

Toni Kemppainen

The benefits of Test Automation in Software Development

The benefits of Test Automation in Software Development

Toni Kemppainen
Thesis
Spring 2022
Degree Programme in Information Technology
Oulu University of Applied Sciences

TIIVISTELMÄ

Oulun ammattikorkeakoulu
Tietotekniikan tutkinto-ohjelma, Ohjelmistokehityksen suuntautumisvaihtoehto

Tekijä: Toni Kemppainen
Opinnäytetyön nimi: The benefits of Test Automation in Software Development
Työn ohjaaja: Janne Haka-Risku
Työn Tarkastaja: Eino Niemi
Työn valmistumislukukausi ja -vuosi: Kevät 2022
Sivumäärä: 41

Opinnäytetyö toteutettiin yritykselle nimeltä Combitech, joka on pohjoismainen tekniseen konsultointiin eri-
koistunut yritys. Combitech on osa kansainvälistä Saab-konsernia ja sillä on yli 2100 työntekijää Suomessa,
Ruotsissa, Norjassa ja Tanskassa. Suomessa yritys on erikoistunut kyberturvallisuuden ja puolustuksen ke-
hittyneisiin teknisiin ratkaisuihin ja palveluihin.

Dokumentti on muotoiltu noudattaen APA-tyyliin kuuluvaa ohjeistusta ja sen rakenne mukailee Runesonin ja
Höstin (2008) tutkielman sivulla 157, Kitchenhamin ym. (2008) esittelemää tapaustutkimusten raporttipohjaa.
Johdanto on muotoiltu CARS-mallin mukaan ensin määrittelemällä tutkimusaihe, esittämällä motivaatio tut-
kimustarpeelle ja sijoittamalla opinnäytetyön tutkimus tähän kenttään. Kaikkien lähteeksi merkittyjen asiakir-
jojen julkaisukanavan taso on tarkistettu Tieteellisten seurain valtuuskunnan ylläpitämän Julkaisufoorumin
hakukonetta käyttäen ja suurin osa niistä on myös vertaisarvioitu.

Opinnäytetyö alkaa johdannolla, johon kuuluu työn taustan esittely, työn päämäärä, ratkaistavan ongelman
kuvaus ja tutkimustavoitteet. Toisessa kappaleessa esitellään aikaisempia tutkimustöitä aiheesta, avataan
erilaisia käsitteitä, esitellään testaukseen liittyviä käytänteitä ja työkaluja, sekä pohditaan testaukseen liitty-
vien kustannusten arviointia.

Opinnäytetyön kolmas kappale esittelee tapaustutkimuksen tutkimuskysymykset, esittelee tutkimuksen koh-
teena olevan järjestelmän ja esittelee datan keräyksen menetelmät. Tutkimuksen kohteeksi valittiin eräs toi-
meksiantajayrityksen järjestelmä. Datan keräys tapahtui haastatteluiden muodossa sekä järjestelmän kehi-
tystyössä käytettävistä työkaluista kuten Jira, Jenkins ja SonarQube. Haastattelut toteutettiin kaksivaihei-
sesti, ensin haastattelemalla paikallisen yliopiston työntekijää ja vastausten perusteella muotoilluilla kysy-
myksillä toimeksiantajayrityksen työntekijää. Määrällistä tietoa kerättiin pääasiassa lähdekoodin testikatta-
vuudesta, asiakkaiden raportoimista bugeista ja manuaalisten testien suoritusajoista.

Neljäs kappale sisältää edellisen kappaleen suunnitelmien mukaan tuotettujen tutkimusten tuloksia. Haas-
tatteluista kävi ilmi, että akatemian edustaja ja yrityksen edustaja molemmat ajattelivat testiautomaation ole-
van erillinen manuaalisesta testauksesta johtuen eroista suoritustiheydessä. Testikattavuudesta ja asiakkaan
raportoimista bugeista tuotettujen kaavioiden perusteella voitiin huomata customer issueiden määrän laske-
van testikattavuuden noustessa. Manuaalisten testien suoritusajat olivat keskimäärin 26,5 minuuttia, saman

4

testitapauksen automatisoinnin viemä keskimääräinen aika 408,9 minuuttia ja break even -piste 19,4 suori-
tuskertaa. Tuloksista voitiin päätellä, että suurin koituva hyöty automatisoinnista oli huomattavasti suurempi
suoritustiheys.

Viides kappale kokoaa yhteen tutkimuksen tuloksista saadut johtopäätökset ja antaa ehdotelmia tuleville,
tämän opinnäytetyön pohjalle tehtäville tutkimuksille.

5

Asiasanat: Ohjelmistotestaus, Testiautomaatio, laadunvarmistus, IAC, Sijoitetun pääoman tuottoaste, kriitti-
sen pisteen analyysi, Tuotantomahdollisuuksien käyrä.

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology, Option of Software Development

Author: Toni Kemppainen
Title of thesis: The benefits of Test Automation in Software Development
Supervisor: Janne Haka-Risku
Examiner: Eino Niemi
Term and year when the thesis was submitted: Spring 2022
The number of pages: 41

The thesis was written in collaboration with Combitech, a Nordic company specialising in technical consulting.
Combitech is part of the international Saab Group and has more than 2,100 employees in Finland, Sweden,
Norway, and Denmark. The company specialises in advanced technology solutions and Finland's cyber se-
curity and defence services.

The document is formatted according to APA-style guidelines and follows the case study report template
structure presented by Runeson and Höst (2008) on page 157 by Kichenham et al. (2008). The introduction
is formulated according to the CARS model by first defining the research topic, presenting the motive require-
ment for the research need and placing the research of the thesis in this field. The level of the publication
channel of all documents marked as a source has been checked using the search ePublication forum’s
search engine by the Delegation of Scientific Societies. Most of them have also been peer-reviewed.

The third part of the thesis presents the research questions of the case study, introduces the system under
study and presents the methods of data collection. A system of the client company was selected for the study.
Data were collected in the form of interviews and from tools used in the development of the system, such as
Jira, Jenkins and SonarQube. The interviews were conducted in two stages, first by interviewing an employee
of the local university and by asking questions to the employee of the client company. Quantitative data was
collected primarily on source code test coverage, bugs reported by customers, and manual test execution
times.

The fourth section contains the previous section's results of the studies produced as planned. The interviews
revealed that a representative of the Academy and a representative of the company both thought that test
automation was separate from manual testing due to differences in performance. Based on the charts gen-
erated from test coverage and bugs reported by the customer, it could be seen that the number of customer
issues decreased as test coverage increased. The average execution times for manual tests were 26.5
minutes, the average time taken to automate the same test case was 408.9 minutes, and the break-even
point was 19.4 times. From the results, it could be concluded that the main benefit of automation was a
significantly higher performance density.

The fifth chapter summarises the study’s conclusions and provides suggestions for future research based on
this thesis.

7

Keywords: Software testing, Test automation, Quality Assurance, IAC, Return on Investment, Break-even
analysis, Production Possibilities Frontier.

