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Buckling is, besides yielding, one of the major causes of failures in structures, and buckling 
checks are therefore an integral part of strength analyses. Checks can be performed either 
with methods requiring heavy numerical calculations or with equations based on rules and 
recommendations from a classification society. Numerical calculations are extremely time-
consuming and commercial buckling check programs are expensive. There is therefore a 
need for buckling check tools based on the recommendations of a classification society 
that are fast to use and easy to share. 
 
The work presented in this thesis is based on the rules and recommendations of DNV (Det 
Norske Veritas). Eight Excel-based buckling tools to be used for stability analyses of plated 
and column structures were created. They cover the flexural buckling of columns, buckling 
of unstiffened plates and buckling of plates stiffened in one direction. The tools for unstiff-
ened and stiffened plates cover the load cases of uniform and linear varying longitudinal 
and transverse compression, lateral load, shear and biaxially loaded with shear. The effec-
tive width method is presented, because the rules and recommendations of DNV are 
based on this theory. The theory part of the thesis also covers the Finite Element Method 
(FEM), as the results from the created tools were compared to those from FEM-analyses.  
 
The results from the tools were verified with hand calculations and tested to be in line with 
certain basic results of buckling of plates and columns known to be true. In addition, the 
results from the tool for stiffened plates were compared with those from an old project. 
These comparisons showed that the results from the FEM-analyses were generally more 
conservative for slender plates whereas the results from the buckling check tools were 
generally more conservative for thicker plates. The buckling resistance calculated by the 
tools did not exceed the yield strength. While the results from the tests and comparison 
where mostly in line with what was expected, a few unforeseen outcomes are presented, 
and reasons for them discussed. As future work it would be recommended to expand the 
tools to cover plates with cutouts as they could not be included in this thesis due to cur-
rently unreliable rules. Additional tools for varying boundary conditions as well as plates 
stiffened in two directions would also be welcomed.   

Keywords stability, buckling, DNV, effective width method 
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Lommahdus ja nurjahdus ovat myötäämisen ohella yleisimpiä rakennevaurioihin johtavia syitä, ja 
tästä syystä ne muodostavatkin tärkeän osan lujuusanalyyseja. Analyysit voidaan suorittaa joko 
vaativin numeerisin laskentamenetelmin tai luokituslaitosten sääntöihin ja suosituksiin perustuvien 
yhtälöiden avulla. Numeeristen laskentamenetelmien käyttö on äärimmäisen aikaa vievää, kun taas 
kaupalliset lommahduslaskentaohjelmat ovat kalliita. Tästä syystä helposti jaettavissa olevalle, no-
peakäyttöiselle, luokituslaitoksen sääntöihin ja suosituksiin perustuvalle laskentaohjelmalle on tar-
vetta. 
 
Opinnäytetyössä luotiin kahdeksan Excel-pohjaista levy- ja pilarirakenteiden stabiilisuusanalyyseis-
sa käytettävää laskentaohjelmaa. Laskentaohjelmat kattavat pilarin nurjahduksen, jäykistämättö-
män levykentän lommahduksen sekä yhteen suuntaan jäykistetyn levykentän lommahduksen. Levy-
rakenteiden laskentaohjelmien kattamat kuormitustyypit ovat tasainen ja lineaarisesti vaihtuva pitkit-
täinen ja poikittainen kuormitus, leikkaus, sivuttainen kuormitus sekä yhtäaikaisesti vaikuttavat poi-
kittainen kuormitus, pitkittäinen kuormitus ja leikkauskuormitus.  
 
Työssä esitetyt laskentaohjelmat pohjautuvat DNV:n (Det Norske Veritas) sääntöihin ja suosituksiin. 
Tehollisen leveyden menetelmä on esitelty siksi, että DNV:n säännöt ja suositukset perustuvat tä-
hän teoriaan. Työn teoriaosuus kattaa myös elementtimenetelmän (FEM), koska luotujen työkalujen 
tuloksia verrattiin FEM-analyyseista saatuihin tuloksiin. 
 
Laskentaohjelmien antamat tulokset verifioitiin käsin laskemalla ja varmistamalla, että ne noudatta-
vat tiettyjä lommahduksen ja nurjahduksen tunnettuja perussääntöjä. Jäykistetyille levykentille luo-
dun ohjelman antamia tuloksia verrattiin myös vanhasta projektista saatuihin tuloksiin. Nämä vertai-
lut osoittivat, että FEM-analyysit antoivat yleisesti ottaen konservatiivisempia tuloksia hoikille levy-
kentille, kun taas laskentaohjelmat antoivat yleisesti ottaen konservatiivisempia tuloksia paksummil-
le levykentille. Laskentaohjelmien antamat lommahduskestävyydet eivät ylittäneet myötörajaa. Tes-
tien ja vertailujen tulokset olivat odotettuja, muutamaa yllättävää tapausta lukuun ottamatta. Nämä 
tapaukset, mukaan lukien mahdolliset syyt, on käsitelty tässä työssä.  
 
On suositeltavaa että tulevaisuudessa laskentatyökalut laajennettaisiin kattamaan myös reiälliset 
levykentät, joita ei voitu käsitellä tämän työn yhteydessä epäluotettavia tuloksia antavien sääntöjen 
takia. On myös suotavaa laajentaa laskentaohjelmia kattamaan erilaisia reunaehtoja ja kahteen 
suuntaan jäykistettyjä levykenttiä. 

 
 

Avainsanat stabiilius, lommahdus, nurjahdus, DNV, tehollinen leveys 
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List of Symbols and Abbreviations  

      effective width 

     buckling resistance  

     design stress 

     buckling resistance, shear 

     design stress, shear 

   slenderness  

    lateral load 

DNV Det Norske Veritas. A classification society providing rules and recom-

mendation for e.g. ships and offshore structures.  

FEM Finite element method. A numerical method used for solving field prob-

lems. 

usage factor The ratio between the design stress/force and the critical stress/force. 
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1 Introduction 

Buckling is, besides yielding, one of the major causes of failures in structures. When a 

structure buckles it loses its stability. Buckling does usually happen without fracture or 

separation to the material, or at least prior to it. As buckling of load bearing parts of the 

structure can have devastating consequences, buckling checks are an integral part of 

strength analysis of the structure.  

Buckling is divided into different sorts of buckling depending on the structure. This the-

sis focuses on the buckling of columns and plates. The risk of buckling is especially 

high if a structure is slender. By a slender structure it is taken to mean a structure 

which cross-sectional dimensions are small compared to its length (columns) or which 

thickness is small compared to its width (plates). These kinds of structures are com-

monly used in marine and offshore structures. Figure 1 illustrates stiffened panels used 

in ship hull structures.  

 

Figure 1. Stiffened panels used in ship hull structures [1, p. 30]. 

The aim of the study was to create and verify excel-based tools to be used for stability 

analysis of plated and column structures for the Offshore Department of Sweco Indus-

try Oy. Sweco Industry Oy is a part of the Sweco Group, an engineering office with 

local presence in 12 countries and with around 9000 employees. The Sweco Group 

offers services within the fields of consulting engineering, environmental technology 

and architecture. These tools are to be based on the rules and recommendations of the 

classification society Det Norske Veritas (DNV).  
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Buckling checks play a significant role in the strength analyses performed within the 

Offshore Department of Sweco Industry Oy. Currently the analysts create their own 

tools used for buckling checks based on the needs of the project at hand. While these 

tools fulfill their purpose for the analyzing of the problem in question, they do not form a 

common functional tool. This practice might significantly lengthen the time needed for 

each analysis.  

User friendly buckling check tools covering the most commonly used structures and 

loading situations would not only shorten the time needed for an analysis, but also re-

duce the risk of errors caused by possible mistakes done by individual programmers. 

Also, the analysts would not need to familiarize themselves with the rules and recom-

mendations applicable for the problem in question to the same extent, as the tools 

would provide easy access to results approved by the classification society. Commer-

cial buckling check tools are expensive and therefore not a relevant alternative.  

The tools created for the study will cover the most commonly needed structures such 

as columns, unstiffened plates and plates that are stiffened in one direction, and are 

based on the rules and recommendations of DNV. DNV was chosen to be the classifi-

cation society on which rules and recommendations the created tools would be based 

on, because it is the most commonly used classification society within offshore pro-

jects. DNV does also have rules and recommendations for a wide range of structures, 

which allows for a somewhat easy expanding of the tools for future needs.   

The original assignment did also include the creation of a buckling check tool for plates 

with cut-outs. However, it was decided not to cover plates with cut-outs in this thesis, 

as the calculation rules recommended by DNV were not considered fully reliable.  

