 25

3.2.8 Camera ... 26

3.2.9 Vertices .. 27

3.2.10 Result ... 28

3.2.11 Resource Consumption .. 29

4 CONCLUSION .. 30

REFERENCES .. 32

LIST OF FIGURES .. 33

4

1 INTRODUCTION

The main goal of this thesis is to create a simple project to demonstrate new Web

API called WebGPU that will help reduce the workload of system by focusing on

the GPU resouce. Thoughout this thesis, the project will be built using new

WebGPU technology instead of WebGL or WebGL2 that has been around for

more than 10 years. This new technology is going to be the next future in

graphical design method which will help reduce time, resouce and cost efficiency.

2 THEORY

The introduction of JavaScript, TypeScript, WebGPU and WebGPU Shading

Language are crucial for creating the project. Alongside with compute Pipeline,

GPU Buffer are also deeply studied.

2.1 WebGPU

Graphic Processing Unit (GPU) is an electronic subsystem within a computer that

was originally specialized for processing graphics. However, in the past 10 years,

it has evolved towards a more flexible architecture allowing developers to

implement many types of algorithms, not just render 3D graphics, while taking

advantage of the unique architecture of the GPU. These capabilities are referred

to as GPU Compute, and using a GPU as a coprocessor for general-purpose

scientific computing is called general-purpose GPU (GPGPU) programming.

Nowadays, with the development of AI, machine learning, and Virtual Reality

GPU Compute has contributed significantly to the recent machine learning boom.

The convolution neural networks and other models can take advantage of the

architecture to run more efficiently on GPUs. With the current Web Platform

lacking in GPU Compute capabilities, the W3C's "GPU for the Web" Community

Group is designing an API to expose the modern GPU APIs that are available on

most current devices. This API is called WebGPU, this WebGPU name is not

official since this is still under development by many developers around the world.

WebGPU is a low-level API, like WebGL. It is very powerful and quite verbose, as

seen.

5

2.2 WebGPU or WebGL?

There are many things to be considered when choosing between WebGPU and

WebGL. WebGL, is based on OpenGL, involves lots of individual function calls to

change individual settings. WebGPU on the other hand creates groups of

settings the application will use in advance. Then at runtime it can switch

between entire groups of settings with a single function call, which is much faster.

It also organizes all the settings according to how modern GPUs work, allowing

applications to work more efficiently with hardware.

A single object will make good of example for better understanding during the

code. In programming, having less code means running faster, In Figure 1,

WebGL uses more codes to just render one object.

In Figure 2, doing the same task but with only just a few lines of codes

2.3 WebGPU Shading Language

WebGPU Shading Language (WGSL) is the shader language for WebGPU.

WGSL's development focuses on getting it to easily convert into the shader

language corresponding to the backend; for example, SPIR-V for Vulkan, MSL for

Metal, HLSL for DX12, and GLSL for OpenGL. Despite WebGPU was suggested

Figure 1. WebGL code

Figure 2. WebGPU code

6

by Apple in 2017 and still under developing up until now, based on this evidence,

WebGPU Shading Language is be considered fairly new to the community.

2.4 JavaScript Language

JavaScript often known as JS is a high-level programming language used by

97% of websites, alongside HTML and CSS mainly use for web decoration.

JavaScript is the dominant client-side scripting language of the Web, scripts are

embedded in or included from HTML documents and interact with the DOM. All

major web browsers have a built-in JavaScript engine that executes the code on

the user's device. More than 80% of websites use third-party JavaScript library or

framework to build their client-side, when talking about JavaScript library, one

most commontly known is the jQuery used by over 75% of websites. Since the

late 2000s JavaScript engine has been embedded in a variety of other software

systems, one can be listed as server-side. Nowadays server-side started to

grow with the creation of Node.js.

One thing related to JavaScript is a misconception between JavaScript and Java.

Even though they both have a C-like syntax, have almost the same name, and

both appeared in 1995, Java was developed by James Gosling of Sun

Microsystems and JavaScript by Brendan Eich of Netscape Communications.

Despite the similarities of these two programming languages, their differences

are truly prominent, Java has static typing, while JavaScript's typing is dynamic.