8

TABLE OF CONTENTS

LIST OF ABBREVIATIONS .. 10

1 INTRODUCTION .. 11

1.1 Background .. 11

1.2 Goal and structure of the thesis ... 11

1.3 Problem statement ... 12

1.4 Research objectives ... 12

2 RELATED WORK ... 13

2.1 Software testing ... 13

2.1.1 Test automation (TA) ... 13

2.1.2 Testing tools .. 14

2.1.3 Cost of testing .. 14

2.1.4 To automate or manually execute? .. 18

2.2 Quality Assurance .. 19

2.3 Test Oracle .. 19

2.4 Test-driven development (TDD) ... 20

2.5 Current state of the research.. 20

2.5.1 Software engineering ... 20

2.5.2 Software testing ... 21

3 CASE STUDY DESIGN .. 25

3.1 Research questions ... 25

3.2 Case and subject selection .. 25

3.3 Data collection procedures ... 25

3.3.1 Interviews .. 26

3.3.2 Filtering Jira xTest executions ... 26

3.3.3 Exporting test coverage from SonarQube .. 27

3.3.4 Exporting customer issues from Jira .. 27

3.4 Analysis procedures ... 27

3.4.1 Return on investment (ROI) ... 28

9

3.4.2 Break-even analysis .. 28

4 RESULTS ... 29

4.1 Interviews ... 29

4.1.1 Interview 1 ... 29

4.1.2 Interview 2 ... 31

4.2 Test coverage and customer issues ... 32

4.3 Break-even point for test executions .. 35

5 CONCLUSIONS AND FUTURE WORK ... 37

REFERENCES ... 38

10

LIST OF ABBREVIATIONS

BBT Black Box Testing

BEP Break-even Point

CBA Cost-benefit analysis

CBA Cost-Benefit Analysis

COI Cost of Investment

IAC Industry-Academia Collaboration

ICSE International Conferences on Software Engineering

JQL Jira Query Language

MBT Model-Based Testing

PPF Production Possibilities Frontier

QA Quality assurance

ROI Return on Investment

SE Software Engineering

SUT System Under Test

TA Test Automation

TDD Test-driven development

WBT White Box Testing

11

1 INTRODUCTION

1.1 Background

Software testing has been an active research area for many decades, and today quality engineers can benefit

from many results, tools, and techniques (Luciano & Mauro, 2006, p. 110). The industry’s implementation of

software testing tools and testing methodologies has been on a steady climb for years. The market value of

software testing is growing each year and so is the time and resources companies have to spend on testing.

Ever increasing price of software testing raises a question about how tangible are the benefits testing creates

for the company. In addition, there is also a disjoint between industry and academic focus areas in software

testing. Garousi and Felderer (2007, p. 7) reported that analysis of talk titles in industrial versus research

conferences showed that practitioners and researchers are focusing on quite different things in testing. Hav-

ing different focus areas is a major reason which leads to (very) low relative IAC in software testing, and also

other areas of software engineering, in almost every country.

Many case studies have been made on the effects of software testing by students and researchers, but many

of these studies were published several years ago, and the testing methods have changed drastically. Hence,

room exists for case studies conducted in the 2020s to provide more recent information.

1.2 Goal and structure of the thesis

The case study reported in this thesis follows the “Guidelines for conducting and reporting case study re-

search in software engineering” by Runeson and Höst (2008). The report is structured, as proposed by Yin

(2003, p. 156), Linear-analytic the standard research report structure (problem, related work, methods, anal-

ysis, conclusions).

This thesis aims to study the benefits of manual and automated testing in software development. The thesis

is divided into two parts: A theoretical part comprising a literature review of the previous research on the

benefits of TA in software development and an in-depth empirical case study of enhancing the target system’s

TA. The review focuses on the academic literature and other empirical studies. The case study seeks to

12

clarify the value TA can provide to the company from a business perspective using methodologies presented

in the academic research. The essential methods and formulas are presented in chapter 1.3. Qualitative and

quantitative data provide a deeper understanding of the topic. The qualitative data is gathered in a personal

interview. The quantitative information is mainly collected from the software and the various tools used in the

development process.

1.3 Problem statement

Software testing is one of the most significant expenses related to software development. Highest estimates

of the relative cost of testing range up to 60% of the total costs of the development process. This puts pres-

sure on the companies to assess more cost structures and re-evaluate how much resources to allocate to

testing. Another issue facing the field is low industry-academia collaboration. Researchers and industry prac-

titioners disagree on what to focus on in software testing. Both problems give rise to the necessity for further

empirical study, which this thesis aims to fulfil.

1.4 Research objectives

The objective is to review some existing research studying the benefits of TA, compile the results and add to

their findings by collecting and analysing data while working for a medium-sized tech company. The studied

case is the testing infrastructure and the development work of SUT, which is part of a much larger software

project developed by the same company. Documented and proven techniques derived from previous re-

search on the topic, especially those focusing on TA’s objective pros and cons, form the theoretical basis for

this study. The case study aims to find monetary benefits for test automation and software testing in general.

The research questions of this study are defined in chapter 1.1.

13

2 RELATED WORK

This chapter introduces literature on critical concepts brought up in the study, the cost of software testing,

differences between manual and automated testing, previews research on the benefits of TA and the current

state of the research in software testing.

2.1 Software testing

Software testing consists of dynamically verifying a program’s behavior on a finite set of test cases—suitably

selected from the usually infinite domain of executions—against the specified expected behavior (Bourque &

Fairley, 2014, p. 42). Based on the design technique, tests can be divided into two broad categories: black

box and white box. For a given particular system under test (SUT), many combinations of tests are possible

(e.g., manual functional black box tests, non-functional automated system tests, etc.). The decision of which

tests to use is usually taken by the software tester and documented in a test plan based on predefined test

objectives and quality factors (e.g., correctness, reliability, efficiency, usability) as well as budget, time, and

resources available. Commonly, a combination of several test types is used. In recent years, there has been

a push for automation, as new techniques to automate test design and execution are proposed, and com-

mercial tools that support automated testing proliferate. (Dobles et al. 2019, p. 1.) Heusser and Kulkarni

(2012) list five traditional phases included in the software testing process: 1. Test planning, 2. Test case

design and construction, 3. Test data creation, 4. Test execution, 5. Test closure.

2.1.1 Test automation (TA)

Automation is the integration of testing tools into the test environment in such a manner that the test execu-

tion, logging, and comparison of results are done with little human intervention (Koirala & Sheikh, 2009, p.

127). Compared to manual testing, TA requires process-oriented work. Manual testing only requires for the

tester to execute the given test case, whereas automated tests have to be designed, developed, and main-

tained as a process. Sneha and Malle (2017, p. 77) recognize four activities included in the automation testing

14

process: 1. Test plan, 2. Test design or Implementation, 3. Execution of the tests, 4. Test evaluation and

analysis.

2.1.2 Testing tools

Automated testing tools assist software engineers to gauge the quality of software by automating the me-

chanical aspects of the software-testing task. Automated testing tools vary in their underlying approach, qual-

ity, and ease-of-use, among other characteristics. In addition, the selection of testing tools needs to be pred-

icated on characteristics of the software component to be tested (Michael et al., 2002, p. 1.)

Strategic Planning and Economic Analysis Group (2002, s. 1, p. 11.) reported that there is a lack of readily

available performance metrics, procedures, and tools to support software testing. If these infratechnologies

were available, the costs of performance certification programs would decline and the quality of software

would increase. This would lead to not only better testing for existing products, but also to the testing of

products that are not currently tested. Imtiaz et al. (2019, p. 211) in their study found several papers on TA

and automation tools, but no paper focused in detail on the test automation tool adaption. This area becomes

increasingly important as the need for software test automation increases due to pressure to perform rapid

or continuous releases.

