
 

 

 

 

Full-stack project containerization 

 

Geoffrey Thielman 

 

Haaga-Helia University of Applied Sciences 

Bachelor’s Thesis 

2022 

Thesis report 

 

 



 

 

Abstract 

 

 

Author 
Geoffrey Thielman 

Degree 
Bachelor of Business Administration 

Report/thesis title 
Full-stack project containerization 

Number of pages and appendix pages 
40 + 9 

 
Software development has undergone an overhaul when it comes to the testing and 
delivering software products. Hosting software for business related purposes upon 
virtual machines has grown to be an encumbering process with significant overhead 
when it comes to manging many virtual machines. The industry has shifted towards 
utilizing containerization technologies to solve this overhead and to leverage 
consistency of their products. 
 
The author explores the concepts and role of virtual machines within its former 
traditional hosting role for software compared to that of containers, its successor. He 
suggests that containers add value to traditional virtual machines hosting with added 
security and increased abstraction while creating consolidating physical resources to 
the actual software solution rather than the operating system and overhead processes. 
 
The introduction of a product thesis covered that of a testing tool in development that 
already has been taken into use with a growing pain of building installers as the end 
solution for the testing and delivering the product to the end-users. Slow builds have 
been hampering testing phases significantly due to wait times for the installer to be 
built. The solution previously being prone to environmental errors caused by 
installations in unsupported operating system by end-users which has been taking time 
away from developers to resolve these. 
 
The thesis goals have been set by the author to minimize these problems by 
containerizing the full-stack project that makes up the testing project, to automatize its 
building process and to publish to an Artifactory storage. The sub-goal being to reduce 
build times by at least 40 % compared to its previous build solution. 
 
Overcomming implementation difficulties and having theorized multiple methods to 
optimize build times with various tools, the author succesfully containerized the project 
into isolated containers for each component. Having containerized the solutions he 
constructed the continuous deployment pipelines required to accommodate the need 
for automation. 
 
The author concludes the project in an overall succes while displaying minimum time 
saves of 55 % and describes direct and indirect benefits of the containerization for the 
future of the test tool’s development. 

Keywords 
Containerization, DevOps, Full-Stack, Docker, Automation 



1 
 

 

Table of contents 

1 Introduction ................................................................................................................... 1 

1.1 Problem setting .................................................................................................... 2 

1.2 Project scope ....................................................................................................... 3 

2 Virtual machines and containers ................................................................................... 4 

2.1 Hypervisor Virtualization ...................................................................................... 4 

2.1.1 Type 1 Hypervisor ........................................................................................ 5 

2.1.2 Type 2 Hypervisor ........................................................................................ 5 

2.2 Definition of containers ........................................................................................ 6 

2.3 The big picture of containers ................................................................................ 7 

2.4 Docker ................................................................................................................. 8 

2.4.1 Dockerfiles .................................................................................................... 8 

2.4.2 Docker Image ............................................................................................... 9 

2.4.3 Docker tools for optimization......................................................................... 9 

3 Project details ............................................................................................................. 10 

3.1 Robot Framework .............................................................................................. 10 

3.2 Jenkins .............................................................................................................. 10 

3.3 Artifactory .......................................................................................................... 11 

3.4 Full-stack project description ............................................................................. 11 

3.5 Problem statement ............................................................................................ 12 

3.6 Possible benefits from containerization .............................................................. 13 

3.7 Project objectives .............................................................................................. 14 

3.8 Implementation plan .......................................................................................... 14 

3.8.1 Containerization implementation plan ......................................................... 15 

3.8.2 Pipeline implementation plan ...................................................................... 15 

4 Implementation work ................................................................................................... 17 

4.1 Database containerization process .................................................................... 17 

4.1.1 Problems occurred ..................................................................................... 18 

4.1.2 Implementation changes ............................................................................. 18 

4.1.3 Implementation result ................................................................................. 19 

4.2 Executor containerization process ..................................................................... 20 

4.2.1 Problems occurred ..................................................................................... 21 

4.2.2 Implementation result process .................................................................... 21 

4.3 Webserver containerization process .................................................................. 22 



2 
 

 

4.3.1 Problems occurred ..................................................................................... 23 

4.3.2 Implementation results ................................................................................ 24 

4.4 Pipelines construction process .......................................................................... 26 

4.4.1 GitLab Runner creation ............................................................................... 26 

4.4.2 Pipelines implementation ............................................................................ 27 

4.5 Storing container images ................................................................................... 29 

4.6 Hosting the containerized project ....................................................................... 30 

5 Evaluation ................................................................................................................... 33 

5.1 State as is with Jenkins ..................................................................................... 33 

5.2 Full automatization with GitLab and Docker ....................................................... 35 

5.3 Build time comparison ....................................................................................... 36 

5.4 Containers brings complexity ............................................................................. 37 

5.5 Containers require extra security ....................................................................... 37 

6 Conclusion .................................................................................................................. 39 

6.1 Next steps ......................................................................................................... 40 

References ...................................................................................................................... 41 

Appendices ...................................................................................................................... 47 

Appendix 1.  Resulting database Dockerfile ................................................................. 47 

Appendix 2.  Resulting executor 2-stage Dockerfile ..................................................... 48 

Appendix 3.  Resulting webserver 4-stage Dockerfile ................................................... 49 

Appendix 4.  Resulting executor pipeline job ................................................................ 51 

Appendix 5.  Resulting webserver and database pipeline job ....................................... 53 

Appendix 6.  Jenkins build trend ................................................................................... 55 

 



1 
 

 

1 Introduction 

Software development is in an ever growing process that continues to rise significantly 

with the need to fufill a higher demand (Carey 2022). With software development comes 

the software development life cycle which contains phases such as planning, analyzing, 

designing, developing, testing , deployment, and maintanance. 2 of the key phases being 

testing and deployment where we have to assure the software is working as intended and 

delivering the working solution (Demchenko 2021). Testing software can be done by 

implementing software tests and to have them executed in an automated fashion. 

Software for intended for distribution is often packaged to an installer which then can be 

made publicly available. When software is distributed in this way the installation has to be 

tested upon multiple operating systems to ensure it works as expected. One of the biggest 

challenges is this ensurance that the solution works well within the environment in which 

end-users will house the solution. The finished products of software projects are typically 

providing their services hosted upon virtualized software when it comes to software 

intended for use within business practices. This virtualized software being virtual 

machines which now long has replaced traditional dedicated hardware with a more 

elegant software-based architecture. Virtualization technologies has made the 

development lifecycle easier, especially when it comes to hosting multiple operating 

systems to install software upon for testing purposes. It allows you to deploy multiple 

operating systems to meet demands in a timely fashion (Carklin 2021). However, 

tradiational virtual machines still requires a significant amount of overhead. An operating 

system has to be provided in the virtual machine before the software can be installed. 

Furthermore, the operating system itself requires some resources in order to operate 

functionally, this being CPU power, RAM and disk size. This combined with other software 

present on the operating system can take up a hefty amount of resources that could 

otherwise be allocated directly to the resource pool availble for the running of our to be 

tested or hosted software (Simic 2019a). Having multiple virtual hosts running upon the 

same hardware can impact performance significantly. Furthemore, providing software as a 

service does not guarantee that end-users will host the software on a suitable 

environment that is recommended by the developers. This in turn can cause 

environmental problems with certain feature or result in a total failure to run the software. 

Building installers and testing them upon multiple environments is also a time costly 

procedure which limits developments time significantly. 

 

Containers eleviates these problems by being able to provide a guaranteed consistent 

environment. Containers unlike tradational virtual machines don’t add another operating 

system upon the host but rather leverages the host’s operating system to provide an 



2 
 

 

isolated environment for execution. These containers can be optimized to reduced size by 

giving the option to only provide and install the bare essentials within the isolated 

environment. Furthermore, distribution of the software becomes easier as a total software 

package can be seperated into multiple containers and the update process can be 

targeted to a specific container instead of having to update the entire solution everytime 

(Powell 2021). Containerization brings many advantages over traditional virtual machines 

and their implementation makes both development and delivery. These being the ability to 

easily orchestrate your solution with multiple container and limiting the amount of 

overhead needed. The portability of containers adds to the ease of usage, especially with 

its guaranteed working environment  (Peltokorpi 2021, 13). 

 

Currently within our company we are developing an advanced Test Tool. This project aims 

to increase testing flexibility and consolidate testing tools under one software. With a 

distributed system aproach the project requires to be able to be deployed easily and run in 

most environments. Containerization of the project has been planed work as one of the 

stepping stones towards the productization of the project. Containers could possible bring 

benefits within the development process. But due to late introduction of container 

virtualization within the project there could be some difficulty. 

 

1.1 Problem setting 

As indicated in the previous section, traditional virtual machines bring unnecessary 

amounts of overhead to make an environment ready for the project’s testing and/or 

hosting. This also makes it so that we must package our software to be able to be directly 

installed by the end-users. Even stating which operating systems we support does not 

mean that the end-users will adhere to our advice. Furthermore, a lot of time in our 

development life cycle is wasted by testing upon multiple operating systems and resolving 

all the errors which occur in these different environments and end-users’ environments. 

For every error that would be found and solved during our sprint’s testing phase, the 

software package will have to be rebuilt, reinstalled and re-tested. This process interrupts 

the flow of development and testing outside the already long packaging times of the 

software. 

 

The thesis aims to research and measure the impact of containerization as our method of 

building and providing the solution to end-users by packing our solution within containers. 

Also, this thesis aims to find out how our development workflow can be optimized by 

decreasing test, build, distribution and deployment time through the process of introducing 

containerization and automation. An additional goal is to find out what changes are to be 



3 
 

 

implemented to the project to accompany this structural change as container technologies 

are being introduced in an already long running project which is now near its production 

phase. 

 

1.2 Project scope 

The commissioned project thesis focusses on our company’s full-stack project, and all its 

components needed to make the application work. Furthermore, the automation of its 

building process and method of distribution is covered in the practical part of the thesis. 

The thesis mainly focuses on Linux-based containers due to the limitation of windows 

containers due to them only being developable and runnable on windows host systems 

(Microsoft 2021) which requires some licensing which falls outside the scope and time 

frame of the thesis.  Extra steps must be taken to be able to host windows containers 

together with Linux-based containers on the same platform (Haakman s.a.). The thesis 

covers the research, planning and implementation of the project’s containerization. 

Container virtualization is researched by literature review before its technology is 

implemented by a proof-of-concept. This includes a theoretical implementation plan and 

practical implementation. The work to make the solution work within containers is 

documented together with all the rework required to project itself. The success of the 

project will be measured directly by the increase in performance, this specifically being 

faster build times compared to the current solution and the throughput of the 

automatization process consuming the build times. 

 



4 
 

 

2 Virtual machines and containers 

IBM’s first iteration of virtualization came originally from the 1950s when large-scale 

mainframes were being made available to schools and companies. These mainframes 

were widely expensive. To cut costs where possible it became vast practice for users to 

have access to the same data storage and compute power from any station. However, 

IBM released the first operating system called “VM” that allowed system administrators to 

have multiple virtual machines upon their System/370 mainframe (IBM 2017). It wasn’t 

until around the 2000s when virtualization started to really take off for x86 architecture 

CPU’s. This is when virtualization software like VMware started to release their first 

versions which set the trend for modern virtualization. In the early days this was mainly 

achieved through various software techniques. Modern-day virtualization techniques 

require specific hardware that supports it, this being mainly CPU’s and motherboards 

which comes with the BIOS firmware feature to enable virtualization. (Agesen 2009). With 

virtualization we essentially programmatically emulate an entire computer system on top 

of a physical computer. Here we have a guest which is the virtual machine on top of the 

host or the physical computer.  

 

There are many benefits as to why one would use virtual machines as a solution instead 

of multiple physical hosts. The most predominant being the cost price for the solution of 

virtual machines being much lower as you can host multiple virtual machines upon a 

single host. You can combine and allocate your compute resources to your virtual 

machines dynamically to meet any type of demand. With only running physical hosts you 

are at risk for investing heavily in wasted compute power when the demand is lower than 

your physical compute power. This makes virtual machines a more ideal solution for 

providing hosting services for various needs. The ease to manage virtual machines is the 

most alluring feature about the technology as it is much easier to manage than a physical 

server as backing up, restoring, booting, and scaling can all be done through the 

management tools provided by the virtualization tools (Jayaraman & Rayapudi 2012, 12-

14). 

 

2.1 Hypervisor Virtualization 

Hypervisor-based virtualization is the current method of virtualization. Hypervisor-based 

virtualization brings an intermediate layer that is created between the virtual machine layer 

and the host operating system layer called the hypervisor. A hypervisor is software that 

manages and monitors virtual machines. This software creates the opportunity to run 

multiple virtual machines within a single host because it does not virtualize the physical 

hardware directly, but instead abstracts the computer’s hardware with software. Here the 



5 
 

 

hypervisor software translates requests between the physical and virtual resources 

(VMware, s.a.). There are 2 types of hypervisor virtualization these being Type 1 

Hypervisor or “bare-metal hypervisor” and Type 2 Hypervisor or “hosted hypervisor”.  