Java is loaded from compiled bytecode, while JavaScript is loaded as human-

readable source code. Java's objects are class-based, while JavaScript's

are prototype-based. Finally, Java did not support functional programming until

Java 8, while JavaScript has done so from the beginning, being influenced

by Scheme.

2.5 TypeScript

Another programming language, which was originally built based on JavaScript

syntax itself is TypeScript. TypeScript adds additional syntax to JavaScript to

7

support a tighter integration with your editor, it is designed for the development of

large applications and transpiles to JavaScript. Catch errors early in your editor.

TypeScript contains type information of existing JavaScript libraries. much

like C++ header files can describe the structure of existing object files. This

enables other programs to use the values defined in the files as if they were

statically typed TypeScript entities. There are many third-party libraries like

jQuery, MongoDB, and D3.js, TypeScript headers for the Node.js basic modules

are also available, allowing development of Node.js programs within TypeScript.

TypeScript is included as a first-class programming language in Microsoft Visual

Studio 2013 Update 2 and later, alongside C# and other Microsoft languages.

2.6 Compute Pipeline

The Direct3D compute pipeline is designed to handle calculations that can be

done mostly in parallel with the graphics pipeline. There are only a few steps in

the compute pipeline, with data flowing from input to output through the

programmable compute shader stage.

A compute shader provides high-speed general purpose computing and takes

advantage of the large numbers of parallel processors on the graphics

processing unit (GPU). The compute shader provides memory sharing and

thread synchronization features to allow more effective parallel programming

methods. The input can be one, two or three-dimensional in nature, determining

the number of invocations of the compute shader to execute. Output data from

the compute shader, which can be highly varied, can be synchronized with the

graphics rendering pipeline when the computed data is required.

2.7 Vertex, fragment

A vertex is a point in 3d space (can also be 2d). These vertices are then bundled

in groups of 2s to form lines and/or 3s to form triangles.

8

Most modern rendering uses triangles to make all shapes, from simple shapes as

cubes to complex ones as people. These triangles are stored as vertices which

are the points that make up the corners of the triangles.

We use a vertex shader to manipulate the vertices, to transform the shape to look

the way we want it. The vertices are then converted into fragments. Every pixel in

the result image gets at least one fragment. Each fragment has a color that will

be copied to its corresponding pixel. The fragment shader decides what color the

fragment will be.

3 IMPLEMENTATION

This section is the practical part of this thesis, showing the establishment of this

application. The concepts from above Chapter 2 are used to support this process.

3.1 Color Inversion

In this project, in Figure 4 starting with basic typescript web project, which include

an index.html and an index.ts files. Next, we install some packages with npm,

and since this is about WebGPU API, by using the npm package management,

we install the most crucial package WebGPU Types, where we can access the

WebGPU API.

Figure 3. Vertices

9

Next, in Figure 5 we install the other two packages, called jpeg-js library, which

decodes jpegs into an array with red, green, blue and alpha values for all pixels

and encodes that array into a jpeg image. Then, the buffer library, plays as a

dependency for the jpeg.js library.

3.1.1 Create JPEG image and read Pixel Data Input

In Figure 6, now that we have installed every crucial packages, navigate to the

index.html, here a button is created which will let us choose and input random

jpeg images, we also create an input image where the original image will be

stored and an output image where the image pixel colour has been reversed.

Figure 4. Install WebGPU packages

Figure 5. Install jpeg-js library

Figure 6. Create JPEG input and output machanism

10

Next, move to the index.ts file, here from jpeg-js library, we import some

methods, interfaces and a workaround so that jpeg-js library can also run in

browsers, as shown in Figure 7.

Figure 8 shows the creation of jpeg image file select function for the button.

In Figure 9 we can see the image on the browsers.

Figure 7. Import libraries from jpeg-js

Figure 8. Select function button

Figure 9. Display the result on browsers

11

The successfully created function that can input and display an image on

browsers. As shown in Figure 10 create file reading as an array buffer is

necessary, the reason so that we can decode the pixel colours with the jpeg.js.

Now that an array buffer has been created, next step is to create a function which

will process raw image pixel data with WebGPU as shown in Figure 11, and

because the process has to be done before it can be displayed on the browsers,

for that we use async function.