2.1.3 Cost of testing

Software testing is a rigorous and costly process that, in many cases, requires management’s approval.

Because the benefits of software testing are less immediate and apparent than actual software development,

the executives may be hesitant to divert teams’ limited resources away from what generates the most value

from the customer’s perspective. Alégroth et al. (2016, p. 1) point out in their study that both academia and

industry report testing to be sometimes upwards of 50 per cent of total development cost and rarely below

20 per cent. Kumar and Mishra (2016, p. 14) estimate this to be even higher, with different types of testing

being nearly 60% of the total software cost.

15

Despite the tremendous investment in testing, its benefits can often go unnoticed. Regardless of the fact,

doing no testing is rarely a good idea. When companies invest little or no in testing, the adverse effects

become observable across the software development process. In the worst-case scenario, this can lead to

customers finding more errors in the production version of the software. Errors detected this late cost multiple

times more to fix than in the early stage of development, and sometimes they can cause irreparable damage

to the client’s environment and data. Inadequate testing has already led to increased expenditure caused by

software errors worldwide. Garousi and Mäntylä (2016, p. 92) reported that a 2013 study by Cambridge

University states that the global cost of locating and removing bugs from software has risen to $312 billion

annually. It makes up half of the development time of the average project.

When calculating the cost of automated and manual testing, it is feasible to consider the savings from catch-

ing the software bugs early in the development cycle. In other words: the cost of not covering error-prone

code with tests. The methods included in chapter 3.3 aim to calculate the net benefits of testing with that in

mind. However, this cost analysis is more effortless for manual testing, where the costs increase linearly.

Test automation costs should be studied separately from manual testing because they consume resources

differently. To illustrate the cumulative cost of manual testing, only two variables are needed: the hourly cost

of labour and the average time it takes to execute a test case. Charges related to TA are harder to illustrate

and require too many variables in a broader time frame to be generalised in a single graph. For this reason,

Figure 1 only compares the implementation cost of automating the same test case instead of executing it

manually. The reference value for the average time it takes to complete one test case manually is taken from

historical data, as shown in Table 1, compiled in the case study by Aranha and Borba (2009, p. 170).

TABLE 1. (Aranha & Borba 2009) Descriptive Statistics of the Historical Database Used in the Study

Test Suite Characteristic Mean Median Min Max Std Dev

Number of tests 48.55 57 15 104 21.37

Execution points 14,935.12 15,553 6,086 28,174 4,641.48

Effort (hh: mm) 07:05 06:56 02:28 14:40 02:35

The average execution time of 8.75 minutes, calculated by dividing the historical data’s Mean Effort (hh: mm)

by the Mean Number of tests in a test, suite implies the test cases are primarily simple and comparable to

16

unit tests. For the average hourly testing cost, the study references the in-house price of one developer hour

of 65 euros calculated in the case study by Smite and Solingen (2016, p. 64). Results for 10 test execution

using the two variables is shown in Figure 1. Execution time was rounded to 9 minutes for the sake of con-

venience. For the implementation cost of automating the test case, the graph uses the same fictitious multi-

plier of 4 as in Figure 2 of the conference paper by Ramler and Wolfmaier (2006, p. 87).

FIGURE 1. Illustration of the cumulative costs generated by both manual execution and the initial test automation
investment

The resulting figure is essential since it can quickly illustrate how the costs related to both manual and auto-

mated testing are expected to behave during the design phase in chapter 3 and the analysis phase in chapter

4 with actual data. All three variables, hourly testing cost, manual test execution time and implementation

cost of TA, vary greatly depending on the type of software and testing practices that it’s not possible to draw

a general conclusions applying all test suites. Figure 1 also assumes no maintenance costs are included in

the automated test case.

Figure 1 illustrates how the first automated test runs require more resources than testers manually running

them. Once the test script is stable and can be reliably used to replace the human tester, execution costs

drop to a fraction of testing by hand. The break-even point is the number of test executions, where the overall

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 3 5 7 9 11

C
um

ul
at

iv
e

co
st

s
(€

)

Number of test executions

The break-even point of the number of manual test executions needed
to exceed the initial cost of automation

Cost of manual test execution

Initial cost of test automationBreak-even point

17

cost of manual testing (Tm) exceeds the cost of automating (Ta) the same test case. What Figure 1 does not

display is the long-run maintenance costs of TA. Berner et al. (2005, p. 577) stated that testware has to be

maintained with each new release of the system under test. Depending on the frequency of release cycles

and the lifespan of the system under test, its maintenance tends to have a much bigger impact on the overall

cost for testing than the initial implementation of automated tests. Testware architecture therefore has to be

designed to minimize maintenance cost.

Sometimes automation takes longer to break even, and testers might want to extend their expectation to

multiple test cycles in more than one project. A study by Jayachandran (2005, p. 36) found out that the

average savings automated test can bring over manual testing per test cycle was $12.375. Jayachandran

states that with a low profit margin and a high fixed cost . . . it does not make sense to hope for a positive

return on investment from the testing cycles of the current project alone. Rather, the best option would be to

amortize the fixed cost over several testing projects. The average profit margin of several testing cycles

(spread across several testing projects) can be calculated by summing up their individual profit margins and

dividing it by the total number of testing cycles minus one. The empirical study in chapter 3 of this thesis will

also present a way to calculate the time and money saved per test cycle for automating test cases using the

data collected from SUT.

The most direct way to decrease testing-related costs is to save developers’ and testers’ time. When meas-

uring the hours kept, it is best to consider the whole software development process broadly. Solingen and

Berghout (1999, p. 13.) stated that decreasing the costs of software development is primarily realised by

decreasing the software development labour, and therefore cost reduction will mostly aim at executing soft-

ware development processes more efficiently. A first step to this is identifying current effort and expenditure.

Examples from practice in which costs are expressed are costs per source line, costs per function point,

costs per life-cycle phase, or costs per product (subsystem). Software measurement is an excellent tool to

start improving on this type of data. The focus will not only be on ‘doing things better’ but also on ‘doing the

right-things’, because eliminating unnecessary activities will be one of the most interesting cost cutting activ-

ities.

Another way to reduce testing costs is to change testing and development practices. Recent industrial expe-

rience has shown that the use of MBT can lead to significant reductions in the cost of testing (Grieskamp et

18

al. 2011, p. 1). Strategic Planning and Economic Analysis Group (2002, s. 1, p. 12) reported that early

detection of defects can greatly reduce costs.

2.1.4 To automate or to manually execute?

Manual and automated tests differ significantly in terms of requirements. The total cost produced by manually

executed tests grows linearly to execution times, and the cost per execution is also an order of magnitude

higher than for TA. However, their required initial cost is non-existent compared to automated tests. As re-

ported by Dobles et al. (2019, p. 5): automated testing needs a higher initial effort, mainly caused by the

creation of the scripts, but this cost can be amortized in time as automated tests are executed multiple times

for regression testing.

Even though automating test cases can create significant savings, not all tests should be automated, and

some test cases are not possible to automate within reasonable limits. The lifecycle of automated test cases

is also limited due to the changes in the software, whereas manual tests can be comfortably executed as

long as the tested functionality exists. In large codebases, the upkeep cost of TA can rival the costs created

by the actual development work. Testers spend more time maintaining existing tests than creating new ones

as the software grows. Kaner et al. (2001, p. 90) stated that: Testers invest in regression automation with the

expectation that the investment will pay off in due time. Sadly, they often find that the tests stop working

sooner than expected.

