

Music Shared Application

Anthony Chevrolet

Haaga-Helia University of Applied Sciences

Bachelor’s Thesis

2022

Bachelor of Business Administration

Abstract

Author(s)
Anthony Chevrolet

Degree
Bachelor of Business Administration

Report/thesis title
Music Shared Application

Number of pages and appendix pages
77 + 28

The author has elaborated this thesis as part of the validation of his degree. This work
concerns the elaboration of a project of music sharing through different streaming
platforms.

The objective of this work is to see if it’s possible to share content across platforms, which
may be useful if a user wants to send a playlist to someone who does not use the same
service.

The scope of this work will be divided into three distinct parts. The first is to study different
platforms and to see the specifications and limitations of each in order to determine what
will be possible to put in place.

The second part concerns the elaboration of a server allowing to execute the different
operations in order to link the data through the platforms in a database. This step will be
done in a way that will allow the possibility to integrate other services in the future, through
a Node.Js server. It will also provide a web page allowing to share the content of the
database directly via a URL.

The last part is to develop a mobile application that will be connected to the server. It will
be able to allow the user to log in with his account and access his content which can be
shared with other users. It’s through a React Native application that this work will be done
so that it can be deployed on IOS and Android.

The author completed this work in 400 hours over a period of 10 weeks in parallel with
these courses. This work was done between 7 March and 19 May 2022.

The result is a web server developed with Node.Js, a cross-platform mobile application in
React Native and this document to understand the whole project.

This work ends with a conclusion allowing the author to shed light on the various obstacles
encountered and to suggest ways of improving this work. He will also share his learning
throughout the project and his personal interest.

Keywords
Node.js, React Native, Expo, Mobile App, API, Music Content

Table of contents

1 Introduction ... 1

2 Specifications of requirements .. 2

2.1 Objectives ... 2

2.1.1 Data recovery ... 2

2.1.2 Server .. 3

2.1.3 Mobile application .. 4

2.2 Organisation ... 4

2.2.1 Deliverable ... 4

2.2.2 Project schedule .. 4

2.2.3 Backlog .. 4

2.3 Out of scope ... 5

3 Theoretical Framework .. 6

3.1 Spotify ... 6

3.1.1 Resources available ... 6

3.1.2 Access data ... 7

3.2 Deezer .. 8

3.2.1 Resources available ... 8

3.2.2 Access data ... 9

3.3 YouTube Music ... 9

3.3.1 Resources available ... 9

3.3.2 Access data ... 10

3.4 Database .. 11

3.5 Server ... 13

3.5.1 Libraries ... 13

3.5.2 Mock-up ... 15

3.6 Mobile App .. 17

3.6.1 Libraries ... 17

3.6.2 Mock-up ... 18

3.7 Technology used ... 22

4 Empirical part Data Analysis .. 24

4.1 Specification implementation Spotify ... 24

4.1.1 Search result .. 24

4.1.2 Data duplication ... 25

4.1.3 Deleting data .. 25

4.2 Specification implementation Deezer .. 26

4.2.1 Result of a search .. 26

4.2.2 Data duplication ... 26

4.2.3 Deleting data .. 26

4.3 Specification implementation YouTube ... 27

4.3.1 Outcome of a search .. 27

4.3.2 Data duplication ... 27

4.3.3 Deleting data .. 27

4.3.4 Link between different resources .. 28

4.3.5 Resource Implementation .. 28

4.3.6 Clip/Video .. 28

4.3.7 References are occasionally incorrect .. 28

4.4 Brief .. 29

4.4.1 Content that is currently available .. 29

4.4.2 Link between albums ... 29

4.5 Authentication process .. 29

4.5.1 Spotify .. 29

4.5.2 Deezer ... 30

4.5.3 YouTube .. 31

5 Empirical part Backend Server .. 32

5.1 Organisation ... 32

5.1.1 File trees .. 32

5.1.2 Routes ... 33

5.1.3 Controller ... 35

5.1.4 Errors management ... 35

5.2 Database .. 35

5.2.1 Connection ... 35

5.2.2 Model ... 36

5.2.3 Associations ... 37

5.2.4 Repository and Generic Class .. 39

5.3 Strategy Class... 40

5.3.1 Logs / Errors .. 40

5.3.2 Regulation .. 41

5.3.3 Singleton .. 41

5.4 SpotifyStrategy Class .. 42

5.4.1 Renew token .. 42

5.5 DeezerStrategy Class ... 42

5.6 YoutubeStrategy Class ... 42

5.6.1 Manage Errors ... 42

5.6.2 Get album v2 .. 42

5.6.3 Other’s version of album .. 44

5.6.4 Get track v2 .. 45

5.7 AppleStrategy Class ... 45

5.8 Thread .. 46

5.8.1 Class ThreadParallel .. 46

5.8.2 Deadlock .. 47

5.9 Processing to analyse data ... 47

5.9.1 Analyse Artists ... 48

5.9.2 Analyse Track .. 49

5.9.3 Link Album from Spotify to other platform ... 50

5.9.4 Link Track from Spotify to other platform .. 51

5.10 Endpoints .. 51

5.10.1 API access ... 52

5.10.2 Analysis processing (Result) .. 53

5.10.3 Database operation .. 53

5.10.4 Web browser .. 54

6 Empirical part Mobile App ... 55

6.1 Organisation ... 55

6.1.1 File trees .. 55

6.1.2 Navigation .. 56

6.2 Components ... 56

6.2.1 AudioPlayable .. 56

6.2.2 CustomModal ... 57

6.2.3 ItemList .. 58

6.3 Strategy Class... 59

6.4 Spotify Class ... 59

6.5 Deezer Class .. 59

6.6 YouTube Class ... 59

6.7 Redux ... 60

6.7.1 Setup ... 60

6.7.2 Using Redux within the application ... 61

6.7.3 Asynchronous call with redux ... 62

6.8 Interfaces .. 63

7 Discussion ... 65

7.1 Obstacles .. 65

7.2 Personal learning .. 66

7.3 Opportunities for improvement .. 67

7.4 Personal interest ... 68

References .. 69

Appendices .. 72

1

1 Introduction

Today, most of the population owns a smartphone. It's like a life accessory that becomes

more and more a technological extension of ourselves with a very high level of personali-

zation. Whether it’s the visual, the design or the content with the different mobile applica-

tions available. A mobile application is a fast way to access a service, especially thanks to

the mobility of smartphones. The most popular applications of the last few years, in addi-

tion to social networks, are those that offer a streaming service. Especially those that offer

a music service that allows us to listen to an incredible amount of music directly from our

smartphone. There’s an existing market in this domain and therefore several mobile appli-

cations exist that offer the same service. The problem that I've seen is when I want to

share a content from a certain platform with a person using another application. In most

cases, he rewrites the name of the music I dictate to him and it works, but sometimes this

process can be more or less time consuming. In the same context, if I want to share my

playlist of the moment, it can take even more time. So, the goal of my thesis is to develop

a mobile application that would allow to share music content across different music

streaming services quickly and easily. It will be necessary to make links and several verifi-

cations between the different resources in order to have the highest level of fiability possi-

ble. All these links between the different data will be stored in the same database. There-

fore, a remote server containing the database will be created. In order not to overload the

phone, the link verification process will be done on the server associated with the data-

base. During this thesis, I will also be able to apply the knowledge acquired through my

studies. The technologies I will use are mainly React Native for the mobile application and

Node.Js for the server part.

2

2 Specifications of requirements

In this section I will explain in detail the overall objectives of my thesis. My work is sepa-

rated into three quite distinct parts: Data recovery, Server processing and Mobile applica-

tion.

The first part of my work consists in analysing the data structure of the different platforms

in order to know the specifications of each one. I imagine that each of the studied plat-

forms does not have the same implementation whether it’s for the access to the data, the

authentication or the structure of the resources. This work will allow me to be clear and to

see what is possible in my project. The platforms I decided to study in my work are the fol-

lowing ones: Spotify, YouTube Music and Deezer.

In a second time, I could set up the logical part of the application. It’s through a Node.Js

server that I will be able to perform the different links to the platforms in order to record

them in the database. Initially, the database is empty and will fill up by the users when

they will use the application. The more the database is filled, the faster the analysis pro-

cessing will be done.

The last part will be the mobile application where the goal is mainly to exploit the server

set up beforehand. It’s through this application that users will be able to search for content

and feed the database. It will also be possible to open the searched content directly on the

platform of their choice.

In view of the amount of work , I have decided to separate the empirical part into three

parts. It’s necessary to understand the different parts separately and to put them all to-

gether in one block made it more difficult to understand the work as a whole.

2.1 Objectives

2.1.1 Data recovery

The first feature I would like to implement is the authentication process for each platform. I

would like, through this functionality, to understand how to interact with the different plat-

forms I have chosen in my work. I would also like, if possible, to be able to understand the

authentication steps of a user to be able to use the latter within the mobile application.

The second one is defining the data that will be processed. By studying the data struc-

tures, I would like to be able to define the key data that will be processed by the server.

3

I want to have the possibility of collecting data on the different platforms. I would like to be

able to retrieve data about an artist, an album and a song through the different platforms

and then connect them together. Also check the possibility to retrieve all of an artist's al-

bums across each platform so that I can compare the content.

After retrieve a song, I would like to be able to find the identifiers of an artist and an album

associated with it.

Another functionality that I want implement is to be able to search for a song with the

search engine of each platform. I would like to be able to use the search engine of each

platform to find resources. It is through this that the database will be fed mainly.

In my work, I will not be able to study all the platforms that exist. That's why I will code in

such a way as to have a progressive integration. I would like to be able to code the differ-

ent services throughout my work in a flexible way and structure them without impacting

the whole application. The idea would be to use different design patterns.

I would like to know the implementation specifics of each platform studied in order to have

an overview of each one and make a decision on how the data will be analysed.

The last part is to know how I can exploit data user. With the help of this feature, I would

like to be able to understand and check the access and content creation possibilities of a

user, allowing me to see if it is possible to create, for example, a playlist directly on his ac-

count.

2.1.2 Server

The server is able, depending on the search, to perform and analyse the content to see if

the results are in the database. Otherwise, it fills the database. Starting from a referenced

piece in the database, it is able to find the similar piece on the different platforms offered

and link data with a “standardized” notation sufficient to unify the content.

I want to have the possibility to create playlists with references specific to the database,

with the possibility of exporting it to any platform. Also let the possibility to import the us-

er's existing playlists from this platform and convert them to another platform.

All this functionality will be defined in a programming interface allowing communication be-

tween it and users from the mobile application. In addition, add an interactive interface al-

lowing content to be shared on the Internet.

4

2.1.3 Mobile application

First, I want to setup authentication process inside the app to allows you to identify your-

self on one of the platforms available . If the user does not have a subscription, he can

simply create an account or use it as a guest.

Once he is connected, he has the possibility of carrying out a search according to the plat-

form with which he is identified. He also can manage his musical content inside the app

like create a playlist and link it directly with the platform he uses. He can also put albums

or artists in favorites which will be found in a page dedicated to this. (Note that a guest

user will also be able to do so, but this data will not be transferred if he uses the applica-

tion on another device). The user can modify his personal information (password) at any

time.

The application is directly connected to the server. Several contents of the application can

be shared via a sharing link. This link can be access by a browser and allow everyone to

open the content on a specified platform or inside the app.

2.2 Organisation

2.2.1 Deliverable

My thesis will come with a Node.js project connected to a database as well as a React

Native mobile application that will be connected to my server.

2.2.2 Project schedule

400 hours has been reserved for the project. The initial and real main planning is on the

Appendix 42.

The project started on March 7th 2022 and will end around May 19th 2022.

2.2.3 Backlog

In order to better organize myself during my work, I decided to make a to-do list. Organi-

sation is important, even in an individual project. When you are under a time constraint, it

is easy to get caught up and spend a lot of time on one task over others (see Appendix

43.

5

2.3 Out of scope

The most important part of my work is the data link processing part. That's why the latter

is my priority compared to the mobile application where the design will be put aside. In-

deed, for me, the realization of the mobile application brings me less added value in terms

of research and analysis. I see it more as a way to test and see if the analyses were suc-

cessful. In the long term, the application could extend to a whole other project of social

network based on music where the result of my thesis would be a part of this project.

Initially, I wanted to be able to search for links from any type of resource regardless of the

platform used. During my work, I could see that I would not have enough time to imple-

ment all possible use cases. That's why I will mainly focus on one platform and use it to

connect to the others.

6

3 Theoretical Framework

In this part I will first define the data set studied on the different platforms in order to un-

derstand how the resources are structured individually and how they are accessed. Once

this is done, I can proceed to the development of a relational database. Within the data-

base, the data will be separated independently so that it can evolve with the integration of

other platforms in the future. It will also distinguish between platform specific data.

In this chapter, I will also make an inventory of the different technologies and libraries that

I will use for this project, both on the server and on the mobile application. I will also add

different screen mock-ups made at the beginning of the thesis to give me an idea of the

interface I will present to the users.

In the empirical part, I will try to understand how each resource works together and also

describe the implementation specifications of each platform in the clearest possible way

illustrated by examples in the Appendix.

3.1 Spotify

Spotify is an audio streaming platform founded on the 23 April 2006. It provides an SDK

that enables developers to access their music data and various other features (Wikipedia

2022a). For my project, I used the Spotify API to retrieve data from the platform and ana-

lyse it. I also need to implement a secure authentication method to allow the users to in-

teract with the API.

3.1.1 Resources available

The first resource identified is an album. There are various characteristics of an album re-

source. Here's a list of things I'll be using for my project (Table 1). The entire additional

details can be seen on Spotify's website (Spotify 2022a).

7

Table 1. Essentials attributes from Spotify API for an Album

Key Description

album_type The type of the album.
Allowed values: album, single, compilation

id The Spotify ID for the album.

images Array with cover art for the album in various sizes.
name The name of the album.

release_date The date where the album was released

release_date_precision The precision of the release_date attribute
Allowed values: year, month, day

external_ids The upc of an album
Note: only accessible by the endpoint: v1/albums/:id

artists Array of owner artists of the album.

tracks Array of tracks of the album
Note: only accessible by the endpoint: v1/albums/:id

The second resource used is a track. A song specified as such using the API provides ac-

cess to a variety of data (Table 2). A song is linked to an album and one or many artists.

The Spotify website has all the details (Spotify 2022b).

Table 2. Essentials attributes from Spotify API for a Track

Key Description

album Album where the track is linked

artists Array of Artist from the tracks

name Name of the track

duration_ms The track length in milliseconds

id The Spotify ID for the track.

track_number The number of the track. If an album has several discs, the track num-
ber is the number on the specified disc.

disc_number The disc number (usually 1 unless the album consists of more than
one disc).

external_ids The isrc of the track
Note: only accessible by the endpoint: v1/tracks/:id

The last one I identified is an Artist. He is mostly associated with a song or album. The fol-

lowing is a list of characteristics that I will employ in my work (Table 3). The entire details

can be seen on Spotify's website (Spotify 2022c).