The decision to create the buckling check tools as Excel spreadsheets was based on 

the fact that Excel is a widely known program. As it is a standard program in almost all 

office environments, the tools are also immediately ready for distribution, which would 

not be the case if using some kind of programming language like e.g. Octave. Excel 

also allows for an easy creation of a, albeit somewhat crude, graphical interface. The 

programming of a similar interface on some programming language would have con-

siderably lengthened the time required to finish the project.  
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The buckling check tools for plates needed to cover the following loading alternatives: 

 uniform longitudinal compression 

 uniform transverse compression 

 shear 

 linear varying longitudinal compression 

 linear varying transverse compression 

 biaxial uniform loading with shear 

This thesis can be roughly divided into three sections. The first section is a theory sec-

tion introducing the concepts of stability and buckling as well as the concept and theory 

of the effective width method. The DNV´s approach to the problem of buckling of stiff-

ened plates is addressed and in the end of the section there is a brief introduction of 

the Finite Element Method (FEM).  

The second section introduces the buckling check tools created for the study. The re-

strictions of the tools, the inputs they require and the interpretation of the given outputs 

are described, as well as how the tools have been verified. 

In the third section the results got from the created tools with the results got from a tra-

ditional Finite Element Method analysis are compared. Also, a closer look is taken at 

some features of the rules and recommendations of DNV that arouse questions.   

2 Buckling 

As stated in the introduction, when a structure buckles it loses it stability, i.e. its state of 

equilibrium changes. Therefore introducing the three different types of equilibrium is in 

order. The fundamental concepts of buckling and stability are approached through the 

examination of an idealized structure. The different buckling modes of a real life struc-

ture, as well as the effective width method used for buckling checks, are presented. 
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2.1 Equilibrium Types 

Suppose there is a ball on a smooth surface (there is no rolling resistance). If the sur-

face is concave upward, the ball will always return to the lowest point when disturbed. 

This type of equilibrium is called stable. If the surface is convex upward, the ball will roll 

away when disturbed. This type of equilibrium is called unstable. If the surface is per-

fectly flat, the ball remains wherever it is placed. This type of equilibrium is called neu-

tral. Figure 2 illustrates the three different types of equilibrium. 

  

Figure 2 The equilibrium types; stable, unstable and neutral [2, p. 735].          
  

 

The next chapter will demonstrate how these different equilibrium types occur in a 

structure.  

2.2 Buckling and Stability 

To start, an idealized structure is examined, as it will help to understand the fundamen-

tal concepts of buckling and stability. The following chapter is based on the work of 

Gere & Timoshenko [2, pp. 732-735]. 

This hypothetical structure consists of two rigid bars AB and BC, each of length L/2. 

They are joined at B by a pin connection and held in a vertical position by a rotational 

spring having the stiffness   . These two bars are perfectly aligned and the axial load   

affects along the longitudinal axis (cf. Figure 3a). The spring is unstressed and the bars 

are in direct compression.   
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Figure 3. Buckling of an idealized structure consisting of two rigid bars and a rotational 
spring [2, p. 732]. 

The structure is now disturbed by adding an external force which will move point B a 

small distance laterally (cf. Figure 3b). This makes the rigid bars to rotate through small 

angles   which develop a moment in the spring. This moment tends to return the struc-

ture into its original straight position and is therefore called a restoring moment. The 

axial compressive force will simultaneously try to increase the lateral displacement, and 

thus there are two actions going on at the same time; the restoring moment which 

tends to decrease the displacement and the axial force   which tends to increase it. 

What happens if the disturbing external force is removed? If the axial force   is rela-

tively small, the action of the restoring moment will predominate over the action of the 

axial force. In this case the structure will return to its initial straight position and is said 

to be stable. If the axial force   is large, the lateral displacement of point B will increase 

and the bars will rotate through larger and larger angels until the structure collapses. 

The structure is unstable and ultimately fails by lateral buckling. 

The transition between the stable and unstable conditions occurs at a specific value of 

the axial force  . This force is called the critical load and is denoted by the symbol    . 

The critical load can be determined by investigating the equilibrium of the disturbed 

structure (cf. Figure 3c). First, the entire structure is considered as a free body and sum 

moments at support C. This leads to the conclusion that there is no horizontal reaction 

at support C.  Second, bar BC is considered as a free body and it is noted that it is sub-
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jected to the action of the axial forces   and the moment   , where    is the rotation 

stiffness    times the angle of rotation    of the spring:  

           ( ) 

Since the angle   is small, the lateral displacement of point B can be denoted  
  

 
. As a 

result one gets the equation of equilibrium about point B: 

    (
  

 
)      ( ) 

which can be written in another form using Equation 1: 

(    
  

 
)       ( ) 

Equation 3 has two solutions. One solution is when    , which means that the struc-

ture is in equilibrium when it is perfectly straight. In this solution the magnitude of the 

force   does not matter. The second solution is found by setting the term in the paren-

thesis equal to zero and then solving the critical load    : 

    
   

 
    ( ) 

At this value of the load the structure is in equilibrium at any magnitude of the angle  , 

as long as the angle is sufficiently small to fulfill the assumption made in Equation 2. 

At the solved value of the load the effect of the restoring moment equals the buckling 

effect of the axial force, making this the only load where the structure is in equilibrium 

in the disturbed position. The critical load therefore represents the boundary between 

the stable and unstable conditions. If the axial load   is smaller than the critical 

load    , the structure returns to its straight position. If again the axial load   is larger 

than the critical load    , the structure buckles. These situations are referred to as sta-

ble and unstable equilibriums respectively. If the axial load   equals the critical load 

    , the structure is in equilibrium even when the point B is displaced laterally, in other 

words, the structure is in equilibrium with any small angle  , including    . This state 

of equilibrium is called neutral equilibrium. 
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The equilibrium states of an idealized structure in a graph of axial load   versus angle 

of rotation   are presented in Figure 4.  

 

Figure 4. An equilibrium diagram for buckling of an idealized structure. The diagram 
branches at the bifurcation point (B). [2, p. 735]  

The vertical and horizontal lines in Figure 4 represent the equilibrium conditions. The 

point where the diagram branches, point B, is called the bifurcation point. The horizon-

tal line representing the state of neutral equilibrium extends both to the left and to the 

right (the angle   can be to the both directions) and it is quite short because, as earlier 

assumed, the angle   is small.  

The loss of stability in an idealized structure has now been addressed. However, a real 

life structure can lose its stability in more than one way. 

2.3 Snap-through Buckling and Bifurcation Buckling 

There are two main ways a structure can lose its stability. The first type is called snap-

through buckling. The load-deflection curve for snap-through buckling is shown in Fig-

ure 5. 
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Figure 5. The load-deflection curve for snap-trough buckling [3, p. 4]. 

The limit point shown in Figure 5 is the maximum on the load-displacement curve. 

When the load increases over the limit point the structure collapses. Snap-through 

buckling is an example of nonlinear buckling.  

The second type of buckling is called classical or bifurcation buckling. The concept of 

the bifurcation point was introduced in the previous chapter. The load-deflection graph 

for bifurcation buckling consists of two paths; the primary and the secondary part, both 

visible in Figure 6. 
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Figure 6. The load-deflection curve for bifurcation buckling [3, p. 4]. 

The primary path is the original load-displacement line and its extension, while the sec-

ondary path is the alternative path that originates from when the critical load is 

reached. The two paths intersect at the so called bifurcation point. The primary path is 

unstable past the bifurcation point. The structure can follow the secondary path in-

stead. If the secondary path rises, the structure is said to have post-buckling strength. 

[3, p. 4; 4, p. 642.] 

If a structure has imperfections, as realistic structures usually do, it may lose its stability 

at a limit point that is reached at a lower load than the bifurcation point. This is illustrat-

ed in Figure 6 by the line labeled “Imperfect Shell”. [3, p. 4.] 

2.4 Effective Width Method 

The DNV´s recommendations for buckling of unstiffened plates are based on the so 

called effective width method. The phenomenon of buckling of plates can be examined 

by using the theory of the buckling of columns presented in the previous chapter.  
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Let us examine a rectangular flat plate with boundary conditions equal to those of a 

plate simply supported on all four sides and affected by a compression stress on the 

short sides of the plate. The plate can be thought to consist of longitudinal and trans-

versal stripes. The compression stress affects only the longitudinal stripes, which tend 

to buckle as columns, while the transversal stripes function as springs which try to re-

sist the buckling. As a consequence, a plate like this can carry more compression 

stress than a series of loose stripes. The shorter the transversal stripe, the more it will 

give resistance. Figure 7 illustrates a simply supported plate subjected to compression.  

 

Figure 7. A simply supported plate subjected to compression. Stripe AB tends to buckle 
as a column while stripe CD try to resist the buckling [5]. 

