

Thi Van Linh Le

INVENTORY MANAGEMNET APPLICATION

Android Mobile Application

Technology
2022

ACKNOWLEDGEMENTS

First of all, I would like to thank to Dr. Ghodrat Moghadampour. Without his

patient instructions during the whole process of my final thesis, I could not have

finished this thesis in time.

I would also like to thank to my parents. I appreciate their effort and love in

bringing me up to be a better individual.

Finally, my dear friends, I would like to thank them very much for spending their

precious time helping me with other works and give me time to do my final

thesis.

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Thi Van Linh Le
Title Inventory Management Application
Year 2022
Language English
Pages 64
Name of Supervisor Dr. Ghodrat Moghadampour

This thesis aimed to develop an Android application, which was designed

specifically for retailers, to control and track their inventory remotely from

anywhere using smartphones. The application had met all requirements and

deployed successfully.

This inventory management application is used as a centralized database for

inventory information and allowed users to manage inventory information, track

inventory data, label inventory, search item by scanning barcode, track data log

history, manage user access, and alert low stock and over stock.

To reduce human error, improve efficiency and accuracy, this application

identifies each item by scanning barcode labels. The application uses the cloud-

based database system, which allows multi-user access and inventory

management, First In - First Out methodology as an inventory display.

Keywords Inventory, management, application, Android, and mobile.

CONTENTS

ABSTRACT

1 INTRODUCTION .. 10

1.1 Background ... 10

1.2 Objectives.. 10

2 RELEVANT TECHNOLOGY .. 11

2.1 JavaScript .. 11

2.1.1 JavaScript Versions .. 11

2.1.2 ES6 ... 11

2.2 Node.js .. 12

2.3 Express .. 13

2.4 JSON Web Token ... 13

2.5 Bcrypt Hashing Algorithm ... 13

2.6 Mongoose ... 14

2.7 MongoDB .. 15

2.8 Postman .. 15

2.9 Android Studio .. 15

2.10 Java .. 16

2.11 MVVM (Model-View-ViewModel) Architecture Pattern 16

2.12 Retrofit .. 17

3 APPLICATION DESCRIPTION .. 18

3.1 General Description .. 18

3.2 Quality Function Deployment ... 19

3.2.1 Must have requirements ... 19

3.2.2 Should-have Requirements ... 20

3.2.3 Nice-to-have Requirements .. 20

3.3 Use Case Diagram ... 21

3.4 Class Diagram .. 22

3.4.1 Login Package .. 22

3.4.2 Dashboard packages, Type package, Item package, Detail

package, Data Log package ... 22

3.4.3 Network Util .. 27

3.4.4 Retrofit Interface ... 28

3.5 Sequence Diagram .. 29

3.6 Component Diagram ... 30

3.7 Deployment Diagram .. 31

4 DATABASE AND GUI DESIGN .. 32

4.1 Database Design ... 32

4.2 User interface design .. 34

5 IMPLEMENTATION .. 43

5.1 Front-end .. 43

5.1.1 Structure .. 43

5.1.2 Packages and Primary Classes ... 44

5.2 Back-end ... 45

6 TESTING .. 51

7 CONCLUSIONS .. 53

REFERENCES .. 54

APPENDICES

LIST OF FIGURES AND TABLES

Figure 1. Mongoose in the server-database relationship. (Manning, n.d.) 14

Figure 2. MVVM model.(Patrzyk, Rycerz and Bubak, 2015) 17

Figure 3. Use Case diagram for Inventory management. 21

Figure 4. Class diagram for login ... 22

Figure 5. Class diagram for Dashboard package ... 23

Figure 6. Class diagram for Type package ... 24

Figure 7. Class diagram for Item package ... 25

Figure 8. Class diagram for Detail package ... 26

Figure 9. Class diagram for Data Log package .. 27

Figure 10. NetworkUtil class diagram ... 27

Figure 11. RetrofitInterface class diagram .. 28

Figure 12. Sequence diagram ... 29

Figure 13. Component diagram .. 30

Figure 14. Deployment diagram ... 31

Figure 15. Login UI .. 35

Figure 16. Reset Password UI ... 35

Figure 17. Account setting UI .. 36

Figure 18. Change password UI .. 37

Figure 19. Register new user UI .. 37

Figure 20. Dashboard UI ... 38

Figure 21. Data logs UI .. 38

Figure 22. Type UI ... 39

Figure 23. Item UI ... 40

Figure 24. Storage UI... 40

Figure 25. Read - add new barcode UI .. 41

Figure 26. Search item by barcode UI ... 41

Figure 27. Adjustment amount UI .. 42

Figure 28. Front-end structure ... 43

Figure 29. “mainUI” package .. 44

Figure 30. Model package ... 45

7

Figure 31. Network - utils - register packages .. 45

Figure 32. Back-end structure ... 46

Figure 33. Functions directory .. 46

Figure 34. Model directory ... 47

Table 1. The must-have requirements list .. 19

Table 2. The should-have requirements list ... 20

Table 3. The nice-to-have requirements list ... 20

Code snippet 1. Snippet of User data model .. 32

Code snippet 2. Type data model ... 33

Code snippet 3. Item data model ... 33

Code snippet 4. Storage data model .. 34

Code snippet 5. Logs data model ... 34

Code snippet 6. Snippet of “checkToken function” ... 47

Code snippet 7. Snippet of “send email from server” .. 48

Code snippet 8. Snippet of “app.js” file .. 49

Code snippet 9. Snippet of an endpoint defined in “routes.js” file 49

Code snippet 10. Snippet of “RetrofitInterface methods” 57

Code snippet 11. Snippet of “Interface defines endpoints” 60

Code snippet 12. Snippet of “build.gradle” .. 62

Code snippet 13. Snippet of “package.json” .. 64

LIST OF ABBREVIATIONS

API Application programming interface

MVVM Model-View-View Model

UI User interface

JSON JavaScript object notation

BSON Binary encoded JavaScript Object Notation

JWT JSON web token

HTTP Hypertext Transfer Protocol

ODM Object Data Modeling

SSPL Server-Side Public License

IDE Integrated Development Environment

XML Extensible Markup Language

UML Unified Modeling Language

9

LIST OF APPENDICES

APPENDIX 1. Snippet code of “RetrofitInterface methods.