• The tests are out of sync with the product.

• They demand repair.

• They are no longer helping find bugs.

• Testers reasonably respond by updating the tests.

But this can be harder than expected. Many automators have found themselves spending too much time

diagnosing test failures and repairing decayed tests.

However, all regression tests executed multiple times are generally good to automate, even though auto-

mated tests have a limited lifespan. Testers can abandon some of the broken tests, for example, when the

19

underlying code changes so much that it is impossible to use the same test script. It still saves time and

resources needed to test the given functionality. TA can also bring some extra benefits compared to manual

testing, such as more frequent test runs, all test runs being identical to one another and finding bugs that go

unnoticed by a human tester. In addition, some functionalities are unrealistic to test by hand or require too

many resources. Ramler and Wolfmaier (2006, p. 90) give an example of such test case in their conference

proceeding: Consider for example performance and stress testing with 100 concurrent transactions access-

ing the same data. These types of testing require automation as it is impossible (or only at an unreasonable

expense) to simulate such a scenario by hand. In contrast, manual testing is preferable to assess “intangible”

requirements such as the aesthetic appearance and attractiveness of a user interface or Web site.

2.2 Quality Assurance

A planned and systematic pattern of all actions necessary to provide adequate confidence that the item or

product conforms to established technical requirements (ANSI/IEEE Std. 730 —1981, p. 41).

2.3 Test Oracle

Barr et al. (2015, p. 2) define Test Oracle as a procedure that distinguishes between the correct and incorrect

behaviors of the System Under Test (SUT). Test oracle can be a documented algorithm that allows human

to calculate the correct output for given input, a separate program or a part of a software that always produces

the same output for the same input, documentation that gives correct output for the given input, an expert

who can tell by the output whether it is correct, or any other way to tell the output is correct. Although unlimited

ways to create a test oracle exist, it is not possible to have an oracle for every test case. As claimed by Zhou

et al. (2021, p. 1164): In many situations, an oracle is unavailable, or is theoretically available, but practically

too expensive to be applied. This is known as the oracle problem, a fundamental challenge in software test-

ing.

Ideally, a test oracle should have three capabilities that it can perform flawlessly: Generator, comparator, and

evaluator. The generator provides expected results for each test. The comparator makes a comparison be-

tween obtained and predicted results. The evaluator determines whether the obtained and predicted results

are close enough to pass.

20

2.4 Test-driven development (TDD)

Test-driven development (TDD), sometimes also called test-first (TF) programming, is a programming tech-

nique adopted in extreme programming (XP). The main idea behind TDD concept is that the programmer

writes unit tests before writing any new code. When writing the test code, programmer in fact specifies how

exactly the program would need to work in order to pass the test. The test necessarily fails, since there is no

code yet. After that, the programmer writes the code needed to pass the test. When the test passes (and

other previous tests pass too), the programmer looks at the code and if needed, improves its design. This is

called refactoring. After that, a cycle is closed and the programmer proceeds with the next small piece of

functionality. (Pančur & Ciglarič, 2011, p. 557).

2.5 Current state of the research

The following chapters discuss research conducted on software engineering and testing. Both chapters in-

tend to determine how much study on the topics is done and how mature they are like fields of study. Im-

portant things to note are the number of scientific publications, how recent or relevant they are, and their

impact in practice.

2.5.1 Software engineering

Software Engineering (SE) is an established discipline that has existed on its own for more than 40 years.

The term software engineering first appeared in the 1968 NATO Software Engineering Conference and was

meant to provoke thought regarding the perceived “software crisis” at the time. With the increasingly ubiqui-

tous application of computing technologies, the maturity of SE has a considerable impact on almost every

other discipline (i.e., it is hardly possible to imagine a modern society without heavy usage of software sys-

tems). Over the 40 years in consideration (1969-2009), the discipline of SE has gained a very substantial

growth in depth and breadth of its research contributions. (Garousi & Ruhe, 2013, p. 2.)

21

2.5.2 Software testing

Today, software testing is a mature research field with thousands of journals, articles, conference papers,

books, etc., released every year. Using the search term “software testing” in IEEEXplore, ACM digital library,

Science Direct and Springer Link returned 991,860 publications for the years 2020-2022. As illustrated in

Table 2, most of these publications were in the form of a research articles.

TABLE 2 Number of different types of publications on the topic “software testing” in the years 2020-2022

Research articles 811676 Review Article 577 Section 125

Chapter 77933 Editorials 563 Column 112

Conference Paper 55876 Front Matter 498 Reference Work 99

Review articles 16284 Discussion 416 Conference info 86

Short communications 14871 Software publications 409 Practice guidelines 86

Book 9259 Early Access Articles 403 Monograph 85

Book chapters 8531 Mini reviews 393 Introduction 74

Abstract 4958 Demonstration 377 Panel 67

Short Paper 4179 Editorial 332 Course 64

Protocol 3209 Survey 254 Errata 55

Reference Work Entry 2930 Opinion 232 Standards 39

Journals 1771 Work in Progress 221 Video Segment/Article 40

Conference Proceedings 1665 Tutorial 210 Book reviews 24

Poster 1384 Invited Talk 162 Examinations 15

Data articles 1089 News 160 Courses 2

Correspondence 1074 Magazines 159 Product reviews 1

Encyclopedia 939 Keynote 134 Replication studies 1

Case reports 882 Rapid Communication 134 Other 3304

Note. This table represents the number of different publications found when using the search engines: IEEEXplore, ACM digital

library, Science Direct and Springer Link. The search term “software testing” was applied to the title, text and all metadata included

in the publication.

Software testing as a field is actively studied by researchers, with over 400 thousand articles published each

year as proof. However, only a tiny fraction of these is done in collaboration with the industry. IAC remains

one of the significant steppingstones in the field. Garousi et al. (2016, p. 2) describe the situation: The global

22

software industry and the software engineering (SE) academia are two large communities. However, unfor-

tunately, the level of joint industry-academia collaborations in SE is still relatively very low, compared to the

amount of activity in each of the two communities. Garousi & Felderer (2017, p. 2) state that this is especially

the case for software testing, which is a hot topic in SE research, reflected by the large amount of testing-

related papers at recent ICSE conferences, and practice, reflected by the large amount and popularity of

industrial testing conferences. The lack of mutual perception between industry and academia hurts both

sides: researchers have fewer insights on the problems that are important to practitioners, while practitioners

fail to learn what researchers have already discovered that might be useful to them . . . many SE practitioners

and researchers and especially those in software testing are not talking to each other (adequately).

Researchers and practitioners have discussed various reasons for the lack of motivation for collaborations

between industry and academia. Each side has different objectives, industrial problems lacking scientific

novelty or challenges, and the solutions' low applicability and scalability problems developed in academia.