The stress achieved by the critical load     is called the critical buckling stress. When 

the compressive stress reaches the critical buckling stress the center of the plate will 

buckle. At this point the longitudinal stripes located in the center of the plate are longer 

than the stripes close to the longitudinal sides of the plate (the boundary conditions 

prevent the deflection in the z-direction for the edges parallel to the x-axis, and there-

fore they remain straight). This leads to a non-uniform stress distribution along the 

short sides of the plate, where the stress affecting the middle part of the plate is smaller 

than the stress affecting the edges of the plate. If the stress affecting the edges of the 

plate is still below the yield stress of the material, the plate will continue to carry load 

even that the middle part of the plate has buckled. However, when the stress affecting 

the edges of the plate reaches the yield stress of the material the plate loses its stabil-

ity. [6, p. 17.] Figure 8 shows how the actual distribution of the stress (on the left) is 

assumed to be distributed when using the effective width method (on the right).   
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Figure 8. The actual (a) and the assumed (b) distribution of the stress [5]. 

The concept of the effective width method is used when one wants to determinate the 

load carrying capacity of the plate in the post-buckling range. In the effective width 

method the non-uniform stress distribution across the width of the buckled plate is re-

placed with uniform stress blocks equal to it. This uniform stress is assumed to affect 

over the width of  
    

 
 on either side where      is called the effective width of the plate 

(Figure 8). [5] 

2.5 Buckling of Stiffened Plates 

The buckling strength of a plate can be improved by stiffening, which is primarily done 

through the use of longitudinal stiffeners. Longitudinal stiffeners divide the plate into 

thinner segments which prevents the plate from buckling. Transversal stiffeners again 

shorten the buckling length of the longitudinal stiffeners. [6, p. 19.] In the Recommend-

ed Practice DNV-RP-C201 [1] the buckling problem of a stiffened panel is transformed 

to a buckling problem of a beam column as illustrated in Figure 9. 
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Figure 9. The buckling problem of a stiffened panel is transformed to a buckling problem 
of a beam. The stresses affecting the stiffened panel are taken into account by equivalent 
forces and loads affecting the beam. [7] 

The longitudinal compression and shear affecting the stiffened panel are taken into 

account by transferring and combining them to an equivalent axial force. This axial 

force is represented by     in Figure 9. 

The transverse compression affecting the stiffened panel is taken into account by ana-

lyzing the beam column for an equivalent lateral pressure    that is proportioned to give 

yield in extreme fiber for the transverse buckling stress. See [7, p. 5] for a more detailed 

definition of the lateral pressure   .  

The lateral pressure    and the design lateral pressure     are taken into account by 

combining them to an equivalent lateral line load. This lateral line load is represented 

by     in Figure 9. 

3 Finite Element Method (FEM) 

Finite element method (FEM) is a numerical method used for solving field problems. 

FEM can be used for solving many kinds of engineering problems, for example stress 

analysis, heat transfer, vibration analysis or buckling analysis. FEM can be used for 
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solving problems which involve complicated geometries, loadings or material proper-

ties, usually characterized by an ordinary or partial differential equation. Due to the 

complicity of the problems, there is typically no analytic solution available. The solution 

of the equation in question can however be obtained numerically by formulating the 

problem to a system of simultaneous algebraic solutions. A structure analyzed with 

FEM is divided into small pieces, finite elements. Two or more elements connect at 

points called nodes, and the arrangement of the elements is called a mesh. Figure 10 

shows a mesh created for the analysis of a gear tooth.  

            

Figure 10. A two-dimensional model of a gear tooth. All nodes and elements lie in the 
plane of the figure. Supports are not shown. [4, p. 2.]  

Numerically, the mesh is represented by a system of algebraic equations to be solved 

for unknowns at nodes. Instead of solving the problem for the whole structure in one 

operation FEM is solving the problem in a piecewise fashion, element by element. The 

equations for each element are combined to obtain the solution for the whole structure. 

The outcome of an analysis performed by FEM is always an approximation, never ac-

curate. By using a more dense mesh (more elements presenting the structure) the out-

come gets more accurate. The drawback, however, is a significantly lengthened time 

needed for the analysis.  

FEM can be used for both linear and nonlinear stability analyses. In a linear stability 

analysis it is assumed that the structure behaves linearly up to the point that it loses its 

stability. The stresses in the structure are directly proportional to the load affecting it 
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and the distribution of the stress is independent of the magnitude of the load. The af-

fecting load is applied in its entirety before the beginning of the analysis. A linear elastic 

analysis does not take into account the yield stress of the material. 

In the nonlinear stability analysis the affecting load is not applied in its entirety but step 

by step. The effect of the applied load is analyzed after each step. The next step is 

always based on the analysis of the previous step. In this way the stresses and defor-

mations formed in the structure under the loading will be taking into account. 

3.1 Geometric Stiffness Matrix 

FEM uses matrix methods for simplifying the formulation of element equations. Matrix 

notation represents a simple notation for writing and solving sets of simultaneous alge-

braic equations. A nodal force and the corresponding nodal displacement are related 

through the stiffness of the material. This is represented by the static equilibrium equa-

tion: 

{ }  [ ]{ }              ( ) 

where { } is a row vector of size N for external nodal forces 

[ ] is the stiffness matrix of size N x N for the structure 

 { } is a row vector of size N for nodal displacements of the structure 

Here the integer N corresponds to the number of unknowns. In this fashion the stiffness 

equations for the single elements can be combined to a stiffness equation for the whole 

structure. [8, pp. 28-33.] As mentioned earlier, the FEM first solves the unknown nodal 

variables. With the help of these nodal variables one can then compute the rest of the 

unknown quantities.  

A real life structure is never idealistic and does always contain some imperfections. 

Due to these imperfections a structure affected by compression will also start to bend. 

The lateral deflections caused by this bending in turn leads to membrane stresses. 

Bifurcation buckling occurs when the membrane strain energy in a structure converts 

into bending strain energy without any changes in the load affecting it. In some struc-
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tures, e.g. columns and thin plates, the membrane stiffness is much greater than the 

bending stiffness. In these types of structures a significant amount of membrane strain 

energy can therefore be stored with only small deformations. The releasing of this 

membrane strain energy leads to large bending deformation in order to absorb all the 

released energy. This is when buckling occurs.  

These membrane stresses are taken into account by a so called geometric stiffness 

matrix, usually noted [  ]. The geometric stiffness matrix is determined by an elements 

geometry, displacement field and state of membrane stress. The total stiffness matrix 

[ ] for an element is a sum of the conventional stiffness matrix [  ] and the geometric 

stiffness matrix [  ]: 

[ ]  [  ]  [  ]     ( ) 

Because the geometric stiffness matrix is a dependent on the load, a positive tensile 

stress increases the stiffness when again a negative compression decreases it. When 

the compression force grows large enough the structure loses its stiffness and buckles. 

[4, pp. 639, 648.] 

3.2 Determination of Critical Load 

The total potential energy   of a structure is a sum of the inner strain energy   and the 

potential energy of applied loads  . 

           ( ) 

 

Let us return for a second to the three different types of equilibrium; stable, unstable 

and neutral. In the stable equilibrium type the ball was on a smooth surface that con-

caved upwards. If the ball is disturbed from its lowest point its total potential energy will 

increase. Therefore, when a structure is stable its total potential energy is at its mini-

mum. In the unstable equilibrium type the ball was on a smooth surface that was con-

vex upwards. If the ball is disturbed it will roll away and its total potential energy will 

decrease. Therefore, when a structures potential energy is at its maximum its equilibri-

um state is unstable. In the neutral equilibrium type the ball was on a perfectly flat sur-

face. If the ball is disturbed it does not return back to its initial position but it does not 
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roll away either. It stays where it is. The level of the potential energy remains un-

changed. 

A change in a systems total potential energy,   , can be examined mathematically 

with the help of the Taylor series. This gives the result: 

      
 

 
     (  )     ( ) 

where    is the first order Taylor term,     the second order Taylor term and  (  ) 

represents the higher order terms. In equilibrium the first variation,   , vanishes and 

the second variation 
 

 
    determinates the equilibrium type. If the second variation is 

positive the total potential energy is at its minimum. The equilibrium state is stable be-

cause more energy is needed to deflect the system. If the second variation is negative 

the total potential energy is at its maximum and the equilibrium state is unstable. The 

system can give up energy. If the second variation is zero, the equilibrium state is neu-

tral. [8, pp. 175-177.]  

Earlier the concept of the critical load,     , was introduced. This was the load were the 

transition between the stable and unstable condition of a structure occurred, or in other 

words, when the equilibriums state of the structure is neutral. The determination of the 

critical load begins with loading the structure with an arbitrary load    and performing a 

standard linear static analysis. This analysis determinates the membrane stresses for 

the load in question.  

The geometric stiffness matrix for the structure loaded with    is [  ] 
. It can be deter-

mined that for some other load level       the geometric stiffness matrix is [  ]  

 [  ] 
,  where   is the load coefficient. So a load multiplied by   also multiplies the cor-

responding stress by   without altering the distribution of the stress. As the loading 

does not alter the conventional stiffness matrix [  ], the total stiffness matrix can now 

be written 

[ ]  [  ]   [  ]  [      ].   ( ) 

 

[4, p. 648.] 
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From the principle of minimum total potential energy presented in the previous section 

it is now known that when the structure loses its stability both the first and second vari-

ation of the total potential energy is zero [8, p. 450]. 

