
Serverless backend migration from JavaScript to TypeScript

Bachelor’s thesis

Information and communications technology, Riihimäki

Spring, 2022

Jani Koskela

Koulutus Tiivistelmä

Kampus

Tekijä Jani Koskela Vuosi 2022

Työn nimi Pilven palvelimettoman taustajärjestelmän muuntaminen JavaScriptistä

TypeScriptiksi

Ohjaajat Toni Laitinen

TIIVISTELMÄ

Opinnäytetyön tavoitteena oli muuttaa Lambda-funktioista koostuva pilven palvelimeton

Node.js-taustajärjestelmä, TypeScriptiksi. Lambda-funktiot oli kirjoitettu JavaScriptillä ja

käyttivät Amazon Web Service -pilvipalvelun palveluita koodin käyttöönottoprosessin

automatisointiin.

Taustajärjestelmä on käytössä Maranet-sovelluksella. Maranet on websovellus,

mobiililaitteelle ja tietokoneelle. Sovellus on käytössä maanrakennusyrityksillä. Se helpottaa

yrityksiä kirjaamaan maanrakennustöitä. Sovelluksessa on käytössä ReactJs selainpuoli.

Opinnäytetyössä käydään läpi teknologiat, joita käytetään muuntotyössä, Lambda-funktion

käyttöönotossa ja Lambda-funktion testaamisessa. Näihin teknologioihin kuuluvat AWS

palvelut, Node.js, TypeScript, JavaScript, CI/CD ja tietokannat.

TypeScript-muunnos teki taustajärjestelmästä tukevamman ja helppolukuisemman.

Muunnos auttaa koodia ehkäisemään virheitä kokoamisvaiheessa. Selvempi koodi auttaa

nopeamman koodin tuottamista tulevaisuudessa.

Avainsanat Lambda-funktiot, Node, Serverless, AWS, TypeScript

Sivut 37

Name of Degree Programme Abstract

Campus

Author Jani Koskela Year 2022

Subject Serverless backend migration from JavaScript to TypeScript

Supervisors Toni Laitinen

ABSTRACT

The goal of the thesis was to migrate serverless Node.js backend consisting of Lambda

functions to use TypeScript. Lambda functions were written with JavaScript and were using

the Amazon Web Service cloud provider’s services, to automate the code deploy process.

The backend is used by Maranet application. Maranet is a web application for mobile and

desktop. Application is used by earthwork companies. It helps companies to create

earthwork jobs. The application uses ReactJs frontend.

The thesis goes through technologies used in the migration process, the Lambda

deployment, and testing the Lambda function. These technologies are AWS services,

Node.js, TypeScript, JavaScript, CI/CD, and databases.

The TypeScript migration made backend more robust and easier to read. The migration helps

the code to prevent errors on compile time. Clearer code helps to develop code faster in the

future.

Keywords Lambda functions, Node, Serverless, AWS, TypeScript

Pages 37 pages

Contents

Terminology ...

1 Introduction ... 1

2 Serverless ... 1

2.1 Serverless types ... 2

2.2 Advantages ... 2

2.3 Disadvantages .. 2

2.4 Comparing to on-premise .. 3

2.5 Cloud Service Providers ... 3

3 Technologies .. 4

3.1 Database and MySQL ... 4

3.2 Amazon Web Services .. 5

3.2.1 AWS Lambda .. 5

3.2.2 Amazon S3 .. 6

3.2.3 Amazon Cloudformation .. 6

3.2.4 Amazon Cognito ... 6

3.2.5 Amazon API Gateway ... 7

3.2.6 Amazon RDS ... 8

3.2.7 Amazon Cloudwatch .. 8

3.3 JavaScript ... 8

3.3.1 ECMAScript ... 9

3.3.2 Node.js and NPM ... 9

3.3.3 Promise and async/await ... 11

3.3.4 Deno ... 13

3.4 CI/CD .. 13

3.5 TypeScript... 14

4 Maranet Application .. 15

5 Development ... 18

5.1 My initial thoughts ... 18

5.2 Lambda function .. 19

5.3 CI/CD pipeline .. 22

5.4 Installing TypeScript and type packages .. 23

5.5 Typing ... 25

5.5.1 Classes .. 25

5.5.2 Interface ... 27

5.5.3 Pre-made types from packages .. 28

5.6 Deploying function with CI/CD ... 29

5.7 Testing the Lambda function ... 31

6 Conclusion ... 33

References .. 35

Figures

Figure 1. Lambda function configuration. ... 5

Figure 2. HTTP request from the client to retrieve, create or alter data in the database.7