(Garousi & Felderer, 2017, p. 2.) To bridge the gap between industry and academia and to foster IAC, a

number of researchers from academia and also practitioners from industry have systematically studied and

reported challenges, best practices (patterns for successful collaborations) and anti-patterns. (Garousi et al.,

2016, p. 107.) Garousi et al. present five categories regarding IAC in SE with challenges and best practices

documented for each: Problem formulation, Planning, Operationalization, Transfer and dissemination and

Complete life cycle. For convenience reasons, this section will not go through all the listed challenges and

best practices but lists the critical findings for every category below:

Problem formulation

i. The most common challenges during problem formulation are the differences between industry and

academia in terms of time horizons, objectives, reward systems and perceptions of what is useful.

ii. The frequently-mentioned suggestions for addressing the mismatch and to get commitment are

proper presentation and communication, and topic selection.

iii. Invest in order to understand the problems of industry to gain their commitment using systematic

research approaches (should be done by both sides).

Planning

23

i. The difference in time horizon is the most generic challenge observed (more than one quarter of all

included studies refer to the challenge).

ii. Other common challenges are limitations in planning to achieve high validity of the results and the

challenge to achieve clear and realistic ambitions and goals in projects.

iii. To address i) and ii) common objectives and a common understanding have to be achieved, e.g.

related to an awareness of different time horizons

iv. The most common research method suggested to consider in planning was case study.

Operationalization

i. The most frequently mentioned challenge is the lack of resources available from industry and aca-

demia side (25% of all included studies).

ii. Validity concerns need to be addressed when industry is involved.

iii. Four recommendations for the operational phase stand out. Approximately 50% of all studies rec-

ommend to base solutions based on real-world problems observed in industry. The key benefits need

to be shown and demonstrated to the industry partner. The researcher should also be colocated at

the company and have regular presence.

iv. Also, specific quality attributes of a solution have been identified that should be fulfilled, most com-

monly customizability.

Transfer and dissemination

i. The main hindrances in transfer are when research results are not demonstrated on an industrial

scale, and there is a lack of availability of time to conduct the transfer.

ii. Practices important during operationalization are also important for technology transfer, in particular

the ability to demonstrate benefits and achieving the important quality attributes mentioned earlier.

Complete life-cycle

i. The main challenge from the overall lifecycle perspective is the lack of relevance of research for

practice.

ii. The most frequently mentioned practices (at least 25% of all included studies) to be successful in

the overall end to end process were to run regular workshops and seminars, ensure management

engagement, the need for champions, and to conduct the IAC in an agile way.

24

For the SE research community to have a meaningful future, there is a critical need to both industry and

academia to collaborate with one another (Garousi et al., 2016).

25

3 CASE STUDY DESIGN

3.1 Research questions

This section covers the research questions for the case study. Questions are divided into one main question

and sub-questions, which narrow down the subject for

• Research Question: What are the benefits of TA in software development?

• Sub-question 1: What are the critical issues in research?

• Sub-question 2: How does TA compare to manual testing?

• Sub-question 3: What monetary value can TA bring from a business perspective?

• Sub-question 4: How does the amount of testing correlate to the software quality?

3.2 Case and subject selection

A system consisting of multiple applications and testing infrastructure was selected for the case study's sub-

ject. Challenges related to the system currently include relatively low test coverage and noticeable time con-

sumption of maintenance work such as fixing incorrect code. During the thesis, a lot of effort is put into

developing the testing infrastructure while collecting information.

3.3 Data collection procedures

Triangulation is used in data collection procedures to ensure the information produced is versatile. To achieve

this, both qualitative and quantitative methods collect data from the same phenomena. The qualitative re-

search is done in the form of interviews. All technical data is collected using quantitative methods. Mainly

third-order techniques, such as analysis of work databases and tool use logs, etc., are used. Git, Jira, Jenkins

and SonarQube were selected as primary sources for quantitative data in the study’s planning phase. The

four selected tools include detailed information from several years back that can be easily exported to CSV

form. For the data collection to be successful, each data point should be pinpointed to a specific moment in

26

time with accurate timestamps. The format used for timestamps is “dd.mm.yyyy HH:MM”, where dd = date,

mm = month, yyyy = year, HH = hours and MM = minutes. These methods aim to find a correlation between

changes in variables such as code coverage changes and the number of bugs found in production.

3.3.1 Interviews

The study includes interviews with both industry practitioners and members of academia. Interviews are car-

ried out in two phases. The first one is a less structured interview with at least one member of academia. This

is the essential part of the interviewing process since it can provide new information and improvement sug-

gestions to the quantitative part of the study. The second interviewing phase is structured based on the

answers received during the first interview and is done to industry practitioners. This way, the study attempts

to bring relative insights from academia to the minds of professional developers and testers.

3.3.2 Filtering Jira xTest executions

By taking advantage of Jira’s query language (JQL), this method collects information on the test execution

times of manually performed tests documented as Xray tickets. For this purpose, 13 tickets were chosen.

Knowledge of how long it took to execute each test case was taken from xTest Executions’ “Started” and

“Finished” -timestamps. This method is not always accurate since it only considers the time it took to mark

every test step included in the Xray ticket as “PASS” and does not show how active the tester was at every

given moment of the process. However, calculating the mean execution time using all test runs for each Xray

ticket can estimate the actual time it takes to execute the given test case manually. This information becomes

handy when analysing the break-even point for automation in chapter 3.4.2.

Comparing the time of manual test runs with the time taken to write a test script, we get the number of test

runs after which the cost of manual testing exceeds the time taken by the automation of the same test case,

i.e. the so-called break-even point. Each test run is significantly cheaper if the test is automated. For more

information on the analysis phase of the results, see section 3.4.2. The research was primarily done in the

short term, so there is no need to consider the time required to maintain the test scripts.

27

3.3.3 Exporting test coverage from SonarQube

Quantitative data is first and foremost collected in test coverage from various development tools. For this

study, SonarQube was selected. The information gathered via SonarQube’s web API includes the date and

time in the format presented in the introduction section of chapter 3.3 and the test coverage for the whole

codebase. The coverage value is represented in the percentage of lines covered. SonarQube also offers test

coverage for added new lines, but this study focuses on the overall coverage. Test coverage is used as a

metric of software quality. Comparison to other variables, such as the number of bugs found late in the

release cycle, can reveal correlations. The resulting findings are discussed more in chapter 4.

3.3.4 Exporting customer issues from Jira

Each bug or development idea directly reported by the customer is marked as a customer issue in Jira. Even

though not every customer issue means an error in the software’s functionality, the number of said issues

can be used as a metric of QA. A small number of found customer issues can be a sign of good QA and an

adequate amount of testing before release. The high amount of customer issues usually means not enough

testing or other assurance methods exist. This part of the study aims to collect every customer issue with a

timestamp from the last three years and use that data to find correlations to improvements in QA, mainly the

amount of testing. The result should be 1-3 graphs about both metrics to make it easy to conclude how the

amount of testing impacts the number of bugs found by customers.

3.4 Analysis procedures

This chapter presents different ways to analyse collected data. The methods and formulas discussed in this

chapter are based on proven practices for transforming raw data into useful information from previous stud-

ies. Some of these methods are used in business decision-making in corporations. Methods included in the

study should primarily bring out the monetary value of TA, but the study also considers benefits that cannot

be easily measured in money.

28

3.4.1 Return on investment (ROI)

ROI is generally calculated by dividing the net income by COI (Cost of investment) or investment gain by

investment base. This work focuses on the former.