 

{
      
     

       ( ) 

This leads to [8, p. 451] 

    {  } [ ]{  }          (  ) 

from which follows that 

[      ]{  }          (  )                                   

For the existence of a non-trivial solution to Equation 11 

|[  ]   [  ]|            (  ) 

From this equation one can determine the lowest critical load coefficient   , and the 

critical load     is then given by 

            (  ) 

 

The corresponding buckling mode { } can then be determined from the Equation 11, 

where the lowest buckling mode {  } corresponds to   . 

These types of problems are often referred to as eigenvalue problems. [8, pp. 457-

458.] 

 

4 Classification Societies 

The International Association of Classification Societies (IACS) defines the purpose of 

a classification society as following: 
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The purpose of a Classification Society is to provide classification and statutory 
services and assistance to the maritime industry and regulatory bodies as re-
gards maritime safety and pollution prevention, based on the accumulation of 

maritime knowledge and technology [9].  

The tools created for this thesis are based on the rules and recommendations of the 

classification society Det Norske Veritas (DNV).    

While writing this thesis, DNV merged with another classification society, Germanischer 

Lloyd (GL), and is now called DNV GL Group. According to DNV GL, this merger made 

them the world´s leading classification society, with a 24 percent market share of the 

world´s classed ships and mobile offshore units.  

DNV GL Group is one of the twelve members of the IACS (International Association of 

Classification Societies). The other eleven members are: 

 American Bureau of Shipping (ABS) 

 Bureau Veritas (BV) 

 China Classification Society (CCS) 

 Croatian Register of Shipping (CRS) 

 Indian Register of Shipping (IRS) 

 Korean Register of Shipping (KR) 

 Lloyd´s Register (LR) 

 Nippon Kaiji Kyokai (NK/ClassNK) 

 Polish Register of Shipping (PRS) 

 Registro Italiano Navale (RINA) 

 Russian Maritime Register of Shipping (RS) 

Different classification societies have rules and recommendations for different kinds of 

structures. Some of these rules and recommendations are presented in Table 1, which 

contains the revisions available in May 2013. DNV and Germanischer Lloyd are pre-

sented separately since the merger had not yet taken place. 
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Table 1. Example of classification societies along with their rules and applicable 
structures.  

 

 

The information presented in Table 1 might be incomplete due to the fact that the de-

tails of rules and recommendations of some classification societies are not available 

free of cost.  

Classification society Rules (revison) Structures

DNV Recommended practice DNV-RP-C201 Offshore

Buckling strenght of plated structures  - unstiffened plates

October 2010 ((October 2008) October 2002)  - stiffened plates

 - girders

Recommended practice DNV-RP-C202 Cylindrical shells

Buckling Strenght of Shells  - unstiffened

January 2013 (October 2010)  - stiffened

Conical shells

 - unstiffened

Classification Notes - No. 30.1  - bars

April 2004 (July 1995)  - frames

 - unstiffened spherical shells

Rules for classifications of ships Hull structural design

Part 3 Chapter 1  - ships with length 100m and 

January 2013 (July 2012) above

Rules for classifications of ships Hull structural design

Part 3 Chapter 2  - ships with length less than 

July 2012 (January 2012) 100m

Lloyd´s Rules and Regulations for the Naval ships

Classification of Naval Ships,  - plate panels

Volume 1, Part 6

January 2009

ABS Guide for Buckling and Ultimate Offshore

Strenght Assessment for Offshore Structures  - individual structural members

March 2005  - plates

 - stiffened panels

 - corrugated panels

Germanischer Lloyd Rules for Classification and Seagoing ships

Construction, Ship Technology  - plates

Part 1, Chapter 1

Edition 2013

The calculation method 

is based on 

DIN-Standard 18 800
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5 Buckling Check Tool for Flexural Buckling of Columns 

The buckling check tool for flexural buckling of columns presented in this chapter is 

based on the DNV Classification Note No.30.1, Revision April 2004 (hereinafter re-

ferred to as “Classification Note”) [3]. 

5.1 Restrictions 

The above-mentioned buckling check tool only covers the cases of flexural buckling of 

columns leaving out all other possible buckling modes for bars. It is assumed that the 

cross-section of the member under consideration has at least one axis of symmetry 

(the z-axis). The tool does not cover buckling checks of members with an arbitrary 

cross-section. 

The Classification Note defines the following concepts: 

a column is a bar that is subjected to pure compression. 

flexural buckling of columns is bending about the axis of least resistance. 

Also, in the tool it is assumed that the column is subjected to longitudinal compression 

only and that the compressive force is centric. According to the Classification Note, 

flexural buckling may be the critical mode of a slender column of doubly symmetrical 

cross-section or one which is not susceptible to, or is braced against twisting. 

5.2 Inputs and Outputs 

The required input data consist of: 

 the yield stress of the material [N/mm2] 

 the modulus of elasticity [N/mm2] 

 the Poisson´s ratio 
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 the area of the section being directed to compression [mm2] 

 the moment of inertia about the weak axis [cm4] 

 the length of the column [mm]. 

In addition the user has to enter the length factor, the column curve, the axial force 

of the column and the maximum allowable usage factor.  

The length factor determinates the buckling length of the column, which again depend 

on the end fixity of the column. The length factor can be found in the Table 2-2 located 

next to the input area. The factor to be entered is the recommended design value (i.e. 

the value on the bottom line of the Table). The column curve depends on the shape of 

the section and the axis it tends to buckle around. The column curve corresponding to 

the column in question is chosen from the column selection chart located to the far 

right. The axial force is the axial force affecting the column [kN]. The maximum allowa-

ble usage factor is the highest accepted ratio between the design axial force and the 

allowable axial force.    

The output data consists of the allowable axial force of the column and the ratio be-

tween the design axial force and the allowable axial force. This ratio is expressed both 

verbally (OK / NOT OK) and numerically (the usage factor). In addition, the outcomes 

are indicated with red or green depending on if they are satisfying or not. The design 

axial force has to be lower or equal to the allowable axial force and the usage factor 

has to be lower or equal to the maximum allowable usage factor.  

5.3 Tool for Flexural Buckling of Columns 

The following buckling check tool is for flexural buckling of columns. A screenshot of 

the program is presented in Figure 11. 
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Figure 11. Screenshot of the application. The axial force is within the required limits. 

The program calculates the allowable axial force   from the critical buckling stress    , 

where     is a function of the slenderness  , the given yield stress    and coefficients 

depending on the shape of the section. 

6 Buckling Check Tools for Unstiffened Plates 

The buckling check programs for unstiffened plates, regardless of the load type, are 

based on the Recommended Practice, DNV-RP-C201, October 2010 Revision (herein-

after referred to as “Recommended Practice”) [1]. 

The layouts of the programs are built to fit all the relevant input and output data on one 

page. This allows for easy printing or screen capturing of the data when necessary. 

Some of the programs print out intermediate results which are not counted as official 

output data. These intermediate results are not designed to fit on the front page but are 

visible on the page underneath. The screen captures displayed within this work does 

not include intermediate results.  
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The programs are designed to prevent the user from giving the input data incorrectly. 

They alert if the user e.g. have given the input data for the width and the length of the 

plate the wrong way around. 

The numbers next to the outputs (e.g. Figure 12) or intermediate results refer to the 

equations in the Recommended Practice. The Recommended Practice uses a material 

factor    of 1.15.  

The necessity of a buckling check is determined with the help of the slenderness of the 

plate. The slenderness of the plate is defined as the ratio 
 

 
 where   stands for the width 

and   for the thickness of the plate. Under the heading of each program the limit value 

for a required buckling check for the load type in question is defined. After the user has 

given the input data for the plate thickness and plate width the program will notify if a 

buckling check is necessary or not. 

To prevent possible confusion it is worth mentioning the compression stresses are al-

ways taken as positive while tension stresses again are negative. Furthermore, a 

stress is always assumed to vary in a linear fashion. 

Plates subjected to lateral pressure also have to fulfill the requirements of other buck-

ling checks, and the tool automatically determines and performs the appropriate sec-

ondary buckling check without multiple inputs from the user. 

The Recommended Practice defines the buckling strength     for unstiffened plates to 

be  

     (
  

  
)                                                                          (  ) 

where   is a coefficient that depends on e.g.  ,    is the yield stress and    is the ma-

terial factor. In situations where the structure is affected by shear,     is calculated in a 

similar fashion instead of    .  

An exception is made when calculating the buckling strength of biaxially loaded unstiff-

ened plates, where the following requirement has to be fulfilled: 
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where     and     is the design stress and design shear respectively,    is a coefficient 

depending on the dimensions of the plate. The notations x and y refer to the direction 

of the stress, and the other variables are as defined above. 