 

2.1.1 Type 1 Hypervisor 

Type 1 Hypervisor or the bare-metal hypervisor runs directly on the physical hardware, 

this meaning that there is no intermediate host operating system between the hypervisor 

and the physical hardware. This is the most used type of hypervisor due to its efficiency 

when providing requests from the virtual machine to the physical hardware as it does not 

need to go through any host operating system. Running directly on the physical hardware 

also comes with the benefit that more virtual machines can be created as no resources 

have to be used for any host operating system. Due to these benefits the Type 1 

Hypervisor seem to be also the most secure as any vulnerabilities from a host operating 

system are not applicable to this solution. (Singh & Singh 2018, 19) 

 

 

Figure 1. Type 1 Hypervisor Diagram (Adapted from Simic 2019b) 

 

2.1.2 Type 2 Hypervisor 

Type 2 Hypervisor or the hosted hypervisor is installed within the hosts operating system, 

hence the naming being “hosted”. This type of hypervisor is less popular within company 

workspace due to it being less efficient than the Type 1 Hypervisor as requests from the 

virtual machine must go through the hosted operating system before reaching. This type 

of hypervisor is more in line with how past x86 virtualization as they were a software layer 

within the operating system. The fact that the hypervisor is working within the host instead 

of directly on the physical hardware means that this type of virtualization does support a 

wider range of hardware. (Singh & Singh 2018, 20) 

 



6 
 

 

 

Figure 2. Type 2 Hypervisor Diagram (Adapted from Simic 2019b) 

 

2.2 Definition of containers 

A different method of virtualization is achieved with containers. Instead of virtualizing an 

entire virtual machine, containers virtualize an isolated environment which does not 

directly virtualize the physical hardware of its host, but instead virtualizes the operating 

system. Containers in turn share the host’s operating system’s kernel and does thus not 

require an operating system to be applied within the virtualized environment. This in term 

makes them more portable and efficient than traditional virtual machines. Unlike virtual 

machines whose goal is to provide a complete virtualized operating system solution, 

containers have as their goal to package code, software, and all their dependencies so 

that the applications can run within their own isolated environment. This is achieved by an 

intermediate layer that converts container images to containers at runtime, this being the 

engine (Docker s.a.). 

 

 

Figure 3. Container Virtualization (Adapted from Docker s.a.) 

 

Virtualizing the environment and leveraging the host OS kernel gives containers a lot of 

flexibility as they can run within any supported OS as long as the container software has 



7 
 

 

been installed. This also gives the benefit that the environment within the containers does 

not interact with the host. It is completely isolated which allows the same containers to run 

on any operating system while adding an extra layer of security. 

 

2.3 The big picture of containers 

Containers provide many benefits to the software development lifecycle and has mostly 

replaced traditional virtualization in software development and hosting due to its ease of 

use. However, it is important to notice that VM’s are not phased out of the industry. As a 

matter of fact, they are still holding their excellent usefulness outside of development and 

are still used as a hosting platform for various services. Containers and VM’s work well 

together for their combined security. Especially when containers opposed to VM’s are 

more so streamlined to enhance security controls directly (Guo 2017). While VM’s add a 

layer of security by isolating the physical resources from the host and containers, in the 

case of Type 1 Hypervisors the security is more appropriate due to not having host OS 

vulnerabilities as there is no presence of a host OS. As Eder Michael describes (2015, 6) 

both technologies can be combined to improve overall security. However, this is not out of 

the box security, containers still have to be configured properly to achieve this extra 

security. Containers when correctly implemented do provide slightly more security than 

hosting multiple application on the same host. 

 

The biggest advantage of packaging your software application in containers is the overall 

ease of management. Take the situation of hosting your application bare on a VM. Here 

we’d subsequently have to go through the process of installing all the dependencies of our 

software project and make sure the environment is properly configured to support our 

services, this process is tedious and requires some manual configurations to a certain 

extent. When utilizing containers, we use a container image file as a blueprint to define 

the configuration and packaging of our container, when building a container image, the file 

is followed to build our containers from during runtime. This blueprint will always be 

followed and automatically compiles the total package identically. This cuts out installing 

dependencies and most of the configurations in the host machine. Making containers 

excellent for leveraging a consistent and easy to manage environment (Dahlitz 2021). 

 

Containerization of software has taken its key spot within the development lifecycle due to 

its strong benefits and portability. It is only natural then that VM’s have taken a more sole 

hosting-based role and are not appropriate anymore for efficient software testing and 

hosting. 

 



8 
 

 

2.4 Docker 

The concept of containers has been floating around for quite a while. But the subject has 

become stale before Docker reinvigorated the container idea when it came to the open-

source market in 2013. In its original state Docker had many flaws, mostly being security 

issues. It wasn’t until Microsoft entered the fold with offering containerized solutions and a 

large fundraiser that Docker became a widely used technology (Muñoz 2019). As it stands 

now, Docker is currently the most used technology for containers. The choice to utilize it in 

this project is thus natural as Docker containers can be launched individually through the 

command line or orchestrated through Kubernetes, Docker Compose and other 

orchestration software. This making it ideal for end-users to decide themselves how to 

orchestrate the containers according to their preferred methods. Docker provides us with 

Linux-based application containers (Murillo 2019). 

 

2.4.1 Dockerfiles 

Incorporating Docker within a software project is simple. The Docker engine installed by 

the Docker software utilizes a Dockerfile to build a container image. This file is a blueprint 

of how we will build our environment and run our software specifically. Within a Dockerfile 

you can create your own environment from scratch or utilize another image as a base 

image. This is done by stating a “FROM” instruction upon which you can expand your 

image upon in further instructions. One of these being the “RUN” instruction which will 

execute any given command in a new layer on top of the current image which is currently 

being built. Upon successful execution of the given command the image with the added 

layer is committed before the next instruction in the Dockerfile starts a new layer. The 

“COPY” and “ADD” instructions allows us to introduce files and/or directories from the host 

to the container. The later of the two instructions not being solely limited to the local host 

OS as it can also utilize network sources through the means of an URL. The “VOLUME” 

instruction lets us create a specific volume that will be mounted to the specified directory 

within the container. Volumes allow us to persist data between restarts.  Docker 

containers are naturally isolated environments, in order to allow communication with our 

applications we will need to open ports for inbound traffic, this being achievable through 

the “EXPOSE” instruction. The final instruction within a Dockerfile is the “CMD” instruction. 

Here we can specify the running command which will be the starting of our software 

application. When extra executions need to be executed after our software application has 

launched, we can utilize the “ENTRYPOINT” instruction which will be executed upon the 

containers launch after the “CMD” instruction. Each instruction within a Dockerfile can be 

seen as a layer the total execution of all layers by the Docker engine will result in an 

image. Build arguments or “ARG” variables can be introduced which will be available 



9 
 

 

solely when building the image compared to “ENV” variables which can be utilized during 

both the build of the image and overwritten at runtime of a container (Jayawawardana 

2019). 

 

2.4.2 Docker Image 

An image is thus compiled from the Dockerfile, this image is the application and all its 

dependencies combined with the instructions for creating a container. This image will be 

executed at runtime to produce the final container which will host our application. Images 

range in size depending on the number of layers that are introduced, and which base 

image is being built upon. This size is quite important as the final image is required to be 

on the host which will run the container, thus making the image the distributed product for 

end-users to run a container from (Eschweiler 2019). It is in everyone’s best interests to 

reduce the image size as much as possible. This can be achieved with traditional 

Dockerfiles by limiting the number of instructions and combining “RUN” instructions as 

much as possible. Further reduction of size can be made by choosing to utilize a smaller 

base image. For example: Alpine based images are traditionally smaller and more 

optimized than an Ubuntu or Debian image.  Full-fledged Python images are large in size 

in comparison to a Python-Slim image as the slim images contains the minimal number of 

packages needed to run simple applications and are built upon lightweight images 

themselves (Garcia 2020). You typically want to use a smaller image and add the required 

packages on top of it instead of using a full image with packages already included that are 

obsolete for your applications.  

 

2.4.3 Docker tools for optimization 

Docker also comes with various tools. Such as the ability to utilize multi-stage builds 

which can help us optimize our images. Multi-stage builds allow us to define stages within 

a Dockerfile which are independent stage builds defined within the same Dockerfile. Here 

we can reduce the number of layers defined in the final image by handling compiles and 

dependencies collection where possible in an earlier stage which then will be copied over 

to the final stage. These stages representing different images and only the final stage will 

compose the final image. All previous stages are discarded upon build completion (Ferrill 

2021). When it comes to optimizing performance, we can utilize Docker BuildKit. This 

feature is beneficial as it enables enhanced caching of containers and its layers. 

Furthermore, BuildKit allows for the layers that are not dependent on other layers to run 

parallel which increases build performance significantly when coupled with multi-stage 

builds (Walker 2020). As such containerization projects should leverage these tools as 

much as possible. 



10 
 

 

3 Project details 

The project that is subject to containerization is still actively in development and is looking 

to enter the productization phase. This phase being the making ready of the solution for 

larger distribution and a full release. Our full-stack project that’s build on top of Robot 

Framework has been in development for quite some time. The project has naturally 

progressed into a working solution that is still being expanded. This development comes 

accompanied with various tools and technologies that are exterior to the actual software 

project but are present to build and enhance performance. These being Jenkins and 

Artifactory.  

 

3.1 Robot Framework 

Robot Framework is an open-source test-automation framework built on top of Python. 

This framework allows us to execute different test sets that can test a variety of 

components in an automated fashion. Robot Framework utilizes Robot files or script files 

containing keywords instead of functions to define the operations needed to execute tests. 

The basic Robot software is not made to interact specifically with different software or 

hardware but is expandable through the use of libraries. These libraries extend the use of 

the Robot application exceedingly as standard libraries are provided but can also be 

written for new applications, if need be (Robocorp 2022). The inclusion of Robot 

Framework makes up for the core component of our test tool that allows us to expand test 

boundaries significantly through the addition of libraries when building a container and at 

run time of the application. 

 

3.2 Jenkins 

Jenkins is an open-source automation software aimed for continuous integration and 

continuous deployment. This meaning that it offers pipeline solutions to test and build 

software when needed in an automated fashion. Jenkins can work with any type of 

software project through the means of plugins which can be enabled and allows for 

optimization within your builds. Pipeline jobs are automated processes which consist of 

multiple user defined steps which will be executed upon a trigger. A trigger can be a code 

commit to a Git repository. This software can then retrieve the repository and execute a 

test run and/or a build, in the case of a build job the Jenkins job can store the completed 

build in object storage or repository to your liking (Saurabh 2022). Jenkins is mainly used 

within our project to package and create our installers which we can test upon. The builds 

are manually executed by the developers when release testing is being conducted. 

 



11 
 

 

3.3 Artifactory 

Artifactory is a package management software that offers its services by providing hosting 

solutions with repositories. Here users can create repositories for different purpose. In our 

use case we use repositories to cache project dependencies such as the python and node 

dependencies. Caching these dependencies within our internal network saves a 

considerable amount of time and potential costs compared to utilizing the node package 

repository. We are minimizing the download time here considerably by doing so. 

Furthermore, a repository to store our final builds allows developers and end-users to 

easily access the built solution to which they can retrieve them manually or automatically 

and deploy them. Artifactory thus having the ability to support both our development 

phase and build phase (Jfrog, s.a.). 

 

3.4 Full-stack project description 

Testing has become an import process within software development. Automated testing 

systems alleviates a lot of manual labour, but when it comes to specific areas such as 

research and development normal test tools don’t cover the wide spectrum of needs as 

they have not been fully developed yet or require multiple tools to cover all areas of 

development needs. Our project which has created a high-level tool allows to execute test 

cases automatically. It is a distributed system which is highly scalable and modular as you 

can easily add different test environments and utilize it as a test editor. With this tool we 

can control any software or hardware as long as it provides some kind of communication 

interface. 

 

Figure 4. Project architecture of the main components. 

 

The project is divided into multiple components which work together to provide the entire 

test solution. The MongoDB database as data storage solution, this database services 



12 
 

 

both the webserver and the core part of the project. Our node.js webserver is the middle 

component which provides the data on request through API endpoints for the WebGUI 

and provides the means to start/edit/stop executions on local and remote Core instances 

through XML-RPC requests, these being remote procedure calls encoded by utilizing 

XML. Robot test files are housed at the webserver and transferred through FTP when 

needed on by the core. The React.js WebGUI is our standard user interface and entry 

point for our end-users which allows us to configure our setup, choose the servers we 

would like to execute upon, analysis test executions, edit test cases directly, manage 

automation, and much more. 