We then transform data as data URL in Figure 12.

Figure 11. Create array buffer

Figure 10. Raw image pixel data process

Figure 12. Transform data to URL

12

We can then assign the data URL to an HTML image element with the ID ouput

image in Figure 13.

3.1.2 Access GPU device

We now have prepare the input and the ouput of the jpeg image process, the

next step is to access WebGPU API, but first thing to do is to get the GPU device

as shown in Figure 14.

3.1.3 Buffer

Buffers are needed for WebGPU rendering, and buffer is a contiguous block of

memory in the GPU that stores rendering data for a model. In this case, we

create four buffers:

3.1.3.1 Width Height buffer

Figure 15 configures the Width Height buffer, which will contain the height and

width of the image.

Figure 13. Assign data URL to HTML

Figure 14. Access the GPU resouce

Figure 15. Width and Heigh buffer

13

3.1.3.2 Pixels buffer

This step will process the raw pixel rgba data as shown in Figure 16.

3.1.3.3 Result buffer

This section holds the above processed raw pixel rgba data.

3.1.3.4 Read buffer

Figure 18 shows the result will be read by CPU.

3.1.4 Bind Group Layout and Bind Group

In WebGPU, we do not set individual resources through an API, instead

resources are bound in collections called bind groups.

3.1.4.1 Bind Group Layout

A bind group layout, which describes which stages the bind group’s resources

are visible to. The following configuration is shown in Figure 19.

Figure 16. Pixel buffer

Figure 17. Processed raw pixel containment

Figure 18. Reading the buffer

14

3.1.4.2 Bind Group

A bind group is an object that represents a collection of resources that can all be

bound at once. This can be significantly more efficient than binding resources

one at a time, and we can partition our bind groups by how often resource

bindings change (per-frame, per-instance, etc.) to minimize the work done by the

driver. The configuration is shown in Figure 20.

Figure 19. Bind Group Layout

Figure 20. Bind Group

15

3.1.5 Shader Module and Compute Pipeline

We have created an input and output for the shader program, next is to create

shader program module and compute pipeline.

3.1.5.1 Shader Module

In shader module, we will be providing shader language code, and this can be

done by using the actual shading language code called WebGPU Shading

Language – WGSL inside the code section, we can see in Figure 21.

3.1.5.2 Compute Pipeline

Figure 22 creates compute pipeline is designed to handle calculation that can be

done parallel with the graphics pipeline, with data flowing from input to output

through the programmable compute shader stage. This can take advantage of

the large numbers of parallel processors on the GPU, by providing memory

sharing and thread synchronization.

Figure 21. Creating shader module

Figure 22. Compute Pipeline

16

3.1.6 WebGPU Shading Language – WGSL

WebGPU shading language is a shader language designed specifically for

WebGPU to express the programs that run on the GPU. WGSL has two kinds of

GPU commands, one of which is draw command to execute a render pipeline

that contains inputs, outputs and attached resources. While the other is dispatch

command executes a compute pipeline with only inputs and attached

resources, both pipelines use shaders written in WGSL.

In WGSL code in Figure 23, a main function has to be declaired for entry point of

the shader program, we must also provide the stage of the main function which

will be the compute stage since we have a computePipeline.

In main function we provide a built-in with a global invocation id and the

variable name uder which we want to access this input built-in, in this case we

use a three dimensional vector which contains einsteins’s 32-bit value global_id:

vec3<u32>, see Figure 24.

In Figure 25, we need to create two structures for the instance one for size which

we will be using two-dimensional vector x, y and one for image that will hold an

array of pixel values of the image.

Figure 23. WebGPU Shading Language

Figure 24. A main function for WGSL

17

Now we can start mapping the buffers to these structs, for that, in Figure 26 we

need to access the binding group that we already declared above.

We now have everything ready for the main function to work properly, as shown

in Figure 27, navigate to the main function again we can now do the color

inversion process.

3.1.7 Compute Pass

The compute pass is where we will create and start the pass encoder based on

the bind group and compute pipeline with bind group layout, refer to Figure 28.