6.1 Inputs and Outputs 

The input data can be divided into three groups; material data, dimensions of the plate 

and load data. The material data include the yield stress and the modulus of elasticity 

of the material. The dimensions of the plate include the thickness, width and length of 

the plate. The load data include the quantity of the load or loads in question. 

As output data the characteristic buckling strength and the usage factors for the loads 

are given. The design stress has to be lower or equal to the characteristic buckling 

strength. The output data consist of the characteristic buckling strength of the consid-

ered structure and the ratio between the design stress and the characteristic buckling 

strength. This ratio is expressed both verbally (OK / NOT OK) and numerically (the 

usage factor). In addition the outcomes are indicated with red or green depending on if 

they are satisfying of not. The maximum allowable usage factor is assumed to be 1.00.   

6.2 Restrictions 

The tools are based on the theory of the effective width method, and the adjoining 

structures will therefore need to be checked on the basis of the same model. The un-

stiffened plates are assumed to have boundary conditions equivalent to those of a 

simply supported plate. With simply supported is understood the boundary conditions 

for all four sides where the translations in the directions of the normal of the plate are 

locked and the rest of the degrees of freedom are free. 

The slenderness, i.e. the width to thickness ratio of the plate shall be less than 120, 

and the plate is assumed to be rectangular with    , where   is the length of the plate 

and   the width of the plate. 



25 

  

6.3 Tool for Uniform Longitudinal Compression 

The following tool is for buckling checks of unstiffened plates subjected to uniform lon-

gitudinal compression. Figure 12 shows a screenshot from the application. 

 

Figure 12. Screenshot from the application. The results from the required check indicates 
that the structure will not buckle. 

The buckling resistance for unstiffened plates subjected to uniform longitudinal com-

pression       is defined as: 

        
  

  
                                                                                 (  ) 

 

where    is a coefficient that is a function of the reduced slenderness   ̅̅ ̅ defined as 

 

  ̅̅ ̅        
 

 
√
  

  
                                                                         (  ) 

 

In Equation 17   is the width and   is the thickness of the plate,    is the yield stress 

and   is the modulus of elasticity. 
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6.4 Tool for Uniform Transverse Compression 

The following tool is for buckling checks of unstiffened plates subjected to uniform 

transverse compression. Figure 13 shows a situation where the actual buckling check 

due to the transverse compression is satisfactory, but the check performed due to the 

lateral load is not. 

Figure 13. The result of one of the two required checks is not satisfactory.  

The buckling check formulas for plates subjected to uniform transverse compression 

does take into account the reduction of the buckling strength due to a simultaneous 

lateral load. However, there are occasions where the check made for lateral load only 

is not satisfactory even though the check made for combined uniform transverse com-

pression and lateral load is. The loads affecting the plate have to fulfill the requirements 

of both individual checks.    

The buckling resistance for unstiffened plates subjected to uniform transverse com-

pression       is defined as: 

      
    

  
                                                                                 (  ) 
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where  

       [
    

 
√
 

  
  (  

    

 
√
 

  
)]    .           (  ) 

 

The coefficients are functions κ(  ̅̅̅) and   (       ). The reduced slenderness    ̅̅̅ is 

defined as: 

  ̅̅̅     
 

 
√
  

 
                                                                               (  ) 

 

As before,   is the width and   is the thickness of the plate, while    is the yield stress 

and   is the modulus of elasticity. 

6.5 Tool for Shear Stress 

The following tool is for buckling checks of unstiffened plates subjected to shear. Figure 

14 shows a situation where the program alerts due to unsatisfactory inputs.  

 

Figure 14. The program alerts the user to check the input, because the given width is 
greater than the given length. 
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The buckling resistance for unstiffened plates subjected to shear stress     is defined 

as: 

    
  
  

  

√ 
                                                                                  (  ) 

where the coefficient    is a function of the reduced slenderness   ̅̅̅̅ , defined as 

  ̅̅̅̅        
 

 
√
  

    
                                                               (  ) 

The coefficient    is dependent on the dimensions of the plate. 

6.6 Tool for Varying Longitudinal Stress 

The following tool is for buckling checks of unstiffened plates subjected to linear vary-

ing longitudinal compression. Figure 15 shows a situation where the program alerts, as 

the slenderness of the plate is not within the required limits.  
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Figure 15. In this example the given input data does not fulfill the conditions given for the 
required plate slenderness. The produced results are therefore not valid and should not 
be used. 

The buckling resistance for unstiffened plates subjected to linear varying longitudinal 

compression       is defined as: 

        
  

  
                                                                              (  ) 

 

where    is a coefficient that is a function of the reduced slenderness   ̅̅ ̅ defined as 

 

  ̅̅ ̅  
 

 
 

 

     √  
                                                                    (  ) 

 

The coefficient   is defined as √
   

  
 and    is a function of the stress ratio   

  

  
, 

where    is the largest compressive stress. 
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6.7 Tool for Varying Transverse Stress 

The following tool is for buckling checks of unstiffened plates subjected to linear vary-

ing transverse compression. Figure 16 presents a situation where the program does 

not give any outputs due to unsatisfactory load data.  

 

Figure 16. The program alerts and asks the user to check the order for the given data for 

     , as the minimum and maximum values are given the wrong way around. The pro-

gram does not give out any usage factors before the order of the data is corrected. 

 

The buckling resistance       for unstiffened plates subjected to linear varying trans-

verse compression is defined as: 

      
    

  
                                                                                        (  ) 

where      is as in section 6.4 (Tool for Uniform Transverse Compression).  

The Recommended Practice process the buckling check for linear varying transverse 

stress in a very similar way than the buckling check for uniform transverse stress. The 
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characteristic buckling strength       is the same for the both cases. However, the de-

sign stress value       that it is compared to differs. The design stress value used in the 

buckling check for linear varying transverse compression is the stress value at distance 

   (illustrated in Figure 16). The distance    is defined as 

      {            }   (  ) 

6.8 Tool for Biaxially Loaded with Shear 

The following tool is for buckling checks of biaxially loaded unstiffened plates with 

shear. Figure 17 illustrates a situation, where the simultaneously acting loads lead to 

buckling. 

 

Figure 17. The program calculates separate usage factors for each load type. The usage 
factors are then combined into the relevant usage factor by Equation 27. As this example 
shows, the loads can be within the required limits individually but not fulfill the require-
ments when acting together. 

The plate needs to fulfill the following requirement: 
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                          (27) 

The coefficient     depends on the dimensions of the plate. The buckling resistances 

      and       are given by Equations 16 and (18) respectively. If       (     ) are in 

tension, Equation 16 (18) shall be taken as 
  

  
. The shear buckling resistance     is 

given by Equation 21. If       is in tension, an identical coefficient    is used. Otherwise 

the coefficient is calculated slightly different, but is still a function of the reduced slen-

derness   ̅̅̅̅  given by Equation 22. 

7 Buckling Check Tool for Plates Stiffened in One Direction 

The buckling check tool for plates stiffened in one direction is based on the Recom-

mended Practice, DNV-RP-C201, October 2010 Revision (hereinafter referred to as 

“Recommended Practice”) [1]. The buckling check tool is programmed with the data for 

a range of bulb flat stiffeners only. The dimension and section properties for the bulb 

flats in the range 120x6 to 430x20 were taken from a table of “British Standards for 

bulb flats” that is used at Sweco Oy. An exception was made for the bulb flat sizes 

100x6, 100x7 and 100x8 as they were not featured in the table. These dimensions and 

properties where instead approximated using Finnpro, which is an element model pro-

gram for calculating quantities and strains for the profiles cross sections. A drawing of a 

bulb flat stiffener is presented in Figure 18.  

 

Figure 18. A bulb flat sized 100X7. 

 

The program was limited to only one kind of stiffeners. The bulb flat stiffener was cho-

sen due to its wide use in offshore structures.  
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7.1 Restrictions 

The spacing between the stiffeners is assumed to be uniform. The stiffeners are as-

sumed to be bulb flat stiffeners within the size range from 100x6 to 430x20. Tension 

field action is not allowed. More information about this restriction can be found in the 

Analysis chapter. 

7.2 Inputs and Outputs 

The input data is divided into the following sections: 

The Input section contains the material data that consists of the yield stress for the 

plate and for the stiffener, the modulus of elasticity of the plate and the material factor. 

The Plate section contains the thickness and width of the stiffened plate as well as the 

stiffener length, the torsional buckling length (the distance between sideways supports 

of the stiffener) and the girder length. 

The Stresses section contains the load data. The stresses in the longitudinal and 

transverse direction are given as stresses at two corners. The locations of the corners 

are illustrated next to the input area. This allows the input stress to be non-uniform. If 

the stresses at the two corners differ from each other the assumption is made that the 

stress is linear varying between the two corners. The direction of the lateral load is giv-

en by choosing the correct alternative from the “Overpressure may occur on”-menu. 