 

The Core instance or our executor instance as we also name it is a Python application 

built on-top of Robot Framework. It consists of a MasterService which is the high-level 

management of the application. It is the listening process which will initiate the executor 

process which spawns the needed robot libraries to execute the tests upon. The core 

instance is a versatile application as it is normally attached to a webserver directly but can 

also be deployed as a stand-alone remote service. This makes executions of different 

tests easier and allows for different core instances to fulfil different testing needs through 

different testing applications or libraries. 

 

The project is currently ongoing which is now nearing its productization phase. This 

meaning that the tools are actively in testing while it’s in usage and the steps are being 

made to finalize the project as deliverable solution. This productization phase has the goal 

to enhance the security and portability of the solution. 

 

3.5 Problem statement 

In the current state of our project, we package our total solution to an installer once a 

month when the newest version of the project is distributed. This aligns with our sprint 

schedules as we conduct a 1-month iterative sprint with 3 weeks development time and 1 

week testing time where the main branch in the repositories is under a code freeze. This 

meaning that all changes and added features will be merged into the main branch and will 

be tested for any possible faults. The packaged installer will be deployed and tested upon 

different VM’s with different operating systems.  

 

A one week testing phase is quite long for development iterations, this is mainly due to 

limited resources available in our cloud. We have to utilize our cloud environment to load 

VM images on which we then install the newest version of our solution. Then we can 

conduct testing of the new features and changes accordingly. When a fault is found within 



13 
 

 

the new features, this has to be fixed if possible before the testing phase is completed, 

and the release of the new version is made. This means that once the fix has been 

implemented the solution has to be repackaged, installed and tested. Currently we utilize 

Jenkins to build our installers. In its current state it takes on average about 20 minutes to 

package a new installer according to our latest builds. This is due to the fact that 

regardless of the amount of changes the total solution has to be repackaged into a new 

installer. This means that at times our developers who are testing the solution are stuck 

waiting for the packager to complete and hampers testing significantly when multiple faults 

are found. What also costs a lot of time is the fact that we are testing our solution within 

multiple environments. This being windows, Debian, CentOS, Fedora, and Ubuntu. 

Naturally we want to ensure that our solution works within the environments we support. 

However, even with all testing is completed and we can make a new release doesn’t 

mean that we won’t receive fault notices from the teams who utilize our testing solution. 

Sometimes these faults are due to the environments they are installed upon. 

 

3.6 Possible benefits from containerization 

The containerization project has been on the project backlog for quite some time and is a 

productization requirement for both as a deliverable to end-users and its security 

hardening phase. It is only natural that this project must be completed as soon as possible 

as it will move our project closer to production and to reap the benefits for our 

development team and end-users. 

 

By containerization the project we can make our deliverable solution more consistent as 

we are no longer just providing the software installer, but also the complete environment 

which will guarantee consistency within its isolated containers as the operating systems 

will no longer play a factor in the behaviour of our application (Pulfer 2018). Furthermore, 

the dependencies installation will no longer be handled by the packaging, but by the 

container images. If we individually pack our different components, we will be able to 

significantly reduce build times of the final image compared to our current Jenkins build 

job due to being able to only rebuild the individual images that have had changes since 

their last build. Furthermore, the biggest benefit to reap from this project is the overall time 

we can create for our developers to spend developing by reducing the testing time. As we 

only provide one environment per component we no longer have to test on multiple 

different environments and will also reduce the amount of environmental bug tickets from 

our current end-users. 

 



14 
 

 

3.7 Project objectives 

As stated in the previous sections we have some clear problems we want to alleviate and 

the benefits of containerizing our project will fulfil this need. The clearest project pain 

being the testing time needed before we can provide a release and how much of a blocker 

the Jenkins job builds can be. Minimizing testing time and optimizing the automated jobs 

associated with providing the complete solution. Moving away from Jenkins build jobs 

dependencies and build the proper CI/CD pipelines to automatically build and store our 

deliverable. The container image size could provide a challenge as we no longer provide 

solely installers but a complete packaged environment which includes our projects 

components. We want to be able to reduce the size of our images as much as possible 

while still having the desired performance of the containers at runtime. Before phasing out 

the Jenkins jobs we want to make an effective difference between the build times of our 

current Jenkins build job and the containerized solution. An appropriate project goal would 

be at least a 40% reduction in build times. 

 

As such the project goals are as follows: 

- Containerize the projects components. 

o contain size as much as possible. 

- Optimize the build performance. 

o Cut down build time as much as possible. 

- Construct the pipelines so that we can automatically build and store our 

project’s deliverables. 

 

While containerization and constructing the automated pipelines are the main goals of the 

thesis project, we still want to discuss the hosting of the containers for demonstrative 

purposes. This however is not a project goal because we as providers and developers 

have no control of how end-users will orchestrate the container solution, but merely can 

provide an example. As such the theory of hosting the containers will be discussed. 

 

3.8 Implementation plan 

Due to the nature of the project and the possible problems that might occur during the 

implementation process as containerization is introduced in a late stage of the project the 

implementation method will follow a development work methodology. This methodology 

refers to the use of new information that will be generated by research in how to 

implement the containerization and the practical experience before and while 

implementing to move the project along. To achieve the end results of the project we have 

to split up our tasks accordingly in an order that would make logical sense, this being a 

containerization phase and a pipeline phase. 

 



15 
 

 

3.8.1 Containerization implementation plan 

The containerization phase will take all the processes into account to successfully create 

the images of our solution. Here we have opted to utilize Docker as our containerization 

tool for consistency with other project and its universal usage. We want to individually 

package our 3 main components independently within their own isolated containers. 

These being the database, webserver and the executor.  The order of our containerization 

phase will be to create the image of the database first before the executor image and 

finally the webserver image. Normally you would want to separate the webserver’s server 

and client components into individual containers. However, since our server and client 

communications are not solely through API interfaces but also shared files in directories 

which both components need to access means we will have to put the entire webserver 

within the same image. To successfully implement our solution, we will have to take a 

close inspection at the Jenkins build jobs and the installer build scripts to be able to mimic 

our desired environment with the container images. 

 

Where possible we want to utilize lightweight base images to build our final image upon. 

These being mostly slim or alpine based if applicable. These images provide the lowest 

size while in theory providing the same functionality. Using full environment images would 

results in our finalized images being over 1 gigabyte in size. This would be quite 

hampering for both storing the images and distributing them. Appropriate research and 

testing must be done to measure the viability of the images in question to assure their 

performance to be also satisfactory to our needs. Due to the nature of the project planning 

will only get us so far. Containerizing a product that has already been in development for 

quite some time is very touch and go as to what works and what not. As such a simple 

plan is created during implementation and modified according to what works and what 

does not by creating a proof of concept. 

 

3.8.2 Pipeline implementation plan 

Containerizing the project is the biggest chunk of work due to the nature of research and 

work that goes into it. The pipelines phase refers to the construction of Continuous 

integration and continuous deployment pipelines. We want to make it so that our images 

get build automatically as changed are being applied to the GitLab repositories which 

house the webserver and executor project, the webserver repository also houses the 

database scripts. Due to the nature of containerization, we have already defined how the 

images are built within the first phase of the project. In this phase we make it so building is 

automated through a pipeline job which will retrieve the repositories, stage the Docker 

build and finally store the completed image in an Artifactory repository. Here developers 



16 
 

 

and end-users can retrieve the completed builds. 3 pipeline jobs will have to be 

constructed for each of the components and only changes to the component will cause a 

rebuild of the image that requires the changes. Other components should not be rebuilt if 

no changes have been made to the project or the build job.  For example: when a change 

has been made to the webserver repository to the webserver component then only the 

webserver image should be rebuilt as no changes were made to database scripts nor the 

executor/core repository. 

 

We want to create one or more GitLab runners as the host where each of the pipeline jobs 

will be executed. Introducing a runner gives us advantages that our source code is secure 

within our own environment, and that we can introduce scheduling and specific 

configuration to optimize performance even further, if need be, in a simple manner 

compared to utilizing a single CI server. (Levan 2020) 

 

 

Figure 5. Basic diagram of the pipeline jobs. 

 

When developers commit changes to the respected webserver or core repository, we 

want to build our Docker images and make these available to our developers so that they 

can test them in production mode. Furthermore, the pipeline will also create the images 

that would be released to our end-users upon merging all branches to the release branch.   

 

To achieve this, we will have to take use of a configured GitLab runner as host to the 

building process and our GitLab to trigger the build job upon merges and commits in the 

GitLab repositories.  Once the pipeline has been triggered the GitLab runner should pull 

down the changes made to the project locally. Here it will initiate the build of the images 

and upon completion will push the completed images to the Artifactory repository.  

 

Artifactory repositories support different software packaging systems and automation. This 

repository will be the end point of our pipeline to store the completed images to which our 

end-users can retrieve them with the possibility to do so in an automated manner through 

their own deployment pipelines.  



17 
 

 

4 Implementation work  

When it comes to the implementation, we start off with the containerization phase. Here 

we will walk through the process of planning, implementing and solving problems as they 

occur in real time with each component. The actual code files can be found within the 

appendices section of the thesis due to the large nature of the code that being is 

explained. The first component to be containerized would be the database as this 

component is required for both the executor and the webserver container. The second 

process would be the executor container as the webserver requires the executor to be 

present to execute tests. After the containerization process, we would build the pipelines 

required so that we can build the Docker images in an automated fashion. 

 

4.1 Database containerization process 

Currently the project utilizes MongoDB 3.6.8. However, this version of MongoDB has 

passed its end-of-life date meaning that it is no longer receiving future updates which is 

generally bad practice to implement. As such the intention is to update the MongoDB to 

version 4.4 if possible or at least version 4.2 which have been verified by our internal 

security specialists. As the default MongoDB images are quite large (400 MB), we want to 

opt for utilizing a normal Alpine image as the base image to build upon for our database 

image due to its small size and enhanced security because of the size.  

 

As far as configuring the database goes, we can mimic our image build to the previously 

utilized installer script. The installer will check if MongoDB is installed within the system, if 

not it will install MongoDB on the system. Upon completion and verification that the 

MongoDB is installed and reachable the installer will start executing an import script which 

will create the needed database structure and insert the data required to be able to start 

the application. 

 

Converting this in a containerized solution should be straight forward. Taking an Alpine 

base image, we’ll have to define the installation commands for the MongoDB 4.4 to install 

the database ourselves from the Alpine apt repository in the container. As for the 

configuration and imports of our data through the means of scripts we can utilize a bash 

script as the ENTRYPOINT. This command will automatically run any file upon container 

launch which makes us able to run our import script upon launching the containers. This 

being convenient as the import script is already optimized to run the json file imports.  The 

standard MongoDB service ports 27017 has to be exposed for inbound connections. 

Finally, a Docker Volume will need to be attached to the container at runtime so that the 

database contents persists when the container gets removed or replaced. 



18 
 

 

 

4.1.1 Problems occurred 

At the start of implementing the mentioned plan, we came across the issue that MongoDB 

was not available in the Alpine 3.15 apt repository which is the current version of Alpine. 

Upon further investigation it was found that MongoDB 3.2 was the highest available 

MongoDB version available, which was in the Alpine 3.6 apt repository. Searching why 

this was the case has revealed that Debian, Ubuntu, Fedora, Alpine and many more 

open-source Linux operating system distributions have stopped their support for 

MongoDB versions 4 and beyond within their apt repositories which only offers open-

source software. This is due the worry of MongoDB’s licensing changes for their 4.0 

versions and all subsequent versions which is now under the Server Side Public License 

or SSPL. The licensing change has caused some negative comments towards MongoDB 

from various open-source communities and project maintainers. This resulting in decisions 

to stop the inclusion of MongoDB in major distributions as stated by Tom Callaway (2019), 

RedHat developer at the time about the SSPL license change and how it affects the 

Fedora OS project. 

 

Previous versions of MongoDB utilized the GNU AGPL v3.0 which indicates that 

MongoDB versions lower than 4 are free to use as long as copies of the license text and 

copyright notice are included, changes to the original software are indicated to users and 

the source code is made available if any binaries are created and distributed on the 

original licensed software (GNU 2007). However, SSPL requires all surrounding source 

code and infrastructure to be publicized or to get a commercial MongoDB license. 

(MongoDB 2018) This change alone is makes it usage for proprietary software 

invalidated. Upon checking our legal licensing review service, we confirmed that 

MongoDB versions 4 and upwards are not approved as an open-source software due to 

the SSPL license. 

 

4.1.2 Implementation changes 

After a team meeting, we unanimously decided that we will not be moving forward with 

MongoDB as our database solution due to the current version we are using being past 

their EOL. This means that the containerization of the database will fall back to our 

original project equivalent of MongoDB 3.6.8 under the old AGPL license as a temporarily 

solution till a study has been conducted to which alternative database solution shall be 

implemented. This process is quite long and falls outside the scope of the thesis due to 

the study and implementation changes within the project that follows. 