APPENDIX 2. Snippet code of “Interface defines endpoints”

APPENDIX 3. Snippet code of “build.gradle”

APPENDIX 4. Snippet code of “package.json”

10

1 INTRODUCTION

In this chapter, the introduction, including background, aims and objectives of the

thesis, is described as below.

1.1 Background

An inventory management system is popular nowadays for controlling, tracking

inventory instead of repetitive and tedious manual work. An Android application

was developed by demand with a cloud-based database providing multi-user

access and making inventory management work more convenient.

In this thesis, an Android application was developed using the Java language, with

its back-end (Node.js REST API) connected to a database located in the MongoDB

Atlas Cloud.

1.2 Objectives

First, the demand of the organization is analysed. Second, based on the result of

research, a plan was made. This plan was used as an instruction to show how the

application in separate phases. Next, the programming languages and

technologies was analysed and chosen based on the research. This phase is a

principal option because the tools was provided the best method to achieve the

goal. The application was developed and tested before transferring to the

company for further tests. The company will return a report which will show the

result of practical test as well as the requirement for editing demand. The

application will be checked and re-programmed based on the company report.

Finally, the application will be sent to the company as a final product.

11

2 RELEVANT TECHNOLOGY

In this chapter, relevant technologies and libraries used in the whole project are

explained here.

2.1 JavaScript

JavaScript (often shortened to JS) is a lightweight, interpreted, object-oriented

programing language with first-class functions based on objects which can return

a value by passing a function itself to other functions as an argument. It is

commonly used as the scripting language for Web pages but is also used in many

non-browser environments. In September 1995, Mocha was first developed by a

Netscape programmer named Brendan Eich, but quickly became known as

LiveScript and, later, JavaScript. (MDN contributors 2022)

2.1.1 JavaScript Versions

In 1997, due to JavaScript’s rapid growth, Netscape standardized JavaScript with

ECMA (European Computer Manufacturers Association) - a non-profit

organization that develops standards in computer hardware, communications,

and programming languages. The ECMA specifications were labeled ECMA-262

and ECMAScript languages included JavaScript, JScript, and ActionScript. Since

then, different versions of ECMAScript have been released and abbreviated to ES1,

ES2, ES3, ES4, ES5, ES6, ECMAScript 2016, ECMAScript 2017, ECMAScript 2018.

(Kopecky, 2020)

This project uses the JavaScript version 2015 knows as ES6.

2.1.2 ES6

ES6, also officially known as ECMAScript 2015 or ES2015 is a significant update to

the JavaScript programming language. It is the first major update to the language

since ES5 which was standardized in 2009. Therefore, ES2015 is often called ES6.

Some features of ES6 has been used in this project and will be discussed below.

12

ES6 and new keywords let and constant: The let keyword declares a variable with

block scope, it is not possible to access let variables outside a function expression.

Constants can be declared using the const keyword, const variables name cannot

be declared twice.

ES6 and new arrow functions: functions expressions can be written in a short

syntax using arrow functions. Arrow functions must be defined before use and

they do not have their own “this”.

ES6 and promises: Instead of using callbacks, promises in ES6 can avoid “callback

hell” (multiple or dependent callbacks). This project uses ES6 promise and call

“resolve()” for success operation and “reject()” for failure operation. (Kopecky,

2020)

2.2 Node.js

Node.js is a cross-platform, open-source JavaScript runtime environment. Node.js

runs the Chrome’s V8 JavaScript engine outside of the browser. This results in

extremely fast processing. Node.js is an asynchronous, a non-blocking and event-

driven I/O system, it does not wait for one API call to complete before moving to

the next one. Instead, it executes the next event and returns to the previous using

a callback function that was specified before. Rather than blocking the thread and

wasting CPU cycles waiting, Node.js resumes the operations when the response is

received. As a result, Node.js enables to handling of thousands of concurrent

connections with a single server without introducing the burden of managing

thread concurrency, which could be a significant source of bugs. (Node n.d.)

Node.js was chosen because Node.js offers high-performance for real-time

applications, easy scalability and has a large community support.

13

2.3 Express

Express is a library, a Node.js web application framework that provides a core set

of features to develop web and mobile applications. Express provides mechanisms

to write handlers for HTTP requests, to set common web application setting such

as connecting port / template location, adding additional request processing

"middleware". There are plenty of middleware packages can solve almost any web

development problem, examples are libraries to work with sessions, cookies, URL

parameters, POST data, security headers.

2.4 JSON Web Token

JSON Web Token (JWT) is an open standard (RFC 7519 used to share security

information between two parties (a client and a server) as a JSON object. This

information can be verified and trusted because it is digitally signed. JWTs can be

signed using ‘a secret’ or ‘a public/private key pair’ (using RSA or ECDSA). JSON

Web Tokens consist of three parts, which are: Header, Payload and Signature. Due

to its small size, JWT is transmitted quickly and can be sent through a URL, through

a POST parameter, or inside an HTTP header. In this project server uses secret

string to create JWT and sent to client when login success, client sent HTTP

requests included JWT in the header to authenticate itself with the server. (JWT

n.d.)