EQUATION 1

𝑅𝑂𝐼 =
𝑇𝑜𝑡𝑎𝑙 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 − 𝐶𝑜𝑠𝑡 𝑜𝑓𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

To get the net income generated by automating tests, the formula subtracts the sum of all monetary benefits

by the COI. What to include into the equation is not an easy task, given how many indirect benefits and

significant savings can occur years after the initial test case was created. Likewise, chapter 2.1.3 discussed

how most of the costs generated by automated tests are due to maintenance, which becomes a more con-

siderable expenditure as the software gets older. However, the study will not focus on costs beyond a six-

month timescale, so the maintenance costs aren’t included in any analysis methods.

3.4.2 Break-even analysis

Break-even analysis can choose between multiple design options when the cost of those options is a function

of one or more variables (Tockey 1997, p. 35). The purpose of Break-even analysis is to calculate the break-

even point. Usually, this is done by dividing the fixed costs by the net return of a single unit. The study uses

the cost of the initial implementation of the test case and divides it with the savings brought by single test

execution. The formula ignores all other expenses related to TA, such as maintenance.

EQUATION 2

𝐵𝐸𝑃 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎𝑛 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝑡𝑒𝑠𝑡

𝑆𝑎𝑣𝑖𝑛𝑔𝑠 𝑝𝑒𝑟 𝑡𝑒𝑠𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

To calculate the savings for single test execution, it’s best to use manual testing as a reference point. Other

savings related to TA are more indirect and less formulable to the equation. BEP calculated this way results

in the number of test runs needed for the cost of manual testing to exceed the initial cost of automating the

same test case.

29

4 RESULTS

The Results section presents the research results obtained through interviews and quantitative methods.

There are two interviews, and the first of the subjects work at the university. The other interviewee works as

a tester for the contracting company. The Test Coverage and customer issues section compare the data

collected from both variables and attempts to find out if there is a correlation between the two. The Break-

even point for the test execution section includes 13 test cases, which were initially manually executed, and

the time it takes to automate them in minutes. These are marked in the table, which also includes the Break-

even point, i.e. the required number of executions by hand, after which the automation pays for itself in terms

of working hours.

4.1 Interviews

This chapter analyses the results of the interviews one by one. Questions and answers were in Finnish and

had to be translated to English. The questions have almost direct translations, but the answers are not written

word for word in the text. Instead, the topics discussed are brought up to be understood in both languages

without losing critical information. Two interviews were held and analysed in the same order as they were

conducted.

4.1.1 Interview 1

The first interview was pretty unstructured and only included four questions. The subject of the discussion

was a professor at Tampere University’s Information and communication technology department. The ques-

tions are numbered from 1 to 4 in chronological order. They are roughly translated into English. Under each

question is a summary of the answers to the given question.

1. How active is the research on software testing these days?

The interviewee thinks that the research work in software testing is reasonably active but not as busy

as it used to be. The perspectives of the research change constantly. One way to find out how much

30

software testing has been brought up in recent studies is to find publicly available mentions from the

latest ICSE conference papers.

2. What are, in your opinion, essential questions related to software testing?

One of the most critical questions is how the test suite is selected in the interviewee's opinion. Es-

pecially in large software systems, the testing work is starting to become a heavy process to upkeep.

The interviewee said that an industry practitioner he was in contact with explained how running all of

their tests took such a long time that even if the tests were set to run during the night, they were not

finished when employees came back to work in the morning. Another hot topic is how cloud-native

applications are tested. It’s also important to note how cost-effectively the tests can be developed

and maintained. Many testing tools exist to reduce the burden that testing brings. One of the latest

and exciting ways to determine what to test is using artificial intelligence.

3. In what ways can the benefits of TA be measured?

The assumed benefits come from the increase in the quality of the software and the ability to execute

test cases often. Automated tests are an essential part of the continuous integration method. Per-

forming the test case often enough ensures that the quality of deployed code remains adequate and

enables shipping the software multiple times per year. The interviewee thinks that automation saves

time compared to manual work but doesn’t believe TA is being developed solely to save money in

the development process. He believes that the primary function of automated testing is to lower the

quality costs of the SUT.

4. How much do companies use academic research, and what could be done to encourage com-

panies to work together with academia?

“Since we are in university space, I’m obligated to say that the collaboration with software companies

is inadequate”, the interviewee says jokingly. However, diploma and master’s theses are powerful

mediums to create academia-industry collaboration in all seriousness. Recent research findings are

usually brought to companies’ knowledge through theses. Some collaboration projects between the

university and software firms have been implemented. What it comes to increasing collaboration, the

needs of the universities and the requirements of the companies and the expectations of financial

31

instruments are sometimes hard to coordinate. Thesis works are still the best way to increase col-

laboration. They often include research done by the student for the company. Another way is for

firms to contact members of academia and propose collaboration projects directly.

Fifty-nine papers belonging to the 2020 conference and 60 documents belonging to the 2021 conference

were found when searching ICSE conference papers using the keywords “tests” or “testing”. The 2020 con-

ference included 142 articles and 151 in the 2021 conference. This means that around 40 % of the papers in

both conferences were related to software testing in one way or another.

4.1.2 Interview 2

The second interview was held in the contracting company. The selected subject was a senior test engineer

with a wide range of experience in different testing methods and tools for testing native applications. The

questions were formulated based on the first interview, and the responses collected from the first interview

were always presented to the interviewee before each question. In this way, the ideas raised by the university

representative on the topics of the questions were brought to the attention of the second interviewee. The

questions and their answers are listed in chronological order below and have been roughly translated into

English.

1. Software testing is under a lot of research, and many research articles and other publications

are produced every year. Do you use industry research data in your daily work, and how?

The interviewee states that they do not take advantage of the latest scientific research on software test-

ing from a practical point of view and have not spent much time reading studies. They had more inter-

est in research publications in the early stage of their career but paid little attention to them in their cur-

rent work.

2. In a previous interview, I asked the interviewee what he thinks is the most critical question in

software testing and, according to the interviewee, how the test set is selected. Another trendy

topic is artificial intelligence in testing and aiding in selecting tests. What do you think of these,

and how do these appear in your daily work?

In the interviewee’s opinion, tests themselves are not hard to run in parallel with modern technology if

multiple instances of the SUT or critical part of it can be run simultaneously. More important is to pay

attention to the complexity of the tests, especially with automated tests. More complex test cases

cause more problems and maintenance work than simple tests. Tests involving database transactions,

32

such as client applications, are usually essential to cover with testing. The interviewee hasn’t used arti-

ficial intelligence methods but has done fuzz testing to find unexpected errors that human testers don’t

discover.

3. The next question was about how the benefits of test automation can be measured. According

to the interviewee, the primary purpose of testing is to guarantee the program’s quality is devel-

oped. The benefits of test automation are reflected in the fact that tests can be run frequently.

Third, he mentioned testing as an integral part of ongoing integration. What more could a practi-

tioner add to these answers?

The interviewee agrees that the primary purpose of TA should be to guarantee the quality of the soft-

ware’s release version. Automated tests should be run frequently for them to be beneficial. When tests

are run daily, they can be updated as the SUT changes, ensuring the test set remains reliable until the

shipment of production-ready software. Generating data is also easier with TA since the same code

used for testing can also prepare the test data beforehand.

4. Finally, the interviewee was asked how cooperation between universities and companies could

be increased. In his opinion, theses are essential platforms for research in companies. Another

way is to contact companies directly. How do you think cooperation could be increased, and

what would you like from them?