 



19 
 

 

Our implementation changes to use Bitnami MongoDB 3.6.8 as our base image. Bitnami 

still supports their older images making it especially useful for patching the environment 

for future security issues or bugs that might happen as MongoDB versions below 4 are not 

updated anymore by the developers themselves. Furthermore, Bitnami base image is 

based on mini-Debian which makes it a more lightweight solution than a full MongoDB 

image (Bitnami s.a.). 

 

4.1.3 Implementation result 

The resulted image is straight forward. We utilize the Bitnami MongoDB 3.6.8 base image. 

Our steps include the regular update of the package lists before installing dos2unix within 

the container. Dos2unix is a needed dependency within the database containers since we 

are developing within Windows environments, meaning that our scripts are written in 

Windows and could possibly have non-Unix line endings which prevents execution upon 

Unix systems or our Linux-containers. To prevent these from ever occurring we make sure 

to parse our scripts through the dos2unix functionality before executing them (Appendix 

1). 

 

Normally we would want to avoid running the final software process as a root user to 

enhance security within the containers. However, MongoDB is a service that requires root 

privileges in order to be started, creating a standard user without root privileges within the 

container is subsequently unnecessary. 

 

Database images come with an entry point directory. This being the “Docker-entrypoint-

initdb.d” directory. All the scripts files in this directory will be automatically executed by the 

engine at runtime after the container is launched. Meaning that we simply copy all our 

scripts over to this directory, including our json files container the data imports. This entry 

point only executes bash or JavaScript files so our json files will be ignored. This is ideal 

as our import script handles the inserts of the data within the json files. However, we’ll 

have to modify the import script slightly to make our project root user within the 

authentication database before all the data is inserted as the imports and the webserver 

both require this user to exist to be able to connect to the database. Finally, the MongoDB 

service port 27017 is forwarded and a volume statement is set. 

 

Upon running the build image, we can verify the container is created and the runtime 

executes our import scripts elegantly before restarting the MongoDB with authentication 

enabled. With removing the container and starting a new container we can verify that the 



20 
 

 

Docker volume works as intended and data persists, here our import scripts are not re 

executed as the data already exists within the database. 

 

4.2 Executor containerization process 

The executor container will be the middle ground of difficulty. Not as straight forward as 

the database container but also not as difficult as the to be webserver container. To build 

the executor container we will have to create a python environment. Here we will opt to 

use a python slim image instead of Alpine due to how pip installs python dependencies 

and the fact that Alpine is quite unfavourable for Python applications where high 

performance is favoured.  

 

Alpine is built to be as small as possible. Alpine has been built upon the musl libc library 

instead of glibc library upon which usual Linux distributions are built to achieve its small 

size (Alpine s.a.). Python utilizes the GNU C library for many of its low-level components. 

Making a C compiler a requirement, usually this is provided by the operating system as 

most Linux distributions have it as a requirement (GNU s.a.). However, Alpine does not 

have this natively within its system making it so we’d have to install C language compilers 

on our Alpine image. These compiler packages are quite large which would impede on the 

use case of Alpine with its small size. Furthermore, Turner-Trauring I. (2020) describes 

the situation well in the case of Docker containers when installing Python dependencies. 

Pip normally installs Python dependencies by downloading pre-compiled wheels. These 

Wheels are then utilized to install the dependencies. At the date of writing musl packaged 

wheels were not pre-compiled yet, meaning we’d have to download the raw source code 

all the dependencies and compile the wheels ourselves for musl Linux. Since the writing 

of this article a motion to create a standardized tag for musl Linux wheels has been 

accepted resulting in pip being able to provide pre-compiled musl wheels (PEP 656 2021). 

When creating a proof of concept of the executor container utilizing Alpine, we witnessed 

a 9-minute build time due to the bulk of pip wheels were not musl compiled wheels. This is 

indicative that although a musl Linux tag has been introduced, library developers do not 

offer pre-compiled wheels to the pip repository. This makes Alpine a less than suitable 

base image for our Executor container and a python-based slim image the best 

alternative. We’ll have to install one general compiler which is missing in the python-slim 

image but we can immediately remove it after all the dependencies are installed within our 

environment, reclaiming the space it takes. 

 

Our executor must be globally available within the container environment and our Jenkins 

build job has revealed that we compile a wheel of our executor project. Here we can opt to 



21 
 

 

use Docker’s multi-stage build feature to reduce the size of our final image. In our first 

build-stage we will compile our executor wheel. In our final-stage we will copy over the 

wheel from the build-stage and install it after all its dependencies have been installed. 

 

4.2.1 Problems occurred 

When creating the blueprint for the executor image it seems to be that logs of test runs 

are not directly posted to a webserver or stored within our Database. Rather in our original 

installer-based solution it seems that the logs are saved in a local directory which the 

webserver then can access in the case of an attached executor. As containers are 

isolated from each other and by default can only communicate with each through the 

network interface. This means we’ll have to implement a shared volume that will be 

implemented in both the webserver and the executor container. This is not a problem for 

Docker’s side of the implementation, but this is quite problematic for the future of the 

application. Introducing a shared volume can pose a data migration problem in the feature 

to which container will handle this migration. Furthermore, the overall structure of the logs 

and/or the log directories can change as development of the project is still ongoing, 

making a data migration of the shared volume unavoidable as else both the webserver 

and executor will not function properly. 

 

4.2.2 Implementation result process 

With the shared volume problem brought up to the other developers, we decided to move 

forward with the shared volume as a temporarily solution until both the webserver and 

executor implementations of the log storage service are changed to utilize MINIO 

technology. MINIO is an object storage software solution that can also be utilized as a 

stand-alone container that will act as the storage for the logs through its API functionality. 

(MINIO s.a.) The executor component will then provide these logs to a MINIO container 

from which the webserver can retrieve them. Instead of a shared volume we would place 

this object storage container in our total solution. Due to the large amount of code 

refactoring to be done to both the webserver and executor, this solution falls outside the 

scope of thesis project and will be implemented at an appropriate time (Appendix 2). 

 

The rest of our implementation follows to the plan. We utilize a first build-stage where we 

compile the executor wheel after obfuscating the actual code. After the executor wheel 

has been compiled, we start our final image where we install all the dependencies needed 

in order to be able to run the executor program. We are also installing optional test 

libraries for our end-user’s convenience. Our team has cached the pip dependencies in 

Artifactory since the original Jenkins build jobs have been constructed. This makes 



22 
 

 

downloading the dependencies instant. Our container must come with an environmental 

variable to define the local public Ip-address for communications to the webserver and log 

storage, in our original project implementation it was found that localhost is unreliable. The 

environmental variable can be overwritten by the end-users at runtime with the correct Ip-

address. Our executor service ports are exposed, and the volume statement is set to 

preserve the test logs after container shutdown or restart. Finally, we start our executor 

service with the designated python command. 

 

4.3 Webserver containerization process 

The webserver container will compromise of both the client and the server. Normally you 

would split the client and server into sperate container in API design. However, as there 

are some commonly shared resources and non-API communications, we will have to 

combine the two components together in the same container. This is quite a hinderance in 

performance as node and react dependency installations and project builds are time 

costly procedures. This being the current process within our Jenkins job following the 

webserver build script. 

 

 

Figure 6. Simplified diagram of the current webserver build steps. 

 

If we would follow the build script to the dot our build would be considerably slow as we 

would be moving to through the build phases sequentially. However, we can cut these 

build times down by splitting the client and server build processes in their own build-stage 

with multi-stage builds. Separating the client and server into their own build-stages will 

allow the stages to run parallel with each other up until the final stage where the needed 

built bundles are copied over thanks to the BuildKit feature. Here we will also benefit from 

the fact that only the component that has had changes will be rebuild in the feature and 

the cached state of the unchanged component will be utilized. This will require some 

rework to the build scripts as these have been created for a sequential build where first 

the dependencies are installed before the server will be build and finally the client will be 

obfuscated and built. After the building process the bundles get combined, and a binary 

will be created. Here we will have to split these functionalities of the build script apart into 

their respective container. 



23 
 

 

 

 

 

Figure 7. Diagram of intended build steps accommodating multi-stage builds. 

 

The final-stage base image will be a node-slim as we will benefit from have some 

compilers pre-installed in the environment compared to Alpine where we would need to 

install everything ourselves in a heavy already time consumption build process. The final 

image will copy over the compiled server and client files in order to be able to run the 

stack appropriately. As per the executor container we will have to mount the shared 

volume here as well to be able to access the logs. An additional volume will have to be 

mounted so that we can save user files which includes their robot test files. 

 

In this container we will have to utilize an ENTRYPOINT script to create the configuration 

files for communication with the MongoDB container. 

 

4.3.1 Problems occurred 

In the testing of the webserver container, we have found that there is still a Python 

function call made to retrieve the version of the attached executor. This has been written 

at the start of project and assumes the executor is within the same environment. This will 

have to be rewritten to make an XML-RPC request to the local executor container instead 

as the executor is within its own isolated container now. This will mean that an 

environmental variable must be introduced for the public Ip-address of the executor to 

where this request needs to be sent. 

 



24 
 

 

Another problem found during testing was in regards with the licensing of the webserver. 

Upon inspection of the installer scripts, it was clear that a universal unique identifier is 

generated and saved to the environment as the installation identification. This 

identification string is needed in order to be able to generate a valid license. 

 

As our solution is already in use by end-users for mainly testing purposes, we have 

established a licensing server centrally within our intranet. Here we verify a license 

request key generated by the project’s webserver. This request consists of an installation 

identification number which is the unique identifier we need to generate, a valid email 

address and purpose of utilizing the project. Upon copying over a valid license request 

key, the license server will automatically generate a license key which can be applied to 

the webserver and enables the usage of the testing tool. 

 

The file which contains the installation id will have to be preserved accordingly as the 

installation id string is checked upon test executions against the license to make sure the 

license is valid. Thus, we will have to make the final stage generate this installation 

identification file and preserve it through an attached volume to its saved directory as we 

do not want to have to generate a new license every time a container is replaced. As we 

cannot generate this identification file during the image build time, we will have to add this 

functionality to the ENTRYPOINT script to be executed at container runtime if not 

installation identity file was found. If it was implemented during the image build, then every 

container derived from this image would have the same installation identity. 

 

An oversight in the planning of the containerization was that the test editor which is 

embedded in the client utilizes XML files to describe the Robot Framework libraries which 

are installed upon the executor. However, this XML files are generated by the executor 

itself and the webserver accesses this directory. To resolve this, we could use our 

previous build executor image. That being the introduction of third stage which will run 

parallel with the client and server build stages. Here we can utilize our executor image 

that we have built as the base image and overwrite the CMD instruction with the python 

script that generates the needed XML files as the Robot Framework libraries are already 

installed within the image. These XML files can then be copied over to the final stage. 

 

4.3.2 Implementation results 

The resulting image is thus split into 4 stages. The first 3 stages will be running parallel 

which are the server and client build stages and XML generation stage, these client and 

server build stage utilizing the node-stretch base image which has all the necessary 



25 
 

 

compilers present. The server build stage will install all the server dependencies, these 

being the node packages. Upon its completion we will run a build of the server which 

utilizes the webpack library to build, our webpack config does not include the packaging of 

the node modules. This is mainly due to the splitting of our React and Node with separate 

builds and bundling them. After the build has been completed, we generate the API 

documentation which is included in our end solution. Finally, within this stage we bundle 

our solution and run another node install in production mode. Here all the development 

and build dependencies will be removed so that everything can be copied over without 

bloating our solution. The second build stage or the client build stage follows the same 

pattern except that here we will run an obfuscation of our client build. This is done to 

prevent the logic of the application to be exposed to end users and to avoid tampering 

with the solution (Appendix 4).  

 

Our final build stage utilizes a node-slim base image. The choice for node-slim being 

optimal in our situation is because it’s considerably smaller than the node-stretch image 

and only one compiler is missing which can be easily installed. Within this stage we will 

need to install Python as our we provide Robot Framework test editing service within our 

webserver directly. This means that both Python and Robot Framework will have to be 

installed within the container in order to provide the correct syntax and support of this test 

editing feature. Once this is done, we copy over the build bundles from the client and 

server build stage, the node modules from the server, and merge everything into one 

directory ready to run. To allow communication between the webserver and the database 

we will have to provide a configuration file which is editable by our end-user if they host 

the database remotely or locally. This is achieved by an environmental variable which can 

be overwritten to specify the database Ip-address. From this environmental variable we 

will create the proper configuration for communication with the database in an entry point 

script before starting our built webserver. The entry point script will also create an 

installation id if none has been generated yet by checking our persistent volume attached 

if the file exists. 

 

As stated in the previous section we would technically need 3 volumes to accommodate 

both the user data, the installation id and our log storage shared volume. However, we 

want to lower this to a single volume to better accommodate our solution and leave on 

single point of data needed to persist. To do this we utilized symbolic links. Symbolic links 

are files that are put within a directory that will point towards another file or directory, if a 

process is looking for a specific file which has a symbolic link, then it will be redirected 

towards to actual location of the file. This makes it so we can create a data volume and 

use 2 symbolic links. 1 link for the installation id file for our license to work and 1 for our 



26 
 

 

user data directory. Now instead of 3 volumes attached to the webserver container we 

have 2 (see appendix 3). 