2.5 Bcrypt Hashing Algorithm

Keeping in mind the fact that passwords must never be stored in plaintext, there

are plenty of algorithms to safely store passwords such as MD5, SHA1, SHA256,

SHA384, PBKDF2, or Bcrypt. This project uses Bcrypt to hash passwords. Bcrypt

requires attackers a lot of computational time compared to others.

Bcrypt hashing function allows us to build a password security platform that scales

with computation power and always hashes every password with a salt. Known as

14

a slow algorithm, Bcrypt requires a salt as part of hashing process, therefore it

reduces the number of passwords by second an attacker could hash when making

a dictionary attack. A salt is a unique, randomly generated string that is added to

each password as part of the hashing process. (Arias, 2021)

2.6 Mongoose

Mongoose is an Object Data Modeling (ODM) library that creates a connection

between MongoDB and Node.js. It offers a variety of hooks, provides model

validation, manages relationships between data, and is used to translate between

objects in code and the representation of those objects in MongoDB.

Figure 1. Mongoose in the server-database relationship. (Manning, n.d.)

Figure 1 shows the relationships between parts, the router receives http requests

from the mobile application and forwards them to the controller, the controller

retrieves the data by working with models which are defined with the Mongoose

15

library. The router also receives data from the controller and sends it to the mobile

application.

2.7 MongoDB

MongoDB is an open-source document-oriented, NoSQL database and is

developed by MongoDB Inc, licensed under the ‘Server Side Public License’ (SSPL).

MongoDB is not based on using tables and rows to store data as traditional SQL

database, it makes use of collections and documents instead. MongoDB provides

a mechanism for the storage and retrieval of data called BSON (which is a binary

JSON), it stores data records as documents which are grouped together in

collections. Because MongoDB does not require predefined schemas, users can

create any number of fields in a document, documents in the same collection can

have different properties and key-value pairs. MongoDB provides more flexibility

for storing the non-alike data, big data application will get advantages from

horizontal scalability: it also improves the speed of database operation and ability

to distribute data across a cluster of machines. (MongoDB, n.d.)

2.8 Postman

Postman was designed in the year 2012 and works as an API testing tool. Postman

tool allows to design, mock, debug, testing, document, monitor and publish the

APIs. In this project, Postman works as an HTTP client that sends requests to the

server and receives responses, it also makes API development and testing

straightforward. (Postman, n.d.)

2.9 Android Studio

Android Studio is the official Integrated Development Environment (IDE) for

Android app development. Android studio contains all the Android tool to design,

test, debug, and profile application. Android studio version 4.0.1 is used to develop

this project which has features including: Gradle-based build support, Android Virtual

16

Device to run and debug, help to build up for all devices and more. (Android

Developers, n.d.)

2.10 Java

Java is a general-purpose, concurrent, strongly typed, class-based, object-oriented

programming language, created in 1995 and is used widely around the world. Java

is popular, reliable and is used for developing different type of applications

included: Mobile application (Android application), Web applications, Desktop

application, Server application, Games and many more. Java code can run on

different platforms such as Windows, Mac, Linux, and Raspberry Pi. Java

applications are normally compiled to bytecode and can run in any Java Virtual

Machine. Once Java code is compiled, it can run on all platforms that support Java

without the need to recompile. (Java, n.d.)

2.11 MVVM (Model-View-ViewModel) Architecture Pattern

MVVM is a structural design pattern apply for developing application, it separates

the data presentation logic(Views or UI) from the business logic part. The separate

code layers of MVVM are:

Model: This layer represents the data and the business logic of the application.

View: This layer consist the UI code(Activity, Fragment) with the purpose is to send

the user’s action to ViewModel. This layer observes the ViewModel and does not

contain any application logic.

ViewModel: It interacts with model and exposes those data streams which are

relevant to the View and serves as a link between the Model and the View. (Geeks

for Geeks, 2021)

17

Figure 2. MVVM model.(Patrzyk, Rycerz and Bubak, 2015)

There are two ways to implement MVVM design pattern in Android projects:

- Using the DataBinding library released by Google

- Using any tool like RxJava for DataBinding.

This project applies the MVVM model on some main packages and using the

DataBinding library released by Google.

2.12 Retrofit

Retrofit is a REST Client for Java and Android and is an open-source library which

simplifies HTTP communication by making remote APIs declarative, type-safe

interfaces. It allows retrieving and uploading JSON (or other structured data) via a

REST based web service. Retrofit allows users to specify the converter that is used

for data serialization. Typically for JSON use GSon but can add custom converters

to process XML or other protocols. Retrofit uses the OkHttp library for HTTP

requests.

18

3 APPLICATION DESCRIPTION

This chapter show the detailed description of the application.

3.1 General Description

The purpose of this thesis is to build a Management Inventory Application with

cloud-based database. This application stores database at MongoDB Atlas Cloud.

The user’s information needs to be registered on the register page before logging

in to access all the important features embedded in the application. In order to

improve the security, this project uses JWT (JSON web token) to verify client

requests send to the server. The application includes the following services:

- Authentication and authorization

Login with a hashed password, secured with a JSON web token (JWT),

limited access where the user is not a manager. Changeable password

through the user’s email, new user registration .

- Inventory summary

Generates the summary information of the current stock, calculates

the total value of the current stock. Shows the alert and list items which

are under stock.

- Manage inventory

Able to get/add/delete/edit/adjustment inventory information. Data

request secured by a JSON web token (JWT).