Figure 25. Structure instance

Figure 26. Binding group access

Figure 27. Color inversion

Figure 28. Compute pass

18

3.1.8 Read the result

Lastly, in Figure 29 shows how to read the result from the read buffer.

3.1.9 Project Testing

The color inversion project is now ready to be tested, but first we need to install

web browser that support WebGPU API, in this experiment, we use chrome

canary, navigate to chrome://flags/#enable-unsafe-webgpu and enable

unsafe WebGPU mode, as shown in Figure 30.

Next, we start up the project and access it with our localhost and choose the

same jpeg image previously to see how it changes. In Figure 31, we can see the

image on the right side with its original colors was inverted, meaning that we

successfully create an application which GPU resource was being ultilized by the

WebGPU API.

Figure 29. Read result

Figure 30. Enable WebGPU flag

Figure 31. Final result

19

3.2 3D Object Rendering

WebGPU can do more than just color reversing, by using the GPU resource, it

can be used to draw 3D objects, from simple triangles, cubes to an actual

character or building.

3.2.1 Concept of Rendered 3D Object

The concept of rendering a 3D object, is to upload all data which does not

change over time to the GPU memory, such as: vertices, colors, textures.

Most of the 3D graphics objects and all 3D graphics engines use triangle

parameters, triangle-list to be specific. The reason is that the three vertices of a

triangle are always in the plain, any more than three vertices would be

considered to be non-plain, thus the render is ripple unless it was converted into

a triangle. Non-planar is a degenerate and cannot be solved or rendered

correctly, since three points are the minimum necessary to define a planar

surface and any shapes can be simulated by using many triangles. In short, the

triangle is the most important parameter in any 3D graphics engine.

Next is renderer, which has a function to draw a frame within the rendering

command chain. For instance:

frame (camera, objects){

command = // initialize commands encoder

for each object of objects

// instruct all the objects to update their transformation given

// a camera

object.updateTransformation(camera)

// Give a command to draw themselves

object.drawYouself(commands)

// draw frame to canvas

command.execute()

20

3.2.2 Using GPU resource

To access gpu adapter and gpu device, we use

“navigator.gpu.requestAdapter”, one thing worth noticing is that WebGPU API

is an asynchronous function. Use either Vanilla JS or install webgpu types

package to use webgpu api with TypeScript.

3.2.3 Rendering Object

Rendered objects are primitively triangles using a specified list of vertex

positions. A complete pattern is called Fragment. The order of the vertices

creates a winding direction that is used for the calling mechanism and causes the

object to be rendered. The winding direction must be counterclockwise and not

clockwise in order for the object to be successfully rendered. Some information

about the object appearance is required for easier understanding, such as: color,

UVs - Unwrapped Version, more like a net, to map texture of the object.

3.2.4 Shader

Shaders are computation structures to the GPU, which will execute the object

rendering based on the compute units inside the GPU hardware. This can be

done after all information of the 3D world has been uploaded to the GPU

memory, like: vertices, colors, transformation, textures, environment lights.

In this 3d rendering project, we create a shader using WebGPU Shading

Language two type of shaders. In Figure 32, the first shader is the Vertex to

calculate the position of the a vertex using the model provided model projection

matrix.

Figure 32. Vertex structure

21

The other shader is the Fragment is used to determine the current pixel’s color as

shown in Figure 33.

3.2.5 Object Initialization

A rendered object must also have a position and an orientation, this can be done

via linear algebra, using transformation matrices. The idea is by multiplying all

vertex positions with such matrix changes the position and the rotation of the

whole object. For this to work, we will need linear algebra libraries such as gl-

matrix. The transformation matrix is used together with the camera information.

With this project, we first create some web GPU instructions, the first thing to do

is to define a rendering pipeline, as described in Figure 34.

Within the rendering pipeline, we calculate the vertices and fragments that have

been pre-defined by using WebGPU Shader Language in the shader.

Figure 33. Fragment structure

Figure 34. Create GPU instruction

Figure 35. Vertices calculation

22

Figure 35 above shows the calculation of the vertices, where we also set a lot of

low level values such as the changes of the position and color.