Table 3. Essentials attributes from Spotify API for an Artist

Key Description

id The Spotify ID for the artist.

image Array of artist in various sizes.

name The name of the artist.

3.1.2 Access data

Spotify has made a number of endpoints available. I will use a part of that in my project

and the detail is in Appendix 1. Essential’s endpoints used from Spotify’s API.

8

3.2 Deezer

Deezer is a French music streaming service that was created in Paris in August 2007.

Deezer offers 90 million music, 30,000 radio channels, and 100 million playlists available

(Wikipedia 2022b). This company also provides an API for developers to access the data.

In terms of Spotify's API, I use Deezer to get the information I need. I utilize Deezer to get

identifiers for each available resource, just like I do with Spotify's API (Artist, Album and

song).

3.2.1 Resources available

The different resources are the same as on Spotify. The characteristics will be very simi-

lar, although with somewhat different names. The complete description is available on

Deezer's website. (Deezer 2022a). The data set used for each resource (album, track and

artist) is defined in tables Table 4, Table 5 and Table 6.

Table 4. Essentials attributes from Deezer API for an Album

Key Description

record_type The record type of the album (EP / ALBUM / etc...)
Note: only accessible by the endpoint: /album/:id

id Identification of the album

cover Cover of the album

title Name of the album

release_date Date of the release
Note: only accessible by the endpoint: /album/:id

upc The UPC code of an album
Note: only accessible by the endpoint: /album/x

contributors Array with artists of the album
Note: only accessible by the endpoint: /album/:id

tracks Array with tracks of the album
Note: only accessible by the endpoint: /album/:id

Table 5. Essentials attributes from Deezer API for a Track (Deezer 2022b)

Key Description

album Album where the track is referred

contributors Array with artists of the album
Note: only accessible by the endpoint: /track/:id

title Name of the track

duration The track length in seconds

id ID for the track.

track_position The position of the track in the album
Note: only accessible by the endpoint: /track/:id

disk_number The number of disk available on the disk.
Note: only accessible by the endpoint: /track/:id

isrc The ISRC code of a track
Note: only accessible by the endpoint: /track/:id

9

Table 6. Essentials attributes from Deezer API for an Artist (Deezer 2022c)

Key Description

id The Deezer ID for the artist.

picture Link of artist picture

name The name of the artist.

3.2.2 Access data

Deezer allows in most cases, the same necessary endpoints as Spotify that I need to use

for my project. The detail is in Appendix 2. Essential’s endpoints used from Deezer’s API.

3.3 YouTube Music

YouTube Music is a music streaming service that YouTube has created. It was launched

in November 2015, a little bit recently than Spotify and Deezer. The data is based on

YouTube, and one of the platform's strengths is the ability to watch a song's clip immedi-

ately from the application (Wikipédia 2022c).

There is no official API for YouTube Music. I discovered an unofficial Python Library and

quickly checked if it could be used from Node JS, which it could. I'll use the Official

YouTube API for personal functions like creating a playlist. I checked and using python Li-

brary for authentication from the mobile app will be challenging, whereas using Google

auth from the mobile app will be easier and safe. I'll probably set up a security link be-

tween the Mobile App and the server in the future so that the Python Library may be used.

3.3.1 Resources available

There is no dedicated documentation to describe each resource's attribute. However, we

can access the documentation for the python function (sigma67 2020). In addition to the

three types of resources, on this library, we can find a 4th one that corresponds to a video.

Indeed, YouTube Music allows you to see music videos from the YouTube platform. The

data set used for each resource is defined in tables Table 7,

Table 8, Table 9 and Table 10.

10

Table 7. Essentials attributes from YouTube Python Library for an Album

Key Description

type The record type of the album (EP / ALBUM / etc...)

browseId Identification of the album to take details of the album in the API

audioPlaylistId Id of the content of the album to show in YouTube and YouTube music app
→ https://music.youtube.com/playlist?list={audioPlaylistId}

thumbnails Array of cover of the album

title Name of the album

year Year of the release
Note: it is not possible to have more accurate value

artists Array with artists of the album
Note: id and name only are referred

tracks Array with tracks of the album
Note: only accessible by the endpoint: /album/:browseId

Table 8. Essentials attributes from YouTube Python Library for a Track

Key Description

album Album where the track is referred
Note: id (browseId) and name only are referred

artists Array with artists of the album
Note: id (browseId) and name only are referred

title Name of the track

duration_seconds The track length in seconds

videoId ID for the track video to take details of the track and to open the track in
YouTube and YouTube Music App.

track_position Index of the array of track
Note: only accessible by the endpoint: /album/:browseId

disk_number Not existing
Maybe use the index of the array of track in the: /album/:browseId

Table 9. Essentials attributes from YouTube Python Library for an Artist

Key Description

channelId The ID for the YouTube channel of the artist.

thumbnails Array with background of the channel

name The name of the artist.

id The id of the channel (Name – Topic) automatically generated by YouTube
Music

Table 10. Essentials attributes from YouTube Python Library for a Video

Key Description

artists Array with artists of the album
Note: id (browseId) and name only are referred

title Name of the track

duration_seconds The track length in seconds

videoId ID for the track video to take details of the video and to open the track in
YouTube and YouTube Music App.

3.3.2 Access data

The creator of the python library has created different functions to communicate with the

API (sigma67 2020). These functions are the same finality that the endpoints from Spotify

and Deezer. I mean, it’s the basic access to the different resources. The detail is available

on the Appendix 3. Essentials functions of the YouTube Python Library.

11

There are some endpoints I will use from the YouTube API that allowing me to interact

with the user's content. Each endpoint requires the part parameter in the URL that is a

comma-separated list of channel resource properties that the API response will include.

The table is defined on the Appendix 4. Essentials Endpoints use from YouTube’s API.

3.4 Database

Through my studies I was able to follow several courses concerning databases. The ap-

proach I used to build the database is the following: ER Diagram, Relational Schema and

Physical Schema. The first one is a conceptual approach that allows me to first define the

data in the different entities. And to link them together with associations. I used the UML

language to make the different associations. On Figure 1, you can see the result of the

data separation.

Figure 1. Conceptual Data Model

The second step is to transform these different entities into a relationship. It is in this part

that we will add the different primary and foreign keys. It is also in this part that we will cre-

ate the future association tables according to the cardinalities (see Figure 2).

12

Users(use_id,use_login,use_password,use_email,use_role)

Playlists(pla_id,pla_name,pla_pic,#pla_use_id)

Content(con_position,#con_tra_id,#con_pla_id)

Tracks(tra_id,tra_name,tra_duration,tra_number,tra_no_disc,tra_isrc,#tra_alb_id)

Tracks_Spotify(tra_spo_id,tra_spo_preview,#tra_spo_tra_id)

Tracks_Deezer(tra_dee_id,tra_dee_preview,#tra_dee_tra_id)

Tracks_Youtube(tra_ytb_id,tra_ytb_video_id,#tra_ytb_tra_id)

Upcs(upc_id,#upc_alb_id)

Albums(alb_id,alb_name,alb_release_date,alb_nb_track,alb_picture,alb_type)

Albums_Spotify(alb_spo_id,#alb_spo_alb_id)

Albums_Deezer(alb_dee_id,#alb_dee_alb_id)

Albums_Youtube(alb_ytb_id,alb_ytb_playlist,#alb_ytb_alb_id)

Artists(art_id,art_name,art_pic,art_desc)

Artists_Spotify(art_spo_id,#art_spo_art_id)

Artists_Deezer(art_dee_id,#art_dee_art_id)

Artists_Youtube(art_ytb_id,art_ytb_main_id,#art_ytb_art_id)

Track_Artist(#tra_id,#art_id)

Artist_Album(#art_id,#alb_id)

 PrimaryKey | #ForeignKey

Figure 2. Logical Data Model

The last step is to transform this into a physical model, i.e., the creation of tables in the

database with the different associations based on the model. It is in this step that we will

set up the type of each attribute and define which fields are mandatory for an insertion.

The final visual is available in Figure 3. This also allows us to establish the data dictionary.

In this part, which is in Appendix 5, the aim is to see the whole data structure. I have also

added a short description of each table to better understand its role.

Figure 3. Physical Data Model

13

3.5 Server

3.5.1 Libraries

Node.js

Node.js is an open-source, cross-platform, back-end asynchronous JavaScript runtime

environment that runs on the V8 engine and executes JavaScript code outside a web

browser (Wikipedia 2022d).

I discovered server development with Node.js during this semester and I chose to use it to

manage the back-end of my application. After comparing the different technologies where

I have knowledge (PHP/Apache) or (Java/Spring Boot) I preferred Node.js, because in the

context of my project, there are a lot of requests and its ability to be non-blocking and

asynchronous compared to Spring Boot and PHP which will have more difficulty to man-

age this convinced me (see Figure 4). Moreover, with its flexibility unlike PHP, which is

more web oriented, it will be easier to integrate my Node.js server with my mobile applica-

tion.

Figure 4. Single thread vs multi thread server (Chapter247 2020)

Express

Express is a minimal and flexible Node.js web application framework that provides a ro-

bust set of features for web and mobile applications (Express 2017). Because of its popu-

larity in the Node package manager, and its ease of use, Express is for me the best way

to easily create an API and that's why I used it.

Cors (Cross-origin resource sharing)

CORS is a node.js package providing a Connect/Express middleware that can be used to

enable CORS with various options (cors 2019). Through the mobile application, it will be

necessary to make fetch calls to the server in order to retrieve the data. By default, the Ja-

vaScript code of an application running in a browser can only communicate with a server

14

of the same origin (Same-origin policy). By adding CORS, the server allows requests

from other origin to access the server resources.

Sequelize

Sequelize is a modern TypeScript and Node.js ORM for Postgres, MySQL, MariaDB,

SQLite and SQL Server, and more (Sequelize 2022). In order to facilitate the exchanges

with the database and to save time in the development, I chose to use Sequelize because

I have some basic knowledge with this tool.

Mysql2

Mysql2 is a library allowing me to use a MySQL database in my project. I wanted to have

a relational database for this project and during my studies the one I used the most was

MySQL. This library works in collaboration with Sequelize.

Winston

Winston is a library that allows you to make logs of what you want and to save it in a file. I

was able to use it in one of my courses this year and it was for me essential to make logs

in particular to be able to follow the analysis of the various data in order to see how the

server will proceed to connect the data of the various platforms, to see step by step the

verifications and to have a traceability of what worked and what didn’t work.

Jaro-winkler

Jaro-Winkler is a library which, as its name indicates, uses the Jaro-Winkler distance

which allows to see the similarity between two strings. Indeed, during the development, I

could see that some comparison variables between platforms such as the name of the art-

ist was sometimes not written in the same way from one platform to another. That's why a

strict comparison was not possible. The Jaro-Winkler distance returns a result between 0

and 1 where 1 represents a total equality between the two strings.

Jimp

Jimp for JavaScript Image Manipulation Program is an image processing library. It allows

to read an image, to resize it, to change its quality or to recreate a new image in the filing

system. This library allowed me to have another variable of comparison which is the

"cover" of an album. Indeed, Jimp allows me to compare images and to see the percent-

age resemblance between them. After stumbling upon this article, I thought it could be in-

teresting to use it and it was quite easy to use (Webb 2020).

15

Node-fetch

Being a JavaScript developer, the use of fetch was normal for me and my surprise was

when I noticed that it was not implemented natively. So, I used this library to be able to

make HTTP requests on the different APIs used for my project.

Async

Async is a utility module which provides straight-forward, powerful functions for working

with asynchronous JavaScript (Async 2022). During the development of my project, I en-

countered a lot of performance and execution time problems of the different data analysis

processes. I found this library which allowed me to implement asynchronous parallel pro-

cessing and to optimize the analysis performances (see Thread).

Nodemon

Nodemon is a tool that helps developing Node.js based applications by automatically re-

starting the node application when file changes in the directory are detected (Nodemon

2022).

3.5.2 Mock-up

In this part, I will detail all the mock-ups I have made for the server part of the application.

These pages will be accessible via a web browser and the goal is to be able to share con-

tent with users who do not use the application directly with a URL.

The first page is the share page. This page allows content to be shared via the server with

all the references available for the mentioned resource. It can very well be an artist, a

song, or an album. Each button redirects to a platform and points directly to the mentioned

resource. In the event of an error, it is possible to report it using the button at the bottom

right (see Figure 5).

Figure 5. Mock-up Share page

16

The following mock-ups are different ways of displaying this page through different modal

windows. The report popup appears when a user clicks on the flag at the bottom right. It is

used to describe the problem encountered on this page (see Figure 6).

Figure 6. Mock-up Popup report

The second modal window appears when the resource is incomplete. It will then analyse

the missing resources in order to complete it (see Figure 7). Sometimes, once the analy-

sis is done, the confirmation window may appear when the analysis has found more than

one possible result. It allows the user to confirm the result if it is correct. For example, two

artists may have the same name (see Figure 8).

Figure 7. Mock-up Analysis popup

Figure 8. Mock-up Confirm page

17

3.6 Mobile App

3.6.1 Libraries

Here is the list of libraries I used in addition to those added by default when creating the

expo project.

react-redux

Redux is an open-source JavaScript library for managing and centralizing application

state. It is most commonly used with libraries such as React or Angular for building user

interfaces (Wikipedia 2022e).

@reduxjs/toolkit

The Redux Toolkit package is intended to be the standard way to write Redux logic. It al-

lowed me to use redux in a simpler way with a faster and more comprehensive set up.

@react-navigation/native ,native-stack & bottom-tabs

React Navigation is one of the most well-known navigation libraries available for React

(LogRocket 2021). I used this library because the application will need multi-screen. I had

the occasion to use it several times during my studies.

react-native-elements

React-native-elements is a framework in React Native allowing to create more advanced

visual components. I used it to make my application more visually pleasing.

react-native-paper

React Native Paper is a high-quality, standard-compliant Material Design library that has

you covered in all major use-cases (Paper 2022). As for react-native-elements, I also

used this library to make the design of the application cleaner.

react-native-modal

The goal of react-native-modal is expanding the original React Native <Modal> compo-

nent by adding animations, style customization options, and new features, while still

providing a simple API (Github 2022a).

18

react-native-webview

React Native WebView is a modern, well-supported, and cross-platform WebView for Re-

act Native. It’s intended to be a replacement for the built-in WebView (which will be re-

moved from core) (Github 2022b). It allowed me to integrate a web page allowing a user

to authenticate himself according to the platform he has chosen.

react-native-youtube-iframe

This library allows to insert a YouTube video iframe on React Native. I used it to be able to

insert the different video content found on the YouTube platform in order to be able to play

them directly in the application.

3.6.2 Mock-up

The login page is the first one the user sees when opening the application. It offers to

login using one of the platforms in order to use the application. It is possible to use it as a

guest with the bottom button. At the first start-up (depending on the button chosen), a

login popup will appear allowing entry of the username and password (see Figure 9).

Figure 9. Mock-up of login page

19

The second page is the account creation page. If the user does not have an account, this

page allows him to create one on one of the supported platforms (see Figure 10).