Figure 3. NPM init command ... 10

Figure 4. package.json file with installed packages. .. 11

Figure 5. Promise and async await example ... 12

Figure 6. Wrong type in a function call. .. 14

Figure 7. Compiling the TypeScript file and it creates a JavaScript file. 14

Figure 8. Create order page. .. 16

Figure 9. Web page report. ... 17

Figure 10. Lambda handler function flowchart. .. 19

Figure 11. Validate input function call. ... 20

Figure 12. Get user role return object ... 21

Figure 13. Handler function ... 22

Figure 14. tsconfig file ... 24

Figure 15. Classes... 25

Figure 16. Class imports... 26

Figure 17. New instance of request body.. 26

Figure 18. New instance of settings .. 26

Figure 19. User.d.ts file and User interface ... 27

Figure 20. Importing User interface .. 27

Figure 21. User interface used for type definition .. 28

Figure 22. NodeRequire type from @types/node ... 28

Figure 23. SignUpResponse type ... 29

Figure 24. TypeScript function in AWS Lambda .. 30

Figure 25. TypeScript Lambda function stack events .. 31

Figure 26. Created user ... 32

Figure 27. Created user in Amazon Cognito user pool .. 32

Figure 28.Lambda execution in Amazon Cloudwatch ... 33

Terminology

Stack Single unit of resources

AWS Amazon Web Services

Backend Also known as server-side. Part of the software. Not accessible for

users. Responsible for storing the data.

Frontend Also known as client-side. Part of the software. The user interface

that allows user to interact with the application.

API Application Programming Interface. Allows two applications to

communicate with each other.

Cognito user pool Group of users saved in the Amazon Cognito.

1

1 Introduction

In today’s world the serverless model has gained a lot of popularity due to its cost efficiency, easy

maintainability, and scalability. Because cloud service providers handle things like databases and

servers. It offers an easy way to execute the code automatically, saving time and money.

The goal of this thesis is to migrate a serverless backend consisting of Lambda functions to use

TypeScript instead of JavaScript. Using TypeScript should increase functions’ readability and make

them more robust and easier to maintain.

In addition to migrating the function to use TypeScript, the CI/CD will be modified to handle

compiling TypeScript file to JavaScript to avoiding unnecessary files in AWS Lambda package.

The thesis’s theory section goes through serverless use in Node.js backend and covers advantages

and disadvantages of the serverless architecture and Amazon Web Service technologies in use.

The serverless backend is used in Maranet that is an application made by SW-TECH Oy that is

mostly meant for mobile usage. Maranet is used by construction businesses as an easy way to log

worksite events and create reports.

2 Serverless

Serverless is an execution model for the cloud, where a cloud service provider is responsible for

managing and maintaining the servers. Serverless apps are stored in a container, waiting to be

called when needed.

The serverless means serverless for consumers, but there are still physical servers for a cloud

service provider to manage. (Red Hat, 2017)

2

2.1 Serverless types

There are different types of serverless, IaaS (Infrastructure-as-a-Service) where the cloud service

provider handles infrastructure, and the rest is self-handled. CaaS (Container-as-a-Service) is a

service where also the operating system is handled along with the infrastructure. In PaaS

(Platform-as-a-Service) also containers and the runtime are handled by the cloud provider along

with the infrastructure and the operating system. FaaS (Function-as-a-Service) that leaves

developers only to handle writing the code because all the rest is already managed by the cloud

provider.

When using serverless, the more the cloud provider handles the easier and faster it gets to deploy

a new code, but it will also cost more to let the cloud provider handle all those services.

2.2 Advantages

The serverless architecture really shines in that it is much faster to deploy the code. The cloud

provider charges only for used services, so it removes need to pay for the useless server space.

The serverless’ only pay for the usage model is very cost effective when software is fairly new and

has unstable usage time. (Cloudflare, n.d -a)

In addition to the serverless’ cost effectiveness, it also provides an easy way to scale the software

when the usage increases.

2.3 Disadvantages

Because altering code in serverless environment means uploading the code to cloud provider

service, testing the code might be bit trickier. (Cloudflare, n.d -b)

Cost efficiency also means since the code is not running all the time, the first ‘boot up’ might take

more time, this is referred as a ‘cold start’, but if the code is running regularly, it is referred as a

3

‘warm start’. In this case the ‘cold start’ is more costly since the execution time is longer.

(Cloudfare, n.d -b)

2.4 Comparing to on-premise

On-premises type is an alternative for the serverless. In on-premises everything is self-managed.