 

4.4 Pipelines construction process 

4.4.1 GitLab Runner creation 

Our solution is now successfully containerized, the next step is to construct the pipelines 

to automate the building process of our Docker images. You can let the GitLab server 

handle your pipeline jobs by letting jobs run locally. However, the configuration of a single 

CI server is quite difficult if it would handle a variety of different jobs. (Levan 2020) This is 

where a GitLab runner comes to leverage self to setup hosts for specific pipeline jobs.  

A runner is thus a host on which the GitLab software is installed upon that can be 

registered to a GitLab server. Here we can define one or more runner executors upon 

which we run our jobs. We can define different type of executors upon which our jobs will 

run, these being shell, VirtualBox, SSH, Docker, Kubernetes (Despa 2021). 

 

Shell based executors are generally the easiest to configure into a ready state, but they 

do not offer the best performance possible. In our use-case we would benefit the most 

from utilize Docker as our executor. Here we can further use Docker-in-Docker service. 

This allows us to run Docker inside a Docker container to build our images. This makes it 

so the environment used to build our Docker images is also cleaned up after each job and 

to build somewhat faster (Wooster 2017). 

 

Setting up the physical runner for our usage case is a quite easy process which requires 

you to install Docker before installing the runner software. After installing the runner 

software, we will have to configure our own runner using the register command. Docker 

runners recently started to utilize TLS certificates to protect the host from malicious 

processes breaking out of Docker containers, this would take some extra configuration. 

However, as all our hosts and servers involved with the GitLab CI are within the same 

protected intranet we can opt to expose our Docker socket which is the Docker runtime 

directly to the Docker container which will build our images as a volume. Even with TLS 

certificates enabled we would have to expose this socket to be able to execute Docker 

commands within the container. Registering the runner with the intended Git repositories 

is done during the setup as well. Here we need a GitLab registration token to identify the 

runner to the specific repositories for which it will run. As we have 2 repositories which 

house our total project, we can opt to house them into a GitLab group. In this manner we 

can register our runners to work for both repositories as a group runner instead of a single 

repository directly. The final step for the configuration is to configure Docker to utilize our 



27 
 

 

http proxies which act as gateways for retrieving outside intranet resources. This can be 

done by simply modifying the Docker configs to state intended proxies. Now our GitLab 

Runner is successfully configured and is ready to execute upon. 

 

 

Figure 8: Simple GitLab Runner configuration with Docker as executor. 

 

4.4.2 Pipelines implementation 

With our runner all set up and ready to execute upon we can continue and start creating 

our pipelines. We have two repositories on which we will have to construct the pipelines 

upon, the webserver and executor repositories to be specific. The pipeline definitions will 

be mostly the same for both repositories as we are utilizing Docker in Docker and our 

merely building the images and publishing them to Artifactory. GitLab uses a single file 

within the project repository to define the jobs to be executed when changes are made to 

their respective repository. Within this file we will define our 2 jobs and define the order as 

stages (Appendix 4). This being the build and publish jobs. Technically you could combine 

these 2 jobs into a single job. 

 

Before we get started with the implementation, we must note that our project utilizes Git-

LFS. Git-LFS which stands for “Large File Storage” is a Git extension. It is used to 

manage large files and binary files in an alternative repository designated for large files 

effectively storing them outside of the normal project repository to avoid bloating the size 

of the repository. Having these large files present in the normal repository would make our 

GitLab run significantly slower as GitLab keeps a history of files and pulling these files 

down from the GitLab on every pull request would make the process significantly slower 

(Rotsaert 2018). This impacts our choice for the Git Strategy within the pipeline definition. 

A Git strategy definition can be clone, fetch or none. Here we can choose how we will 

provide the project files from the repository to the GitLab Runner before building. Clone 

would automatically pull down the project files when starting execution within our Docker 

container before it will build the image. Utilizing fetch would mean that we would have to 

clone the repository on the GitLab runner host, and the runner will automatically pull down 

the latest project changes before executing jobs. The none setting will disable the feature 



28 
 

 

to automatically provide the project files to the runner and will make it so you will have to 

manage the accessibility to the project yourself (Sevat 2020). In our use case we cannot 

use fetch as we have a Docker container to build our images in. Using fetch would mean 

that we would have to expose the project files from our Runner host to the container 

through a volume and Git-LFS would have to be managed both inside and outside the 

container. With clone we would have to still install Git-LFS within the container and pull 

down the large files. Subsequently, the optimal choice for us would be to handle the 

cloning of the project files ourselves. 

 

When it comes to constructing the pipeline, we must choose a base image which the 

pipeline will run a container from in order to build our project images. As our chosen 

method is Docker in Docker building, the official Docker image comes with a version 

which has Git preloaded. Choosing this as our base image makes so we only have to 

install Git-LFS inside the container. As the Docker image is alpine based we’ll have to 

update in order to be able to install Git-LFS and initialize it. After this we will configure our 

SSH keys inside the container so that we can pull our project from GitLab and the needed 

Docker images from our Artifactory mirror before we pull down the project files. With Git-

LFS initialized, the large files will be automatically retrieved as well upon a git clone. 

These steps are considered to be pre-configuration of the container before the actual job 

takes place and thus are marked as the “before script”. 

 

GitLab pipelines come with a variety of variables you can use and define your own. We 

use a variable to dynamically name our Docker images. When it comes to Docker images, 

we will have to name them and tag them appropriately. The name is specific to the image 

we are building but to display the versioning Docker utilizes what is called tags. Tags can 

be anything from a number to a word to define what version the image exactly is 

(Subheksha 2018). In our case we are naming our images according to the component 

they are and tagging them respectively to the commit sha which has triggered our pipeline 

job to start, so the developers can easily identify their built image against the commit to 

the repository they have made. A commit sha is a 40 character long hashed identifier 

based on the meta data and contents from a commit (Burgdorf 2014). 

 

To enable Docker in Docker builds from the pipeline’s side we will have to state the 

“DIND” service so that the needed supporting software and configuration of the container 

is automatically provided. In our actual build job, we export the BuildKit variable in the 

container to ensure that the Docker BuildKit feature is enabled before we build our actual 

image. Here we want to save our image to a compressed file so that we can artifact our 

image for a limited time in the GitLab server. An artifact is a file or directory stored within 



29 
 

 

the GitLab server after a pipeline job has been successfully completed. Here all the future 

jobs within the same pipeline can download the artifact from the GitLab server to be 

available in the context of the next job (Yakutovich 2021). What’s also useful is that 

developers can retrieve the built image directly from GitLab for a limited time, they do not 

immediately have to retrieve it from the Artifactory. 

 

In the publish job we automatically download the artifact from the build job thus we do not 

have a need to utilize or re-run the before scripts to retrieve the project files as we do not 

need them. Here we login to our Artifactory service and re-tag our image with the same 

name but include the Artifactory destination repository before we upload the image to the 

Artifactory. After the upload has been completed, we remove the built Docker image to 

clean up the runner. If we would not remove the image the GitLab Runner host would run 

out of space quite fast. 

 

For the webserver repository we take on the same template as the executor pipeline 

(Appendix 5). The only difference here being that we are combining the database and 

webserver build within 1 build job and the upload to Artifactory in 1 publish job. 

Technically we could split the database and webserver build in 2 build jobs and 2 publish 

jobs. However, as the database image will rarely be rebuilt due to it being a component 

that almost never changes. Having to rebuild the database image is only necessary when 

database scripts change. Thus, we would lose time starting an individual job for the 

database as compared to building the webserver and database image at the same time 

due to a small overhead taking place when a job is starting. This overhead being starting, 

stopping the container and possibly downloading a previous job artifact. 

 

4.5 Storing container images 

Like indicated before we upload our images to Artifactory. Within our Artifactory we 

already have a Docker registry. A registry being the Artifactory which hosts the Docker 

repositories. The Docker repository being the host where we will store our Docker images 

(Atzmony & Aleksandrowicz 2022). These repositories are local as opposed to remote 

repositories such as Docker hub. A local repository allows us to privately store our images 

as to where Docker hub also offers publication of Docker images. To ensure our own 

proprietary software stays private we host our own Artifactory. Other registries do provide 

private features however, to ensure security we chose to utilize our own solution. 

 

Our Docker registry and repository were already created before the project commenced 

for proof of concepting of the solution. The process to create these can be done in a 



30 
 

 

guided fashion through the Artifactory user interface. A useful feature of Artifactory which 

can be integrated in our project is the promotion of Docker images. Promotion is a feature 

that allows us to move Docker images from one repository to another without having to 

download the image and reuploading it to another repository (Atzmony & Aleksandrowicz 

2022). In our case this is useful to promote a Docker image from our own internal 

Artifactory repository to a release repository for end-users. Here in the next 

containerization process to make the containerized solution available for the end-users we 

can utilize the promote feature to move tested images that make up the developed work of 

the last sprint a release repository. 

 

4.6 Hosting the containerized project 

The hosting of the containers is not included within the project due to the variety of 

possibilities when it comes to hosting the resulting containers, end-users have the 

freedom to host the containers how they see fit outside of our own recommendation. 

However, the topic is in need for discussion as orchestration is required for running our 

entire container stack in a feasible manner. Container orchestration is the management of 

all processes related the containers. These being the lifecycle, environment, automation 

of containers through various software tools. The lifecycle of a container specifies the 

acquisition, deployment, scaling, redundancy, monitoring and replacing of a container 

(Eldrige 2018). 

 

The simplest tool to orchestrate containers would be to manually bring up the containers 

through Docker Compose. Compose is mainly used for its simplicity within the 

development and testing cycles of containers. However, it is not that uncommon to utilize 

it for orchestration containers within production when it comes to smaller projects. With 

Compose you create YAML file with the definitions of all the images you want to run into a 

container. Within this file you can define images, virtualized networks configurations, 

variables, volumes and much more. This allows us to bring up a whole stack of containers 

and network configurations with a single command (Avishek 2020). But, Compose can 

only take care of the running of containers from Docker images. It does not however 

manage the containers once they are running. When it comes to configuring redundancy, 

scaling and the monitoring of the containers the end-users would have to either script 

these services manually or utilize other tools (Wallen 2021). This makes Compose rather 

undesirable and not our official recommendation to end-users. 

 

What we recommend and use internally within our team is Kubernetes. This solution is an 

entire platform which can manage entire workloads and services when it comes to 



31 
 

 

containers. This includes everything related to the lifecycle of containers compared to 

merely starting the containers with Compose. Kubernetes is an excellent solution for 

deploying, scaling and managing containers on a single host or multiple ones. With 

Kubernetes you can create a cluster which consists of one or mode nodes. Nodes are 

individual hosts upon which the containers can run, and pods are the manageable unit 

that can contain one or more containers. Pods come alongside a YAML file which 

describes the pod and its contents. Here the specific containers are described, and 

configurations can be maintained. Outside of deployment Kubernetes can replicate pods 

to accommodate for high traffic with load balancing and scaling. What makes Kubernetes 

especially desirable is the monitoring of pods. Automation within Kubernetes allows for the 

monitoring of application and container health. In the case of an ungraceful shutdown the 

manager can be configured to try and restart the specific container or to bring another one 

up instead. (Hwang 2019). Within our company we have opted to utilize MicroK8s. 

MicroK8s is a more lightweight Kubernetes solution. What makes it special is that it’s the 

fastest solution available in the sense that it can take just a few minutes to go from 

installing MicroK8s to having your pods up and running. It provides most of the normal 

Kubernetes features while also being simple to manage (Anaqvi 2019). However, end-

users can utilize any Kubernetes solution they seem fit. 

 

Manging a large number of containers can be painful as each pod needs to be described 

with a specific YAML file. Kubernetes utilizes these files for the creation of its resources, 

deployment and services as Kubernetes is managed created in a declarative way. Forcing 

the containerized implementation of our project could leave the end-users with the need 

for coming up with their own YAML file definitions which for example. includes the 

allocation of physical resources to the containers. They might allocate a too low number of 

resources which might make our project’s application run slow or cause problems. Some 

form of YAML template will have to be provided to end-users so that they could properly 

run our containers. This is where Helm Charts prove to be beneficial. Helm aims to solve 

this specific form by allowing to make templates. As opposed to the standard YAML files, 

we can create Helm charts to describe a pod and child charts to describe the individual 

containers as a template to the end-users (Santos 2021). This will allow them to run our 

containers according to what we find the correct configuration. 

 

Helm Charts are YAML manifests that are combined within a single package that allows 

easier management of your Kubernetes resources. When traditionally using the standard 

YAML files a developer would have to state the same information multiple times at 

different levels to be able to deploy a container. Helm makes this process easier by 

allowing you to create a package that can promoted to your Kubernetes cluster directly. 