The alternatives are both sides / plate side / stiffener side. 

In the Stiffener section the user enters the stiffener data: the size, the type (continuous 

/ sniped) and the fabrication method (welded / rolled). 

The Tension field action is always off. More information of this restriction can be 

found in the Analysis chapter. 

The z* optimizing can be chosen either to be On or Off. The distance z* stands for 

optimum eccentricity. In the optimum eccentricity method the working point of the axial 

force is optimized in order to find the maximum capacity of the structure. The concept 
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of the optimum eccentricity is illustrated in Figure 19. If the z* optimizing is off, the 

working point of the axial force is assumed to be at the neutral axis. 

 

 

 

Figure 19.  A stiffened panel viewed from the side (left) and from the end (right). The op-
timum eccentricity z* is the distance between the neutral axis and the position of the 
axial force Nsd. [7] 

The dropdown menus are marked with the word “select”, as no arrow is visible in the 

menu prior to its activation by the user.  

The output data is given as a series of Usage factors. The usage factors numbered 1, 

2, 3 and 4 represent the results of interaction equation of four different locations. These 

locations are illustrated in Figure 20 and also in the graph on the right in Figure 21. The 

locations 1 and 2 are at the stiffener support and the locations 3 and 4 are at the mid 

span. 

 

Figure 20. The different locations on a stiffened panel where the usage factor is calculat-
ed. [7] 

These four usage factors are given out separately for lateral pressure on plate side and 

for lateral pressure on stiffener side. This is to avoid any mistakes caused by the signs 

of the stresses. For sniped stiffeners the only points that need checking are the ones 

located at the mid span. Therefore the program gives out only two usage factors for a 

plate stiffened with sniped stiffeners. The usage factors of   ,  , shear and psd are 

ratios between the given design stress and the characteristic buckling strength for the 

respective stress / force. 
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The program does also do a local buckling check for the stiffener flange and the stiff-

ener web. The outcome of this check is given in the form OK / NOT OK. On the bottom 

of the page the maximum usage factor is shown along with the indication OK / NOT 

OK. The maximum allowable usage factor is assumed to be 1.00.   

7.3 Tool for Plates Stiffened in One Direction 

The following tool is for buckling checks of plates stiffened in one direction, a screen-

shot of the tool is presented in Figure 21. 

 

Figure 21. Screenshot from the tool for plates stiffened in one direction. The negative 
values for the usage factors represents situations of tension. 

The tool calculates usage factors for four different locations. Each location must fulfill 

the interaction equation for lateral pressure on both the plate and the stiffener side. As 

an example the interaction equation for location 3 for lateral pressure on the stiffener 

side is given in Equation 28. 
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The variables   represent forces and the variables   represent moments affecting 

location 3. The coefficient   is calculated using the design shear stress and shear 

buckling resistance 

   (
   

   
)
 
,                                                                       (  ) 

 and    is the optimum eccentricity defined in section 7.2. 

8 Verification 

The verification of the buckling check tools was performed, besides careful hand calcu-

lations, by studying e.g. the effect of changes made to the thickness of a plate on the 

results and thus making sure that the values produced by the tools do not contradict 

what is commonly known about the behavior of the structure. One check was also to 

make sure that the results produced by the tools never exceeded the known yield 

strength of the material. However, a few situations were found where this was not the 

case. These cases will be discussed in Chapter 10. In addition, the results from the 

buckling check tool for stiffened plates was compared to results from an old project. 

The calculations for the old project were made with a program that also was based on 

the DNV’s rules and recommendations. The results from the created tools coincided 

well with the results from the old project, but the comparison is not presented in more 

detail. 

The programs were tested in order to check if the programs produce results compatible 

with certain basic results about buckling of plates and columns which are known to be 

true. The properties assumed to be known were: 

 the buckling resistance of a plate is reduced when the width of the plate is in-

creased 

 the buckling resistance of a plate is increased if an uniform compression is 

changed to a linear varying compression 
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 the buckling resistance of a plate subjected to longitudinal stress in higher than 

the one of a plate subjected to shear stress, that is in turn higher than the one 

of transverse stress. 

 the buckling resistance of a plate subjected to longitudinal stress is reduced if 

the plate is simultaneously subjected to transverse stress 

 the allowable axial force for a column is reduced when the length of the column 

increases 

 the buckling resistance of a stiffened plate is increased when the stiffener size 

is increased. 

All of these assumptions were tested and some of the results are presented below. 

Firstly, the buckling resistances for different load types and for varying plate thickness-

es (from 6 mm to 20 mm) were calculated. This test was run to make sure that the re-

sults follow the assumption made about the buckling resistance dependence on the 

load type. The results are shown In Figure 22.  

 

Figure 22. The buckling resistance of unstiffened plates for different load types. The 
properties of the plate were σf=355 N/mm

2
 and E=206 000 N/mm

2
, and the dimensions 

were s=720 mm (width) and l=2400 mm (length). 
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As shown in Figure 22, the highest buckling resistance was obtained with a longitudinal 

compression, whereas the transverse compression produced the lowest buckling re-

sistance. For the case of shear the buckling resistance was limited by the shear 

strength, as illustrated by the graph. The shear strength of a plate with a yield stress of 

355 N/mm2 and using a material factor of 1.15 can be calculated as 
     

   ⁄

     √ 
 

       
   ⁄ .  

Secondly, the buckling resistance for plates with varying widths (from 500mm to 1000 

mm) was calculated. This test was run to check that the buckling resistance of a plate 

is reduced when the width of the plate is increased. Figure 23 illustrates how the wid-

ening of the plate affects the buckling resistance. 

 

 

Figure 23. The buckling resistance of unstiffened plates with varying plate widths. The 
properties of the plate were σf=355 N/mm

2
 and E=206 000 N/mm

2
, and the dimensions 

were t=9 mm (thickness) and l=2400 mm (length). 

The buckling resistance is reduced from 208,63 N/mm2 to 115,9 N/mm2 when the width 

of the plate increases from 500 mm to 1000 mm, which is what was expected. 
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Furthermore, the assumption that the allowable axial force for a column is reduced 

when the length of the column increases was checked, and the results are shown in 

Figure 24 below. 

 

Figure 24. The allowable axial force for columns with varying length. The properties of 
the column are σf=355 N/mm

2
 (yield strength), E=206 000 N/mm

2
(modulus of elasticity), 

ν=0.3 (Poisson´s ratio), A=2643 mm
2
 (area of section) I=562 cm

4
 (moment of inertia). The 

length factor K=1, the buckling curve=a and the maximum allowable usage factor ηp=1. 

 

The length of the column varied between 2000 mm and 7000 mm. These results were 

also in line with the assumption being tested. 

Lastly is presented the results of the test made to check the assumption that the buck-

ling resistance of a stiffened plate is correlated to the stiffener size. Figure 25 illustrates 

how the maximum usage factor for a stiffened plate subjected to a uniform longitudinal 

compression of   = 100 N/mm2 can be reduced by increasing the size of the bulb flat. 
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Figure 25. The usage factors for a panel stiffened with different bulb flat sizes. The prop-
erties of the plate were σf=235 N/mm

2
 (yield strength) and E=206 000 N/mm

2
 (modulus of 

elasticity), s=800 mm (width), l=2800 mm (length) and t=12 mm (thickness). The proper-
ties for the stiffeners were σf=235 N/mm

2 
(yield strength) and lt=2800 mm (torsional stiff-

ener buckling length). The stiffeners were continuous and fabricated by welding.
 
z* opti-

mizing was enabled. 

 

As with all the previous assumptions, also this one was confirmed by the results. 

The hand calculations were performed by choosing arbitrary inputs and then complet-

ing the calculations following the equations for the load case in question given by DNV.  

9 Analysis 

The results were mainly analyzed by comparison to results of a FEM analysis. The 

FEM analysis was performed with a FEM program called Finnsap. The main reason for 

choosing this program was that there was a license available. The simple nature of the 

case for unstiffened panels allowed for the performing of both a linear and non-linear 

analysis. When running a linear FEM analysis one must keep in mind that for the pur-

pose of the analysis it is assumed that the material is linearly elastic and that deflec-

tions are small compared to the thickness of the plate. The validity of these assump-
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tions is however not checked by the program. The analyses were performed by chang-

ing the thickness of the plate while keeping other dimensions constant. The elements 

chosen for the analyses were 4-node thin shell elements. 

The boundary conditions in the linear and non-linear analysis for the unstiffened plate 

were equivalent to those of a simply supported plate. The definition of simply supported 

can be found in chapter 6.2. The unstiffened plate was subjected to all of the load types 

than available in the created tools. The yield strength in the non-linear analysis was 

assumed to be 355 N/mm2. The validity of the results from the linear analysis was con-

firmed by hand calculation based on the linear buckling theory [10, pp. 855-863].  