The serverless might be easier and faster, but when the application gets big enough and has a lot

of traffic it might get very expensive. So eventually it might be more cost efficient to use On-

premise than the serverless. (Intellias, 2021)

Two big advantages of on-premises solution are that because the data is stored locally, the

sensible data can be kept inside of own company, and it is always accessible because an online

connection is not needed. (Kemper, 2021)

2.5 Cloud Service Providers

The three biggest cloud service providers are AWS, Microsoft Azure, and Google Cloud Platform.

Together they are accounted for 61% of the cloud service market in 2011. AWS is the most

popular, covering 31%, Microsoft Azure is the second, covering 22% and Google cloud is the third,

covering 8%. (Canalys, 2021)

When thinking about setting up the serverless development environment, any of these cloud

service providers is a viable option. They all have their pros and cons. For example, AWS has a

superior compute capacity, but Microsoft and Google have other very popular services for the

easy integration. (BMC, 2021)

With AWS being the most popular with the most services, Google Cloud Platform being the least

popular of the three with the least services and Microsoft Azure being the middle ground. In the

end it comes down to preference when choosing the cloud provider. If something specific is

needed, then there might be the need for looking bit more in depth which one to choose.

4

In Maranet’s case the reason for choosing AWS was that AWS was very mainstream at the time.

When other businesses starting to migrate towards it, this was a great way to start learning about

AWS services.

Because Microsoft Azure and Google Cloud Platform are out of the scope of this thesis, only AWS

services are covered.

3 Technologies

Technologies used in the thesis are explained in this chapter. These technologies consist of

multiple AWS services, the databases, JavaScript, TypeScript, and CI/CD. These technologies are

used in the backend, before and after the migration process.

3.1 Database and MySQL

Applications data is stored in a relational database located in Amazon RDS and it is using MySQL to

manage and update the database.

The relational database model means that tables can have connections with other tables. The

relationship with tables is established trough keys. Every table has a unique primary key which can

be used as a mother table’s foreign key to connect tables together. A table can have only one

primary key, but many foreign keys if it has many relations with children tables. (TechTarget, 2021)

MySQL is an open-source RDBMS (relation database management system). MySQL is owned by

Oracle. It is the most popular RDBMS compared to its alternatives, like PostgreSQL and MariaDB. It

uses SQL to create, update, delete, and retrieve the information from a relational database.

(Oracle, 2022)

SQL or Structured Query Language is a query programming language created by IBM for

communicating with any SQL compatible database. (Tutorialspoint, n.d)

5

3.2 Amazon Web Services

3.2.1 AWS Lambda

AWS Lambda is a FaaS (Function-as-a-Service) service in Amazon Web Services for executing

event-driven Lambda functions. The functions can be triggered by calling them from a web

application, a mobile application, or other AWS services. Lambda functions can be written with

many programming languages such as JavaScript, Java, python, and many more. Lambda functions

are created through the AWS console by configuring the basic information for the function

displayed in Figure 1. The code itself is uploaded as a .zip file or retrieved from the S3 location.

Figure 1. Lambda function configuration.

Because of the serverless architecture, Lambda functions are very cost efficient and an easy way

to execute a code. AWS Lambda charges by the execution time and lets developers set

customizable execution concurrency, and limits the memory used by the function. (Amazon Web

Services, 2021-a)

6

3.2.2 Amazon S3

Amazon S3 or Amazon Simple Storage Service is a storage for storing, retrieving, and analyzing

data. S3 has resources known as buckets and objects. The S3 storage is created by creating a S3

bucket and uploading objects to the bucket. Buckets have a maximum data limit of five terabytes.

In case of running out of storage, multiple buckets can be used. (Amazon Web Services, 2021-b)

S3 is also used by big companies, since it is much easier, scalable and more cost efficient to let

AWS handle storing or backup their data. This is why AWS S3 has big customers such as Autodesk

and Siemens. (Amazon Web Services, 2021- c)

3.2.3 Amazon Cloudformation

Amazon Cloudformation is a service for automating and managing the AWS resources. It uses

template files written in YAML (yet another markup language) or JSON (JavaScript Object

Notation). Templates are used for specifying which resource is changed and how. Even though

JSON is a more common format, YAML is more readable and easier to format which has made it a

primary choice for the Cloudformation template files.

The Cloudformation template is deployed by executing change set in AWS Cloudformation

console. In case changes want to be reviewed before executing it, “—no-execute-changeset” can

be used. (Amazon Web Services, 2021-d)

3.2.4 Amazon Cognito

Amazon Cognito is a user management, an authentication, and an authorization service. When a

user signs in trough a user pool located in Cognito, if successful it receives a token that can be

used for authenticating and authorization for other AWS services. (Amazon Web Services, 2021-e)

7

3.2.5 Amazon API Gateway

Amazon API Gateway is a service for handling REST, HTTP and WebSocket APIs. (Amazon Web

Services, 2021-f)

Software regarding this thesis is using REST API, this means HTTP and WebSocket APIs will not be

covered in this section.