32 
 

 

Helm charts can be thought of as a package manager in the sense that you define the 

resources, versioning, and instructions within the charts. You can then package these 

charts and deploy these directly to the Kubernetes cluster instead of providing standard 

YAML files for each resource, pod, or pipeline (Idowu & Merron 2020). 

 

When providing the images together with the templated Helm charts the end-users can 

run the solution in a way that we recommend, we’d have to make a general baseline on 

the amount of physical resources that would be needed. This means that a next step to 

the hosting solution would be to benchmark, and stress test our containers under different 

circumstances so that we can create a correct template. 

 



33 
 

 

5 Evaluation 

When it comes to evaluating the Jenkins state to the to be introduced state, we are mainly 

interested in the comparison of the times. The evaluation doesn’t directly critique the 

Jenkins software, but it brings in the bloat of build time as the main stressor. This bloat 

being caused by the growth of the software project and the interlinked dependencies of 

the components when building with Jenkins that causes long sequential build phases. It is 

possible to optimize the Jenkins build jobs. However, this would just like the Docker 

process require to split the components to be more independent. The size of an installer 

cannot compare well with that of a containerized project. We are looking to provide 

multiple software environments which will run our software project on top off compared to 

just providing the software. 

 

5.1 State as is with Jenkins 

 

Figure 9: Latest completed project installer builds with Jenkins. 

 

Jenkins currently handles our installer builds which is a process that is manually triggered 

by our developers when they want to test the project in production mode. Here we can 

notice the overall length of a complete build takes 20 minutes according to the latest build 

and recent trend (Appendix 6). This time is consistent overall according to the latest 

couple of builds. Most notably is that our Jenkins can run various individual jobs parallel. 

However, the speed of the builds is blocked due to that many jobs are dependent on the 

build processes of previous builds.  

 



34 
 

 

The first phase of the entire build is the handling of the python requirements. This being 

the collection of the libraries, dependencies and modules required to make the executor 

run. The module packer handles that packing of what the collection job produces so that 

the needed python externals are present within the installer bundle. The document 

generation job is the generation of the needed XML files for the test editor documentation 

within the webserver as explained in chapter 4.3.1. In this phase we have some parallel 

work going however, the document generation and the module packer jobs are dependent 

on the completion of the requirements collector jobs. 

 

The second phase of the Jenkins build is the building of webserver and the remote 

executor installers. The remote executor installer builds are not relevant to the 

performance as they are independent installers build which run parallel within the same 

job to save time instead of duplicating the first stage of the build. These builds run parallel 

with the webserver builder job. The webserver build takes up the bulk of the time due to its 

sequential building process of building the server, then the client and finally bundling the 

total build as displayed in chapter 4.3. The webserver builder job is dependent on the 

documentation generation job. 

 

The last phase is where Jenkins builds the installer binary file. This job creates an installer 

from the previous jobs and adds the external software dependencies to the binary file. 

Here configurations are made to the installer in order to be able to install the components 

and necessary directories on the to be installed host. These being MongoDB, Python and 

their software dependencies. This job is dependent on all the previous jobs as it creates 

the total installer. Upon completion of the job, one of our developers would manually 

retrieve the installer and deploy it on a virtual machine for testing. Upon the end of the 

testing phase if the testing is successful the installer will be manually uploaded to a 

webserver where end-users can download it from. If the testing was unsuccessful then the 

solution would have to be rebuild, re-downloaded and re-installed in the same manner 

after the errors have been ironed out. 

 



35 
 

 

5.2 Full automatization with GitLab and Docker 

 

Figure 10: Executor build and publish GitLab job. 

 

When it comes to the Docker process of building the solution, we would have to look at 

the execution times of the individual jobs. When it comes to the executor image, we can 

notice that we have a total time of about 6 minutes to both produce and upload the image 

the Artifactory. This however is with a minimal amount of caching taking place. Due to the 

nature of building the executor we can only leverage a minimal amount of layer caching. 

When making changes to the executor code base both the stages will have to be rebuild. 

The only cached layer that could be used is the installation of the python requirements as 

the accompanied file with the needed libraries rarely changes and are contained within its 

own “RUN” instruction. About 1 to 1 minute and a half can be saved with this cache being 

utilized.  The multi-stage build has been mainly introduced in this image to reduce the size 

of the final image. 

 

 

Figure 11: Database and Webserver GitLab build job. 

 

When it comes to the building of the webserver and database image, we can notice that 

this process is quite a bit shorter than webserver build. Here we are building both the 

webserver and database image within the same job. The database image taking about 1 

minute and the webserver 6 and a half minutes with no caching. However, here the 

caching will play a big role in the build times. This is dependent on which component of 

the webserver will have changes committed to the codebase. When only changes are 

committed to 1 component of the webserver repository then the other component will not 

have to be rebuild and the cached version will be utilized. Due to multi-stage building 



36 
 

 

being optimized for time in this process we are cutting out the time of the shorter stages in 

fully non-cached builds. The database image will almost always be a fully cached image 

that will not have changes due to the infrequent need to modify database scripts, this cuts 

out that 1 minute in most pipeline executions. We witness an average publish time of 1 

minute and a half and image builds ranging from 1 and a half to 7 and a half minutes 

depending on what kind of changes we commit to the repository. 

 

 

Figure 12: Fully cached Database and Webserver GitLab build job with publish stage. 

 

5.3 Build time comparison 

The Jenkins job merely handles the building of the installer, the storing of the installer is a 

manual process and is thus difficult to measure accurately as there are many variables 

that could influence a developer’s process in uploading the installer to the webserver for 

distribution. Meanwhile our containerized solution does handle this process in an 

automated manner. But when it comes to strictly comparing the build times when using a 

strict no-cache we can witness a total build time of about 12 minutes in the GitLab 

pipelines when utilizing one GitLab Runner. However, we have multiple Runners that can 

be utilized and both pipelines can run on any Runner that is available. Making this pipeline 

execution process parallel. In this case when doing a full no-cache build on 2 Runners, we 

would only be subject to wait on the longest build job out of the two. This being the 

webserver, we would have a maximum wait time of 7.5 minutes. 

 

When building with Jenkins we are always be subject to an entire rebuild of every 

component making the installer build a consistently long process with very little to no 

variations in time. When measuring the build time difference, we have theoretical 

maximum time of 7.5 minutes with our new solution with 2 GitLab Runners compared to a 

consistent 20 minutes with Jenkins. This makes for a difference of minimum 12.5 minutes 

or a reduction of a minimum of 62.5 % solely for the build times. 

 



37 
 

 

Adding the publish time to the calculation will give us a theoretical maximum time of 9 

minutes with an average 1.5 minute publish job included. This difference making for a 

minimum of a 55 % decrease in time with the new solution. When the Docker cache 

comes in to play, the time saved can be significantly larger. However, this comparison is 

not as accurate due to the manual labour required for the installer publishing. 

 

5.4 Containers brings complexity 

It’s often stated that containerization processes bring unnecessary complications and 

difficulties to software projects. Especially in the case of large complicated applications as 

manging various components, dependencies and images can bring difficulty (Bellishree & 

Deepamala 2020, 4).  The thesis displays that this is not always the case, and our project 

is quite substantial with multiple interlinked components. The time frame of completing the 

thesis product has displayed that containerization is still feasible within the late stages of a 

large project. However, the implementation of the containerization could have been a 

smoother and a continuous on-going process when handled earlier in the project’s 

lifecycle. Here the initial Dockerfiles would be more simplistic and evolve more gradually 

to its current state. The earlier implementation of containerization would have also led to 

developers making more conscious decisions when it comes to implementing new 

features as they would have to keep the isolated nature of the individual components in 

mind. This would have prevented some of the problems encountered within the thesis. 

The statement in question is to a degree more correct when it comes to the hosting of the 

containers. More specifically this would complicate the hosting of the project within the 

end-user’s technology stack as the official support opts to utilize the containers instead of 

the installer version. When dropping support for the installer version our end-users will 

need to switch to hosting the containers if they want to be able to utilize future developed 

features of the software project. In some cases, this could provide somewhat of a 

challenge if they have little to no experience setting up a Kubernetes environment. 

Internally we do provide a snap installation of MicroK8s. The end-user could be in need of 

assistance when it comes to this providing the platform to host the containers. Hosting 

containerized applications is thus more so difficult than just running an installer. This is the 

trade-off to be made to be able to leverage more consistency.  

 

5.5 Containers require extra security 

A common critique towards the container technologies is the overall security of the 

solution. Docker specifically has suffered from major problems in relation to security over 

it’s past before companies were willing to give the technology a trail (Muñoz 2019). Often 

the security of the container images and how they are composed are questioned. A 



38 
 

 

container image vulnerability is when there is a security risk embedded within a container 

image. Here a vulnerability can be caused by an installed package or dependency. This is 

not directly a thread until a container is created from the vulnerable image that will 

introduce this security risk in a live environment (Bruner 2020). 

 

When solely providing the software as an installer the security process is only applicable 

to the software itself. Our developers only need to ensure the security of the project when 

we are providing the software in this manner. Now that we are switching over to 

containers, we will have to increase our efforts towards the security hardening process. 

This is because when providing container solutions there are extra factors that incorporate 

the total security of the application. Developers need to be tentative towards not only the 

security of the application but also to that of the build pipeline, deployment environment 

and the container host as Bennet describes (2020). This will bring an increase in research 

towards the possible vulnerabilities of the security of containers and if they are applicable 

to our solution. The security hardening process of our application that is the next step 

towards the productization of the project will have to be expanded to incorporate the 

scanning of the containers. The scanning of the containers is a much-needed process to 

reveal possible security issues with the packages installed within containers. If any our 

found, they will need to be patched as soon as possible. 

 

Thus, containers will bring an increased work need towards security compared to solely 

providing the software as an installer. This work increase mostly being the checking for 

security issues and the patching of them of the container environment and hosting 

solutions. 

 

 

 



39 
 

 

6 Conclusion 

The project has achieved a success on all its goals. The full-stack project has been 

containerized with image size in mind while optimizing build performance where possible. 

The pipelines have been put into place which now handle the building and publishing of 

the Docker images. This effectively removes the publishing responsibility from the 

developers. The thesis set out to reduce the build time by a minimum of 40 % which has 

been surpassed by a 62.5 % reduction minimum. The containerization process has 

endured more problems than anticipated but managed to be completed in a timely 

fashion. The project has been in development for an already long duration which makes 

the transition to a containerized solution more difficult.  

 

The end-result of our project is a directly usable product which will be taken into use 

immediately for both the testing and running of the project. The Jenkins jobs will be taken 

out of commission. However, this will not be done immediately in-order to offer our end-

users a grace period where they can make the necessary accommodations to take the 

containerized version of the project into use. During this grace period both the installer 

and containerized version will be provided to the end-users. The decision has already 

been made to cut support for the installer version of the project after this grace period and 

to only support the containerized version. 

 

When support for the installer version of the project has been dropped, we will notice a 

reduction in errors caused by the environment. End-users will only be able to run the 

project within the containers which includes the environment we created and provided to 

them. This will reduce environmental errors to only that isolated environment if they occur 

as opposed to all the possible environments they would deploy on with installers. This will 

create more time for our developers to focus on the enhancement of the project instead of 

fixing environmental errors. For our overall time management there could possibly be an 

increase in time for our development cycle of our sprint and a reduction of the testing 

cycle if the total time saved over a week consistently gives us testing time to spare. 

 

Thus, the containerization process has and will provide many indirect and direct benefits 

in our development processes, testing and distribution processes. The thesis well 

indicates the possibility to introduce container technology within large applications and 

that this technology is an applicable alternative for traditional methods of hosting and 

delivery. 

 



40 
 

 

6.1 Next steps 

The completion of the thesis does not mark the completion of all containerization related 

topic for the project. The image building process will have to evolve alongside the testing 

tool’s development as significant changes might require processes within the building of 

the Docker images to be changed as well. The next step for the productization of the 

testing tool will be the security hardening which can now take fully place with initial 

containerization being completed. This process can also bring modification to the images 

as security vulnerabilities might be found within the project or the project’s isolated 

container environment that need to be addressed. 

 

The first future step will be to fully document our hosting solution and create a baseline 

benchmark of our total solution so that we can provide Helm charts as a template for end-

users. In the near future we will see changes being made to our database solution as we 

will be switching away from MongoDB due its stated licensing changes. This means that 

the MongoDB image will be replaced completely for a new database solution. Outside of 

this we will be implementing the MINIO object storage which will introduce a 4th container 

within our solution to replace the current temporarily shared volume between the executor 

and the webserver containers. 



41 
 

 

References 

Agesen, O. 2009. VMware software and Hardware Techniques for x86 Virtualization. 

URL: 

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/software

_hardware_tech_x86_virt.pdf. Accessed: 15 March 2022. 