- Data logs history

Can show the list of history actions, whose action, what kind of action,

time of action.

- Labeling item

Using a mobile phone camera to add the barcode of an item, can search

an item from the inventory by scanning the barcode.

19

3.2 Quality Function Deployment

The requirements of this application can be categorized into three types based on

the priorities: must-have requirements, should-have requirements, nice-to-have

requirements.

3.2.1 Must have requirements

The must-have requirements list of the application are introduced in Table 1.

Table 1. The must-have requirements list

Requirements

Database on cloud

Register user using hashed password

Signing in with JSON web token checking

Can change – reset password

Authorization (access control)

Checking summary quantity of inventory

Generate the total value of current inventory

Alert and show list items which are low stock/over
stock

Checking stock information

Add stock information

Edit stock information

Delete stock information

Apply first in first out (FIFO)

Secure method when requesting data

Can scan and add a barcode by a camera

Can scan and search item information by a barcode

Can edit the max stock of each item

Checking the profile of the user

20

3.2.2 Should-have Requirements

The should-have requirements list of the application are introduced in Table 2.

Table 2. The should-have requirements list

Requirements

Can list data log history

Sort data log history by date time descending

3.2.3 Nice-to-have Requirements

The nice-to-have requirements list of the application are introduced in Table 3.

Table 3. The nice-to-have requirements list

Requirements

With Responsive UI

Propose re-order list

21

3.3 Use Case Diagram

 The Use Case diagram of the application can be seen in Figure 3.

Figure 3. Use Case diagram for Inventory management.

As shown by the Use Case diagram, the manager has full rights access when the

staff get limited access; there can be many manager users and many staff users.

The user must be registered before logging in and accessing the application

features. Users can manage the inventory and use the scanning barcode operation

but only the manager user can register a new user, check the inventory status, edit

the item price and check data logs.

22

3.4 Class Diagram

A class diagram is a type of static structure diagram in the Unified Modeling

Language (UML) that describes the structure of a system by showing its classes,

their attributes, operations (or methods), and relationships between them. Five

main packages in this project are: Login, Dashboard, Item management, Data log,

Account setting. These five packages are described here.

3.4.1 Login Package

The login class description is given in Figure 4.

Figure 4. Class diagram for login

LoginFragment class presents the method for login to the application. The login

request is sent to the server, the login’s parameters are combined, encoded and

set to the header variable authorization using OkhttpClient. When the login

response returns successfully, the client will receive login information and a token

(JWT) from the server as a response.

3.4.2 Dashboard packages, Type package, Item package, Detail package, Data

Log package

Packages present from Figure 5 to Figure 9 includes classes along with their

attributes, methods and relationships. These packages using MVVM model as a

23

part of their architectural patterns (Some methods haven’t change completely to

MVVM model). Repository modules provide a LiveData object for ViewModel.

ViewModel class calls the Repository API. Fragment classes gets LiveData list from

ViewModel, once the list data is retrieved, it is passed to Adapter classes (the

RecyclerView adapter) and display the list data in the RecyclerView component.

The dashboard package is given in Figure 5.

Figure 5. Class diagram for Dashboard package

The Dashboard package After the user logs in successfully, the application

will display Dasboard UI included: summary status of inventory, alert list from

“low stock list” and “over stock list”.

24

The Type package is given in Figure 6.

Figure 6. Class diagram for Type package

The Type package displays the list of type in inventory. The user can add, update
and delete each type on the list.

25

The Item package is given in Figure 7.

Figure 7. Class diagram for Item package

The Item package includes the listing items of a type. The user can add, update
and delete each item on the list.

26

The Detail package is given in Figure 8.

Figure 8. Class diagram for Detail package

Detail package: Listing detail information of in/out stock of each item. User can

add, update and delete each detail on the list.

27

The Log package description is given in Figure 9.

Figure 9. Class diagram for Data Log package

The Data log package Listing history of every change of data including user

information, data change information, time of change.

3.4.3 Network Util

The NetworkUtil class is given in Figure 10.

Figure 10. NetworkUtil class diagram

There are getRetrofit() static methods with different parameters manages the

process of receiving, sending, creating HTTP requests and response.

28

3.4.4 Retrofit Interface

The Introduce to “RetrofitInterface.class” is given in Figure 11.

Figure 11. RetrofitInterface class diagram

“RetrofitInterface.class” contains the RESTful endpoints that will be called for

subsequent operation. Every method returns a RxJava Observable, which can be

subscribed to by an Observer.

29

3.5 Sequence Diagram

The Sequence diagram of the application is given in Figure 12.

Figure 12. Sequence diagram

The sequence diagram in Figure 12 shows the interaction of different objects with

each other in the process of using the application. At first, the user logs in into the

application using email and password. The login parameters will be combined,

encoded at the NetworkUtil class and then sent to the Restful endpoints at the

RetrofitInterface class. The HTTP request is sent to the server for authentication.

If the credentials are verified in the server, the client will receive login information

including a JSON web token for handling the session. If the successful login leads

to a redirect of application, the user can access the application features. If the

verification process returns fail, the client will receive a notification and starts the

login process from beginning.

30

3.6 Component Diagram

The Component diagram is given in Figure 13.

Figure 13. Component diagram

The component diagram in Figure 13 shows how components in this application

are connected. This project includes three main parts: client Android application,

REST API server, Data access.

The User Interface is an Android application. The REST API server handles

requests sent by the client, communicates with the database, processes data and

returns responses to the Android application.

31

3.7 Deployment Diagram

The Deployment of project is given in Figure 14.

Figure 14. Deployment diagram

The deployment diagram in Figure 14 shows the execution architecture including

hardware, execution environments, and the middleware connecting between

them.