The model used in the analysis of a stiffened plate was created in the x y-plane with 

the z-axis in the direction normal to the plate. The stiffened plate was assumed to be 

symmetrical with the respect to the x- and the y-axis. Therefore two sides had symmet-

rical boundary conditions, i.e. the translation in the direction of the axis transverse to 

the side as well as the rotations in the directions of the two remaining axis were locked, 

while the rest of the degrees of freedom were free. The two remaining sides had 

boundary conditions where the translation in direction and rotation around the z-axis, 

as well as the rotation around the axis transverse to the side in question were locked, 

while the rest of the degrees of freedom were free. The stiffened plate was subjected 

separately to in plane uniform longitudinal compression, in plane uniform transverse 

compression and shear.  

The use of symmetrical boundary conditions ignores some of the buckling modes, be-

cause the shape of the buckling also has to be symmetrical with respect to axis in 

question. The lowest buckling mode, i.e. the shape of half a sine wave, fulfills this re-

quirement whereas the second buckling mode, a full sine wave, does not. The third 

buckling mode, i.e. one and a half sine waves, would again be allowed, but for a stabil-

ity analysis only the lowest buckling mode is relevant.  

9.1 Comparison between DNV and FEM, Unstiffened Plates 

According to the DNV Recommended Practice, analyses based on the effective width 

method may lead to more efficient structures. This was for the most part confirmed by 

the comparisons. 
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9.1.1 Uniform Longitudinal Compression 

The results from the linear and non-linear analysis, as well as the results given by DNV 

for a plate subjected to uniform longitudinal compression, are presented in Table 2. 

The DNV-results are given both for a plate with the yield strength 235 N/mm2 and 355 

N/mm2. The DNV-results are calculated with the material factor 1 in order to enable a 

direct comparison.  

Table 2. The buckling resistance [N/mm
2
] for plates subjected to uniform longitudinal 

compression. The properties of the plate are s=720 mm (width), l=2400 mm (length) and 
E=206 000 N/mm

2
 (modulus of elasticity). 

t [mm] Linear Non-Linear DNV/235 DNV/355     

6 52,22 51,67 99,03 124,33     

8 92,78 93,75 126,95 160,69     

10 144,86 144,00 152,26 194,51     

12 208,43 208,33 175,20 225,80     

14 283,41 280,00 195,52 254,56     

16 369,74 354,06 213,31 280,77     

18 467,36 355,00 228,55 304,45     

20 576,18 355,00 235,00 325,60     

              

The results presented in Table 2 are illustrated in Figure 26. It is worth observing that 

the non-linear FEM analyses were conducted using a yield strength of 355 N/mm2. 
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Figure 26. The buckling resistance of plates with varying thickness subjected to uniform 
longitudinal compression. The results are presented from analyses based on linear FEM 
(blue) and non-linear FEM with yield strength 355 N/mm

2
 (red), and DNV using yield 

strengths of 235 N/mm
2
 (green) and 355 N/mm

2
 (purple). 

 

The results from the linear and non-linear analysis follow almost the exact same path 

up to the point where the yield strength 355 N/mm2 is reached. In contrast to the non-

linear analysis, the linear analysis does not take into account the yield strength of the 

material. The results from the non-linear analysis does again not exceed the given yield 

strength. FEM gives more conservative results for slender plates, but the roles are re-

versed at a plate thickness of approximately 13 mm.  

9.1.2 Uniform Transverse Compression 

We now move on to consider plates subjected to a uniform transverse compression, 

and the results are presented in Table 3. As before, the DNV-results are given for yield 

strengths of 235 N/mm2 and 355 N/mm2 with a material factor 1.  
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Table 3. The buckling resistance [N/mm
2
] for plates subjected to uniform transverse 

compression. The properties of the plate are s=720 mm (width), l=2400 mm (length) and 
E=206 000 N/mm

2
 (modulus of elasticity). 

t [mm] Linear Non-Linear DNV/235 DNV/355     

6 15,48 15,33 42,83 56,14     

8 27,50 27,25 53,65 68,72     

10 42,96 42,50 65,29 82,20     

12 61,84 61,67 77,60 96,49     

14 84,14 82,86 96,95 111,47     

16 109,84 108,13 114,18 127,04     

18 138,93 137,78 131,09 154,86     

20 171,41 170,00 147,18 176,02     

The results presented in Table 3 are illustrated in a graphical form in Figure 27. 

 

Figure 27. The buckling resistance of plates with varying thickness subjected to uniform 
transverse compression. The results are presented from analyses based on linear FEM 
(blue) and non-linear FEM with yield strength 355 N/mm

2
 (red), and DNV using yield 

strengths of 235 N/mm
2
 (green) and 355 N/mm

2
 (purple). The linear and the non-linear 

FEM analysis coincides as the yield strength is not reached. The results of the linear 
analysis are therefore barely visible. 

 

FEM gives more conservative results for plates of all thickness. Because the yield 

strength is not reached for any of the plates, the results from the linear and non-linear 

analysis follow almost exact the same path. 
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9.1.3 Shear Stress 

The final comparison is for plates subjected to shear stress. The results are presented 

in Table 4. The comparison was made between the results from linear and non-linear 

FEM analyses as well as the results from DNV-analyses using yield strengths of both 

235 N/mm2 and 355 N/mm2. The DNV-results are calculated with the material factor 1. 

Table 4. The buckling resistance [N/mm
2
] for plates subjected to shear stress. The prop-

erties of the plate are s=720 mm (width), l=2400 mm (length) and E=206 000 N/mm
2
 (mod-

ulus of elasticity). 

t [mm] Linear Non-Linear DNV/235 DNV/355 

6 75,18 93,33 90,48 111,21 

8 133,51 133,75 117,68 148,27 

10 208,37 205,00 134,85 179,94 

12 299,63 205,00 135,68 201,19 

14 407,14 205,00 135,68 204,96 

The results presented in Table 4 are illustrated in Figure 28. 

 

Figure 28. The buckling resistance of plates with varying thickness subjected to shear 
stress. The results are presented from analyses based on linear FEM (blue) and non-
linear FEM with yield strength 355 N/mm

2
 (red), and DNV using yield strengths of 235 

N/mm
2
 (green) and 355 N/mm

2
 (purple). 
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The differences between the results from the non-linear FEM analysis and the results 

given by DNV using a yield strength of 355 N/mm2 are smaller than in the previous 

comparisons. The root mean square error for the results in case of shear stress was 

15.31 N/mm2, compared to 52.51 N/mm2 and 30.98 N/mm2 for the cases of longitudinal 

and transverse compression. The results are limited by, not the yield strength, but by 

the yield strength divided by √  (i.e. the shear strength). As the DNV-results for shear 

actually reached the limiting value, in contrast to the cases of longitudinal and trans-

verse compression, a natural result is a smaller deviation between the two analyses. 

9.2 Comparison between DNV and FEM, Stiffened Plates 

The stiffened plate was subjected separately to in plane uniform longitudinal compres-

sion, in plane uniform transverse compression and shear. The computing time of the 

FEM-analyses for stiffened plates was much higher than those for unstiffened ones. 

The non-linear analysis for stiffened plates was too time consuming, and could not be 

performed with the available resources. As a result, the number of cases was kept to a 

minimum. The cases were limited to those of most interest; the analyses were done for 

plates with a slenderness ratio under 120, but that were still slender enough to fail by 

buckling instead of yielding. With these restrictions, the results obtained by the linear 

FEM-analysis are expected to be very similar to those of a non-linear analysis.  

The results given by Finnsap for stiffened plates subjected to shear stress did not seem 

reliable. No comparison for the cases of shear stress has therefore been done. 

9.2.1 Uniform Longitudinal Compression 

The results from the linear analyses and the results given by DNV for a stiffened plate 

subjected to uniform longitudinal compression are presented in Table 5. The DNV-

results are given both for a plate with the yield strength 235 N/mm2 and 355 N/mm2. 

The DNV-results are calculated with the material factor 1 in order to enable a direct 

comparison.  

To get more comparison without having to perform additional time consuming FEM-

analyses, an assumption was made, that plates with a thickness greater than 14 mm 

would have reached the yield strength 355 N/mm2. 
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Table 5 The buckling resistance [N/mm
2
] for stiffened plates subjected to uniform longi-

tudinal compression. The properties of the plate are s=700 mm (width), l=2400 mm 
(length) and E=206 000 N/mm

2
 (modulus of elasticity). The size of the stiffener is 300x11. 

z* optimizing was enabled for the DNV-analyses. The results in italic are approximations. 

t [mm]  Linear DNV / 235 DNV/ 355 

6 88,60 146,05 175,95 

8 145,04 154,10 186,30 

10 205,89 165,60 201,25 

12 273,38 183,66 218,50 

14 342,28 202,40 256,45 

16 355,00 215,05 279,45 

18 355,00 224,25 296,70 

20 355,00 227,70 310,50 

The results presented in Table 5 are illustrated in a graphical form in Figure 29. 