Figure 10. Mock-up of creation page account

Once logged in, the user can access his profile page which allows him to have an over-

view of your account: service used, profile photo and the possibility to change the pass-

word (see Figure 11).

Figure 11. Mock-up of the account detail page

20

The search page allows the user to search for music. It is by this process that the data-

base will be fed. A drop-down menu allows you to choose the platform on which to search

(see Figure 12).

Figure 12. Mock-up of the search page

The resource pages provide a detailed view of the resource you are looking for. It can be

an artist or an album (see Figure 13).

Figure 13. Mock-up of detail artist and album

21

The playlist page allows a user to see the content of a playlist. It is possible to add a new

song to the playlist which will then open up a search page as a popup (see Figure 14).

Figure 14. Mock-up playlist page

The library page provides an overview of the user's playlists. A user can favorite an album

or an artist in order to have direct access from his favorites page (see Figure 15).

Figure 15. Mock-up library page

22

3.7 Technology used

Singleton

The Singleton design pattern allows to reduce a class to a single instance and to use the

same instance in several places in the code. Most of the time, this design pattern is used

for authentications to another system (for example a database or an API) in order to avoid

opening several similar connections to a system. It is in particular to connect to the Spotify

API that I implemented this design pattern.

ORM

An ORM is a type of computer program that interfaces between an application program

and a relational database to simulate an object-oriented database (Wikipedia 2022f). Con-

cretely, it works with a model class that will represent a table in the database (see Figure

16). It is possible to define attributes and specificities related to the database such as pri-

mary and foreign keys, data type and size. It is also possible to make associations be-

tween models.

Then a connection to the database must be set up in order to be able to generate tables

based on previously defined models. An ORM also provides a query system allowing to

retrieve data from the database and to format them automatically in a model class in-

stance.

Figure 16. Representation of an ORM (Interviewquestionjava 2014)

23

Repository Pattern

A repository is a class that defines the methods that will make the link between the mod-

els and the database. It allows to translate the logical business of the application into que-

ries to the database. The goal of this approach is to centralize in the code the different ac-

cesses to the database. It’s illustrated with this diagram (see Figure 17).

Figure 17. Illustration of how a repository works in my application

Concurrent processing

Concurrent processing is a computing model in which multiple processors execute instruc-

tions simultaneously for better performance. Concurrent means something that happens

at the same time as something else (TechTarget 2005). As mentioned above, it is with the

Async library that I could use this technology on my server.

Inheritance in database

On my database schema, there is a notion of inheritance allowing to define, for example,

a simple track (name, duration and collaborator) and a track coming from Spotify where

we add additional attributes such as its identifier on the platform. I was able to experiment

with inheritance with Hibernate which is another ORM during my studies. Hibernate allows

you to choose between several inheritance strategies in a database: (Mapped Superclass,

Table per Class, Single Table or Joined) (Janssen 2022). So, I looked for a solution to im-

plement the Joined strategy with Sequelize and I simply made One to One relationship

between the primary keys of the SuperClass and the SubClass.

24

4 Empirical part Data Analysis

In this chapter, I will transcribe the analysis result I arrived at after studying each platform,

followed by a section where I will review the differences between each of them. I will also

explain how the authentication system works within each platform according to the re-

spective documentation.

It's critical to comprehend the data structure. When I say data structure, I'm referring to

how the platform makes its data accessible through the API. Indeed, as previously said,

the database will be filled mostly through user searches. In this step, besides reading the

documentation, I tested the different possible endpoints a bit randomly. With my personal

knowledge, I know some songs or albums removed from the platforms and I could see

how to manage these removed data depending on the target platform.

4.1 Specification implementation Spotify

4.1.1 Search result

When we examine the results of a song search, we can see that we have quick access to

all of the song's metadata as well as the artists that composed it. It's possible sometimes

that the preview_url field is null.

In the album field, there is also a lot of data available except for the other songs linked to

this album which can be accessed via the album id with another Endpoint. Because the

author of a song is not always the same as the author of the entire album, there is an art-

ists field within the album data associated with the song.

The album filter allows you to see the connection between an album and its performer.

The list of songs will also be available through the Endpoint / v1/albums/{id}. However, the

external_ids attribute is missing from the accessible songs of the album, which could be

useful to exploit during the process of linking data. There are albums with more than 50

tracks, and because the restriction is 50 tracks, you'll have to make two requests to get all

of them.

The data will not be retrieved if a search by artist is did. Indeed, because it will not be

linked to a song or an album during the search method, it is difficult to enter this infor-

mation into the database using just this information. Because one artist type res-source

may have the same name as another, this type of search might be difficult to exploits.

25

4.1.2 Data duplication

When you search for a specific music, the search engine proposes the same song multi-

ple times, but from various albums (see Appendix 6). This is conceivable in some situa-

tions; however, most compilation albums (such as Summer 2020 Hits) are compilation al-

bums, making it difficult to populate the database. To remedy this problem, the al-

bum_type column makes it easy to determine if it's a compilation or not, but it's not al-

ways stated that way. This difficulty can also be solved by glancing at the name of the al-

bum's author, which is "Various Artist" (see Appendix 7).

It's possible, though, that this is a "genuine" collection and that the tracks aren't duplicates

(see Appendix 8). A verification by ISRC code can be processed with another service to

attest that entity is not existing in another album.

Sometimes an artist will release a "fake reissue" of his album. What I mean by this is a

new record with the same name, cover, and only one additional sound, for example. The

"reissue" in this situation is a new resource, resulting in duplicates. When you search for

an album, all available versions are displayed (for more information, see Appendix 9).

The album with the most recent date is the one that is valid on Spotify's mobile app. From

the album details page on Spotify site, you can select the one you want. Apart from the

name of the album, the label associated with it, and the artist linked with it, no one data

can be used to link the two versions. There are no other distinguishing characteristics.

4.1.3 Deleting data

It’s not uncommon for some music to be taken off the platform. The resource in question

can no longer be listened to, and the latter's referencing has been disabled. It's also possi-

ble that a song or album is in the same scenario, but we may still listen to it because the

program instantly refers us to a duplicate of the accessible music. The difference between

the two can be examined at the data level using the Endpoint "/v1/tracks/{id}" with the op-

tion market, which will return a different id if the song is accessible. If a restrictions at-

tribute is returned, it signifies that it’s not available.

Unlike the other valid data types, the resources remove returns an empty array on the

available_markets attribute (if the market parameter is not used).

26

4.2 Specification implementation Deezer

4.2.1 Result of a search

Searches utilizing a filter, unlike Spotify, are divided by different end points. Song

searches do not provide all of the necessary information to perform an insertion. All artists

associated with the song and artists associated with the album, for example, are absent.

As a result, you will need to call other endpoints to complete the missing information for

each result.

The artists and tracks associated to the album are not directly available from the result

when searching by album. As a result, in order to complete this data, you must also go to

the album's End-point detail. There is no restriction to the amount of tracks that can be

viewed in the album's Endpoint information if the album includes a large number of tracks.

4.2.2 Data duplication

The same situation happens in terms of repetition as with the Spotify API. That is, when

looking for a music, there are duplicates. There are also compilations with "Various Artist"

as the artist associated with the album, however the record_type column does not distin-

guish between an album and a compilation. Similar compilations between Spotify and

Deezer may exist, and the question is whether or not they will be saved in the database

(for more information, see Appendix 10).

There's also this "fake reissue" execution this time on Deezer, where both albums are

shown as two separate albums in the discography from the app and the web page. Look-

ing at the MD5 of the record cover may reveal a link. Only one of them will be featured on

the artist page if their values are the same (for more information, see Appendix 11).

4.2.3 Deleting data

The variable available_countries can be used to determine whether or not a song has

been deleted. Because this field isn't defined in an album resource, it's not possible to tell

which albums are cited (by the search engine) and which aren't.

27

4.3 Specification implementation YouTube

4.3.1 Outcome of a search

When a user conducts a search, all of the results are displayed in one occurrence. Alt-

hough "fake reissue" is present, the search engine ensures that it is removed. Duplicates

do occasionally appear, but this has only happened once, so I believe it is a YouTube bug

(see Appendix 12).

The search result is returned in a single array via the library. It is possible to determine the

resource type of an element in the array using the resultType field. After several checks, I

don't see any particular reason for the selection of duplicate tracks, whether it's based on

the popularity of the track with the number of views, the release date, the popularity of the

album, or even the one with the most views before or after a potential clip if one exists. To

observe the differences between each duplication, I created a comparison table for two

songs (see Appendix 13).

When searching for an album, the referencing is different. An album can be released as a

reissue, but is not necessarily related to its predecessor. In this case, both entities are ref-

erenced by the search engine (see Appendix 14). On the other hand, if there is a link be-

tween these entities, only one reference will be put forward (see Appendix 15).

When I use the search engine and type in the videoId of a piece, it will be displayed if it is

already referred by the search engine, otherwise an empty result will be displayed (for

more information, see Appendix 16). I was able to compare the data of two similar songs

one of which is referred by the search engine and the other is not. But it's not 100% accu-

rate to perform a search like this because sometimes you receive another result that the

videoId mentioned.

4.3.2 Data duplication

It's difficult to tell if compilation albums exist because the engine doesn't reference dupli-

cates. However, it is not essential to rule out this option, and by conducting a search, I

was able to locate one. In the case of the other services, the term "Various Artist" is used

to identify the album's author (see Appendix 17).

4.3.3 Deleting data

Because some songs are disabled on other platforms, the API does not provide an iden-

tity for these songs. As a result, these tunes are inaccessible and unlistenable (they are

28

set to private). This will have to be taken into account while processing the data (see Ap-

pendices Appendix 18 and Appendix 19 for more information).

4.3.4 Link between different resources

The get_album function can be used to acquire the album's individual tracks. Unfortu-

nately, the album cannot be obtained using the get_song method. That's why, in order to

access the album ID associated with the tune, I've hijacked the API used by YouTube mu-

sic on the web browser (see Get track v2).

4.3.5 Resource Implementation

Each album is available in two versions: one with all of the tracks but no YouTube videos,

and another with YouTube videos instead of tracks with a video on the YouTube platform.

This could be a sound clip or an official recording (see Appendix 20 for further infor-

mation).

The get_album method in the Python library allows me to receive a list of songs that have

video clips, but it does not allow me to retrieve the first version. It is feasible to access al-

bum data in by hijacking the API that YouTube employs on the browser once more (see

Get album v2).

There are also two YouTube channels linked to a particular artist. The one where the artist

uploads these video and the one that YouTube Music automatically generates. The latter

is known as <ArtistName> - Topic and is used for all song and video-related resources.

The get_artist method can be used to acquire the artist's channel ID, which is stored in

the channelId field. The id can also be obtained from the videoDetails.channelId field

using the get_song method.

4.3.6 Clip/Video

Because the information is shared with YouTube, it's likely that a song will be paired with

a clip or its YouTube video equivalent (Official Audio for example). It's possible that this

isn't always done appropriately. A clip can be linked to several songs, while a song is

linked to a single clip.

4.3.7 References are occasionally incorrect

References to authors are frequently omitted. The majority of the time, only the lead artist

is acknowledged. It's also conceivable that the artist mentioned isn't the one you're looking

for.

29

4.4 Brief

4.4.1 Content that is currently available

Some contents are available on public platforms, while others are no longer available or

are hidden but can still be accessed via a direct connection, as I've noticed (see Appendix

21 for more information).

One approach would be to start with a default platform and then go on to another if the

content isn't available there.

To continue with the material, some content on YouTube is structured differently than on

other platforms. To be honest, it's unlikely, but it's possible that the albums aren't com-

plete (see Appendix 22).

A "certification" system that distinguishes between well-formatted and unformatted data

would be the solution. Because this is an unusual occurrence, the unformatted ones will

be displayed, and manual processing will be possible.

In comparison to the other platforms, YouTube has the most varied implementation. It will

be considered last in the content search process at the level of data linkages during devel-

opment.

4.4.2 Link between albums

Each album stands on its own. There may be ties between different albums depending on

the platform, such as a reissue of the latter, however this is platform specific.

Each API implemented makes no indication of a connection between these various enti-

ties; it is sufficient not to link them at the database level and to keep these resources sep-

arate (see Appendix 23).

4.5 Authentication process

4.5.1 Spotify

set up the environment, from the Spotify dashboard, I had to create a new application that

gave me a client ID needed to use the API. To set up personal authentication, I use the

authorization code flow (OAuth 2.0). To explain simply, this is a security process where

the app calls Spotify service with the required authorization, and the service returns a

prompt to let the user type in the username and password. After Spotify redirects to a safe

30

website (defined in the application settings in the dashboard) with a code. We need to call

the Spotify API again with this code which gives a token. Now we can use the API. It is

also possible to use the API without personal authentication but, we have limited access

which is sufficient in most cases of my project (Spotify 2022d).

Figure 18. Process of authorization code flow

4.5.2 Deezer

It's pretty much the same procedure for setting up authentication (based on OAuth 2.0) on

the API as it is for Spotify. To begin, I must first establish a new application with a secret

key and a client id. It is used to verify personal authenticity (Deezer 2022d).

For my thesis, I'll employ the Client-side Flow, which is broken down into three steps:

• User Authentication: Confirm the identity of the user.

• App Authorization: Deezer asks the user to agree to give my application permis-

sion to utilize the API.

• App Authentication: Verify that the user grants the permissions; the browser then

redirects to the URL specified in the application's configuration, which includes an

authorization number. You can use this code to request a token from the Deezer

website, which will be returned as an access token.

This setup is not required for the basic endpoint (search, track or album details).

31

4.5.3 YouTube

I discovered a way to run python scripts on the Node JS server (Stackoverflow 2014). The

next step is to figure out how to send parameters to the script and how to get the script's

output value. We can run a python script in node JS using the child process package, and

we can send parameters that will be accessible in the python script. I'm going to incorpo-

rate JSON to return the data because it's easier to maintain data in the backend.

For the authentication part, I followed the Client-Side Web Apps OAuth 2.0 process with

the endpoints coming from the official YouTube API. To start, as for the other services, we

have to create an application on the Google Cloud Platform site. At the end, we need to

get a Client ID in order to set up the authentication (Google 2022).

The first step is to go to the specific google login page mentioning our Client id, the redi-

rection site defined beforehand and the scope of the authorizations we want. The user

connects and is redirected to our site directly with an access token that we can return to

our mobile application. This token allows us to have access to the user's personal data ac-

cording to the authorizations defined in the scope.

32

5 Empirical part Backend Server

The server is the main part of my work. Its role is to analyse the content of the different

platforms, to make the link between the different entities and to record the result in the da-

tabase.

Thanks to the previous chapter, I was able to get a clearer idea of the possibilities of set-

ting up the different analysis processes. I will start this chapter by talking about the organi-

sation of the project with an explanation of the file tree and the access point implementa-

tion structure. This will be followed by the details of the database implementation with the

Sequelize ORM.

I will also explain the implementation of the access points on each platform using classes.