32

4 DATABASE AND GUI DESIGN

In this chapter, the design of database and GUI is introduced.

4.1 Database Design

This project stores and retrieves all data information from the MongoDB database.

The server is written using Node.js and connects to MongoDB by using Mongoose.

The database is a NoSQL database, it stores data records as documents which

gathered together in collections. These documents are stored in the JSON

(JavaScript Object Notation) format. Five data collections are used in this project

including User, Type, Item, Storage and Logs collections. These data models are

described in Figure 15 to Figure 19.

const userSchema = mongoose.Schema({

name : String,

email : String,

hashed_password : String,

created_at : String,

temp_password : String,

temp_password_time: String,

type : Number

});

Code snippet 1. Snippet of User data model

This User model includes the user’s login information.

33

const typeSchema = mongoose.Schema({

 type : String,

 description : String,

 maxStock : Number,

 sumStorage : Number

});

Code snippet 2. Type data model

The Type model stores the type information.

const itemSchema = mongoose.Schema({

 item : String,

 description : String,

 barcode : String,

 type : String,

 maxStock : Number,

 sumStorage :Number

});

Code snippet 3. Item data model

The Item model stores the item information.

const storageSchema = mongoose.Schema({

 item : String,

 inAmount : Number,

 outAmount : Number,

34

 dateInStock : String,

 dateExpiry : String,

 price : Number

});

Code snippet 4. Storage data model

The Storage model stores the detailed information of each time stock-in or stock-

out.

const logsSchema = mongoose.Schema({

 user : String,

 action : String,

 time : String,

 note : String

});

Code snippet 5. Logs data model

The Logs model stores the information of each time user made change to

database.

4.2 User interface design

The aim of this chapter is to introduce the user interface of the application.

35

Figure 15. Login UI

Figure 15 shows the login page. The user can log in by email and password. After

user logs in successfully, the user can access to the application features and their

account information setting will be available on ‘My account’ page. The User can

request for the reset of the password by clicking ‘Forgot password’.

Figure 16. Reset Password UI

36

Figure 16 shows the reset password page. After the user sends a request to reset

the password, the user will receive a token through email, and the user needs to

confirm the token and the new password in order to complete the reset password

process.

Figures 22, 23, 24 shows the account information page and setting functions.

Figure 17. Account setting UI

My account page includes user information and three functions: change password,

logout and register new user. Only the user account with the manager role has the

“Register new user” function.

37

Figure 18. Change password UI

The user can request to change the password from the account page.

Figure 19. Register new user UI

When registering a new user, one checkbox needs to be selected to grant the

account-role as manager. Otherwise, the new account will be granted as staff.

38

Figure 20. Dashboard UI

Figure 20 shows the dashboard page. The Dashboard page includes the overall

information of inventory and a list of warning items.

Figure 21. Data logs UI

39

Figure 21 shows the Data Log page. This page presents a list of histories data

including user information, user action and date time of action. The list is sorted

in the descending order by time.

Figure 22. Type UI

Figure 22 show the Types page. This page work as a list of folders, each folder is a

type of items. One type can have many items of that type inside. Each type in the

list can be deleted and edited. The user also can add a new type. The index

“Instock/Maxstock” presents the current quantity item of a type over maximum

capacity of that type.

40

Figure 23. Item UI

Figure 23 shows the Item page. This page includes a list items of a type selected.

Each item information can be edited and deleted. Each item has its own maxstock

number. When the quantity of an item biger than its own maxstock, there will be

a blue warning “Over Stock”. When the quantity of an item equal or smaller than

quarter of maxStock, there will be a red warning “Low Stock”.

Figure 24. Storage UI

41

Figure 24 shows the storage page. This page presents the list of in and out stock.

The list is sorted in the ascending order by the date of stock in(First in first out).

When ‘amount out’ equals ‘amount in’, the tag will disapear.

Figure 25. Read - add new barcode UI

Figure 25 shows how the barcode is read. When the user adds new items, they can

add a barcode by using the scanning function.

Figure 26. Search item by barcode UI

42

Figure 26 shows how to search detailed information of an item through scanning

the barcode. The barcode will be detected and the application will redirect to the

detail page of that item.

Figure 27. Adjustment amount UI

Figure 27 shows how the user can manage the amount when the stock goes.

43

5 IMPLEMENTATION

In this chapter, detailed implementation of this project is introduced. This chapter

has two parts, front-end part and back-end part. Each part will explain its own

structure, primary classes and methods.

5.1 Front-end

5.1.1 Structure

This chapter gives a general description about the front-end structure.

Figure 28. Front-end structure

44

As shown in the front-end structure tree in Figure 28, “ThesisProject_main” is the

project directory, with “manifests”, “java”, “java(generated)”, “res” and “Gradle

Scripts” in it.

5.1.2 Packages and Primary Classes

The main packages and special classes will be introduced respectively in this

chapter.

Figure 29. “mainUI” package

The package “mainUI” is a Java package that contains core Java classes, which are

serve for client presentation logic and UI logic.

45

Figure 30. Model package

The “model” package includes six model classes for storing data. When the user

ask for an information, the view goes to View Model, View Model notifies the

model. Then the model gives that information to View Model and then notifies

View about that information so the user can see that information.

Figure 31. Network - utils - register packages

The Nestwork package handles communications between the Android application

and the RESTful API server.

5.2 Back-end

The Structure of back-end and some of special functions will be introduced here.

46

Figure 32. Back-end structure

Figure 32 shows the server structure of this project. “ts-back-end” is the server

directory, with three main directories: “config”, “function”, “model”. “.env”

defines the database connection string.