Retrieving a data from a database or sending a data to a database starts with a client sending

request to an API. When API Gateway receives a request, it handles that request and routes it to

an integrated AWS Lambda function through the correct endpoint. After the Lambda function

finishes the request, it returns a response back to the client whether request was successful or

failed displayed in Figure 2.

If API Gateway route has an authorized attached, it must check if the user making a request has a

valid token. It connects to Amazon Cognito trough an app client id and checks if the user is

authenticated. (Awati, 2021)

Figure 2. HTTP request from the client to retrieve, create or alter data in the database.

8

3.2.6 Amazon RDS

Amazon Relational Database Service or Amazon RDS is a service for outsourcing relational

database to AWS. It is easy to set up and maintain, offering great scalability, security, and

automatic patching and back up. Amazon RDS supports the most common database engines,

MySQL, PostgreSQL, Amazon Aurora, MariaDB, Oracle and SQL server. (Amazon Web Services,

2021-g)

3.2.7 Amazon Cloudwatch

Amazon Cloudwatch is a logging and monitoring service in Amazon Web Services. It can be set up

to monitor AWS resources by creating a log group. It can be also set to monitor resource point of

the log groups ARN (Amazon Resource Name). The log groups can be set up to expire from range

one day and 120 months or if specified to never expire.

Cloudwatch provides metrics and logs for monitoring execution times, execution durations, errors

during executions, executions costs, and many more. A threshold can be specified for Cloudwatch

and if the threshold is exceeded, it triggers an alarm and can execute an action. (Amazon Web

Services, 2021-h)

3.3 JavaScript

JavaScript is a programming language created for developing more complex web pages by

executing scripts on a web browser. It allows the user to interact with the web page and adds

features to the web page that HTML or CSS cannot do. (Megida, 2021)

JavaScript was created in 1995 by Netscape and it was originally called, Mocha, then LiveScript and

finally JavaScript. Even though JavaScript is named after Java, it does not actually have many

similarities with it but was named JavaScript because Java was quite popular at the time of the

creation of JavaScript. (DeGroat, 2019)

9

JavaScript is a good choice for developers with today’s technologies. It can be used to create

desktop, web, and mobile apps. It has many frameworks to help with these applications, such as

React, React Native and Angular. Even though JavaScript was made for the client-side

development, it has also gained lot of popularity in the server-side development since Node.js

release. (Simplilearn, 2021)

3.3.1 ECMAScript

ECMAScript or ES for short is a standard for scripting languages such as JavaScript. ECMAScript

editions are named as ES followed by number like ES1, ES2 etc. (skaytech, 2020). Newest

ECMAScript version is ES12, which was released in 2021 June. In case the newest ES version is

preferred for use, it can be referred dynamically as ES.Next.

3.3.2 Node.js and NPM

Node.js is a JavaScript runtime environment for executing the code outside of a web browser. It is

built on the Chrome’s V8 JavaScript engine. Node.js is asynchronous, meaning it can make multiple

concurrent API calls, unlike synchronous which must wait for the previous call to have finished

before making a new one. (Node.js, n.d)

Node package manager, commonly known as NPM is a package manager for JavaScript. Packages

speeds up the developing process with offering already created solutions for technologies used in

the project. (NPM, n.d). NPM packages can be installed with NPM install <package name>.

To start a Node.js project it must be initialized with ´npm init´ on command line and configurate

project information displayed in Figure 3. After the configuration it generates package.json,

containing information about the project, such as installed dependencies and a version number

displayed in Figure 4. In case the NPM package is not needed in production build and is only

needed in development environment ´npm install´ can be flagged with ´save-dev´. With the first

npm install command the project generates a package-lock.json file and the node_modules folder

10

containing the defined packages from package.json. “The goal of package-lock.json file is to keep

track of exact version of every package that is installed so product is 100% reproducible in the

same way even if packages are updated by their maintainers” (nodejs, n.d).

Figure 3. NPM init command

11

Figure 4. package.json file with installed packages.