There are various types of topologies that can be use for drawing object, but the

main and most fundamental one will always be the triangle shape, as shown in

Figure 36, even thought in some occasion we might see some cube looking

object, consider just one side of the cube, it is actually two half of an triangle

combined that creates full cube.

In Figure 37 above, we then again create buffers, which will do a contiguous

block of memory in the GPU that stores the rendering data for a model. First

buffer is the uniform and the copy destination.

Figure 36. Object topology

Figure 37. Buffer

Figure 38. Bind group

23

Having created the buffer for the transformation matrix, we now combine the

resources that may changes overtime with the bind group, this can significantly

minimize the work done by the driver, as shown in Figure 38.

To capture the object changes overtime, in Figure 39 we must define the vertices

array and upload this array to the GPU memory.

Now we create a draw function to update its object transformation given a

perspective from the outside, see in Figure 40.

As shown in Figure 41, within the update transformation matrix, we setting up the

current rendering pipeline, write the current transformation matrix to the proper

buffer, and set the current vertex as the objects’ own buffer.

After the pipeline, we need to set the binding group and call the draw functions,

this is where all 3D objects are given the instructions how to draw themselves,

following Figure 42.

Figure 39. Vertices array

Figure 40. Draw function

Figure 41. Compute pipeline

Figure 42. Binding group

24

3.2.6 Renderer

Initializing the renderer, one must provide a canvas, in canvas we create a swap

chain that enables the rendered frames are transmitted from the GPU memory to

the system memory and then to the canvas, as shown in Figure 43.

In Figure 44, we also need to define a render pass descriptor with serveral

attachments.

In frame function, will do some initialization tell all the objects of the scene to

draw themselves and then submit the command chain and let the GPU do the

work, see in Figure 45.

Figure 43. Canvas for drawing

Figure 44. Pass descriptor

25

3.2.7 Animation Loop

At this point we already have a scene with 3D objects, a camera, a renderer that

instructs GPU to render a frame, a canvas where the frames are displayed. Now

all we need is an animation loop to instruct the renderer to draw a frame, in

Figure 46, here we can call the requestAnimationFrame function to request the

browser to do an animation frame.

There are many types of animation we can do when creating the frame, in this

particular project, we simply create an animation to rotate the objects, as shown

in Figure 47.

Figure 45. Frame function

Figure 46. Animation frame request function

Figure 47. Animation type

26

In addition to the project, we create some buttons to add either a cube or a

pyramid, see Figure 48.

3.2.8 Camera

A camera has a looking position, a looking direction and can be rotated. For the

camera, it uses a projection matrix which has the attributes aspect ratio, field of

view, near and far values. Objects within the camera are projected on a canvas

frame. In Figure 49, we first create a camera class which defines three

dimensional, so we can rotate, zoom in and out of the object.

Figure 48. Interaction buttons

Figure 49. Camera class

27

In Figure 50 shows, the creation of the rotational mechanism for the camera.

In Figure 51 we create the depth mechanism for the camera, so we can zoom in

and out of the object.

3.2.9 Vertices

In the canvas we now have all the tools we need, the camera, the animation loop,

renderer, and the shader for the object. At this point, we now create the cube

vertices as shown in Figure 52.

Figure 50. Camera rotation

Figure 51. Depth mechanism

Figure 52. Cube vertices

28

In Figure 53, we create the triangle vertices array.

3.2.10 Result

For testing purposes, the application will be run on a local machine as can be

seen in Figure 54, which shows the result of the complete application. First time,

when starting the application with npm package, the default web browser is set

by the system, normal it will use Microsoft Edge or set by ourselves during the

usage. For that, again, there will be nothing shown on the browser, because

normal browsers like Edge, Firefox or Google Chrome does not have the

WebGPU API flag supported by the developers. Only by using Chrome Canary or

Firefox Nightly, can we truly see the properly working application.

Figure 53. Triangle vertices

Figure 54. Fully rendered 3D objects

29

Now, try adding in some boxes and pyramids. In Figure 55 the result is expected

to have many more boxes and pyramids at this point.

3.2.11 Resource Consumption

Testing out the rendering consumption of WebGPU technology, we need two

computers, and call it computer A and computer B, one of which will host the

WebGPU and the other will access it. For this demonstration, we use computer A

for WebGPU hosting and computer B try to render the object.