 

Alpine s.a., About Alpine. URL: https://alpinelinux.org/about/. Accessed: 6 April 2022. 

 

Anaqvi, 2019. Introduction to MicroK8s. URL: https://ubuntu.com/blog/introduction-to-

microk8s-part-1-2. Accessed: 11 May 2022. 

 

Atzmony, A., Aleksandrowicz A. 2022. Docker Registry URL: 

https://www.jfrog.com/confluence/display/JFROG/Docker+Registry. Accessed: 11 May 

2022. 

 

Avishek, R. 2020. Docker Compose. Medium URL: 

https://medium.com/teckdevops/Docker-compose-5bc79778ff8c. Accessed: 11 May 2022. 

 

Bellishree P. & Deepmala N. 2020. A Survey on Docker Container and its Use Cases.  

URL: https://www.irjet.net/archives/V7/i7/IRJET-V7I7481.pdf. Accessed: 16 May 2022. 

 

Bennet L. 2020. Container Security requires more than securing your images. URL: 

https://developer.ibm.com/blogs/container-security-requires-more-than-securing-your-

images/. Accessed: 16 May 2022. 

 

Bitnami s.a., MongoDB packaged by Bitnami. URL: 

https://hub.Docker.com/r/bitnami/mongodb. Accessed: 3 April 2022. 

 

Bruner K. 2020. Container Image Security: Beyond Vulnerability Scanning. URL: 

https://cloud.redhat.com/blog/container-image-security-beyond-vulnerability-scanning. 

Accessed: 16 May 2022. 

 

Burgdorf, C. 2014, The anatomy of a Git commit. URL: 

https://blog.thoughtram.io/git/2014/11/18/the-anatomy-of-a-git-commit.html. Accessed: 11 

May 2022. 

 



42 
 

 

Callaway, T. 2019, Server Side Public License (SSPL) V1. URL: 

https://lists.fedoraproject.org/archives/list/devel@lists.fedoraproject.org/thread/IQIOBOG

WJ247JGKX2WD6N27TZNZZNM6C/. Accessed: 3 April 2022. 

 

Carey, S. 2022, Demand for software developers doubled in 2021. InfoWorld. URL: 

https://www.infoworld.com/article/3654480/demand-for-software-developers-doubled-in-

2021.html. Accessed: 26 April 2022. 

 

Carklin, N. 2021, What are the benefits of Virtual Machines. URL: 

https://www.parallels.com/blogs/ras/benefits-virtual-machines/. Accessed: 11 May 2022. 

 

 

 

Dahlitz, F. 2021. Docker essentials: managing dependencies with ease. A gentle 

introduction to a popular container solution. URL: https://florian-dahlitz.de/articles/Docker-

essentials-managing-dependencies-with-ease. Accessed: 11 May 2022. 

 

Demchenko, M. 2021, Software Development Life Cycle: A Guide to Phases and Models. 

URL: https://ncube.com/blog/software-development-life-cycle-guide. Accessed: 26 April 

2022. 

 

Despa, V. 2021, A Brief Guide to GitLab CI Runners and Executors. Medium. URL: 

https://medium.com/devops-with-valentine/a-brief-guide-to-gitlab-ci-runners-and-

executors-a81b9b8bf24e. Accessed: 10 May 2022. 

 

Docker s.a., Docker Overview. URL: https://docs.Docker.com/get-

started/overview/#:~:text=Docker%20uses%20a%20client%2Dserver,to%20a%20remote

%20Docker%20daemon. Accessed: 17 March 2022. 

 

Eder, M. 2015. Hypervisor- vs. Container-based Virtualization. Seminar Future Internet, 

Technical University Munchen. Germany. URL: 

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2016-07-1/NET-2016-07-1_01.pdf. 

Accessed: 16 March 2022. 

 

Eldrige, I. 2018. What is container orchestration? URL: https://newrelic.com/blog/best-

practices/container-orchestration-explained. Accessed: 11 May 2022. 

 



43 
 

 

Eschweiler, S. 2019. Docker – Beginner’s guide – images and containers. Medium. URL: 

https://medium.com/codingthesmartway-com-blog/docker-beginners-guide-part-1-images-

containers-6f3507fffc98. Accessed: 14 May 2022. 

 

Ferrill, P. 2021. A beginner’s guide to a multistage Docker build. TechTarget. URL: 

https://www.techtarget.com/searchitoperations/tip/A-beginners-guide-to-a-multistage-

Docker-build. Accessed: 14 May 2022. 

 

Garcia, J. 2020, Alpine, Slim, Stretch, Buster, Jessie, Bullseye – What are the differences 

in Docker Images. Medium. URL: https://medium.com/swlh/alpine-slim-stretch-buster-

jessie-bullseye-bookworm-what-are-the-differences-in-Docker-62171ed4531d. Accessed: 

19 April 2020. 

 

GNU 2007, GNU General Public License Version 3. URL: 

https://www.gnu.org/licenses/gpl-3.0.html. Accessed: 3 April 2022. 

 

GNU s.a., The GNU C library (g libc). URL: https://www.gnu.org/software/libc/started.html. 

Accessed: 3 April 2022. 

 

Guo, J. 2017 Demystifying containers vs VM-based security: Security in plaintext. URL: 

https://cloud.google.com/blog/products/gcp/demystifying-container-vs-vm-based-security-

security-in-plaintext. Accessed: 11 May 2022. 

 

Haakman, W. s.a. Windows containers in a Linux world. URL: 

https://intercept.cloud/en/news/windows-containers-in-a-linux-

world/#:~:text=The%20biggest%20difference%20is%20the,Docker%20image%20based%

20on%20Linux. Accessed: 19 April 2022. 

 

Hwang, E. 2019. A beginner-friendly explanation of Kuberenetes. URL: https://faun.pub/a-

beginner-friendly-explanation-of-kubernetes-b7e7784acdb0. Accessed: 11 May 2022. 

 

IBM Cloud 2017. A Brief History of Cloud Computing. URL: 

https://www.ibm.com/cloud/blog/cloud-computing-history. Accessed: 15 March 2022. 

 

Idowu T. & Merron D. 2020. Introduction to Kubernetes Helm Charts. URL: 

https://www.bmc.com/blogs/kubernetes-helm-charts/. Accessed: 16 May 2022. 

 



44 
 

 

Jayaraman, A. & Rayapudi P. 2012. Master’s thesis. Compartive study of Virtual 

Machines Software Packages with Real Operating System. Blenkinge Institute of 

Technology, Degree in Electrical Engineering. URL: https://www.diva-

portal.org/smash/get/diva2:829210/FULLTEXT01.pdf. Accessed: 17 March 2022.  

 

Jayawardana, M. 2019. Understanding Dockerfile. Get an in-depth look at the internal 

make up of a Dockerfile and the commands with it. DZone. URL: 

https://dzone.com/articles/understanding-dockerfile. Accessed: 14 May 2022. 

 

Jfrog s.a., Artifactory URL: https://jfrog.com/Artifactory/. Accessed: 19 April 2022. 

 

Levan, M. 2020, 5 Advantages of GitLab CI/CD pipelines. Tech Target URL: 

https://www.techtarget.com/searchsoftwarequality/video/5-advantages-of-GitLab-CI-CD-

pipelines. Accessed: 10 May 2022. 

 

Microsoft 2021, Windows and Containers. URL: https://docs.microsoft.com/en-

us/virtualization/windowscontainers/about/. Accessed: 19 April 2022. 

 

MINIO s.a., Multi-Cloud Object Storage. URL: https://min.io/. Accessed: 19 April 2022. 

 

MongoDB 2018. Server Side Public License (SSPL). URL: 

https://www.mongodb.com/licensing/server-side-public-license. Accessed: 3 April 2022. 

 

Muñoz, S. 2019. The history of Docker’s climb in the container management market. Tech 

Target URL: https://www.techtarget.com/searchitoperations/feature/The-history-of-

Dockers-climb-in-the-container-management-market. Accessed: 11 May 2022. 

 

Murillo, K. 2019. Containerization explained: what it is, benefits and applications. URL: 

https://www.masterdc.com/blog/what-is-containerization-benefits-explained/. Accessed: 

11 May 2022. 

 

Peltokorpi A. 2021. The benefits of virtualization across the software development 

pipeline. URL: http://jultika.oulu.fi/files/nbnfioulu-202106258745.pdf. Accessed: 26 April 

2022. 

 

PEP 656 2021. Platform Tag for Linux Distributions using Musl. URL: 

https://peps.python.org/pep-0656/. Accessed: 3 April 2022. 



45 
 

 

Powell R. 2021, Benefits of containerization. URL: https://circleci.com/blog/benefits-of-

containerization/. Accessed: 11 May 2022. 

 

Pulfer, J. 2018. Container Technology: Consistent Deployment and Execution. URL: 

https://www.linkedin.com/pulse/container-technology-consistent-deployment-execution-

pulfer. Accessed: 12 May 2022. 

 

Robocorp 2022, Basic Concepts of Robot Framework. URL: 

https://robocorp.com/docs/languages-and-frameworks/robot-framework/basics. Accessed: 

20 April 2022. 

 

Rotsaert, G. 2018. Why and how to use Git-LFS. DZone URL: 

https://dzone.com/articles/git-lfs-why-and-how-to-use. Accessed: 10 May 2022. 

 

Santos, L. 2021. What is a Helm Chart? A tutorial for Kubernetes Beginners. URL: 

https://www.freecodecamp.org/news/what-is-a-helm-chart-tutorial-for-kubernetes-

beginners/. Accessed: 11 May 2022. 

 

Saurabh 2022. What is Jenkins? Jenkins for Continuous Integration. Edureka. URL: 

https://www.edureka.co/blog/what-is-

jenkins/#:~:text=Jenkins%20is%20an%20open%2Dsource,to%20obtain%20a%20fresh%

20build. Accessed: 12 May 2022. 

 

Sevat, P. 2021, Optimize your git clone / fetch strategy for CI pipelines. URL: 

https://dev.to/patricksevat/optimize-your-git-clone-fetch-strategy-for-ci-pipeline-3pka. 

Accessed: 10 May 2022. 

 

Shubheksha, J. 2018, A quick introduction to Docker tags. URL: 

https://www.freecodecamp.org/news/an-introduction-to-Docker-tags-9b5395636c2a/. 

Accessed: 11 May 2022. 

 

Simic, S. 2019a. Containers vs Virtual Machines (VMs): What’s the difference? URL: 

https://phoenixnap.com/kb/containers-vs-vms. Accessed: 10 May 2022. 

 

Simic, S. 2019b, What is a Hypervisor? Types of Hypervisors 1 & 2. URL: 

https://phoenixnap.com/kb/what-is-hypervisor-type-1-2#type-1-hypervisor. Accessed: 16 

March 2022. 

 



46 
 

 

Singh, B. & Singh, G. 2018. A study on virtualization and hypervisor in cloud computing. 

International Journal of Computer Science and Mobile applications. URL: 

https://ijcsma.com/publications/january2018/V6I102.pdf. Accessed: 16 March 2022 

 

Turner-Trauring, I. 2020, Using Alpine can make Python Docker builds 50x slower. URL: 

https://pythonspeed.com/articles/alpine-Docker-python/. Accessed: 3 April 2022. 

 

VMware, what is a hypervisor? URL: 

https://www.vmware.com/topics/glossary/content/hypervisor.html. Accessed: 16 March 

2022. 

 

Walker, J. 2021. What is Docker’s BuildKit and why does it matter? How-To Geek. URL: 

https://www.howtogeek.com/devops/what-is-dockers-buildkit-and-why-does-it-matter/. 

Accessed: 14 May 2022. 

 

Wallen, J. 2021, Simplifying the mystery: When to use Docker, Docker-Compose, Docker 

Swarm and Kubernetes. TechRepublic URL: 

https://www.techrepublic.com/article/simplifying-the-mystery-when-to-use-Docker-Docker-

compose-and-kubernetes/. Accessed: 11 May 2022. 

 

Wooster, T. 2017, Docker-in-Docker in GitLab runner. Medium. URL: 

https://medium.com/@tonywooster/Docker-in-Docker-in-gitlab-runners-220caeb708ca. 

Accessed: 10 May 2022. 

 

Yakutovich, A. 2021, GitLab CI: Cache and Artifacts explained by example. URL: 

https://dev.to/drakulavich/gitlab-ci-cache-and-artifacts-explained-by-example-2opi. 

Accessed: 11 May 2020. 