3.3.3 Promise and async/await

A promise is an object in asynchronous programming that is expected to have a value in the

future, but not at the creation moment. Promises can be resolved using Async/Await which makes

code feel more synchronous. Async functions returns a promise either, fulfilled, or rejected and

pauses the function to await a promise displayed in Figure 5. (Singh, 2020)

12

Figure 5. Promise and async await example

Promise has three different states:

- Pending: meaning promise has been made

- Fulfilled: meaning promise is kept and returned value

- Rejected: meaning promise has been broken

13

3.3.4 Deno

Deno is a runtime environment for JavaScript and TypeScript. Just like Node.js it was made by

Ryan Dahl, but according to Ryan Dahl, he created Deno to fix what he thought as the biggest

weaknesses in Node. (MacManus, 2020)

Some differences with Deno and Node are that with Deno the packages are imported with URL

and cached to the hard drive, saving the trouble of using NPM packages and avoiding big node

modules folders. Also, Deno is much more secure heavy than Node as it requires permission or use

of security flags when executing the scripts. (Sugandhi, 2022)

In the end it is unlikely that Deno would replace Node.js or make Node.js obsolete. They will likely

coexist and eventually Deno might be more popular, but that is a long way from now. Node.js is

still very popular and in use in many projects. It has plenty of documentation already written,

while Deno is still new and this ‘cutting edge’ technology.

3.4 CI/CD

CI/CD, also known as continuous integration and continuous delivery/deployment, is a way to

automate the software delivery and automate running tests. It provides an easy and efficient way

to deliver new code.

The first step in the CI/CD is continuous integration. After pushing the code into the code

repository, automation server like Jenkins CI could be used for checking the code for errors and

give feedback to the developer, about which tests have passed or failed.

The second step can be continuous deployment or continuous delivery. In continuous deployment

the process is fully automated when the code is pushed into a repository, meaning that the CI/CD

pipeline needs good test automation so the code with bugs or errors does not get to the

production build. In continuous delivery there might be a manual step, such as deploying a

workflow from GitHub actions to AWS. (Red Hat, 2018)

14

3.5 TypeScript

TypeScript is a JavaScript superset developed and maintained by Microsoft. TypeScript adds typing

to JavaScript. Because JavaScript does not have strict typing, it often has errors or bugs at the

runtime and TypeScript removes that possibility. Because of the TypeScript’s static checking, it

detects errors during the compile-time as displayed in Figure 6. Because of this early error

handling, it makes codebase clearer and more robust.

Figure 6. Wrong type in a function call.

TypeScript and JavaScript share syntax and the TypeScript code compiles to JavaScript displayed in

Figure 7, so good knowledge of JavaScript helps writing TypeScript. (TypeScript, n.d)

Figure 7. Compiling the TypeScript file and it creates a JavaScript file.

15

But with all these good features that TypeScript has, it must be remembered after compiling

TypeScript is just plain JavaScript. Even though it has fewer errors, it is still not 100% error free.

(Stempniak & Świstak, n.d)

4 Maranet Application

Maranet is a web application for mobile and desktop. It allows earthwork companies to create

orders displayed in Figure 8, on site. Orders can be created based on pre-created or new

information.

Addition to creating orders, it can also create Excel and pdf reports for logging and billing purposes

displayed in Figure 9. It provides an easy way to assign tasks for the employees withing the

business or subcontractors.

16

Figure 8. Create order page.

17

Figure 9. Web page report.

Maranet’s frontend is written with JavaScript using ReactJs framework. Backend is made with

Node.js with the help of AWS Lambda functions.

Maranet’s user authentication is handled with the Amazon Cognito that has user pool with

registered users and related information. AWS Lambda functions and applications frontend are

stored in S3 buckets.

18

5 Development

In this chapter I discuss some of my initial thoughts before the migration process. The Lambda

function and custom-made packages are explained here as well. The typing process consists of

installing the TypeScript, creating types for the code, and installing pre-made types.

After the typing process, the automated Lambda function deployment script must be modified for

TypeScript. The script should compile the typed file and deploy that file to AWS Lambda

successfully.

After the successful deployment, the function will be tested with Insomnia. It should return the

successfully created user object in database and user in Amazon Cognito user pool.

After the development process, I will share my thoughts about the problems in the process. I will

also discuss some of the benefits and downsides about the migration.

5.1 My initial thoughts

Thesis’s development section includes some research and some functional parts. Before I start the

migration of the backend, there are some questions I hope to have an answer and the end of the

thesis

- Is TypeScript worth it in the project this size or should it be used only in bigger

applications?

- Does the backend use the TypeScript for all its potential?

- Are interfaces and classes worth using?

Even if the answer for all these questions were no, is the clearer codebase alone worth the

migration? With the clearer codebase it should help new developers study the code faster.

19

5.2 Lambda function

AWS Lambda handler flow, displayed in Figure 10, starts when a client-side request is made and

contains the request body. The request body is validated with the custom made validate input

package displayed in Figure 11. After validating the request body, the code execution continues to

the user authorization with a custom made get user role package that fetches roles and allowed

actions for the role, from the database and returns object displayed in Figure 12 to the handler

function. After the authorization is successful, the handler calls aws-sdk built in method signUp

and creates user to the Cognito user pool. If the user creation in Cognito is successful, Cognito

sends response containing a tid which is used as the primary key in addUserToDb function, that

inserts user to database table. After the successful database operation, the function returns

promise to the handler function which is resolved and returned as a JSON string containing the

user information to the client-side.