The interviewee has received an offer to give a lecture to students in the past but has not taken part in

any actual collaboration project

4.2 Test coverage and customer issues

The chapter collects information on test coverage and customer issues and models the external correlation

between the two. The pre-assumption is that as SUTs test coverage increases, customer issues, usually

meaning bugs found by the customer, should decline. The test coverage data points include the timestamp

and the percentage of the test coverage value corresponding to the time. customer issues are collected in

the same way, including timestamps, but they are illustrated as the cumulative amount. Figure 2 shows the

test coverage capacity in the period 16.4.2020 - 14.4.2022. Figure 3 shows the cumulative number of cus-

tomer issues between 20.12.2018 and 16.2.2022. It is essential for the study’s accuracy that the graphs are

from approximately the same period. In this way, conclusions can be drawn from the change in one varia-

ble to the change in another variable.

33

FIGURE 2. Graph illustrating change in the overall test coverage over 700 days

Looking at Figure 2, it is good to remember that the coverage value is a ratio of the whole codebase. The

percentage of test coverage would see a downward decline if new lines of code were added to version control

without creating new test cases or expanding the existing ones. Therefore, even if the curve appears to

flatline over some periods, the number of rows covered by the tests has increased.

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

15
.5

.2
02

0
0.

00

15
.6

.2
02

0
0.

00

15
.7

.2
02

0
0.

00

15
.8

.2
02

0
0.

00

15
.9

.2
02

0
0.

00

15
.1

0.
20

20
 0

.0
0

15
.1

1.
20

20
 0

.0
0

15
.1

2.
20

20
 0

.0
0

15
.1

.2
02

1
0.

00

15
.2

.2
02

1
0.

00

15
.3

.2
02

1
0.

00

15
.4

.2
02

1
0.

00

15
.5

.2
02

1
0.

00

15
.6

.2
02

1
0.

00

15
.7

.2
02

1
0.

00

15
.8

.2
02

1
0.

00

15
.9

.2
02

1
0.

00

15
.1

0.
20

21
 0

.0
0

15
.1

1.
20

21
 0

.0
0

15
.1

2.
20

21
 0

.0
0

15
.1

.2
02

2
0.

00

15
.2

.2
02

2
0.

00

15
.3

.2
02

2
0.

00

Test Coverage

34

FIGURE 3. The cumulative growth in customer Issoverd of 1111 days

Looking at both Figure 2 and Figure 3, conclusions can be drawn that after July 2020, the test coverage

began to go up while the number of new customer issues started to decline. From 1.6.2019 to 31.5.2020, the

average number of new customer issues per month was 19. From 1.6.2020 to 1.2.2022, the average was

3,5. At the same time, the test coverage rose from 11,60% to 18,40%. The number of new customer issues

was lowest while the company invested in their TA. However, this does not mean the number declined solely

because of testing. The company has put a lot of effort into improving its development and CI/CD pipeline

processes. Testing is still an important part of continuous integration and cannot be ignored when looking at

the different factors behind the increased quality of delivered software.

0

50

100

150

200

250

300

350

Cumulated customer Issues

35

4.3 Break-even point for test executions

The calculation of the break-even point was presented in chapter 3.4.2. This section describes the execution

times of manual test tickets collected from Jira and the time required to automate the same test cases. The

thesis author creates an auto-automatic test. He has about one year of experience in system development

and a few months of testing. Only those hours of work that directly contributed to the implementation of that

test are counted as test writing time. Refactoring old code and other unrelated works were excluded from the

calculations. The average execution and implementation times for all thirteen manual tests are shown in

Table 3.

TABLE 3. Test execution and automation times for 13 manual regression tests

Average execution
time by hand (min)

Automation time (min) Break-even point (manual executions)

Test 1 9 180 20,0

Test 2 8,5 215 25,3

Test 3 13 417 32,1

Test 4 12,5 382 30,6

Test 5 7,5 208 27,7

Test 6 44 681 15,5

Test 7 40 562 14,1

Test 8 67 733 10,9

Test 9 49 523 10,7

Test 10 15 109 7,3

Test 11 60 856 14,3

Test 12 7 120 17,1

Test 13 12,5 330 26,4

Average 26,5 408,9 19,4

As shown in Table 3, the Break-even point for automated tests is below 20 manual executions. During four

increments (full calendar year), the maximum number of performances is usually 14-ns. This means the tests

can be executed at least once every month. If the automated tests were run with the same frequency, it would

take, on average, 16 months for them to break even. Computerised tests, however, can be run every single

night if needed. This means they already catch up with the human tester in 14-15 days. Looking at the overall

yearly costs alone for manual testing and automating the same test case, the cost of TA is on average 408,9

minutes or 6,815 hours, and manual testing can cost at most 15 * 26,5 = 397,5 minutes or 6,625 hours.

36

The results clearly show that the cost of automation tends to break even after a year, but what is more notable

is the increase in test execution volume after the TA set is fully implemented. If the automation process were

to occur at the start of the year, the test would be competent within one working day. Using 242 days’ work

year leaves 241 days for running the test case (weekends and holidays are omitted).

Kotaniemi (2021) reported in her blog post that the hourly rate for an experienced developer moving on both

sides is 100 euros, and the hourly rate for a specialist is even closer to 200 euros. If 100 euros per hour is

used as a reference cost for the software developer and tester, the initial implementation cost for one auto-

mated test is 6,815 * 100€ = 681.50€. In theory this would mean in total ((241 * 26,5) / 60) * 100€ = 10644.17€.

If we calculate the ROI for one calendar year in this scenario, we get the following equation: (10644.17€ -

681.50€) / 681.50€ = 1461.87%. Executing a test case by hand every day is not practical, but it highlights

how much more automation can improve the Quality Assurance of SUT when done right. Once the test case

is automated, the tester no longer has to spend time testing that particular test case.

37

5 CONCLUSIONS AND FUTURE WORK

The study’s findings show that automation can achieve certain advantages over manual testing, but in any

case, it does not provide the desired additional benefit. It is advisable to select regressive test cases and

perform them several times a year, for example, before each export to production. The study results also

show that test automation can be used to perform test work that a human tester would not be able to perform,

and tests can be performed at a much more intense pace. At best, all automated tests of the system can be

performed every night.

Both interviews revealed the disconnect between the interests of members of academia and industry practi-

tioners. One of the most important insights taken from the interviews was that manual and automated tests

should be treated differently since automated tests can be run much more frequently and therefore cannot

ideally compare to executing the test case by hand.

During the study, it was interesting to note how few new customer issues were generated after time was

invested in improving test automation and increasing test coverage. The overall test coverage had increased

by 63.2%. Most of the customer issues are bugs found in the customer's environment, so a significant de-

crease in them means that the bugs have not ended up in the version that goes to the customer.

Although this thesis does not study all the benefits of TA, it can act as a springboard for future experiments.

For example, the thesis results can be used as reference values when creating a theoretical basis for a new

case study, as was done in Section 2.1.3, Figure 1.

38

REFERENCES

Alégroth, E., Feldt, R. & Kolström, P. (2016). Maintenance of automated test suites in industry: An empirical

study on Visual GUI Testing. Information and software technology, 73, 66—80. DOI:

10.1016/j.infsof.2016.01.012

ANSI/IEEE Std. 730-1981. IEEE Standard Software Quality Assurance Plans. 345 East 47th Street, New

York, NY 10017, Nov. 13, 1981. DOI: 10.1109/IEEESTD.1984.7435198.