Indeed, I have wrapped the different endpoints studied in the theoretical framework in

such a way as to be able to manage errors within the application. It is once having set up

these accesses that I will be able to explain the processes of analysis with in particular

threading and to finish by the installation of Web interface and the definition of each end-

point to be able to reach the resources online.

5.1 Organisation

5.1.1 File trees

Assets

The assets folder contains various images used for the layout of web pages.

Controllers

This folder contains all the controllers of the application, there is one for each platform

used.

Logs

It is in the logs folder that all the log files are saved. In the newArtist folder, there are all

the logs for the analysis of the artists to see how the links are made. There are also log

files for every error made when accessing each platform to facilitate maintenance.

Python

This folder contains all the python files that are used to access the data of the YouTube

Music library.

33

Routes

The routes folder contains the definition of each route associated with an HTTP method

(GET, POST, PUT, DELETE) and an access URL.

Scripts

The scripts folder contains all the scripts of the application.

Scripts/db

This folder contains all the scripts related to the database. Whether it is the models, re-

positories or the connection to the database.

Scripts/CustomError

This folder contains error classes that inherit from Error to be able to generate custom er-

ror messages.

Scripts/ utility.js

This file contains several utility functions that are used on the server. In particular, there

are the comparison functions thanks to the Jaro and Jimp libraries.

View

It is in the view folder that the html code is created for the visual part of the application.

5.1.2 Routes

A route is a defined path to redirect HTTP requests from a client to the appropriate con-

troller (Mozilla 2022). In order to access the data of the different APIs, each will have a

route file with all the different endpoints available. It is interesting to separate the routing

and controller part to gain readability in the code reading (see Figure 19).

34

Figure 19. Example route file for endpoints available for access on the Spotify API

The next sept is to import these routes inside the app. All the routes are exported in the

index.js file and implemented in the following way (see Figure 20). You can see an exam-

ple of call from a browser in the Figure 21.

Figure 20. Implementation of routes for each platform

Figure 21. Example of a route to access an artist resource in the Spotify API

35

5.1.3 Controller

A controller allows to make the link between the model part of the application and the rout-

ing part. It is in this file that the logical part of the application will be implemented. A func-

tion is triggered when a user takes the route associated with it (see Figure 22).

Figure 22. Example of a function coming from the Spotify controller

5.1.4 Errors management

This type of error is generated at the controller level when a call to an API does not return

an adequate result. Its name is MyFetchError and It allows to generate an error in this

case and to return to the client a JSON with the error encountered. It was important for me

to handle these errors because it is through these routes that I will retrieve data during the

analysis procedures.

5.2 Database

5.2.1 Connection

The connection is defined in the connect.js file (see Figure 23). It allows me with Se-

quelize in a first step to establish the connection to the database on MySQL with the file

se-tup.js and in a second step to retrieve the data, from the repositories with the models

defined in the models folder. From the setup.js file (see Figure 24), there is the createTa-

ble function which allows to create the tables in the database (at the initialization of the

server) and a basicdata function which will make the basic insertions of the data neces-

sary for the good functioning of the server.

36

Figure 23. connect.js

Figure 24. extract of setup.js file

5.2.2 Model

In my project, I created 18 tables that allowed me to separate the different types of data.

In order to gain flexibility, the attribute names of the database are defined only once in

static variables to avoid problems with attribute names in repositories or controllers. In this

section, I will explain how a model is structured and the different associations I have used.

Each class follows this same format, it inherits from the Model class of Sequelize and has

static attributes with the names of the fields in the database. There is a constructor which

is the generate function which creates an instance. To save it in the database, you must

use the Repository class corresponding to the Model. An example of the artist class is de-

fined in Figure 25.

37

Figure 25. Class Artist representing the artists table in the database

5.2.3 Associations

One-to-One

In this example, an artist is associated with a single artist_spotify and vice versa. To avoid

overflow errors, the foreign key of artist_spotify is also a primary key.

Figure 26. Instruction to make a One-to-One association with Sequelize

Only one of the following two lines (see Figure 26) is enough to make the association at

the database (see Figure 27) level but it is different within the instances in the code. The

38

Artist.hasOne statement allows the Artist instance to access the Artist_Spotify instance if

the model is joined during the query. While Artist_Spotify.belongsTo allows access to

the Artist model if the model is joined during the request. An error is generated by Se-

quelize when accessing one of the models and the association is not implemented.

Figure 27. Result of the One-to-One association in the database

One-to-Many

This association is illustrated as follows: A Track is linked to a single Album and an Album

can be linked to several tracks. As with the previous association, a single line is sufficient

in the database (see Figure 28 and Figure 29).

Figure 28. Instruction to make a One-to-Many association with Sequelize

Figure 29. Result of the One-to-Many association in the database

Many-To-Many

This association means that a track can be associated with zero or more playlists and vice

versa. In general, it is not necessary to create another model, but in my case I did it to be

able to add an additional attribute to the association table (see Figure 30). This attribute

allows me at the database level to have the order of the songs in the selected playlist (see

Figure 31).

39

Figure 30. Instruction to make a One-to-Many association with Sequelize

Figure 31. Result of the One-to-Many association in the database

5.2.4 Repository and Generic Class

Each table has a repository allowing to centralize all the functions specific to each table.

To gain simplicity, I created a Base class with all the methods common to all the tables,

such as findById. As JavaScript is not a basic object-oriented language, making a ge-

neric class can be more complex. While searching, I found a solution where the subclass

inherits from a function that will generate a class with a generic type (see Figure 32). An

example of repository implementation is available on Figure 33.

Figure 32. The Generic Class mechanism (Stackoverflow 2018).

40

Figure 33. Example of Repository

5.3 Strategy Class

These classes allow to define all the functions allowing the access to a specific API to a

platform. It serves as an interface between the application and the API in order to facilitate

the integration of the latter in my project. The class PlatformStrategy allows to simulate

the concept of abstract class in JavaScript. Indeed, it provides all the methods for each

platform. Afterwards, it will be possible to make polymorphism if needed. I was inspired by

this thread on Stackoverflow (Stackoverflow 2011). Each platform has in common some

generic features such as the use of the search engine or the detailed access to a resource

(Track, Album, Artists and Playlist).

5.3.1 Logs / Errors

A logging system is set up so that query errors can be recorded in a log file. Errors are

handled according to the error messages of the specific platform and are processed in a

try catch to be able to catch the error and process it. It was important to be able to handle

41

errors within the class and to differentiate this type of error from the errors generated by

MyFetchError.

5.3.2 Regulation

A constraint I discovered during my work is the overload of requests on an API. Indeed, in

order not to overload the servers, the platforms offering an official API (Spotify and

Deezer) have set up a limitation of requests and return a specific message when I execute

too many calls. That is why I set up a regulation system that puts a breakpoint during the

execution of a request when the API is overloaded. It restarts the request once the service

is available so as not to impact the client.

5.3.3 Singleton

Each class implements the singleton design pattern, but in a rather particular way, be-

cause JavaScript is not a basic object-oriented language and this concerns each concrete

class, I made sure not to export the class in the other files, which makes the instance of

the latter only possible within the file where it is created and to export only a function

which will play the role of the singleton (see Figure 34).

Figure 34. Example of the singleton concept in the SpotifyStrategy class

42

5.4 SpotifyStrategy Class

This class is the link between the Spotify API and the server. It implements the Spotify

specific authentication process "Authorization code flow" to make requests on the plat-

form.

5.4.1 Renew token

With a temporary authentication token, there will come a time when the token will be ex-

pired and will no longer allow requests to be made without restarting the authorization pro-

cess. So, we had to set up a token renewal system without impacting the client when he

makes a request.

5.5 DeezerStrategy Class

This class is the link between the Deezer API and the application. There is no authentica-

tion system or big constraint compared to other APIs.

5.6 YoutubeStrategy Class

The YoutubeStrategy class makes the link between the application and the unofficial

YouTube music API through Python. Its access to the resource is particularly different

from the others. Indeed, I used the native node package (child_process) to run a python

script that will fetch the data and return it to me in JSON format. The python script takes

as parameter a function name according to the requested resource (for example getArtist)

and provides an object variable with the necessary parameters. In the python script, there

is a switch that will execute the desired function and do the necessary logical processing

to return the requested data.

5.6.1 Manage Errors

An error handling system is made by this script allowing to distinguish between Generate

errors when the resource does not exist (code: INTERNAL_404) and script errors of bad

implementation when creating this script and for the future (code: GENERAL). The latter is

then passed on to the Node.js server and is processed as appropriate.

5.6.2 Get album v2

The YouTube API does not provide me with all the data I need. Indeed, one thing to know

is that a track with a YouTube video version also has a music version. The difference be-

tween the two is that the video version is specific to YouTube unlike the music version

43

which is linked to YouTube music. The latter is for example linked to an album unlike the

video version. By default, when accessing an album, the sounds that have a video version

are defined with it and therefore the audio version is not readable from the API.

I could find by chance that loading the album with its playlistid on the site youtube that it is

possible to see the version of the album with only audios. So, I analysed how the network

traffic of the site youtube.com and I managed to have access to this data and to recover

the identifiers (see Figure 35). There was a work of analysis of the data beforehand in or-

der to return an easily readable result (see Figure 36). During this process, I was able to

meet new use cases where there were errors, for example a piece with a null identifier

without any real explanation or an unmentioned artist that returned an error. I had to man-

age all these possibilities and others like a badly formatted identifier, or one that could not

be found and I made several tests in order to determine a valid resource or not. And re-

turn an adequate result (see Figure 37) with the getAlbumFromFetched function.

Figure 35. Example of request to find album with only all music version of track

Figure 36. Result of unprocessed data (about 1500 lines)

44

Figure 37. Result of the same formatted data

5.6.3 Other’s version of album

Another problem encountered was that the search engine, unlike other platforms, does

not mention duplicates. This is interesting for the end user but in the verification of data

can be more difficult if the resource is not accessible from the search engine. For exam-

ple, an album re-released with a strict link (see Appendix 15) is only referenced once. So,

I tried to implement a function that will allow me to retrieve other versions of an album if it

has other versions. I was finally able to use the same principle as Get album v2 (see Fig-

ure 38) to retrieve the data, analyse it and then format it in such a way as to have a con-

crete result (see Figure 39) that I implemented in the getAlbumOtherVersion method.

Figure 38. Example of a query to retrieve other versions of an album

45

Figure 39. Result of the query to retrieve the other versions of an album

5.6.4 Get track v2

One of the last complications encountered is that when accessing the details of a track

from the python library, the album ID is not mentioned as well as the other artists collabo-

rating on the track, which can be quite problematic when linking data. So, I implemented a

function that will analyse a track by simulating the addition of the track in playback and to

be able to have access to these different data initially not accessible (see Figure 40).

There was once again a work of analysis and formatting of the data in order to have read-

able data thanks to the method getTrackFromContent.

Figure 40. Example of a request to retrieve a track

5.7 AppleStrategy Class

I have looked at how the https://music.apple.com website works by analysing network traf-

fic. By copying the access token, which also does not expire, I can access the Apple API.

Unfortunately for reasons of time, I only tested latter (see Figure 41).

46

Figure 41. Result of the test query from Apple API

5.8 Thread

During the development of my project, I was confronted with several performance obsta-

cles. Indeed, the function that allows to find an artist on other platforms can be more or

less long in some cases and in each analysis function listed in the previous section, it’s

taken into account that the artist is inserted in the database in order to reduce the com-

plexity of the link search. This means that without the artist in the database, it is not possi-

ble to perform the analyses correctly. The initial synchronous code I had done slowed

down the whole process. It was stuck at certain points and this had no influence on the

rest. So, I had to respond to this with asynchronous programming in order to be able to

run processing in parallel.

5.8.1 Class ThreadParallel

Initially I had simply made all my code asynchronous but this generated execution errors

on the different APIs by launching so many tasks at the same time and also errors by trig-

gering searches for the same artist twice which would generate a duplicate in the data-

base. So, we had to find a way to limit the number of functions that would be executed in

parallel. With the Async library, I was able to meet this need by developing a Thread Par-

allel class that takes parameter the number of tasks that can be executed in parallel.

47

This class has a task queue and a dictionary that lists the tasks that are in the queue as

well as an array containing the tasks that are currently running. It’s possible with this class

to add or set an existing task to priority in the queue, which means that it will be executed

as quickly as possible by moving to the head of the queue. It’s also possible to delete a

task if it isn’t yet executed or to interrogate the class to find out if a task exists in the

queue. The advantage of this class is that any asynchronous function can be added to the

queue and that it is not mandatory for each task to execute the same action as was the

case by default with the Async library.

Figure 42. Illustration of the execution process (Antolovic 2018)

5.8.2 Deadlock

Thanks to this class, I was able to set up a parallel processing of the creation of the artists

in the database. To solve this problem of a deadlock in the analysis processing, I imple-

mented the checkArtistInDatabase function which checks for the existence of processing

of an artist's creation and returns it’s identifier from the database only if the processing is

complete. If processing is still in progress, it will pause the analysis that invoked the func-

tion with the await keyword until it returns a value. In case the artist's processing men-

tioned in the function is in the queue but not executed, it will prioritise it to speed up the

process. If the process does not exist and the artist is not in the database, it will create a

new task with the content of the artist's re-search on the different platforms.

5.9 Processing to analyse data

This is the most complex part of my job, it's the different processes of data analysis and

link resolution across the different platforms. Due to time constraints the development of

these processes is based on Spotify only.

48

The first thing I did, and for all the features, was to organically analyse the data recovery.

This so-called bottom-up approach allows me to know what exists before I start program-

ming and run into potential failure. I continued my analysis by drawing up an activity dia-

gram to give me a graphical view of the code I was going to implement (see Appendices

Appendix 24 and Appendix 25).

The problem is that coding this represents a lot of if-else checks, so a series of deeply

nested if-else. So, I coded my analysis to reduce the depth of the ifs as much as possible

(Lewis 2019).

This approach allows me to see visually how I will proceed initially. Note that each dia-

gram does not look 100% like the final code as this was a first version and during develop-

ment the process evolved.

Each check is recorded in a log file. This allowed me during development to more easily

see which links were not found so that I could check for myself if it was an error in the im-

plementation or because the specified resource did not exist.

5.9.1 Analyse Artists

The function FindArtistInAllPlatform is called when we try to find an artist in the data-

base by his spotify_id and no result is returned. It will then proceed to retrieve the neces-

sary data for the creation of the latter in the database, including links from all platforms in

order to save time during the next checks (diagram in Appendices Appendix 24 and Ap-

pendix 25).

The first thing to validate is the identity of the artist. In fact, before you can insert a track or

an album, you must have an artist in the database. The first thing to know is that on

Spotify, it is possible that two artists have the same name, it is with its identifier that we

can distinguish them quickly, but this cannot be considered as a comparison variable

since the numbering is specific to each platform. One possible point of comparison is the

artist's discography. That is, if we can identify a track or an album between the different

platforms and the artist mentioned has the same name, we can deduce that it is the same

artist.

The technical explanation is therefore by starting from a track (obtained by the search en-

gine for example) that we will find the identity of the artist. A track is linked to an album

and we will try to find it on the other platforms initially using its UPC number.