Normally, whenever a web application is being held by a server, that server’s

resources will be used for rendering and processing all the elements of that

specific application. This might be worth the consideration, since WebGPU

application is fairly new technology which allows the objects to be rendered faster

by using a tremendous amount of GPU resources. Surprisingly, during the

experiment, when we tried to use a computer B to access the web application,

and try to render the object, it was not the computer A resources that was used

for rendering, but computer B resources itself. Thanks to this new

“navigator.gpu.requestAdapter”, which will navigate to the nearest GPU

adapter or that specific device to render that object.

Figure 55. Adding more objects into the canvas

30

At this point, the result gives us the idea of how this WebGPU should be

implemented and what benefits it will bring afterward. One thing can be assured,

that if we are planning to host this new technology using cloud technology, it will

not cause us any extra fees during high demand.

4 CONCLUSION

The purpose of this thesis was to create a simple web application, to

demonstrate how convenient, how fast and cost effective this new Web API truly

is. Though WebGL has been around for decades, making many fundamental

improvements, but compared to WebGPU, the new WebGPU definitely a major

technology upgrade for construct.

The API is cleaner, simpler, and easier to understand, while OpenGL's way of

doing things was never exactly popular. Applications have much more control

over exactly how rendering happens and can do more to optimize performance. It

cuts out a huge amount of complexity and overhead in the graphics driver,

bringing much simplier and smaller software driver that reduces bugs in near

future.

Browsers do a lot of validation and security checks, which has a performance

overhead. With WebGPU it can do most of that in advance instead of during

Figure 56. Resource comsumption monitor

31

rendering, reducing the browser overhead. This without a doubt will be the

bleeding edge of the latest web technologies and will be amongst the first

engines to benefit from the improvements that come with it.

32

REFERENCES

Aron Granberg. WebGPU Shading Language https://sotrh.github.io/learn-
wgpu/beginner/tutorial3-pipeline/#what-s-a-pipeline [Accessed 7 April 2022]

Ashley. WebGPU compared to WebGL. WWW document. Available at:

https://www.construct.net/en/blogs/ashleys-blog-2/webgl-webgpu-construct-

1519 [Accessed 28 March 2022]

François Beaufort. WebGPU. WWW document. Available at:

https://web.dev/gpu-compute/ [Accessed 15 March 2022]

JavaScript Language. WWW document. Available

at:https://en.wikipedia.org/wiki/JavaScript#Misplaced_trust_in_the_client

[Accessed 14 April 2022]

Stevewhims. Compute pipeline | Microsoft Docs. WWW document.

Available at: https://docs.microsoft.com/en-us/windows/uwp/graphics-

concepts/compute-pipeline [Accessed 20 April 2022]

TypeScript. WWW document. Available at:

https://en.wikipedia.org/wiki/TypeScript#cite_note-7 [Accessed 14 April

2022]

Vertex, fragment. WWW document. Available at:

https://sotrh.github.io/learn-wgpu/beginner/tutorial3-pipeline/#what-s-a-

pipeline [Accessed 22 April 2022]

https://sotrh.github.io/learn-wgpu/beginner/tutorial3-pipeline/#what-s-a-pipeline
https://sotrh.github.io/learn-wgpu/beginner/tutorial3-pipeline/#what-s-a-pipeline
https://www.construct.net/en/blogs/ashleys-blog-2/webgl-webgpu-construct-1519
https://www.construct.net/en/blogs/ashleys-blog-2/webgl-webgpu-construct-1519
https://web.dev/authors/beaufortfrancois/
https://web.dev/gpu-compute/
https://en.wikipedia.org/wiki/JavaScript#Misplaced_trust_in_the_client
https://github.com/stevewhims
https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/compute-pipeline
https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/compute-pipeline
https://en.wikipedia.org/wiki/TypeScript#cite_note-7
https://sotrh.github.io/learn-wgpu/beginner/tutorial3-pipeline/#what-s-a-pipeline
https://sotrh.github.io/learn-wgpu/beginner/tutorial3-pipeline/#what-s-a-pipeline