Figure 33. Functions directory

The Functions directory (Figure 33) stores the controllers of this server.

47

Figure 34. Model directory

The Model directory (Figure 34) stores five data models which are connected to

the MongoDB database.

function checkToken(req) {

 const token = req.headers['x-access-token'];

 if (token) {

 try {

 var decoded = jwt.verify(token,

config.secret);

 return decoded.message === req.params.id;

 } catch(err) { return false; }

 } else {

 return false;

 } }

Code snippet 6. Snippet of “checkToken function”

After a successful login, the user will receive a JSON web token (JWT). When the

user sends a HTTP request data to the server, the HTTP request will be sent with a

48

JWT in it. The “checkToken” function is used to determine whether the HTTP

request originated from a trusted client.

const transporter = nodemailer.createTransport(

 {

 host: 'smtp.office365.com',

 port: 587,

 auth: {

 user: `${config.email}`,

 pass: `${config.password}`

 }

 }

);

 const mailOptions = {

 from: `"${config.name}"

<${config.email}>`,

 to: email,

 subject: 'Reset Password Request ',

 html: `Hello ${user.name},

 Your reset password token is

${random}.

 The token is valid for only 2

minutes.

 Thanks,

 Linh.`

 };

 return transporter.sendMail(mailOptions);

Code snippet 7. Snippet of “send email from server”

49

“Nodemailer” is a module for Node.js applications to allow email sending. This

server using Office365 host: “smtp.office365.com”.

'use strict';

const express = require('express');

const app = express();

const bodyParser = require('body-parser');

const logger = require('morgan');

const router = express.Router();

const port = process.env.PORT || 8080;

app.use(bodyParser.json());

app.use(logger('dev'));

require('./routes')(router);

app.use('/api/v1', router);

app.listen(port);

console.log(`App Runs on ${port}`);

Code snippet 8. Snippet of “app.js” file

“app.js” is the main file to start Node.js server. The router is set to “express” and

every API endpoint begin with “api/v1”. The server will run on port 8080.

router.get('/items/:id/:type', (req,res) => {

 if (checkToken(req)) {

 itemsList.getItems(req.params.type)

 .then(result => res.json(result))

 .catch(err =>

res.status(err.status).json({ message: err.message }));

 } else {

 res.status(401).json({ message: 'Invalid

Token !' });

 }

});

Code snippet 9. Snippet of an endpoint defined in “routes.js” file

Each RESTful endpoint is defined in the “routes.js” file. The snippet code in ‘Code

snippet 9’ is an example of an endpoint and is used for getting all items which have

50

the “type” equal parameter type. The x-access-token will also be present in the

header for this request, “checktoken” functions will be called and checked. If

“checkToken” return “true”, the controller will be called to process the request,

the response will be returned in the json format.

51

6 TESTING

This project had two testing phases. The first phase was conducted when the REST

API was ready, the second phase when the whole project was ready. The first

testing phase used Postman to test each API. The second testing phase used black

box testing technique. Each part of the application was tested and corrected until

all the requirements were met.

The controllers of the project were tested using correct parameters and incorrect

parameters. The graphical user interface was tested mainly using Samsung Galaxy

A7 and an Android emulator virtual device.

The sample testing cases for the second phase were:

• Login

Expected Result: Check validation fields, successful sends an HTTP request,

gets response from the server and returns the correct action.

Result: Pass

• Dashboard

Expected Result: If the user’s role is the manager, sends an HTTP request

to the server, gets response and returns a correct display information

(summary information, the alert list).

Result: Pass

• Account

Expected Result: Returns correct user information, “change password”

function and “log-out” function work correctly, “add new user” function

only available if the user role is the manager.

Result: Pass

• Search item by scanning barcode

52

Expected Result: Barcode is detected correctly by the mobile phone

camera, sends an HTTP request for checking item information, gets

response and displays a correct item that was searched.

Result: Pass

• Data log history

Expected Result: Successful sends a request for a list data log, gets

response and displays the data list correctly.

Result: Pass

• Manage Item

Expected Result: Works correctly according to the requirements.

Result: Pass

53

7 CONCLUSIONS

With the aim to develop an inventory management application, the project was

well implemented. The application was targeted for mobile devices running on the

Android operating system. It allows users to login and access all features inside it.

The database is stored on the MongoDB cloud, the server was deployed successful

on “Heroku”, the application was converted to an “apk” format and can be

installed on the Android enabled devices. The project was developed using the

Java language and the JavaScript language. The application met 21 out of 22

requirements and works perfectly well.

The most challenging part of this project was keeping the code clean. Many parts

work together and clean code is easier to maintain. Keeping the code clean saves

a lot of time when returning to the previously written code and understanding

what it does. Maintaining clean code has many advantages; however, it was the

toughest part since it was challenging to maintain a high standard of code quality

while juggling other aspects of life.

The application was first built with basic inventory management requirements but

later can be upgraded with more advance requirements. In future, the application

can be improved by adding additional functionalities, some of the future works

are listed below:

• Re-order list using data analysis. For example, during the winter-time or

summer-time the re-order list would be different, holidays and normal

days the re-order list would be different, too.

• Manages gift-card information management.

• Exports reports and the manager’s mail every week, every month.

• Inventory management across multiple locations.

54

REFERENCES

MDN. 2022. JavaScript. Accessed 30.04.2022 https://developer.mozilla.org/en-

US/docs/Web/JavaScript.

Kopecky, Christina. 2020. JvaScript versions. Accessed 14.1.2022

https://www.educative.io/blog/javascript-versions-history.

Node.js. 2022. Introduction to Node.js. Accessed 14.1.2022.

https://nodejs.dev/learn/.