49

If this does not work, we will check the ISRC code of the song to find the artist. Please

note that we cannot base our search on the artist who authored the album because it may

be a compilation album that is analysed and therefore the artist linked to the album is

"Various Artist".

If this still doesn't work, we search the target platform's search engine looking for the

artist's name followed by the album name filtered by album.

The last reliable way to check if the other processes were failures is to check by searching

one by one each element of the discography (each album) on the target platform. So, we'll

repeat the step where we search for the artists name with the albums name on the search

engine and retrieve the UPC number of the target platform to see if it exists on the Spotify

platform. Once this has been done, we can be sure that the artist is the same on both plat-

forms. Once the data has been retrieved, we can proceed to create the artist within the

database in the different tables with the insertArtists function.

On the Deezer platform, we just get the artist's ID. For YouTube, it’s different. It provides a

description of the artist which can be retrieved as well as two identifiers, the one gener-

ated by YouTube music which is used for all resource references and the other which cor-

responds to the artist's official YouTube channel. It is in the latter that the artist can post

video clips. The result of data can of an artist can be seen on Figure 43.

Figure 43. Example of final data of an artist in the database

5.9.2 Analyse Track

The function analyseTrack is called when trying to access a track in the database by its

spotify_id and the result is empty. It will analyse the track's data from Spotify and perform

50

several checks within the database to insert the missing data based on Spotify only (dia-

gram in Appendices Appendix 26 and Appendix 27).

In technical term, the first thing to do is to check the track by the spotify_id of the album to

see if the album already exists in the database. If the album is found, we will check by re-

trieving all the tracks of the album from the database and check by the title of the track if it

exists in the database or not. This process is important if the album was added by another

platform and the Spotify link was made.

If the track is found in the database, we check if it has a Spotify id, if so we generate an

error in a log file otherwise we update the track by adding a link with the Spotify id. In both

cases, we return the track from the database to complete the process. In case the song is

not found, a song creation procedure is performed using the existing album in the data-

base as a foreign key.

If the album was not found by its spotify_id, we will check by searching for it by its UPC

number in the database. If a result was found, we will check if the album has a spotify_id.

If so, we will generate an error in a log file. The rest of the checks are similar to the previ-

ous steps (starting from the verification of the track within the database) with the addition

of linking the album in the database with the Spotify ID of the album linked to the track an-

alysed. We will also check to see if it has a UPC link. In this case, a log is generated stat-

ing that an album now has two UPC numbers. Indeed, it is possible that a UPC number is

different from one platform to another but that it is the same entity.

At this stage, if the album is not found, we will check by retrieving all the albums of the art-

ist from the database and test one by one by checking the name, the release date, the

number of tracks and the cover of the album. If we find a conclusive result, we will pro-

ceed with the same checks as the previous paragraph and add the link with the UPC num-

ber and the album found.

Finally, if nothing is found, we can certify that the album does not exist in the database, so

we will create the album in the database and consequently create the song in the data-

base.

5.9.3 Link Album from Spotify to other platform

The function analyseAlbumForPlatformName is called when we want to retrieve the dif-

ferent missing IDs of an album from the database based on its spotify_id. It’s used when

51

the user wants to find a song or an album on other platforms and will allow to update the

database (see Appendix 28).

First of all, with the album to be analysed coming from the database, we will check with its

UPC number(s) if it’s possible to find it on the target platform. If the first check is unsuc-

cessful, we will proceed to search for the album by the name of the associated artist fol-

lowed by the name of the album on the platform's search engine.

For each result, we will first check the artist's ID if it corresponds to the one registered in

the database. Then we will check the name, the number of songs, the date and the cover.

Once a result is found we insert the link in the database and link the UPC from the plat-

form if it’s available. In case the album cannot be found, we log the error in a file.

5.9.4 Link Track from Spotify to other platform

The function FindOtherTrackRef is called when one wishes to retrieve the identifiers of a

song from the database on other platforms. It’s used when the user wishes to access the

details of a song or an album from the mobile application (see Appendix 29).

Technically, the first step is to identify the album on the target platform with the function

analyseAlbumForXX described above. Then the second step is to retrieve all the songs

from the platform and search by name. If nothing is found, a search by ISRC is carried out

if the platform makes this available. If this doesn’t work, we simply link them by their in-

dexes and make a log in order to put a warning on the reliability of the piece.

5.10 Endpoints

In this last part, I will explain the different endpoints I have set up for the backend. First of

all, the set of endpoints linked to the API. These are simple interfaces to each of the APIs

with error handling in case a resource cannot be found. The second section will concern

the endpoints that will trigger the analysis processes and thus fill the database. The last

section concerns the endpoints for reading data from the database.

52

5.10.1 API access

Each platform has these basic endpoints that allow access to the different functionalities

available on the APIs. These endpoints will only be used within the server.

GET album/:id - Detail album

This route allows to access the detailed information of an album with an identifier specific

to the API used. It is also possible to retrieve an album by its UPC number by mentioning

"upc:" as a prefix to the UPC number.

A UPC barcode (or Universal Product Code) is used to represent and track your music as

an entire physical or digital product, in contrast to an ISRC code which represents individ-

ual tracks or sound recordings (Ditto 2015).

On the Spotify specific endpoint, there is an additional parameter "full" that allows you to

retrieve or not all the tracks of an album. By default, without this parameter, only the first

50 tracks are displayed and in case the album has more tracks, it is possible to retrieve all

of them with this parameter. For YouTube, the endpoint also has an additional parameter

"playlist" allowing to retrieve an album via its identifier "playlist_id" instead of "browseId".

GET track/:id - Detail track

This route allows to access the detailed information of a track with an identifier specific to

the API used. It is also possible to retrieve a track by its ISRC number by mentioning

"isrc:" as a prefix to the number.

The ISRC code is a globally recognized standard numbering system that is used exclu-

sively in the music industry to uniquely identify sound recordings (Mason 2017).

GET artist/:id - Detail artist

This route allows access to the detailed information of an artist with an identifier specific to

the API used.

GET search/ - Search engine

The search engine allows you to search for an item through the selected API. It is possible

to filter by resource type (track, album or artist).

53

5.10.2 Analysis processing (Result)

GET /spotify/search - Searching for a song

This access point is used to search using the Spotify API. It returns the search result to

the user, triggering the analysis process for each of the tracks and artists mentioned in the

result.

GET /spotify/track/:id - Detailed display of a track

The detailed access point of a track allows the user to trigger the cross-platform link

search processing (see 5.9.4) of the selected track. If the song doesn’t exist in the data-

base, it will first trigger the track analysis function to insert it into the database.

GET /spotify/album/:id - Detailed display of an album

This endpoint triggers the processing of linking a Spotify album (see 5.9.3) on each other

platform. Once this processing is done it will link each track across each platform found.

GET /spotify/playlist/:id - Displaying a playlist from Spotify

This endpoint allows you to see the detailed content of a playlist on Spotify. It triggers the

artist analysis process and the detailed track display process (see 5.9.4) for each song

mentioned in the playlist.

5.10.3 Database operation

These public endpoints allow to see every essential element of the database. It is used to

retrieve the data and display it on the mobile application.

GET /artist/:id

This access point allows an artist to be retrieved by its own identifier from the database. It

also retrieves the identifiers of other platforms where this artist was found.

GET /album/:id

Using its database identifier, the following endpoint allows you to retrieve an album with all

the available links that have been made. It also retrieves the artist associated with the al-

bum and all the tracks inserted in the database.

54

GET /track/:id

This path allows you to retrieve a track by its ID from the database or by its Spotify ID. If

it’s with the latter that one tries to access, it will return a loading message if the track anal-

ysis process is in progress.

POST /playlists

This endpoint allows you to create a playlist in the database for the authenticated user.

GET /user/:id/playlists

All the playlists of a user are retrieved with this endpoint. You have to provide the user's

ID in the URL.

GET /playlists/:id

This endpoint provides access to the details of a playlist, allowing you to retrieve all the

tracks with which it’s associated.

5.10.4 Web browser

It is in this part that I will explain the details of the web server interface. It allows you to

share content via a URL with people who doesn’t use the application, using a web page.

GET /web/:type/:id

It is through this page that you can share content online. It is enough to pass in parameter

the type of resource and its identifier to be able to generate a link of sharing. The possible

resources to share are artists, albums and tracks. It is based on the mock-up Figure 5

and the visual is available in Appendix 30.

55

6 Empirical part Mobile App

The mobile application is the last part of my thesis. Its purpose is to be able to exploit the

endpoints of the server set up beforehand. It will also allow the user to authenticate him-

self with the platform of his choice. This information will not be communicated to the

server for confidentiality reasons. With this mobile application, it will be possible to share

content across different platforms.

As for the previous chapter, the first part concerns the organisation of the files with notably

the explanation of the navigation system within the application. For the technical part, I will

explain the different components I created as well as the communication with the different

platforms in order to access the user's music library. The whole application was elabo-

rated with Redux for which I devoted a part to explain its implementation. I will finish this

chapter with the result by detailing the functionalities of each page implemented.

6.1 Organisation

6.1.1 File trees

Assets

This folder contains different images for the aesthetic part of the application.

Components

The components folder contains all the components I have developed in order to be able

to use them several times in the different pages.

Pages

It’s in this folder that the different screens are created. Each screen is a folder with differ-

ent possible pages inside, each managed by a navigation component.

Redux

In this folder are defined the different files for the correct functioning of redux in the appli-

cation.

Scripts

The scripts folder contains all the classes used to operate the various APIs.

56

Helper.js

This utility file contains several functions and variables for use throughout the application.

6.1.2 Navigation

I was inspired by the authentication navigation flows of the react navigation documenta-

tion (React 2022). The principle is to define two navigations, one for the disconnected part

and the other for the authenticated part. I use the principle of nestled navigator which is to

include a navigation system inside another one. It’s illustrated as follows in my application

(see Figure 44).

Figure 44. Navigation diagram of the mobile application

6.2 Components

6.2.1 AudioPlayable

This component allows you to incorporate audio content into the application. It allows to

use a player to play an audio file (.mp3). The added value of this functionality being less

than other parts of the application, I simplified it by using the audio tag coming from HTML

because it corresponds to what I wanted and its implementation wasn’t too complex com-

pared to other possible libraries on React Native. It takes the path to an audio file as a pa-

rameter (see Figure 45).

57

IOS Android

Figure 45. Visual of the AudioPlayable component on the different platforms

6.2.2 CustomModal

The CustomModal component allows you to create a structure for a fast implementation of

a modal window. It also provides the function to trigger the display of the latter. The pur-

pose of this component is to wrap the Modal component coming from react-native-modal

with a predefined layout and to avoid making DRY on the management of the display of a

modal window. I also used useImperativeHandle coming from React in order to make it

possible to call a function outside the component using a useRef. For that it’s necessary

that the exported component is wrapped in the forwardRef function (see Figure 46).

Figure 46. Functioning of the CustomModal component

In this example (see Figure 47), the useRef variable is named refModal. The visual result

is in the Appendix 31.

58

Figure 47. Extract of the use of the CustomModal component

6.2.3 ItemList

This component, based on ListItem from react-native-elements, allows to create a ListItem

with the possibility to put an image, a title, a subtitle, a share link and to add an action

when clicking on this element. The reason for this component was, as for the previous

one, to avoid making DRY. Indeed, the implementation of a ListItem directly with the re-

act-native-elements library made a lot of nesting of tags to display only one. Thanks to the

ItemList component it’s easier to read the application specific code. It also makes it possi-

ble to have a similar visual on each ItemList used in the application. This means that if in

the future I want to change the layout, I can do it directly in this component and the opera-

tion will be done everywhere in the project.

In the application, in several places I use the ItemList component. During the development

process I realised that the unique use of this component could be confusing if in the fu-

ture, a developer would take over my project. That's why I created the ItemAlbum compo-

nent which is a kind of sub-component of ItemList

with more album specific attribute names (see Figure 48). Each sub-component created

has a sharing URL to display the resource sharing page from the server.

Figure 48. The code of the ItemAlbum component with specific attributes of an album

59

As with the previous component, the ItemSong component serves as an interface to dis-

play a song in the application. It has two different displays. One with the associated album

cover used in the search page and the other without image used in the album detail page.

The different visuals are available in Appendix 32. There are also the ItemArtist compo-

nent to display a ListItem of an artist. It displays the artist's name and profile picture. The

last one is the ItemPlaylist component. This component allows you to display a playlist in

a ListItem. You can see the name of the playlist and its cover photo if it has one. There is

a default picture if it doesn’t have one. The different visuals are available in Appendix 33.

6.3 Strategy Class

As for the server part of my project, this abstract class makes it possible to define the

whole of the functions of access to each API so as to be able to make polymorphism

within the application. We can find there in particular the functions of recovery of the data

of the user such as its profile and the whole of its playlists.

In the concrete classes, each function returns data in the same way in order to avoid at-

tribute problems within the application. The Singleton design pattern is also implemented

for each of these classes.

6.4 Spotify Class

The Spotify class inherits from the Strategy class. It’s used to authenticate the user using

Spotify's own authentication process, and to access the user's personal data once logged

in. The authentication process is as follows: The user clicks on the login button, then a

web page opens allowing the user to enter their personal information. Once connected the

user is redirected to a website with the associated code and the code is returned to the in-

stance to make a second call to obtain the access token.

6.5 Deezer Class

As with the previous class, the Deezer class allows you to use the different access points

once authenticated. The authentication steps are the same as for the Spotify class.

6.6 YouTube Class

The YouTube class allows the user to authenticate with their Google account. Unfortu-

nately authenticating within the application was quite complicated from the WebView, in

the time available. Indeed, Google considers this to be an insecure browser and so au-

60

thentication was done from the phone's browser. Once the steps are done, the user is re-

directed to a trusted site with the access token. To simplify the process, the user simply

has to copy and paste the URL and enter it into the input field.

6.7 Redux

Redux allowed me to have a kind of centralization of the variables and to be able to cen-

tralize the different states of the application. I used the redux toolkit to simplify the installa-

tion of the store within the application.

6.7.1 Setup

The first thing to do is to create a Reducer which will contain all the states using the cre-

ateSlice function. This function also allows you to create the methods for updating the

states in the reducers attribute. In the example (see Figure 49) shown below, the login

method allows you to change the value of the isLog variable.

Figure 49. Creation of a Reducer with the toolkit

61

Once this was done, I exported the different functions so that I could use them in my appli-

cation (see Figure 50). The next step is to set up a store. Using the configureStore func-

tion, I can use previously created Reducer and insert it into this method as follows (see

Figure 51).

Figure 50. Export of Redux functions

Figure 51. Redux store configuration in the store.js file

The next step is to create a Provider at the root of the application to handle the different

states of the Reducer. The store created in the store.js file must be mentioned as an at-

tribute (see Figure 52).