Figure 10. Lambda handler function flowchart.

20

Figure 11. Validate input function call.

21

Figure 12. Get user role return object

To be noted that if the user does not have a valid Cognito token and the auth is set in AWS API

Gateway for that route, the Lambda function will not trigger because the API Gateway stops it.

The first argument of the handler function displayed in Figure 13, is an event which has

information about the event that triggered the invocation. The second argument is context which

has information about the invocation, the function, and the execution environment. (Amazon Web

Services, 2021-i)

22

Figure 13. Handler function

5.3 CI/CD pipeline

CI/CD uses GitHub actions, meaning every Lambda function has its own workflow which is

GitHub’s equivalent for the CI/CD job. When the Lambda function is ready to be deployed and

executed in the client-side, Lambda function’s version number must be changed for the

23

Cloudformation to recognize the changes and update the stack. The deployment happens in

GitHub actions. The Lambda function’s deploy environment must be specified with test, dev, or

prod and GitHub secrets must be configured. Lambda function’s Cloudformation template can

retrieve a needed configuration parameters for the function.

5.4 Installing TypeScript and type packages

The original plan is that TypeScript is not needed when executing function in AWS Lambda. Since

the TypeScript file compiles to plain JavaScript in the end, it can be installed as a development

dependency using –save-dev flag along with the npm install command. With successful installation

it should now exist under the devDependencies in the package.json file.

TypeScript’s compiler options can be modified in tsconfig.json displayed in figure 14. Mostly

default settings can be used, but in the config file couple of settings are changed. The target is set

as “ESNext” this means that compiler uses the newest ECMAScript standard that this version of

TypeScript supports.

24

Figure 14. tsconfig file

Setting noImplicitAny is set as true, so the code always throws an error if “any” is used as a type.

the outDir settings specifies the output directory where the index.js will be compiled to.

Along with TypeScript there is couple good packages from DefinitelyTyped for Node.js and AWS

Lambda, so using npm i @types/node –save-dev and npm i @types/aws-lambda. Those two

packages have prebuilt types for easier typing.

25

5.5 Typing

This section goes through typing process. Typing was done using classes, interfaces, and pre-made

types from npm packages.

5.5.1 Classes

Request body and environment settings function types were set within a class and exported from

their own files displayed in Figure 15.

Figure 15. Classes

In Settings where the environment settings are typed, it is unknown if parameter is string or

undefined so it must receive both types with ‘||’ character.

26

Classes are imported in the index.ts file displayed in Figure 16. The new instance of the class is

created, and the object properties passed as arguments to the classes displayed in Figure 17 and

Figure 18.

Figure 16. Class imports

Figure 17. New instance of request body

Figure 18. New instance of settings

27

5.5.2 Interface

Another way to type an object is an interface which is used for getUserRole function’s return

object. It is defined in its own User.d.ts file and it is purely used for typing and does not compile to

JavaScript unlike classes. Looking at the return object, which was already displayed in Figure 12, it

is easy to set types for all properties of the object. After creating the interface, it is exported from

User.d.ts displayed in Figure 19 and imported in the index.ts file displayed in Figure 20.

Figure 19. User.d.ts file and User interface

Figure 20. Importing User interface

After successful interface import, the interface is used as a type for the function call return

displayed in Figure 21.

28

Figure 21. User interface used for type definition

5.5.3 Pre-made types from packages

Npm package @types/node provides many type definitions for Node.js and it automatically sets

type for ‘require’ displayed in Figure 22. When using TypeScript with Node.js, @types/node are

essential to install.

Figure 22. NodeRequire type from @types/node

When typing the AWS Lambda handler function, @types/aws-lambda provides many good types

for the handler function parameters and the handler function return. For the parameters, event

and context, the APIGatewayProxyEvent and the Context types are imported from the aws-lambda

package and the APIGatewayProxyResults for the function return.

For aws-sdk’s own method for creating the user to Cognito user pool, aws-sdk has built in type

SignUpResponse displayed in Figure 23.

29

Figure 23. SignUpResponse type

5.6 Deploying function with CI/CD

Because the deployment script used in CI/CD is purely for deploying functions’ written in

JavaScript, the script must be modified. The original folder structure included the test files, which

can be easily removed when compiling the files. When deploying the function, it requires the

development dependencies, so the file can be compiled to JavaScript using TypeScript compiler.