JWT. 2022. Introduction to JSON Web Tokens. Accessed 15.1.2022.

https://jwt.io/introduction.

 Arias, Dan. 2021. Understanding bcrypt. Accessed 15.1.2022.

https://auth0.com/blog/hashing-in-action-understanding-bcrypt/.

MongoDB. Introduction to MongoDB Accessed 20.1.2022.

https://www.mongodb.com/docs/manual/introduction/.

Postman. Introduction to Postman. Accessed 20.12.2021.

https://learning.postman.com/docs/getting-started/introduction/.

Android Developers. Meet Android studio. Accessed 17.3.2022.

https://developer.android.com/studio/intro.

Wikipedia. 2022. Java (programming language). Accessed 18.3.2022.

https://en.wikipedia.org/wiki/Java_(programming_language)

Geeks for Geeks. 2021. MVVM (Model View ViewModel) Architecture Pattern in

Android. Accessed 22.1.2022 https://www.geeksforgeeks.org/mvvm-model-view-

viewmodel-architecture-pattern-in-android/.

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.educative.io/blog/javascript-versions-history
https://nodejs.dev/learn/
https://jwt.io/introduction
https://auth0.com/blog/hashing-in-action-understanding-bcrypt/
https://www.mongodb.com/docs/manual/introduction/
https://developer.android.com/studio/intro

55

Manning. 2022. Building a data model with MongoDB and Mongoose. Accessed

10.5.2022. https://livebook.manning.com/book/getting-mean-with-mongo-

express-angular-and-node-second-edition/chapter-5/15.

Patrzyk, Rycerz, Bubak. 2015. Towards a novel environment for simulation of

quantum computing. Accessed

10.5.2022.…https://www.researchgate.net/publication/275258051_Towards_A_

Novel_Environment_For_Simulation_Of_Quantum_Computing

https://livebook.manning.com/book/getting-mean-with-mongo-express-angular-and-node-second-edition/chapter-5/15
https://livebook.manning.com/book/getting-mean-with-mongo-express-angular-and-node-second-edition/chapter-5/15

56

APPENDIX 1

public static RetrofitInterface getRetrofit(){

RxJavaCallAdapterFactory rxAdapter =

RxJavaCallAdapterFactory.createWithScheduler(Schedulers.

io());

return new Retrofit.Builder()

.baseUrl(Constants.BASE_URL)

.addCallAdapterFactory(rxAdapter)

.addConverterFactory(GsonConverterFactory.create())

.build().create(RetrofitInterface.class);

}

public static RetrofitInterface getRetrofit(String

email, String password) {

String credentials = email + ":" + password;

String basic = "Basic " +

Base64.encodeToString(credentials.getBytes(),Base64.NO_W

RAP);

OkHttpClient.Builder httpClient = new

OkHttpClient.Builder();

httpClient.addInterceptor(chain -> {

Request original = chain.request();

Request.Builder builder = original.newBuilder()

.addHeader("Authorization", basic)

.method(original.method(),original.body());

return chain.proceed(builder.build());

});

RxJavaCallAdapterFactory rxAdapter =

RxJavaCallAdapterFactory.createWithScheduler(Schedulers.

io());

return new Retrofit.Builder()

.baseUrl(Constants.BASE_URL)

.client(httpClient.build())

.addCallAdapterFactory(rxAdapter)

.addConverterFactory(GsonConverterFactory.create())

.build().create(RetrofitInterface.class);

}

57

public static RetrofitInterface getRetrofit(String

token) {

OkHttpClient.Builder httpClient = new

OkHttpClient.Builder();

httpClient.addInterceptor(chain -> {

Request original = chain.request();

Request.Builder builder = original.newBuilder()

.addHeader("x-access-token", token)

.method(original.method(),original.body());

return chain.proceed(builder.build());

});

Code snippet 10. Snippet of “RetrofitInterface methods”

NetworkUtil class includes three main methods to send out network request to an

API.

58

APPENDIX 2

public interface RetrofitInterface {

 @POST("users")

 Observable<Response> register(@Body User

user);//register new user

 @POST("authenticate")

 Observable<Response> login();//login

 @GET("users/{email}")

 Observable<User> getProfile(@Path("email") String

email);//return usr info

 @PUT("users/{email}")

 Observable<Response> changePassword(@Path("email")

String email, @Body User user);//change password

 @POST("users/{email}/password")

 Observable<Response>

resetPasswordInit(@Path("email") String email);//reset

password, sent passcode through email

 @POST("users/{email}/password")

 Observable<Response>

resetPasswordFinish(@Path("email") String email, @Body

User user);//

 @POST("types")

 Observable<Response> addType(@Body ItemType

Itemtype);//add new type

 @GET("types/all/{email}")

 Call<List<ItemType>> getTypes(@Path("email") String

email);//return all of type list

 @PUT("types/{email}/edit/{type}")

 Observable<Response> editType(@Path("email") String

email, @Path("type") String type, @Body ItemType

Itemtype);//save edit type

 @DELETE("types/{email}/del/{type}")

59

 Observable<Response> deleteType(@Path("email") String

email, @Path("type") String type);//delete type

condiction: no item in this type

 @GET("items/{email}/{type}")

 Call<List<Items>> getItems(@Path("email") String

email, @Path("type") String type);//get item list of type

parameter

 @GET("item/alert")

 Call<List<Items>> getItemAlert();//get item list

those with low stock: less than 30% of maxStock

 @POST("items")

 Observable<Response> addItem(@Body Items item);//add

new item

 @PUT("items/{email}/edit/{item}")