Aranha, E. & Borba, P. (2009). Estimating Manual Test Execution Effort and Capacity Based On Execution

Points. International journal of computers & applications, 31(3), 167—172. DOI:

10.1080/1206212X.2009.11441938

Baresi, Luciano & Pezzè, Mauro. (2006). An Introduction to Software Testing. Electronic Notes in Theoretical

Computer Science 148 (2006) 89—111. DOI: 10.1016/j.entcs.2005.12.014

Barr, E. T., Harman, M., McMinn, P., Shahbaz, M. & Yoo, S. (2015). The Oracle Problem in Software Testing:

A Survey. IEEE transactions on software engineering, 41(5), 507—525. DOI: 10.1109/TSE.2014.2372785

Bourque, P., Dupuis, R., Abran, A., Moore, J. & Tripp, L. (1999). The guide to the Software Engineering Body

of Knowledge. IEEE Software, 16(6), 35—44. DOI: 10.1109/52.805471

Buckley, Fletcher J. & Poston, Robert. (1984). Software Quality Assurance. DOI:

10.1109/TSE.1984.5010196

Dobles, I., Martinez, A. & Quesada-Lopez, C. (2019). Comparing the effort and effectiveness of automated

and manual tests. DOI: 10.23919/CISTI.2019.8760848

Dobles, I., Martinez, A. & Quesada-Lopez, C. (2019). Comparing the effort and effectiveness of automated

and manual tests. DOI: 10.23919/CISTI.2019.8760848

39

Engineering research. (1969–2009). International Journal of Software Engineering and Knowledge Engineer-

ing, 23(9), 1343—1366. DOI: 10.1142/S0218194013500423

Garousi, V. & Mäntylä, M. V. (2016). When and what to automate in software testing? A multi-vocal literature

review. Information and software technology, 76, 92—117. DOI: 10.1016/j.infsof.2016.04.015

Garousi, V. & Ruhe, G. (2013). A bibliometric/geographic assessment of 40 years of software

Garousi, V., & Felderer, M. (2017). Worlds apart: industrial and academic focus areas in software testing.

IEEE Software, 34(5), 38—45. DOI: 10.1109/MS.2017.3641116

Garousi, V., Petersen, K. & Ozkan, B. (2016). Challenges and best practices in industry-academia collabo-

rations in software engineering: A systematic literature review. Information and software technology, 79,

106—127. DOI: 10.1016/j.infsof.2016.07.006

Glass, R. L. (2006). Software Conflict 2.0: The art and science of software engineering. “Developer.* Books”,

2006.

Grieskamp, W., Kicillof, N., Stobie, K. & Braberman, V. (2011). Model-based quality assurance of protocol

documentation: Tools and methodology. Software testing, verification & reliability, 21(1), 55—71. DOI:

10.1002/stvr.427

Heusser, M. & Kulkarni, G. (2012). How to Reduce the Cost of Software Testing. DOI: 10.1201/b11258

Imtiaz, J., Sherin, S., Khan, M. U. & Iqbal, M. Z. (2019). A systematic literature review of test breakage

prevention and repair techniques. Information and software technology, 113, 1—19. DOI:

10.1016/j.infsof.2019.05.001

Jayachandran, N. (2005). Understanding ROI Metrics for Software Test Automatio. Graduate

Theses and Dissertations. https://scholarcommons.usf.edu/etd/2938.

40

Kaindl, H., Brinkkemper, S., Bubenko Jr, J. A., Farbey, B., Greenspan, S. J., Heitmeyer, C. L., Leite, J. C. S.,

Mead, N. R., Mylopoulos, J., Siddiqi, J., (2002). Requirements Engineering and Technology Transfer: Obsta-

cles, Incentives and Improvement Agenda. Requirements engineering, 7(3), 113—123. DOI:

10.1007/s007660200008

Kaner C., Bach, J. & Pettichord, B. (2001). Lessons Learned in Software Testing: A Context-Driven Approach.

John Wiley & Sons.

Koirala, S., & Sheikh, S. (2008). Software Testing: Interview Questions. Jones & Bartlett Learning.

Kotaniemi M. (2021). Ohjelmistokehittäjien palkkataso Suomessa 2021. Talented. https://talen-

ted.fi/fi/blog/ohjelmistokehittajien-palkkataso-suomessa-2021.

Kumar, D. & Mishra, K. (2016). The Impacts of Test Automation on Software's Cost, Quality and Time to

Market. Procedia computer science, 79, 8—15. DOI: 10.1016/j.procs.2016.03.003

Lee, Jihyun & Kang, Sungwon & Kim, Chang-Ki. (2009). Software architecture evaluation methods based on

cost benefit analysis and quantitative decision making. Empir Software Eng 14, 453—475 (2009). DOI:

10.1007/s10664-008-9094-4

Michael, J., Bossuyt, B. & Snyder, B. (2002). Metrics for measuring the effectiveness of software-testing

tools. DOI: 10.1109/ISSRE.2002.1173225

Pančur, M. & Ciglarič, M. (2011). Impact of test-driven development on productivity, code and tests: A con-

trolled experiment. Information and software technology, 53(6), 557—573. DOI: 10.1016/j.infsof.2011.02.002

R. Prest & R. Turvey. (1965). Cost-Benefit Analysis: A Survey. The Economic Journal. Volume 75, Issue 300.

DOI: 10.2307/2229670

41

Ramler, R. & Wolfmaier, K. (2006). Economic perspectives in test automation: Balancing automated and

manual testing with opportunity cost. DOI: 10.1145/1138929.1138946

Runeson, P. & Höst, M. (2008). Guidelines for conducting and reporting case study research in software

engineering. Empirical software engineering: an international journal, 14(2), 131—164. DOI:

10.1007/s10664-008-9102-8

Berner, S., Weber, R. & Keller, R. (2005). Observations and lessons learned from automated testing. Pro-

ceedings. 27th International Conference on Software Engineering, 2005. ICSE 2005., 2005, pp. 571—579,

DOI: 10.1109/ICSE.2005.1553603

Smite, D. & van Solingen, R. (2016). What's the True Hourly Cost of Offshoring? IEEE software, 33(5), 60—

70. DOI: 10.1109/MS.2015.82

Sneha, K. & Malle, G. M. (2017). Research on software testing techniques and software automation testing

tools. DOI: 10.1109/ICECDS.2017.8389562

Solingen R, Berghout E. (1999). The goal/question/metric method. A practical guide for quality improvement

of software development. McGraw-Hill

Strategic Planning and Economic Analysis Group. (2002). The economic impacts of inadequate infrastructure

for software testing. National Institute of Standards and Technology, 1.

Tockey, S. (1997). A missing link in software engineering. IEEE software, 14(6), 31—36. DOI:

10.1109/52.636594

Yin RK. (2003). Case study research. Design and methods, 3rd edn. London, Sage

Zhou, Z. Q., Tse, T. H. & Witheridge, M. (2021). Metamorphic Robustness Testing: Exposing Hidden Defects

in Citation Statistics and Journal Impact Factors. IEEE transactions on software engineering, 47(6), 1164—

1183. DOI: 10.1109/TSE.2019.2915065