The JavaScript file is compiled to dist folder, and package.json and package-lock.json will be copied

to folder. Node_modules are installed during the script. First scripts move to dist folder and then it

executes command ‘npm install –only=prod’ meaning it only installs production packages, avoiding

the development ones. After the successful installation, the script uploads the folder to AWS

Lambda displayed in figure 24.

30

Figure 24. TypeScript function in AWS Lambda

The function deployment also creates a route to Amazon API Gateway. Amazon API Gateway

provides an authorizer for the route, so if the API call comes from different user than one in the

the Amazon Cognito user pool, it gives an ‘Unauthorized’ error.

Amazon Cloudformation creates a stack for the Lambda function and shows timestamp for every

step during the stack creation. It can be viewed in AWS console and in the function’s

Cloudformation stack events displayed in figure 25.

31

Figure 25. TypeScript Lambda function stack events

5.7 Testing the Lambda function

The lambda function is tested with the Insomnia REST API client. The Lambda function requires a

JSON object for request body. So, using the correct endpoint and parameters in object, user

creating is successful and the function returns the created user as a response and creates the user

in Amazon Cognito user pool displayed in Figure 26 and Figure 27.

32

Figure 26. Created user

Figure 27. Created user in Amazon Cognito user pool

Lambda execution can be monitored in Amazon Cloudwatch. It provides information about the

execution time and things logged in the code displayed in Figure 28.

33

Figure 28.Lambda execution in Amazon Cloudwatch

6 Conclusion

The custom-made package for retrieving the user’s role should have been typed already in itself.

When the typing is done to more than one function, it adds repetition to code and takes more

time for no reason. But the user’s role package typing was done in the code itself to stay in the

scope of the thesis.

In this case, using classes do not bring many more benefits than using interfaces. I used classes for

some objects and interfaces on some. In my opinion, interfaces would have worked just as well,

because in the code we care purely about the types. In case objects were built in the backend,

classes could have more impact.

In the end TypeScript made the code base more robust and clearer. It is a great way to see that

the objects are correct, and it makes sure all the parameters are in the object on compile time. It

provides help for new developers jumping in midway, to figure out the objects faster without

needing to study the database or the frontend code too much when data types are already written

down. In my opinion, if the backend is well made, the size of project should not matter when

typing the code. It does not require too much extra time to add types where needed.

34

I did convert unit tests to TypeScript file but did not see the benefits to add types for them. In this

case the request body is already typed and validated withing the handler, so testing that in unit

tests would not bring that many more benefits.

35

References

Canalys. (29.7.2021). Global cloud services market Q2 2021.

 https://www.canalys.com/newsroom/global-cloud-services-q2-2021

Intellias, (25.4.2021). On-Premises vs Cloud Computing: Pros, Cons, and Cost

 Comparison

https://intellias.com/cloud-computing-vs-on-premises-comparison-guide/

BMC. (1.10.2021). AWS vs Azure vs GCP: Comparing The Big 3 Cloud Platforms

 https://www.bmc.com/blogs/aws-vs-azure-vs-google-cloud-platforms/

TechTarget. (2021, June). Relational Database

https://www.techtarget.com/searchdatamanagement/definition/relational-database

Tutorialspoint. (n.d). SQL – Overview

 https://www.tutorialspoint.com/sql/sql-overview.htm

Oracle. (2022). What is MySQL?

 https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html

Red Hat. (31.10.2017). What is serverless.

https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless#overview

Red Hat. (31.1.2018). What is CI/CD.

https://www.redhat.com/en/topics/devops/what-is-ci-cd

Kemper, F. (11.8.2021). On-Premise vs Cloud: Advantages and Disadvantages

 https://www.empowersuite.com/en/blog/on-premise-vs-cloud

Cloudflare. (n.d-a) Why use serverless? | Pros and cons of serverless

https://www.cloudflare.com/learning/serverless/why-use-serverless/

Cloudflare. (n.d-b) Why use serverless? | Pros and cons of serverless

https://www.cloudflare.com/learning/serverless/why-use-serverless/

Amazon Web Services. (2021-a) AWS Lambda. https://aws.amazon.com/lambda/

Amazon Web Services. (2021-b) Amazon S3. https://aws.amazon.com/s3/

Amazon Web Services. (2021-c) Amazon S3 customers.