Figure 52. Setting up a Redux provider

6.7.2 Using Redux within the application

After the installation, it’s now possible to use Redux within the application. To do so, you

just have to use the useSelector function of the react-redux library to get the states de-

fined in the Reducer. To use the functions allowing the update of the states, it’s enough to

useDispatch which allows to call a function of update. In this example (see Figure 53),

thanks to the export of actions (see Figure 50), it’s possible to call the logout function. It’s

62

possible to pass values in parameter which are accessible from the action.payload object

in the reducers (see Appendix 34).

Figure 53. Example of a Redux function call in the application

6.7.3 Asynchronous call with redux

The update functions within redux are synchronous by default but it’s possible to make

asynchronous calls using the createAsyncThunk function provided by the redux toolkit. It

could be useful when you want to make fetch calls within a state update. Within a Thunk,

the way to retrieve state values is slightly different than within a reducer, using the

getState method. Updating the values is also different, it’s not enough to do a simple af-

fectation of value, it is necessary to pass by a reducer and a dispatch in order to be able

to update the values. The redux toolkit documentation provides more information on the

possibilities of using async thunk (ReduxToolkit 2022). It’s also possible to retrieve values

as parameters, as shown in this example (see

Figure 54) with the variable obj.

Figure 54. Use of an Asynchronous Redux method

63

6.8 Interfaces

This part presents the different pages that have been implemented in the mobile applica-

tion. Initially during the functional analysis and the elaboration of the screen mock-ups, I

had thought of several possibilities of implementation (see Mock-up). Unfortunately, and

due to lack of time, I only developed the essential parts of the different implemented

pages and added other pages necessary to the functioning of the application.

LoginPage

The LoginPage is the home page of the application. This is the page that the user arrives

at the first launch of the application when logged out. It allows the user to authenticate

himself with the streaming service of his choice. He is then redirected to the platform spe-

cific page to authenticate himself. It’s based on the Figure 9. The visual is available in Ap-

pendix 35.

PopupLogin

The PopupLogin page is a WebView to which the user is redirected once they have cho-

sen their login details. Once the user enters their login information and the platform vali-

dates this, they are redirected to the authenticated user navigation system. The visual is

available in Appendix 35.

SearchPage

This page is the first page the user arrives on once logged in. It allows the user to search

for a track and to trigger the analysis process on each track. It’s based on the Figure 12.

The visual is available in Appendix 36.

DetailArtist, Album and Track

The DetailArtist page is the page that allows you to see the detailed information of an art-

ist. You can see his profile picture as well as the different buttons allowing access to his

profile on the different platforms. It’s based on the Figure 13. The visual is available in Ap-

pendix 37

The page DetailAlbum allows you to see the details of an album with all the tracks associ-

ated with it. As with the previous page, it is possible to open the album on the different

platforms. It’s also based on the Figure 13 and the visual is available in Appendix 37.

64

The page DetailTrack allows you to have more concrete information about a song. In par-

ticular, you can find its video clip from the YouTube platform if it exists. The visual is avail-

able in Appendix 37.

AllPlaylistPage / AllPlaylistFromPlatform

The AllPlaylistPage page allows to see all the playlists of a user coming from the data-

base. You can also import playlists from different platforms using the import button. It’s in-

spired by the Figure 15. The AllPlaylistFromPlatform page is the page that displays all of

the user's playlists from the platform with which they have authenticated. The visual is

available in Appendix 38.

DetailPlaylist

This page allows you to see the details of a playlist within the database or a playlist spe-

cific to the user's platform. It’s inspired by the Figure 14. The visual is available in Appen-

dix 39.

ProfilPage

The next page shows the specific personal information of the logged-in user. It’s with this

page that he has the possibility to access his profile on his music platform. It’s also

through this page that he can disconnect from the application. It’s inspired by the Figure

11. The visual is available in Appendix 40.

65

7 Discussion

To conclude, I could see some changes from the initial specification and the work I

thought I was doing. I think I overestimated the workload. Indeed, once in the course of

the realization of my thesis, I could see that I would not be able to entirely finish the whole

of the functionalities which I had anticipated. The part that took too long compared to my

estimate was all that concerns the YouTube API for reasons of using an unofficial library

because there isn’t one specific program for YouTube Music. I have tried to transcribe the

work that I have done in this thesis as best.

7.1 Obstacles

For the first part of my work, I was confronted with several possibilities related to the data

structure. I could simply stop at the basic data that works without taking into account ex-

ceptions such as a missing identifier, an unavailable reference, a null value etc... but this

would later cause me a problem in the second part. The data testing steps could have

been documented in detail. For example, by illustrating concretely the tested data that

isn’t available on all platforms such as an artist or a missing album and include it in the

thesis.

For the server part, initially, I had not taken into account the fact that the API used would

put limits on my use. Indeed, after a large number of requests, the API would block, which

would not allow me to continue my process. This is why I set up a regulation system (see

Regulation).

The performance problem was also the number of possible processes. By doing a one by

one analysis, I avoided the possibility of collision of double insertion of the same data.

This is why I implemented Threads (see Thread).

During the development of the features, I could see when making requests to the Spotify

API that sometimes, for no particular reason, it would return empty results when the re-

quest was supposed to work. I've seen from various forums that this has happened to

other developers (Github 2019) as well, and to fix this problem I've implemented a function

that will restart the query if the result isn’t consistent.

Sometimes the python script would return a null result when it should in any case return

JSON content. It was difficult to identify this problem but I was finally able to find out what

was wrong with the debugging of visual studio code and I set up a function like Spotify

that will restart the request if it was supposed to return data.

66

I had also obstacle about python script optimisation. Initially, I had coded the logic in Ja-

vaScript and the problem was for example for the album search by upc. I had to make

more than one call to the API and by doing this directly in the python script I was able to

see a performance gain of up to two times faster (see Appendix 41).

When executing multiple calls from the controller endpoints, each call executes a python

script. This means that if I make 100,000 requests at the same time, it will execute the

script 100,000 times, which isn’t necessarily optimal. A first solution was to set up a py-

thon server, which would lighten the workload, but it also doesn't support large quantities

of requests. Having discovered this problem rather late in my work, I wasn’t able to fix this

problem but I tried to reduce the workload as much as possible when running the data

analysis processes.

There are also obstacle during the development of the mobile application. The first one

was the login with google. As with the other two platforms, I wanted to set up an authenti-

cation within the application with a WebView. Unfortunately, Google considered the latter

as an insecure browser. A solution was possible but it was necessary to export the project

in Native project allowing me to integrate the SDK IOS and Android of Google and to cre-

ate a module for each of the two operating systems. This required a lot of work and with

the time I had left, I put it aside.

The second obstacle was the possibility to debug the application. I was able to see quite

late that it was possible to debug React Native. I didn't encounter too many problems that

required debugging but it would have been interesting for me to set this up so I could do

breakpoints or see the state of all the variables on the computer.

In addition to breaking my computer at the beginning of my work, the computer provided

by the school was having problems with the internet connection. Sometimes the connec-

tion would skip a certain amount of time (3 seconds) and this would generate a fetch re-

quest error saying that there is no internet connection. I used several adapters to put an

RJ-45 cable on the computer and it had the same effect as with Wi-Fi.

7.2 Personal learning

This work allowed me to learn several new notions and to confirm my bases in certain do-

main. I was able to do concurrent programming with threading that I implemented. This

Thread class that I developed, was made so that it could be reused later in another pro-

ject.

67

I was also able to improve my knowledge in terms of analysis, indeed having spent sev-

eral days studying different data structures, allowed me to identify the useful data to

achieve the goal of my project and also to create a scalable database allowing me to inte-

grate later on other data.

I was able to discover new technologies during this work. This is my first project with

Node.js and I was able to discover several new libraries and to solidify my bases with

those I already knew. In React Native, I also learned how to create more advanced com-

ponents with the possibility of integrating functions accessible from outside the Class.

7.3 Opportunities for improvement

During the last days of my work, I could see that there were several possibilities for im-

provement to make this project more concrete so that it could be put online in the future.

One of the improvements would be to apply the principle of the checkArtistInDatabase

function to album and track resources. This would make the application even faster and

allow more data to be manipulated in parallel.

Another improvement is about the python script. It is very efficient if it's an operation that

happens with few times. In the context of this project, it’s probably the YouTube API that I

use the most. On the one hand because of its lack of reliability compared to other plat-

forms and on the other hand because I would have to make several calls to retrieve the

different resources (album other version, album v2) given its implementation. The ideal

would be to run the script on a python server and allow it to be multithreaded.

There are some features that have not been implemented in this work but that have been

stated during the functional analysis such as the use of the application as a guest, the cre-

ation of new playlists or the persistence of data. Many possibilities of improvement are

possible and even to integrate all these functionalities in another application which will be

larger is possible.

The Design and ergonomics are very important for a mobile application and the website.

It’s what makes the user want to stay on the application. Fast, intuitive and very simple to

understand, this is what will make it pleasant to use.

In the long term, it would also be interesting to be able to integrate other streaming ser-

vices into this project. I am thinking in particular of Apple Music, which is very popular.

68

Also, an improvement about maintenance of the project with test plan. As mentioned

above, having a written and maintained test plan to see the different possible use cases is

essential in development. It allows you to have a written record of possible uses so that

you can redo them later and it greatly improves the level of maintenance of the applica-

tion.

7.4 Personal interest

After a little more than two months of work, I am happy with the result I was able to pro-

vide. Whether it was the analysis, the server, the mobile application or the writing of my

thesis, I had fun doing this work and it is because I took a subject that interests me that I

was able to keep motivated during this period. It was still difficult to see the end of the tun-

nel, I had trouble seeing the final result that I was going to get as I worked with all these

performance problems but once the database was filled, I had an easier time seeing the

end result. Overall, I was able to apply everything I learned through my studies.

69

References

Antolovic 2018. Using Background Processing to Speed Up Page Load Times. URL:
https://www.sitepoint.com/using-background-processing-to-speed-up-page-load-times/.
Accessed: 20 May 2022

Async 2022. Home page. URL: http://caolan.github.io/async/v3/. Accessed: 15 April 2022

Chapter247 2020. Node.js vs Springboot Java -Which one to choose and when?. URL:
https://www.chapter247.com/blog/node-js-vs-springboot-java-which-one-to-choose-and-
when/. Accessed: 29 April 2022

cors 2019. cors - npmjs.com. URL: https://www.npmjs.com/package/cors. Accessed: 29
April 2022

Deezer 2022a. Ressource : Album. URL: https://developers.deezer.com/api/album.
Accessed: 22 March 2022

Deezer 2022b. Ressource Track. URL: https://developers.deezer.com/api/track.
Accessed: 22 March 2022

Deezer 2022c. Ressource Artist. URL: https://developers.deezer.com/api/artist. Accessed:
22 March 2022

Deezer 2022d. Deezer Developers. URL: https://developers.deezer.com/api/oauth.
Accessed: 22 March 2022

Ditto 2015. Do I Need A Barcode To Sell My Music?. URL:
https://dittomusic.com/en/blog/do-i-need-a-barcode-to-sell-my-music/. Accessed: 30 April
2022

Express 2017. Express. URL: https://expressjs.com. Accessed: 29 April 2022

Github 2019. Web API randomly returns 404 for most endpoints. URL:
https://github.com/spotify/web-api/issues/1160. Accessed: 10 May 2022

Github 2022a. react-native-modal. URL: https://github.com/react-native-modal/react-
native-modal. Accessed: 17 May 2022

Github 2022b. React Native WebView. URL: https://github.com/react-native-
webview/react-native-webview. Accessed: 17 May 2022

Google 2022. Using OAuth 2.0 for JavaScript Web Applications. URL:
https://developers.google.com/youtube/v3/guides/auth/client-side-web-apps. Accessed: 6
May 2022

Interviewquestionjava 2014. FRAMEWORK: ORM – Object Relational Mapping. URL:
http://interviewquestionjava.blogspot.com/2014/01/framework-orm-object-relational-
mapping.html. Accessed: 29 April 2022

Janssen 2022. Inheritance Strategies with JPA and Hibernate – The Complete Guide.
URL: https://thorben-janssen.com/complete-guide-inheritance-strategies-jpa-hibernate/.
Accessed: 30 April 2022

70

Lewis 2019. How to write clean deeply nested if..else statements. URL:
https://medium.com/@jnlewis/how-to-write-clean-deeply-nested-if-else-statements-
579d29043f9a. Accessed: 30 April 2022

LogRocket 2021. React Native navigation: React Navigation examples and tutorial. URL:
https://blog.logrocket.com/navigating-react-native-apps-using-react-navigation/. Accessed:
17 May 2022

Mason 2017. ISRC and UPC codes. URL: https://www.repostnetwork.com/resources/isrc-
and-upc-codes/. Accessed: 30 April 2022

Mozilla 2022. Express Tutorial Part 4: Routes and controllers. URL:
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/routes.
Accessed: 17 April 2022

Nodemon 2022. Nodemon. URL: https://www.npmjs.com/package/nodemon. Accessed:
29 April 2022

Paper 2022. Making your React Native apps look and feel native. URL:
https://reactnativepaper.com/. Accessed: 17 May 2022

React 2022. Authentication flows. URL: https://reactnavigation.org/docs/auth-flow/.
Accessed: 3 May 2022

ReduxToolkit 2022. createAsyncThunk. URL: https://redux-
toolkit.js.org/api/createAsyncThunk. Accessed: 3 May 2022

Sequelize 2022. Home page. URL: https://sequelize.org. Accessed: 29 April 29

sigma67 2020. ytmusicapi. URL:
https://ytmusicapi.readthedocs.io/en/latest/reference.html. Accessed: 24 March 2022

Spotify 2022a. Get album. URL: https://developer.spotify.com/documentation/web-
api/reference/#/operations/get-an-album. Accessed: 18 March 2022

Spotify 2022b. Get track. URL: https://developer.spotify.com/documentation/web-
api/reference/#/operations/get-track. Accessed: 18 March 2022

Spotify 2022c. Get artist. URL: https://developer.spotify.com/documentation/web-
api/reference/#/operations/get-an-artist. Accessed: 18 March 2022

Spotify 2022d. Spotify for developers. URL:
https://developer.spotify.com/documentation/general/guides/authorization/code-flow/.
Accessed: 18 March 2022

Stackoverflow 2011. How do I create an abstract base class in JavaScript?. URL:
https://stackoverflow.com/questions/597769/how-do-i-create-an-abstract-base-class-in-
javascript. Accessed: 20 May 2022

Stackoverflow 2014. Call a python from node js. URL:
https://stackoverflow.com/questions/23450534/how-to-call-a-python-function-from-node-js.
Accessed: 24 March 2022

Stackoverflow 2018. Creating generic classes and functions in javascript ES06. URL:
https://stackoverflow.com/questions/47278140/creating-generic-classes-and-functions-in-
javascript-es06. Accessed: 20 May 2022

71

TechTarget 2005. concurrent processing. URL:
https://www.techtarget.com/searchoracle/definition/concurrent-processing. Accessed: 29
April 2022

Webb 2020. Codedrome.com. URL: https://www.codedrome.com/comparing-images-
node-jimp/. Accessed: 21 April 2022

Wikipedia 2022a. Spotify. URL: https://en.wikipedia.org/wiki/Spotify. Accessed: 16 March
2022