 Observable<Response> editItem(@Path("email") String

email, @Path("item") String item, @Body Items

items);//edit item

 @DELETE("items/{email}/del/{item}")

 Observable<Response> deleteItem(@Path("email") String

email, @Path("item") String item);//delete item

 @GET("storages/{email}/byItem/{item}")

 Call<List<Storage>> getStorage(@Path("email") String

email, @Path("item") String item);//return storage lines

of item parameter

 @POST("storages")

 Observable<Response> addStorage(@Body Storage

storage);//add new storage

 @PUT("storages/{email}/edit/{id}")

60

 Observable<Response> editStorage(@Path("email")

String email, @Path("id") Object id, @Body Storage

storage);//edit storage line

 @PUT("storages/{email}/adjustment")

 Observable<Response> storageAdj(@Path("email") String

email, @Body Storage storage);//adjustment the amount of

out stock

 @HTTP(method = "DELETE", path =

"storages/{email}/del", hasBody = true)

 Observable<Response> deleteStorage(@Path("email")

String email, @Body Storage storage);//delete stock line

 @GET("logs/90f")

 Call<List<Logs>> get99Logs();//return list of data

logs, just 90line nearest

 @HTTP(method = "POST", path = "logs", hasBody = true)

 Observable<Response> addLogs(@Body Logs log);//add

data log line, when add/update/delete

 @GET("overAll")

 Observable<Response> getSumValue();//return total

value of current stock

 @GET("countItem")

 Observable<Response> countItem();//count Item

 @GET("countType")

 Observable<Response> countType();//count type

 @GET("countStock")

 Observable<Response> countStock();//sum off current

stock{sum(stockIn-stockOut)}

 @GET("update")

 Observable<Response> update();//count type

 @GET("getItemOfBC/{id}")

 Observable<Items> getItemFromBC(@Path("id") String

id);//count type

Code snippet 11. Snippet of “Interface defines endpoints”

The “Interface defines endpoints” defines each endpoint that specifies an

annotation of the HTTP method (GET, POST, PUT, DELETE).

61

APPENDIX 3

apply plugin: 'com.android.application'

android {

 compileSdkVersion 29

 defaultConfig {

 applicationId "com.example.thesis_first"

 minSdkVersion 28

 targetSdkVersion 29

 versionCode 1

 versionName "1.0"

 testInstrumentationRunner

"androidx.test.runner.AndroidJUnitRunner"

 }

 compileOptions {

 sourceCompatibility JavaVersion.VERSION_1_8

 targetCompatibility JavaVersion.VERSION_1_8

 }

 buildTypes {

 release { minifyEnabled false

 proguardFiles

getDefaultProguardFile('proguard-android-optimize.txt'),

'proguard-rules.pro'

 }

 }

 buildFeatures{

 dataBinding true

 viewBinding true

 }

}

dependencies {

 implementation fileTree(dir: "libs", include:

["*.jar"])

 implementation 'androidx.appcompat:appcompat:1.2.0'

 implementation

'androidx.constraintlayout:constraintlayout:2.0.4'

 implementation

'com.squareup.retrofit2:retrofit:2.6.0'

62

 implementation 'com.google.code.gson:gson:2.6.1'

 implementation 'com.squareup.retrofit2:converter-

gson:2.6.0'

 implementation 'com.squareup.retrofit2:converter-

scalars:2.6.0'

 implementation 'com.squareup.retrofit2:adapter-

rxjava:2.1.0'

 implementation 'com.android.support:support-

annotations:28.0.0'

 implementation 'io.reactivex:rxjava:1.2.0'

 implementation 'io.reactivex:rxandroid:1.2.1'

 implementation 'androidx.lifecycle:lifecycle-

extensions:2.2.0'

 implementation 'androidx.navigation:navigation-

runtime:2.3.3'

 implementation 'com.android.support:cardview-

v7:28.0.0'

 testImplementation 'junit:junit:4.12'

 implementation

'com.google.android.material:material:1.3.0-alpha01'

 implementation 'androidx.core:core-ktx:1.2.0'

 androidTestImplementation

'androidx.test.ext:junit:1.1.2'

 androidTestImplementation

'androidx.test.espresso:espresso-core:3.3.0'

 implementation 'androidx.navigation:navigation-

ui:2.3.0'

 implementation "androidx.navigation:navigation-

fragment:2.3.0"

 implementation

"androidx.recyclerview:recyclerview:1.1.0"

 implementation 'com.google.android.gms:play-

services-vision:11.0.2'

}

Code snippet 12. Snippet of “build.gradle”

Build.gradle file defines dependencies that apply to all modules in this project.

63

APPENDIX 4

{

 "name": "thesis",

 "version": "0.1.0",

 "main": "app.js",

 "dependencies": {

 "basic-auth": "^2.0.1",

 "bcryptjs": "^2.3.0",

 "body-parser": "^1.15.2",

 "dotenv": "^8.2.0",

 "express": "^4.17.3",

 "git-init": "^1.0.0",

 "jsonwebtoken": "^8.5.1",

 "mongodb": "^3.6.5",

 "mongoose": "^6.3.1",

 "morgan": "^1.7.0",

 "nodemailer": "^6.7.2",

 "nodemailer-smtp-transport": "^2.7.4",

 "nodemon": "^2.0.7",

 "randomstring": "^1.1.5"

 },

 "description": "This is my server site!",

 "devDependencies": {},

 "scripts": {

 "start": "node app.js",

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "keywords": [

64

 "thesis"

],

Code snippet 13. Snippet of “package.json”

The “package.json” defines metadata relevant to the project and it is used for
managing the project's dependencies, scripts, version.