https://aws.amazon.com/s3/customers/

Amazon Web Services. (2021-d) AWS Cloudformation

https://aws.amazon.com/cloudformation/

Amazon Web Services. (2021-e) Amazon Cognito

https://www.canalys.com/newsroom/global-cloud-services-q2-2021
https://intellias.com/cloud-computing-vs-on-premises-comparison-guide/
https://www.bmc.com/blogs/aws-vs-azure-vs-google-cloud-platforms/
https://www.techtarget.com/searchdatamanagement/definition/relation%09al-database
https://www.tutorialspoint.com/sql/sql-overview.htm
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless#overview
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.empowersuite.com/en/blog/on-premise-vs-cloud
https://www.cloudflare.com/learning/serverless/why-use-serverless/
https://www.cloudflare.com/learning/serverless/why-use-serverless/
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/customers/
https://aws.amazon.com/cloudformation/

36

 https://aws.amazon.com/cognito/

Amazon Web Services. (2021-f) Amazon API Gateway.

https://aws.amazon.com/api-gateway/

Amazon Web Services. (2021-g) Amazon Relational Database Service (RDS).

https://aws.amazon.com/rds/

Amazon Web Services. (2021-h) Amazon Cloudwatch.

https://aws.amazon.com/cloudwatch/

Amazon Web Services. (2021-i) AWS Lambda function handler in Node.js

 https://docs.aws.amazon.com/lambda/latest/dg/nodejs-handler.html

Awati, R. (2021, June). Amazon Cognito. Retrieved 21.11.2021 from:

 https://searchaws.techtarget.com/definition/Amazon-Cognito

Megida, D. (29.3.2021). What is JavaScript? A Definition of the JS Programming

Language.

https://www.freecodecamp.org/news/what-is-javascript-definition-of-js/

DeGroat, T.J. (19.8.2019). The History of JavaScript: Everything You Need to Know

 https://www.springboard.com/blog/data-science/history-of-javascript/

Simplilearn. (28.10.2021). Top 10 Reasons to Learn JavaScript.

 https://www.simplilearn.com/reasons-to-learn-javascript-article

skaytech. (14.6.2020). History of ECMA (ES5, ES6 & Beyond!)

 https://dev.to/skaytech/history-of-ecma-es5-es6-beyond-lpe

NPM. (n.d) About npm. https://www.npmjs.com/about

Node.js. (n.d) About Node.js. https://nodejs.org/en/about/

MacManus, R. (2.11.2020). How Node.js Is Addressing the Challenge of Ryan Dahl’s Deno

https://thenewstack.io/how-node-js-is-addressing-the-challenge-of-ryan-dahls-

deno/

Sugandhi, A. (1.1.2022). What is Deno, and Difference Between Deno & Node.js

https://www.knowledgehut.com/blog/web-development/what-is-deno-difference-

between-deno-nodejs

TypeScript. (n.d) TypesScript for the New Programmer

https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html

https://aws.amazon.com/cognito/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/rds/
https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/lambda/latest/dg/nodejs-handler.html
https://searchaws.techtarget.com/definition/Amazon-Cognito
https://www.freecodecamp.org/news/what-is-javascript-definition-of-js/
https://www.springboard.com/blog/data-science/history-of-javascript/
https://www.simplilearn.com/reasons-to-learn-javascript-article
https://dev.to/skaytech/history-of-ecma-es5-es6-beyond-lpe
https://www.npmjs.com/about
https://nodejs.org/en/about/
https://thenewstack.io/how-node-js-is-addressing-the-challenge-of-ryan-dahls-deno/
https://thenewstack.io/how-node-js-is-addressing-the-challenge-of-ryan-dahls-deno/
https://www.knowledgehut.com/blog/web-development/what-is-deno-difference-between-deno-nodejs
https://www.knowledgehut.com/blog/web-development/what-is-deno-difference-between-deno-nodejs
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html

37

Imjoff, J. (11.3.2012). How to explain callback in plain english? How are they different from

calling one function from another function?

 https://stackoverflow.com/questions/9596276/how-to-explain-callbacks-in-plain-

english-how-are-they-different-from-calling-o/9652434#9652434

Stempniak, A. & Świstak, T. (n.d) What is TypeScript? Pros and Cons of TypeScripts vs

 Javascript.

 https://www.stxnext.com/blog/typescript-pros-cons-javascript/

Singh, A. (27.8.2020) Callback vs Promises vs Async/Await

https://www.loginradius.com/blog/async/callback-vs-promises-vs-async-await/

https://stackoverflow.com/questions/9596276/how-to-explain-callbacks-in-plain-english-how-are-they-different-from-calling-o/9652434#9652434
https://stackoverflow.com/questions/9596276/how-to-explain-callbacks-in-plain-english-how-are-they-different-from-calling-o/9652434#9652434
https://www.stxnext.com/blog/typescript-pros-cons-javascript/
https://www.loginradius.com/blog/async/callback-vs-promises-vs-async-await/