Wikipedia 2022b. Deezer. URL: https://en.wikipedia.org/wiki/Deezer. Accessed: 22 March
2022

Wikipédia 2022c. YouTube Music. URL: https://en.wikipedia.org/wiki/YouTube_Music.
Accessed: 24 March 2022

Wikipedia 2022d. Node.js. URL: https://en.wikipedia.org/wiki/Node.js. Accessed: 29 April
2022

Wikipedia 2022e. Redux (JavaScript library). URL:
https://en.wikipedia.org/wiki/Redux_(JavaScript_library). Accessed: 15 May 2022

Wikipedia 2022f. Mapping objet-relationnel. URL:
https://fr.wikipedia.org/wiki/Mapping_objet-relationnel. Accessed: 29 April 2022

72

Appendices

Appendix 1. Essential’s endpoints used from Spotify’s API .. 74

Appendix 2. Essential’s endpoints used from Deezer’s API ... 75

Appendix 3. Essentials functions of the YouTube Python Library 75

Appendix 4. Essentials Endpoints use from YouTube’s API ... 76

Appendix 5. Data dictionary ... 76

Appendix 6. Example of duplicate entry ... 81

Appendix 7. Example of compilation .. 81

Appendix 8. Compilation with tracks that are not available elsewhere. 81

Appendix 9. Result of a search that mentions all versions of the same album 81

Appendix 10. Example of a compilation available on several platforms 82

Appendix 11. Comparison of MD5 between two version of an album 82

Appendix 12. Example of bug with the search ... 83

Appendix 13. Comparison table of a song in several copies .. 83

Appendix 14. Example of reissue separated into two elements on YouTube Music 84

Appendix 15. Example of reissue tying together .. 84

Appendix 16. Search by videoId from the comparison table in Appendix 13 85

Appendix 17. Compilation album with song redundancy .. 85

Appendix 18. Difference between two tracks of an album where one of them is disabled 86

Appendix 19. Example of a playlist with deactivated songs .. 86

Appendix 20. Two versions of the same album where one is made of video clips. 86

Appendix 21. Comparison of track available on each platform ... 87

Appendix 22. Different structure on YouTube Music compared to other platforms 87

Appendix 23. Implementation on Spotify and Apple music. The missing album is

referenced as a version. .. 88

Appendix 24. Use case diagram for Analyse Artist based on Appendix 25 88

Appendix 25. Code executed to create diagram Appendix 24. ... 89

Appendix 26. Use case diagram for Analyse Track based on Appendix 27 90

Appendix 27. Code executed to create diagram Appendix 26 .. 90

Appendix 28. Code and diagram for Link Album from Spotify to other platform process .. 92

Appendix 29. Code and diagram for Link Track from Spotify to other platform process.... 92

Appendix 30. Visual of the different resource sharing web pages on computer and

smartphone .. 93

Appendix 31. Visual of the CustomModal component .. 94

Appendix 32. Visual of an ItemSong with and without cover .. 94

Appendix 33. Visual of an ItemPlaylist with and without image .. 94

Appendix 34. Example of using a Redux function by passing a parameter 94

Appendix 35. Visual of the login page and login popup page ... 95

73

Appendix 36. Visual of the search page ... 95

Appendix 37. Visual of the detailed page of the different resources 96

Appendix 38. Visual of the different playlist display pages ... 97

Appendix 39. Visual of a playlist detail page .. 97

Appendix 40. Visual of a user's profile page .. 98

Appendix 41. Runtime comparison between python and JavaScript 98

Appendix 42. Planning ... 99

Appendix 43. Extract of the backlog ... 100

74

Appendix 1. Essential’s endpoints used from Spotify’s API

Pull of data

Method Endpoint Param Desc Auth

GET /v1/albums/{id} id: The Spotify ID of the album.
Get details of an al-
bum

No

GET
/v1/search

Query param
q: search query
type: A comma-separated list of item
types to search across. Allowed
values: album, artist, playlist, track, show,
episode
limit: number of results.

Search an element
with filter

No

GET /v1/tracks/{id}

id: The Spotify ID of the track.
Query param
market: An ISO 3166-1 alpha-2 country
code

Get details of a
track

No

GET /v1/tracks

Query param
ids: A comma-separated list of the
Spotify IDs.
market: An ISO 3166-1 alpha-2 country
code

Get several tracks
by List of Spotify
ID.

No

GET /v1/artists/{id}
id: The Spotify ID of the artist

Get a single artist
identified by their
unique Spotify ID.

No

GET /v1/albums

Query param
ids: A comma-separated list of the
Spotify IDs.
market: An ISO 3166-1 alpha-2 country
code

Get several albums
by List of Spotify
ID.

No

GET
/v1/al-
bums/{id}/tracks

id: The Spotify ID of the album
Query param
offset: The index of the first item to return
limit: The maximum number of items to
return

Get Spotify album’s
tracks.

No

GET
/v1/artists/{id}/al-
bums

id: The Spotify ID of the artist
Query param
offset: The index of the first item to return
limit: The maximum number of items to
return

Get Spotify catalog
information about
an artist's albums.

No

Playlist management

GET /v1/me/playlists None
Get playlist of user
connected

Yes

GET /v1/me None
Get detail infor-
mation of the cur-
rent user

Yes

POST
/v1/us-
ers/{user_id}/playlis
ts

user_id: id of the user connected
Request body
name: the name of the playlist
description: an optional description
public: Boolean to define visibility
collaborative: Boolean to define if the
playlist is collaborative

Create a playlist Yes

POST
/v1/playlists/{playlist
_id}/tracks

playlist_id: The Spotify ID of the playlist
Query param
position: The position to insert the items
uris: A comma-separated list of Spotify
URIs to add

Add items to
playlist

Yes

GET
/v1/playlists/{playlist
_id}

playlist_id: The Spotify ID of the playlist Get playlist Yes

75

Appendix 2. Essential’s endpoints used from Deezer’s API

Pull of data

Method Endpoint Param Desc Auth

GET /search/album
Query param
q: search query

Search albums No

GET /search/artist
Query param
q: search query

Search artists No

GET /search/track
Query param
q: search query

Search tracks No

GET /track/{id}
id: the id of the track. It can be a ISRC code
with the acronym on the begin: isrc:id

Get details of a track No

GET
/album/{id}

id: the id of the album. It can be a UPC code
with the acronym on the begin: upc:id

Get details of album No

GET
/artist/{id}/al-
bums

id: the id of the artist
The list of the album
of an artist

No

Playlist management

GET
/user/me/playlist
s

Get playlist of user
connected

Yes

GET /user/me
Get detail of the user
connected

Yes

GET
/user/me/playlist
s

Query param
request_method: the HTTP verb (in this
case it’ POST)
title: the name of the playlist

Create a playlist Yes

GET
/playlist/{playlis
t_id}

playlist_id: the id of the playlist Get playlist Yes

GET
/playlist/{playlis
t_id}/tracks

playlist_id: the id of the playlist
Query param
request_method: the HTTP verb (in this
case it’ POST)
songs: A comma separated list of track ids

Add items to playlist Yes

Appendix 3. Essentials functions of the YouTube Python Library

Pull of data

Method Param Description Auth

get_album(id)
id: the browseId of the album. It’s

start by: MPREb_
Get details of album No

get_song(id)
id: the videoId of the track or the

video.

Get details of a song or a

video
No

search(q,filter)

q: search query

filter: the type of resource in the re-

sult. It’s possible to use only one filter

Search an element with filter No

get_artist(id) id: the channelId
Get the YouTube channel of

the artist
No

get_playlist(id) id: the playlist id Get a playlist from YouTube No

get_album_browse_id(id) id : audioPlaylistId of an album
Get the browseId of an al-

bum from a audioPlaylistId
No

76

Appendix 4. Essentials Endpoints use from YouTube’s API

Playlist management

Method Endpoint Param Description Auth

GET /youtube/v3/channel
Get personal information of
the user

Yes

GET /youtube/v3/playlists
Get all playlists of the con-
nected user

Yes

POST /youtube/v3/playlists

Request body
snippet: contain the playlist id
and the video id
status: the visibility of the
playlist (public or private)

Create a playlist in the li-
brary of the user.

Yes

POST
/youtube/v3/playlis-
tItems

Request body
snippet: contain the playlist id
and the video id

Add a video to a playlist Yes

Appendix 5. Data dictionary

Table users

The users table contains all the users of the application. The password is hash with

SHA256.

Metadata

Column Type Null Default Comments

use_id (Primary) int(11) No

use_login varchar(255) No

use_password varchar(255) No

use_email varchar(255) No

use_role varchar(255) No User or Admin

Table playlists

The playlists table contains all the playlists that have been created in the database. Each

playlist is associated with a single user.

Metadata

Column Type Null Default Comments

pla_id (Primary) int(11) No

pla_name varchar(255) No

pla_pic varchar(255) Yes NULL path of the image

pla_use_id int(11) No

Foreign key from users table

77

Table content

The content table is an association table between a song and a playlist. There is also a

position attribute that allows you to know the place of the song in the playlist.

Metadata

Column Type Null Default Comments

con_position (Primary) int(11) No PK

con_tra_id (Primary) int(11) No Foreign key from tracks table

con_pla_id (Primary) int(11) No Foreign key from playlists table

Table tracks

This table contains all the information specific to a track.

Metadata

Column Type Null Default Comments

tra_id (Primary) int(11) No

tra_name varchar(255) No

tra_duration int(11) Yes NULL duration in ms

tra_number int(11) Yes NULL position of track in the album

tra_no_disc int(11) Yes NULL disc number

tra_isrc varchar(255) No

tra_alb_id int(11) No

Foreign key from albums table

Table track_spotify

This table is an inheritance table of the tracks table. It contains all the elements specific to

a track from Spotify.

Metadata

Column Type Null Default Comments

tra_spo_tra_id (Primary) int(11) No

Primary and Foreign key from

tracks table

tra_spo_id varchar(255) No

tra_spo_preview varchar(255) Yes NULL preview of the song (30sec)

Table track_deezer

This table is also an inheritance table of the tracks table. It contains all the information

specific to a track from Deezer.

Metadata

Column Type Null Default Comments

tra_dee_tra_id (Primary) int(11) No

Primary and Foreign key from

tracks table

tra_dee_id varchar(255) No

tra_dee_preview varchar(255) Yes NULL preview of the song (30sec)

78

Table track_youtube

This table is also an inheritance table of the tracks table. It contains all the details specific

to a track from YouTube.

Metadata

Column Type Null Default Comments

tra_ytb_tra_id (Primary) int(11) No

Primary and Foreign key from

tracks table

tra_ytb_id varchar(255) No

tra_ytb_video_id varchar(255) Yes NULL link of video clip if existing

Table upcs

The upcs table contains all the UPC codes associated with an album. It is possible that an

album with the same metadata has different UPC numbers.

Metadata

Column Type Null Default Comments

upc_id (Primary) varchar(255) No

upc_alb_id int(11) Yes NULL Foreign key from albums table

Table albums

It is in the albums table that we will insert all the information specific to an album.

Metadata

Column Type Null Default Comments

alb_id (Primary) int(11) No

alb_name varchar(255) No

alb_release_date date Yes NULL

alb_nb_track int(11) No

alb_picture varchar(255) No

path of the image

alb_type varchar(255) No

Album, EP, Mixtape, Single

Table album_spotify

This table is an inheritance table of the albums table. It’s used to define the Spotify spe-

cific data.

Metadata

Column Type Null Default Comments

alb_spo_alb_id (Primary) int(11) No

Primary and Foreign key from al-

bums table

alb_spo_id varchar(255) No

79

Table album_deezer

This table is also an inheritance table of the albums table. It is used to define data specific

to the Deezer platform.

Metadata

Column Type Null Default Comments

alb_dee_alb_id (Primary) int(11) No

Primary and Foreign key from

albums table

alb_dee_id varchar(255) No

Table album_youtube

This table is an inheritance table of the albums table. It allows to define all the attributes

specific to the YouTube platform.

Metadata

Column Type Null Default Comments

alb_ytb_alb_id (Pri-

mary)

int(11) No

Primary and Foreign key from al-

bums table

alb_ytb_id varchar(255) No

BrowseId

alb_ytb_playlist varchar(255) No

playlist_id

Table artists

The artists table contains information specific to an artist. The artist is a person who per-

forms a song.

Metadata

Column Type Null Default Comments

art_id (Primary) int(11) No

art_name varchar(255) No

art_pic varchar(255) Yes NULL

art_desc varchar(10000) Yes NULL

Table artist_spotify

The artist_spotify table is an inheritance table of the artists table. It contains attributes

specific to the Spotify platform.

Metadata

Column Type Null Default Comments

art_spo_art_id (Primary) int(11) No

Primary and Foreign key from

artists table

art_spo_id varchar(255) No

80

Table artist_deezer

The artist_deezer table is an inheritance table of the artists table. It contains data specific

to the Deezer platform.

Metadata

Column Type Null Default Comments

art_dee_art_id (Primary) int(11) No

Primary and Foreign key from art-

ists table

art_dee_id varchar(255) No

Table artist_youtube

The artist_youtube table is an inheritance table of the artists table. It contains the attrib-

utes specific to the YouTube platform.

Metadata

Column Type Null Default Comments

art_ytb_art_id (Primary) int(11) No

Primary and Foreign key from

artists table

art_ytb_id varchar(255) No

art_ytb_main_id varchar(255) No

Table track_artist

The track_artist table is an association table between the tracks table and the artists table.

Metadata

Column Type Null Default Comments

tra_id (Primary) int(11) No

art_id (Primary) int(11) No

Table artist_album

The artist_album table is an association table between the artist table and the album ta-

ble.

Metadata

Column Type Null Default Comments

art_id (Primary) int(11) No

alb_id (Primary) int(11) No

81

Appendix 6. Example of duplicate entry

Appendix 7. Example of compilation

Appendix 8. Compilation with tracks that are not available elsewhere.

Appendix 9. Result of a search that mentions all versions of the same album

82

Appendix 10. Example of a compilation available on several platforms

Appendix 11. Comparison of MD5 between two version of an album

83

Appendix 12. Example of bug with the search

Appendix 13. Comparison table of a song in several copies

Type Title Album’s name videoId View
Release

date

Song Grand bain

Grand bain (feat. Ninho) – Sin-

gle

MPREb_KSNrRFSV9KB

Glu_FyvFgLM 6.1M 19/06/20

Video
DADJU - Grand Bain ft.

Ninho (Audio Officiel)
X P7ZjlJINFk8 37,7M 24/06/20

Video
DADJU - Grand Bain ft.