  



47 
 

 

Appendices 

Appendix 1.  Resulting database Dockerfile 

FROM bitnami/mongodb:3.6.8 

 

EXPOSE 27017 

 

ENV USER_NAME="mongo" \ 

         USER_ID=1010 \ 

         MONGODB_ROOT_PASSWORD="user" 

 

RUN apt-get update && \ 

        apt-get install dos2unix && \ 

        groupadd -g ${USER_ID} ${USER_NAME} && \ 

        useradd --uid ${USER_ID} --gid ${USER_ID} -s 

/usr/sbin/nologin --no-create-home 

        ${USER_NAME} 

 

COPY *.js *.json import.sh /Docker-entrypoint-initdb.d/ 

 

RUN chmod +rx /Docker-entrypoint-initdb.d/*.sh && \ 

         dos2unix /Docker-entrypoint-initdb.d/import.sh && \ 

         chown -R ${USER_NAME}:${USER_NAME} /Docker-entrypoint-

initdb.d 

 

USER ${USER_NAME} 

 

VOLUME /bitnami/mongodb/ 

WORKDIR /bitnami/mongodb/ 

 

  



48 
 

 

Appendix 2.  Resulting executor 2-stage Dockerfile 

FROM python:3.7 AS stage-compiler 

 

ARG version=1 

 

WORKDIR /build 

RUN pip install pyminifier 

COPY . . 

RUN python autocompiler.py  && \ 

         python ./installer/packager.py ${version} 

 

################################################################## 

 

FROM python:3.7-slim AS stage-final 

 

ARG version=1 

 

WORKDIR /executor 

ENV USER_NAME="user" \ 

        USER_ID=1010 \ 

        USER_HOME="/executor" \ 

        LOGSTORAGE_IP="10.10.10.10" 

 

RUN apt-get update && \ 

        apt-get install -y gcc && \ 

        groupadd -g ${USER_ID} ${USER_NAME} && \ 

        useradd --uid ${USER_ID} --gid ${USER_ID} -s 

/usr/sbin/nologin -d 

         ${USER_HOME} ${USER_NAME} 

 

COPY --from=stage-compiler --chown=${USER_ID}:${USER_ID} 

           /build/installer/resources/core/commons/*.whl ./ 

COPY --chown=${USER_ID}:${USER_ID} requirements*.txt ./ 

 

RUN sed -i /.*pypiwin32.*/d ./requirements_release.txt && \ 

         pip3 install -r ./requirements_release.txt -r 

./requirements_ute.txt && \ 

         apt-get purge -y --auto-remove gcc && \ 

        pip3 install *.whl 

USER ${USER_NAME} 

 

VOLUME /var/logstorage 

 

EXPOSE 44000-44299 

 

CMD python3 -m executor.framework.remote.remoteserver  

         executor.framework.remote.masterservice 1 -l 

${LOGSTORAGE_IP} -d  

         /var/logstorage 

  



49 
 

 

Appendix 3.  Resulting webserver 4-stage Dockerfile 

FROM node:14.19-stretch AS stage-server-build 

 

COPY custom_entrypoint.sh ./server ./server/ 

WORKDIR /server 

 

RUN npm install --verbose && \ 

         npm run build && \ 

         npm run generate-apidocs && \ 

         mv -t ./build/ custom_entrypoint.sh ./ssl robot_parser.py 

&& \ 

         mv ../build/apidocs ./build/apidocs && \ 

         npm install --production 

 

################################################################## 

 

FROM node:14.19-stretch AS stage-client-build 

 

COPY ./client /client 

WORKDIR /client 

 

RUN npm install concurrently cross-spawn fs-extra glob javascript-

obfuscator pkg && \ 

         npm install && \ 

         npm run build && \ 

         npm run obfuscate 

 

################################################################## 

 

FROM executor:latest as stage-document-generator 

 

RUN cd docs && \ 

    pip uninstall -y elasticsearch && \ 

    pip install elasticsearch==7.13.4 sphinx recommonmark && \ 

    python3 documentation.py && \ 

    python3 -m sphinx -c . -b html .. userguide 

 

################################################################## 

 

FROM node:14.19-slim AS stage-final 

 

WORKDIR /build 

ENV USER_NAME="user" \ 

        USER_ID=1010 \ 

        USER_HOME="/build" 

 

RUN apt-get update && \ 

         apt-get install -y python3 python3-pip uuid-runtime 

libgssapi-krb5-2 && \ 

         pip3 install robotframework==3.2.2 && \ 

         groupadd -g ${USER_ID} ${USER_NAME} && \ 

         useradd --uid ${USER_ID} --gid ${USER_ID} -d ${USER_HOME} 

${USER_NAME} 

 

COPY --from=stage-server-build --chown=${USER_ID}:${USER_ID} 

/server/build/ . 



50 
 

 

COPY --from=stage-client-build --chown=${USER_ID}:${USER_ID} 

/build/ . 

 

RUN chown -R ${USER_ID}:${USER_ID} ${USER_HOME} && \ 

         chmod +x custom_entrypoint.sh && \ 

         mkdir -p /etc/license && \ 

         mkdir -p /usr/local/core/webserver/userdata 

 

COPY --from=stage-server-build --chown=${USER_ID}:${USER_ID} 

           /server/node_modules ./node_modules 

 

EXPOSE 8443 

VOLUME /var/logstorage 

VOLUME /data 

 

ENTRYPOINT ["./custom_entrypoint.sh"] 

 

  



51 
 

 

Appendix 4.  Resulting executor pipeline job 

image: Docker:19.03.12-git 

 

variables: 

  DOCKER_DRIVER: overlay2 

  GIT_STRATEGY: none 

  IMAGE_NAME: executor 

  IMAGE_NAME_REF_TAG: ${IMAGE_NAME}:${CI_COMMIT_SHA} 

 

stages: 

  - build 

  - publish 

 

build_executor_image: 

  before_script: 

    - apk update 

    - apk add --no-cache git-lfs 

    - git-lfs install 

    - mkdir -p ~/.ssh 

    - chmod 700 ~/.ssh 

    - echo "${SSH_PRIVATE_KEY}" > ~/.ssh/id_rsa 

    - chmod 400 ~/.ssh/id_rsa 

    - echo -e "Host *\n\tStrictHostKeyChecking no\n\n" > 

~/.ssh/config 

    - chmod 400 ~/.ssh/config 

    - ls -l 

    - git clone ${CI_REPOSITORY_URL} ${CI_PROJECT_DIR} 

    - cd ${CI_PROJECT_DIR} 

    - git checkout ${CI_COMMIT_SHA} 

  tags: 

    - Docker 

  image: Docker:19.03.12-git 

  stage: build 

  services: 

    - Docker:19.03.12-dind 

  variables: 

    DOCKER_TLS_CERTDIR: "" 

 

  script: 

    - export DOCKER_BUILDKIT=1 

    - Docker image build --build-arg version=${CI_PIPELINE_IID} . 

-t ${IMAGE_NAME_REF_TAG} 

    - mkdir executor 

    - Docker save  ${IMAGE_NAME_REF_TAG} > 

executor/${IMAGE_NAME_REF_TAG}.tar 

    - Docker history ${IMAGE_NAME_REF_TAG} 

  artifacts: 

    paths: 

      - executor 

    expire_in: 30 mins 

 

publish_executor_image: 

  tags: 

    - Docker 

  image: Docker:19.03.12-git 

  services: 



52 
 

 

    - Docker:19.03.12-dind 

  stage: publish 

  script: 

    - Docker login -u ${ART_USER} -p ${ART_PASS} 

local.Artifactory.com 

    - Docker tag ${IMAGE_NAME_REF_TAG} local.Artifactory.com 

/${IMAGE_NAME_REF_TAG} 

    - Docker push local.Artifactory.com /${IMAGE_NAME_REF_TAG} 

    - Docker image rm ${IMAGE_NAME_REF_TAG} 

  dependencies: 

    - build_executor_image 

  



53 
 

 

Appendix 5.  Resulting webserver and database pipeline job 

image: docker:19.03.12-git 

 

variables: 

  DOCKER_DRIVER: overlay2 

  GIT_STRATEGY: none 

  WEB_IMAGE_NAME: web 

  WEB_IMAGE_NAME_REF_TAG: ${WEB_IMAGE_NAME}:${CI_COMMIT_SHA} 

  DB_IMAGE_NAME: mongo 

  DB_IMAGE_NAME_REF_TAG: ${DB_IMAGE_NAME}:${CI_COMMIT_SHA} 

 

stages: 

  - build images 

  - publish images 

 

build_images: 

  before_script: 

    - apk update 

    - apk add --no-cache git-lfs 

    - git-lfs install 

    - mkdir -p ~/.ssh 

    - chmod 700 ~/.ssh 

    - echo "${SSH_PRIVATE_KEY}" > ~/.ssh/id_rsa 

    - chmod 400 ~/.ssh/id_rsa 

    - echo -e "Host *\n\tStrictHostKeyChecking no\n\n" > 

~/.ssh/config 

    - chmod 400 ~/.ssh/config 

    - ls -l 

    - git clone ${CI_REPOSITORY_URL} ${CI_PROJECT_DIR} 

    - cd ${CI_PROJECT_DIR} 

    - git checkout ${CI_COMMIT_SHA} 

  image: docker:19.03.12-git 

  stage: build images 

  tags: 

    - docker 

  services:  

    - docker:19.03.12-dind 

  variables: 

    DOCKER_TLS_CERTDIR: "" 

  script: 

    - export DOCKER_BUILDKIT=1 

    - ls -l 

    - cd mongo 

    - docker login -u ${ART_USER} -p ${ART_PASS} 

local.Artifactory.com  

    - docker build -f Dockerfile . -t ${DB_IMAGE_NAME_REF_TAG} 

    - cd .. 

    - mkdir db 

    - docker save  ${DB_IMAGE_NAME_REF_TAG} > 

db/${DB_IMAGE_NAME_REF_TAG}.tar 

    - ls -l db 

    - docker history ${DB_IMAGE_NAME_REF_TAG} 

    - docker image build . -t ${WEB_IMAGE_NAME_REF_TAG} 

    - mkdir web 

    - docker save  ${WEB_IMAGE_NAME_REF_TAG} > 

web/${WEB_IMAGE_NAME_REF_TAG}.tar 



54 
 

 

    - ls -l web 

    - docker history ${WEB_IMAGE_NAME_REF_TAG} 

  artifacts: 

    paths: 

      - db 

      - web 

    expire_in: 30 mins 

 

publish_images: 

  tags: 

    - docker 

  image: docker:19.03.12-git 

  services: 

    - docker:19.03.12-dind 

  stage: publish images 

  script: 

    - docker login -u ${ART_USER} -p ${ART_PASS} 

local.Artifactory.com 

    - docker tag ${WEB_IMAGE_NAME_REF_TAG} 

local.Artifactory.com/${WEB_IMAGE_NAME_REF_TAG} 

    - docker push local.Artifactory.com/${WEB_IMAGE_NAME_REF_TAG} 

    - docker tag ${DB_IMAGE_NAME_REF_TAG} 

local.Artifactory.com/${DB_IMAGE_NAME_REF_TAG} 

    - docker push local.Artifactory.com/${DB_IMAGE_NAME_REF_TAG} 

    - docker image rm ${WEB_IMAGE_NAME_REF_TAG} 

    - docker image rm ${DB_IMAGE_NAME_REF_TAG} 

 

  dependencies: 

    - build_images 

 

  



55 
 

 

Appendix 6.  Jenkins build trend 

 

 

 


	1 Introduction
	1.1 Problem setting
	1.2 Project scope

	2 Virtual machines and containers
	2.1 Hypervisor Virtualization
	2.1.1 Type 1 Hypervisor
	2.1.2 Type 2 Hypervisor

	2.2 Definition of containers
	2.3 The big picture of containers
	2.4 Docker
	2.4.1 Dockerfiles
	2.4.2 Docker Image
	2.4.3 Docker tools for optimization


	3 Project details
	3.1 Robot Framework
	3.2 Jenkins
	3.3 Artifactory
	3.4 Full-stack project description
	3.5 Problem statement
	3.6 Possible benefits from containerization
	3.7 Project objectives
	3.8 Implementation plan
	3.8.1 Containerization implementation plan
	3.8.2 Pipeline implementation plan


	4 Implementation work
	4.1 Database containerization process
	4.1.1 Problems occurred
	4.1.2 Implementation changes
	4.1.3 Implementation result

	4.2 Executor containerization process
	4.2.1 Problems occurred
	4.2.2 Implementation result process

	4.3 Webserver containerization process
	4.3.1 Problems occurred
	4.3.2 Implementation results

	4.4 Pipelines construction process
	4.4.1 GitLab Runner creation
	4.4.2 Pipelines implementation

	4.5 Storing container images
	4.6 Hosting the containerized project

	5 Evaluation
	5.1 State as is with Jenkins
	5.2 Full automatization with GitLab and Docker
	5.3 Build time comparison
	5.4 Containers brings complexity
	5.5 Containers require extra security

	6 Conclusion
	6.1 Next steps

	References
	Appendices
	Appendix 1.  Resulting database Dockerfile
	Appendix 2.  Resulting executor 2-stage Dockerfile
	Appendix 3.  Resulting webserver 4-stage Dockerfile
	Appendix 4.  Resulting executor pipeline job
	Appendix 5.  Resulting webserver and database pipeline job
	Appendix 6.  Jenkins build trend