 

Figure 29. The buckling resistance for stiffened plates with varying thickness subjected 
to uniform longitudinal compression. The results are presented from analyses based on 
linear FEM (blue) and DNV using yield strengths of 235 N/mm

2
 (green) and 355 N/mm

2
 

(purple). The results presented in red are approximations based on the assumption that 
the yield strength is reached. 

 

The common phenomenon through all the comparisons have been that the results from 

the analysis based on FEM grow in a steeper manner then the results from the analysis 

based on DNV, something that was most clearly seen in this last comparison. The av-

erage change for the results were 31.71 Nmm-2/mm (10.75 Nmm-2/mm) for the FEM 
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analysis (DNV-analysis with yield strength 355 N/mm2). The similar numbers for the 

unstiffened plates were 28.9 Nmm-2/mm and 15.64 Nmm-2/mm. The results for the stiff-

ened (unstiffened) plates were calculated for a plate size of 700mmx2400mm 

(720mmx2400mm). The small difference in size should not affect the results significant-

ly. Assuming that the rules and recommendations of DNV represent a desirable struc-

ture, a buckling check performed by FEM would in most cases lead to either too con-

servative or non-conservative structures. The almost similar results for a plate with the 

thickness of 10 mm are more of a coincidence. 

 

9.2.2 Uniform Transverse Compression 

Next, plates subjected to a uniform transverse compression are considered. The re-

sults are presented in Table 6, and again, the DNV-results are given for yield strengths 

of 235 N/mm2 and 355 N/mm2 with a material factor 1. 

Table 6. The buckling resistance [N/mm
2
] for stiffened plates subjected to uniform trans-

verse compression. The properties of the plate are s=700 mm (width), l=2400 mm (length) 
and E=206 000 N/mm

2
 (modulus of elasticity). The size of the stiffener is 300x11. z* opti-

mizing was enabled for the DNV-analyses. 

t [mm]  Linear DNV / 235 DNV/ 355 

6 36,38 43,13 56,35 

8 48,71 54,05 69,00 

10 62,89 66,13 82,80 

12 80,60 78,78 97,75 

14 102,21 98,90 112,70 

16 127,75 117,30 136,85 

18 157,15 134,55 158,70 

20 190,33 150,65 180,55 

 

The results presented in Table 6 above are illustrated in Figure 30 below. 
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Figure 30. The buckling resistance for stiffened plates with varying thickness subjected 
to uniform transverse compression. The results are presented from analyses based on 
linear FEM (blue) and DNV using yield strengths of 235 N/mm

2
 (green) and 355 N/mm

2
 

(purple). 

 

The FEM- and the DNV-analysis behaved quite similarly. The FEM-analysis did, how-

ever, give somewhat more conservative results on average, especially for slender 

plates. 

9.3 Contradicting Results 

For the most part the outcomes were in line with what was expected, but there were 

nevertheless a few surprising results. These contradictions did not have a significant 

impact on the usability of the results, but in some cases they limited the options availa-

ble in the tools. 

9.3.1 Cases of Buckling Resistance Exceeding Yield Strength 

The definition of the buckling strength for unstiffened plates subjected to varying longi-

tudinal stress was introduced in Chapter 6.6. The buckling resistance is calculated as: 

        
  

  
                                                                                   (  ) 

0

20

40

60

80

100

120

140

160

180

200

5 10 15 20

B
u

c
k
li
n

g
 R

e
s
is

ta
n

c
e
  

[N
/m

m
2
] 

Plate Thickness [mm] 

The Buckling Resistance for Stiffened Plates                                
Uniform Transverse Compression 

DNV / 235

DNV / 355

FEM



50 

  

where the coefficient    is a function of the reduced slenderness   ̅̅ ̅   

The precise way to calculate the value of the coefficient is as follows: 

   {

                                 ̅̅ ̅       
  ̅̅ ̅      (   )

  ̅̅ ̅
         ̅̅ ̅       

                              (  ) 

where   is the stress ratio as defined in Chapter 6.6. 

The rules do not give any further limitations for the value of   . Still, considering the 

nature of the coefficient, it is reasonable to assume that it should not exceed the value 

of 1. This was, however, not always the case, which lead to situations where the buck-

ling resistance exceeded the yield strength. This is clearly not physically possible. One 

of these situations is illustrated in Figure 31. 

 

Figure 31. Values of the coefficient Cx for different slenderness ratios (plate width / plate 
thickness). The values are calculated using yield strengths of 235 N/mm

2
 (green) and 355 

N/mm
2
 (purple). The stress ratio  =0. 

 

It can be seen that the coefficient exceed the value 1 with certain slenderness ratios, 

depending on the yield strength of the material. Preliminary testing indicates, that these 

types of situations might occur in cases where the compression gradient is large, i.e. 
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the stress ratio   is small. To prevent unphysical results, the value of the coefficient    

was restricted to a maximum of 1 in the buckling check tool. 

9.3.2 Tension Field Action 

According to the Recommended Practice, by tension field action is understood the load 

carrying actions in slender webs beyond the elastic buckling load.  

There was quite little information to be found about this phenomenon. The results given 

when tension field action was allowed indicates that when plates subjected to shear 

stress buckle, the strength of the plate grows. 

The usage factors given as results from buckling checks of a stiffened plate affected to 

varying shear stress are represented in Table 7. The usage factors under the heading 

“UF/On” are results from a buckling check were tension field action was allowed 

whereas the usage factors under the heading “UF/Off” are results from a buckling 

check were tension field action was not allowed.  

Table 7. Usage factors from buckling checks of a stiffened plate subjected to varying 
shear stress. The properties of the plate are s=700 mm (width), t= 6mm (thickness), l= 
3000 mm (length), E=210 000 N/mm

2
 (modulus of elasticity) and σf=355 N/mm

2
 (yield 

strength). The size of the stiffener is irrelevant for the results. 

τ [N/mm2] UF / On UF /Off 

60 0,79 0,79 

62 0,85 0,85 

64 0,9 0,9 

66 0,96 0,96 

67 0,99 0,99 

68 0,29 1,02 

70 0,3 1,08 

72 0,32 1,14 

74 0,33 1,21 

76 0,34 1,27 

The results presented in Table 7 are illustrated in Figure 32. 
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Figure 32. Usage factors from buckling checks of a stiffened plate subjected to varying 
shear stress when tension field action is allowed (blue) and tension fiel action is not 
allowed (red). 

It can be seen that up to the point where the critical buckling strength is reached (UF 

0.99) the usage factors are the same regardless if the tension field action is allowed or 

not. The big difference is after the plate has supposedly buckled; if tension field action 

is allowed the usage factor drops radically. When the plate is subjected to a shear 

stress of the magnitude 74 N/mm2 it is either clearly over the safe limit (tension field 

action not allowed, usage factor 1.21) or it still have two thirds of its capacity left (ten-

sion field action allowed, usage factor 0.33). 

Because of the incomplete understanding of the phenomenon and the way it is ac-

counted for in the rules and recommendation of DNV together with the huge impact it 

had on the results, the alternative of allowing tension field action was decided to be left 

out from the buckling check tool. 

10 Discussion and Conclusions 

Eight tools for buckling checks based on the rules and recommendations of DNV were 

created. The results were then verified by hand calculating and by checking that the 
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results produced were in line with known results of buckling when e.g. the thickness of 

the plate was varied. A FEM analysis for unstiffened and stiffened plates was per-

formed and the results were compared with results from the appropriate tools. 

It was shown that the tools produce results consistent with what is to be expected 

based on the theory of buckling. The results differed from the results acquired by the 

FEM analysis, which was expected due to the different theoretical backgrounds of the 

two approaches. The FEM results were consistently more conservative when regarding 

slender plates, although the roles were reversed when moving towards thicker plates 

as the FEM results reached yield stress. 

Excel might be considered for these types of projects as long as the formulas needed 

to program stay simple. The use of Excel gave rise to problems in situations where the 

formulations of the coefficients were subjected to several conditions. The use of a 

proper programming language might be beneficial in these types of projects. 

The study revealed that the recommendations of the DNV are in no way exhaustive, 

and common sense and caution have to be used as it is e.g. possible for the buckling 

resistance to exceed the yield strength. 

As future work, a closer examination of the behavior of the tension field action might be 

in order. Assuming any problems regarding the reliability of this property is solved, the 

implementation of the tension field action into the tool might be considered. Plates with 

cutouts had to be omitted from this work due to suspicions of unreliability in the rules 

and recommendations. As these types of structures are, however, common, the im-

plementation would be recommended when the rules and recommendations are up-

dated. The use of boundary conditions other than the simply supported would also be a 

welcomed addition to the tools, along with plates stiffened in two directions. The rules 

and recommendations for these types of structures exist, so the implementation is al-

ready possible. 
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