33

LIST OF FIGURES

Figure 1. WebGL code ... 5

Figure 2. WebGPU code .. 5

Figure 3. Vertices ... 8

Figure 4. Install WebGPU packages .. 9

Figure 5. Install jpeg-js library ... 9

Figure 6. Create JPEG input and output machanism 9

Figure 7. Import libraries from jpeg-js ... 10

Error! Reference source not found. .. 10

Error! Reference source not found. .. 10

Figure 11. Create array buffer .. 11

Figure 10. Raw image pixel data process ... 11

Figure 12. Transform data to URL .. 11

Figure 13. Assign data URL to HTML ... 12

Figure 14. Access the GPU resouce .. 12

Figure 15. Width and Heigh buffer .. 12

Figure 16. Pixel buffer .. 13

Figure 17. Processed raw pixel containment .. 13

Figure 18. Reading the buffer ... 13

Figure 19. Bind Group Layout .. 14

Figure 20. Bind Group .. 14

Figure 21. Creating shader module .. 15

Figure 22. Compute Pipeline .. 15

Figure 23. WebGPU Shading Language .. 16

Figure 24. A main function for WGSL ... 16

Figure 25. Structure instance ... 17

Figure 26. Binding group access .. 17

Figure 27. Color inversion .. 17

Figure 28. Compute pass ... 18

Figure 29. Read result .. 18

Figure 30. Enable WebGPU flag .. 18

Figure 31. Final result ... 18

Figure 32. Vertex structure ... 20

34

Figure 33. Fragment structure .. 21

Figure 34. Create GPU instruction ... 21

Figure 35. Vertices calculation ... 21

Figure 36. Object topology ... 22

Figure 37. Buffer ... 22

Figure 38. Bind group ... 22

Figure 39. Vertices array .. 23

Figure 40. Draw function .. 23

Figure 41. Compute pipeline .. 23

Figure 42. Binding group .. 23

Figure 43. Canvas for drawing ... 24

Figure 44. Pass descriptor .. 24

Figure 45. Frame function .. 25

Figure 46. Animation frame request function .. 25

Figure 47. Animation type ... 25

Figure 48. Interaction buttons ... 26

Figure 49. Camera class .. 26

Figure 50. Camera rotation ... 27

Figure 51. Depth mechanism ... 27

Figure 52. Cube vertices .. 27

Figure 53. Triangle vertices .. 28

Figure 54. Fully rendered 3D objects ... 28

Figure 55. Adding more objects into the canvas ... 29

Figure 56. Resource comsumption monitor .. 30

	1 INTRODUCTION
	2 THEORY
	2.1 WebGPU
	2.2 WebGPU or WebGL?
	2.3 WebGPU Shading Language
	2.4 JavaScript Language
	2.5 TypeScript
	2.6 Compute Pipeline
	2.7 Vertex, fragment

	3 IMPLEMENTATION
	3.1 Color Inversion
	3.1.1 Create JPEG image and read Pixel Data Input
	3.1.2 Access GPU device
	3.1.3 Buffer
	3.1.3.1 Width Height buffer
	3.1.3.2 Pixels buffer
	3.1.3.3 Result buffer
	3.1.3.4 Read buffer
	3.1.4 Bind Group Layout and Bind Group
	3.1.4.1 Bind Group Layout
	3.1.4.2 Bind Group
	3.1.5 Shader Module and Compute Pipeline
	3.1.5.1 Shader Module
	3.1.5.2 Compute Pipeline
	3.1.6 WebGPU Shading Language – WGSL
	3.1.7 Compute Pass
	3.1.8 Read the result
	3.1.9 Project Testing
	3.2 3D Object Rendering
	3.2.1 Concept of Rendered 3D Object
	3.2.2 Using GPU resource
	3.2.3 Rendering Object
	3.2.4 Shader
	3.2.5 Object Initialization
	3.2.6 Renderer
	3.2.7 Animation Loop
	3.2.8 Camera
	3.2.9 Vertices
	3.2.10 Result
	3.2.11 Resource Consumption

	4 CONCLUSION
	REFERENCES
	LIST OF FIGURES