Ninho (Clip Officiel)
X NPSvCJ9v7vI 64,2M 30/07/20

Song* Grand bain
Poison Ou Antidote – Album

MPREb_01sLfYiTP8c
YsD7zx3s3I0 5,2M 24/09/20

Song Grand bain

Poison ou Antidote (Miel Book

Edition) – Album

MPREb_lu8F0tiIHb6

WmHSb6tSrDw 55K 03/06/21

Song Grand bain

Poison ou Antidote (Miel Book

Edition) – Album

MPREb_w1E1vs1NmsG

YaAOSfKcoEg 7,5K 17/12/21

Type Title Album’s name videoId View
Release

date

Song* Bénef
Bénef – Single

MPREb_KjhTS8HtYf7
d27x8hu1EsE 2,9M 31/07/20

Song Bénef
Enna – Album

MPREb_tOoh1DHKdnb
c81jGqiPe0U 2,2M 28/08/20

Song Bénef
Enna Boost – Album

MPREb_dWq8taw0HjQ
8wsuzb3sRP8 123K 12/11/21

* These songs are referred to the search engine.

84

Appendix 14. Example of reissue separated into two elements on YouTube Music

Appendix 15. Example of reissue tying together

85

Appendix 16. Search by videoId from the comparison table in Appendix 13

Appendix 17. Compilation album with song redundancy

The URL of this album is : https://mu-

sic.youtube.com/playlist?list=OLAK5uy_nk8lQWJHg5aJUyR4Ezd55Jlu12YBeMzUI

https://music.youtube.com/playlist?list=OLAK5uy_nk8lQWJHg5aJUyR4Ezd55Jlu12YBeMzUI
https://music.youtube.com/playlist?list=OLAK5uy_nk8lQWJHg5aJUyR4Ezd55Jlu12YBeMzUI

86

Appendix 18. Difference between two tracks of an album where one of them is disa-
bled

Appendix 19. Example of a playlist with deactivated songs

The URL of this playlist is https://music.youtube.com/playlist?list=PLDYH6Z7D5z6vuige-

ToxIHFISTeK-rRzft

Appendix 20. Two versions of the same album where one is made of video clips.

https://music.youtube.com/playlist?list=PLDYH6Z7D5z6vuigeToxIHFISTeK-rRzft
https://music.youtube.com/playlist?list=PLDYH6Z7D5z6vuigeToxIHFISTeK-rRzft

87

Appendix 21. Comparison of track available on each platform

Appendix 22. Different structure on YouTube Music compared to other platforms

88

Appendix 23. Implementation on Spotify and Apple music. The missing album is
referenced as a version.

Appendix 24. Use case diagram for Analyse Artist based on Appendix 25

89

Appendix 25. Code executed to create diagram Appendix 24.

The code can be executed on this website http://www.plantuml.com/plantuml/uml

@startuml
start
:Create New Artist from Spotify;
:Choose Platform;
:Find album by upc;
if(Found ?) then (yes)
 :get info of artist;
 :insert data;
else (no)
:Find Track By Isrc;
if(Found ?) then (yes)
 :get info of artist;
 :insert data;
else (no)
:Search "art_name alb_name" filter by Album in Platform;
repeat :Foreach search result;
 :read data;
 if (art_name == platform_name && (alb_name == platform_alb_name) && (alb_cover == plat-
form_alb_cover)) then (yes)
 :Data Valid;
 break
 else
 :Date Not Valid;
 endif
repeat while (All data loop ?) is (No) not (Yes)
if (Data Valid ?) then (yes)
 :Link Platform;
else (no)
 :Get All album of artist in Spotify;
 repeat :Foreach album result;
 :Search "search_item_alb_name" by Album in Platform;
 if(alb_upc == platform_alb_upc) then (yes)
 :Data Valid;
 break
 endif
 if(art_name == platform_name && (alb_name == platform_alb_name) && (alb_cover == plat-
form_alb_cover)) then (yes)
 :Data Valid;
 break
 else (no)
 :Data Not Valid;
 endif
 repeat while (All data loop ?) is (No) not (Yes)
 if (Data Valid ?) then (yes)
 :Link Platform;
 else (no)
 :Error Log not found;
 endif
endif
endif
endif
stop
@enduml

http://www.plantuml.com/plantuml/uml

90

Appendix 26. Use case diagram for Analyse Track based on Appendix 27

Appendix 27. Code executed to create diagram Appendix 26

@startuml
start
:Search on Spotify;
:CheckTrackBySpotifyId;
if (Track found ?) then (yes)
 :Get tra_id;
else (no)
 :CheckAlbumBySpotifyId;
 if (Album found ?) then (yes)
 :Update Album;
 :Add new Track;
 :Get tra_id;
 else (no)
 :GetAlbumByUpc;
 if (Album exist ?) then (yes)
 :GetDetailOfThisAlbum;
 if(is added from spotify) then (yes)
 :Log error link;
 stop
 else (no)
 :Add link with Spotify Id;
 :Certified link;
 endif
 :Get track of album;
 if (Track exist ?) then (yes)
 if (Track has spotify link ?) then (yes)
 :Log error Verif;
 :Create Album;
 else (no)
 :link spotify id;
 :get tra_id;
 endif
 else (no)
 :Create track (based on platform where the album was created);
 :Link Spotify;
 :Get tra_id;

91

 endif
 else (no)
 :GetAlbumByUpcInSpotify;
 if (Album exist ?) then (yes)
 :Create Album;
 :Create Track;
 :Get tra_id;
 else (no)
 :Log this upc is disable on this platform;
 :GetArtistOfAlbumById;
 if (Artist exist) then (yes)
 :Get Artist;
 else (no)
 :Create Artist;
 :Get Artist;
 endif
 :For each artist FindAlbumByName (to reduce time of query better to find by name in All
database);
 if(Album found ?) then (yes)
 :Verif Album by Date , nb Track, upc from which platform was added, has already a link
with spotify ect... ;
 if(fullok ?) then (yes)
 :link with certified;
 :log (weird to dont passe old very);
 else (no)
 :Create new album;
 :log warning (doublon added);
 endif
 else (no)
 :Create new album;
 endif
 :Get track of album;
 if (Track exist ?) then (yes)
 if (Track has spotify link ?) then (yes)
 :Log error Verif;
 :Create Album;
 else (no)
 :link spotify id;
 :get tra_id;
 endif
 else (no)
 :Create track (based on platform where the album was created);
 :Link Spotify;
 :Get tra_id;
 endif
 endif
 endif
 endif
endif
stop
@enduml

92

Appendix 28. Code and diagram for Link Album from Spotify to other platform pro-
cess

Appendix 29. Code and diagram for Link Track from Spotify to other platform pro-
cess

start
:Find Album from x in y;
:SearchByUpcInY;
if (no result ?) then (yes)
 :log upc not found in Y;
 :search by alb_name filter by Album in y;
 repeat :Foreach search result;
 :VerifByName VerifByNbTrack VerifByCover
VerifByDate VerifByType VerifByArtist;
 if (Verif ok ?) then (yes)
 :Data Valid;
 break
 endif
 repeat while (All data loop ?) is (No) not
(Yes)
 if (Valid ?) then (yes)
 :Link album;
 else (no)
 :Log Not found;
 endif
endif
stop

@startuml
start
:GetDetailTrack;
:GetAlbum to check from which platform the
track is added;
:GetAll linked track referred;
if (link missing) then (yes)
 :Identify which is missing;
 :FromAlbum, Get id of missing platform if
exist;
 :Find Album function;
 if (found ?) then (yes)
 :Get Track from album found;
 :Link data;
 else (no)
 :Search by isrc in missing platform;
 if(no result ?) then (yes)
 :Search trackname and artist by
track;
 :Verif Artist by id;
 :Link value without insert data;
 else (no)
 :Verif Artist by id;
 :Check if not a compilation;
 :Link value without insert data;
 endif
 endif
endif
:Display Link;
stop
@enduml

93

Appendix 30. Visual of the different resource sharing web pages on computer and
smartphone

94

Appendix 31. Visual of the CustomModal component

Appendix 32. Visual of an ItemSong with and without cover

Appendix 33. Visual of an ItemPlaylist with and without image

Appendix 34. Example of using a Redux function by passing a parameter

95

Appendix 35. Visual of the login page and login popup page

Appendix 36. Visual of the search page

96

Appendix 37. Visual of the detailed page of the different resources

97

Appendix 38. Visual of the different playlist display pages

Appendix 39. Visual of a playlist detail page

98

Appendix 40. Visual of a user's profile page

Appendix 41. Runtime comparison between python and JavaScript

99

Appendix 42. Planning

Task .no. Task Outcome Beginning criterion Hours

1 Starting the project Accepted project plan
An advisor is

assigned to the
9.0 3/7 3/14 3/21 3/28 4/4 4/11 4/18 4/25 5/2 5/9

1.1
Write a first version of the project

plan
Project plan 5.0

1.2
Preparation of the starting

meeting
All relevant material is delivered 1.0

1.3 Starting meeting Project has been started Project plan 1.0

1.4 Writing the minutes Minutes is delivered Starting meeting 2.0

2
Functional Analyze - Pull

data

Overview of the way to pull

the data correctly

Project has been

started
2.0

2.1 Define the limites Limites defined for the project 2.0

3
Functional Analyze -

Server

Overview of the project

Architecture

Project has been

started
9.0

3.1 Define the features Vision of the functionality 2.0

3.2 Database Diagram
Diagram with description of each

columns of each data
4.0

3.3 Do Mock-up Mock-up 3.0

4
Functional Analyze -

Mobile App

Overview of the Mobile App

features

Project has been

started
9.0

4.1 Define the features
Vision of the functionality of the

mobile app
2.0

4.2 Database Diagram Design database inside the application 4.0

4.3 Do Mock-up Mock-up 3.0

5 Organic Analyze - Pull data
Operational Server with the

database

Functional Analyze

is done
127.5

5.1 How work each service 27

5.2
How it's the possibility to connect

each service
30

5.3 Programming Access to each data 34.5

5.4 Writting part 36

6 Organic Analyze - Server
Operational Server with the

database

Functional Analyze

is done
127

6.1 Develop database operational DBMS 4

6.2 REST API Endpoint accessible 16

6.3 View Page Interface usable 12

6.4 Programming
Logical part to fill the database (search

analyse content, ect…)
55

6.5 Writting part 40

7
Organic Analyze - Mobile

App

Mobile App that colabore

with the server

Functional Analyze

is done
60

7.1 Navigation page 4

7.2 View Page 24

7.3 Authentifiction from service Login from any API Service 8

7.4 Setup connection with Server Get data from the server 4

7.5 Writting part 20

8 Project management Managed project
Project has been

started
56

8.1
Reporting and follow-up of the

progress

Daily Report / Update of planning and

backlog
31

8.2 Writing the minutes Minutes is delivered Meetings 4

8.3 Meetings Ensure about the project 4

8.4 Create planning
To manage coorectly time during the

project
7

8.5 Backlog
Vision of what i need to do for the

project in a Excel file
10

Document that explain how work the

service

Application usable

H

E

U

R

E

S

400

100

Appendix 43. Extract of the backlog

Action (I want to ...) Results Priority Status

Estimate time

(included

documentati

on)

~Time to

documentati

on

Time to work Real time Start date End date

Product a technical documentation to have the

possibility to give the project to another
An documentation High Permanent 69.5 x x 69.5 07 March 2022

Do a project plan to explain my thesis to my

teacher
Project plan Normal Done 5 x 5 5 07 March 2022 07 March 2022

Do a planning to have a estimation of the amount

of work
Planning for the thesis High Done 4 x 4 4 08 March 2022 08 March 2022

Do a template to describle my daily report A Template for the daily report Normal Done 2 x 2 2 09 March 2022 09 March 2022

Graphical Architecture of the technology A diagram Normal To do 2 0.5 1.5
fill my planning and adjust correctly during all the

time of the thesis
Maintened planning High Permanent 12 x 12 12 14 March 2022

Do my daily planning at the begin and the end of

the works days
Daily planning fill High Permanent 19 x 19 19 11 March 2022

	1 Introduction
	2 Specifications of requirements
	2.1 Objectives
	2.1.1 Data recovery
	2.1.2 Server
	2.1.3 Mobile application

	2.2 Organisation
	2.2.1 Deliverable
	2.2.2 Project schedule
	2.2.3 Backlog

	2.3 Out of scope

	3 Theoretical Framework
	3.1 Spotify
	3.1.1 Resources available
	3.1.2 Access data

	3.2 Deezer
	3.2.1 Resources available
	3.2.2 Access data

	3.3 YouTube Music
	3.3.1 Resources available
	3.3.2 Access data

	3.4 Database
	3.5 Server
	3.5.1 Libraries
	3.5.2 Mock-up

	3.6 Mobile App
	3.6.1 Libraries
	3.6.2 Mock-up

	3.7 Technology used

	4 Empirical part Data Analysis
	4.1 Specification implementation Spotify
	4.1.1 Search result
	4.1.2 Data duplication
	4.1.3 Deleting data

	4.2 Specification implementation Deezer
	4.2.1 Result of a search
	4.2.2 Data duplication
	4.2.3 Deleting data

	4.3 Specification implementation YouTube
	4.3.1 Outcome of a search
	4.3.2 Data duplication
	4.3.3 Deleting data
	4.3.4 Link between different resources
	4.3.5 Resource Implementation
	4.3.6 Clip/Video
	4.3.7 References are occasionally incorrect

	4.4 Brief
	4.4.1 Content that is currently available
	4.4.2 Link between albums

	4.5 Authentication process
	4.5.1 Spotify
	4.5.2 Deezer
	4.5.3 YouTube

	5 Empirical part Backend Server
	5.1 Organisation
	5.1.1 File trees
	5.1.2 Routes
	5.1.3 Controller
	5.1.4 Errors management

	5.2 Database
	5.2.1 Connection
	5.2.2 Model
	5.2.3 Associations
	5.2.4 Repository and Generic Class

	5.3 Strategy Class
	5.3.1 Logs / Errors
	5.3.2 Regulation
	5.3.3 Singleton

	5.4 SpotifyStrategy Class
	5.4.1 Renew token

	5.5 DeezerStrategy Class
	5.6 YoutubeStrategy Class
	5.6.1 Manage Errors
	5.6.2 Get album v2
	5.6.3 Other’s version of album
	5.6.4 Get track v2

	5.7 AppleStrategy Class
	5.8 Thread
	5.8.1 Class ThreadParallel
	5.8.2 Deadlock

	5.9 Processing to analyse data
	5.9.1 Analyse Artists
	5.9.2 Analyse Track
	5.9.3 Link Album from Spotify to other platform
	5.9.4 Link Track from Spotify to other platform

	5.10 Endpoints
	5.10.1 API access
	5.10.2 Analysis processing (Result)
	5.10.3 Database operation
	5.10.4 Web browser

	6 Empirical part Mobile App
	6.1 Organisation
	6.1.1 File trees
	6.1.2 Navigation

	6.2 Components
	6.2.1 AudioPlayable
	6.2.2 CustomModal
	6.2.3 ItemList

	6.3 Strategy Class
	6.4 Spotify Class
	6.5 Deezer Class
	6.6 YouTube Class
	6.7 Redux
	6.7.1 Setup
	6.7.2 Using Redux within the application
	6.7.3 Asynchronous call with redux

	6.8 Interfaces

	7 Discussion
	7.1 Obstacles
	7.2 Personal learning
	7.3 Opportunities for improvement
	7.4 Personal interest

	References
	Appendices

