

Olga Kushanova

BUILDING, TESTING AND
EVALUATING DATABASE

CLUSTERS
OSA project

Bachelor’s Thesis

Information Technology

May 2014

DESCRIPTION

Date of the bachelor's thesis

7.05.2014

Author(s)

Olga Kushanova

Degree programme and option

Information Technology

Name of the bachelor's thesis

BUILDING, TESTING AND EVALUATING DATABASE CLUSTERS

Abstract

The purpose of this study was to research idea and functionality of clustered database systems. Since
relational databases started to lose their functionality in modern data size and manipulation a new
solution had to be found to overcome the limitations. On one side the relational databases started to
support clustered implementations, which made the database more reliable and helped to achieve
better performance. On the other side, a totally new data store structure came with NoSQL move-
ment. From the beginning NoSQL was developed as a system which can be spread across multiple
servers therefore it supports clustering in its structure.

Another aim of the study was to give ideas and guidance for OSA project. It is an Open Source Ar-
chive project carried in MAMK, which goal is to create a functional long term data store – dark ar-
chive with open source tools. For the project this thesis presents guidance for building and designing
clustered database system.

The thesis research was carried out with practical implementation of different clustered solutions.
There have been viewed and analysed four different systems presenting SQL and NoSQL cluster
types. From relational databases MariaDB Replication and Galera clusters were built and for NoSQL
side document-oriented MongoDB Replica Set and Sharded cluster. All the systems for testing and
evaluation have been built independently from their initial state. Tests were mainly focused on cluster
implementation, failover solution, availability, backup system and performance.

The results of the project have shown that clustered database proves to be a way for a system to sup-
port massive data, high user access and data recovery. Although in an open source environment
building and configuring a cluster can bring challenges and take time to implement it.

This work has cleared out some points for MariaDB and MongoDB clusters implementation solutions.
However there lots more elements to consider for cluster building and in future for NoSQL into SQL
implementation.

Subject headings, (keywords)

database, DBMS, RDB, NoSQL, cluster, CAP, sharding, replication, MariaDB, Mon-
goDB

Pages Language URN

78 English Leave blank

Remarks, notes on appendices

Tutor

Matti Juutilainen

Employer of the bachelor's thesis

Mikkeli University of Applied Sciences (change
to a company name, if applicable)

CONTENTS

1 INTRODUCTION .. 1

2 DATABASE ENVIRONMENT .. 3

2.1 Database Basics .. 3

2.2 Relational Model and SQL Traditional View ... 4

2.3 Relational Databases in Practical Usage ... 8

2.4 NoSQL .. 10

2.4.1 Wide Column Store ... 11

2.4.2 Document-oriented .. 13

2.4.3 Key-value .. 17

2.4.4 Graph Database ... 17

2.5 NoSQL Challenges ... 18

2.6 Best Practices Examples ... 19

3 CHOOSING A DATABASE ENVIRONMENT ... 21

3.1 CAP... 21

3.2 ACID... 23

3.3 BASE .. 24

3.4 Software Used ... 24

4 CLUSTER AND DATABASE CLUSTER ... 26

4.1 Cluster Types .. 27

4.1.1 Shared-Nothing .. 27

4.1.2 Shared-Disk ... 28

4.1.3 Master-Slave and Master-Master .. 29

4.2 Clusters in Database Solution ... 31

4.3 Clusters Examples in Open Source Databases ... 32

5 ENVIRONMENT OVERVIEW AND INITIAL CONFIGURATION 34

5.1 OSA Project and Testing Environment .. 35

5.2 MariaDB Environment ... 35

5.3 MongoDB Environment ... 36

5.4 Cluster Nodes Configuration .. 37

6 CLUSTER BUIDING AND PERFORMANCE TESTS 38

6.1 Single Server MariaDB... 38

6.2 Single Server MongoDB... 41

6.3 Replication Cluster MariaDB ... 41

6.4 Galera Cluster MariaDB ... 46

6.5 Replication Cluster MongoDB ... 51

6.6 Sharding Cluster MongoDB ... 56

7 CONCLUSIONS .. 61

BIBLIOGRAPHY .. 64

1

1 INTRODUCTION

Upon the years not only in computer existence a question of storing data was raised.

Through the evolution of data manipulation and application development scale of data

changed dramatically. The topic of this thesis is focused on a subject of database envi-

ronment and its evolutionary way along the years. In this paper Relational Database

with SQL are viewed, its successor NoSQL group, their developments and reasons for

creation. The aim of the study is to get familiar with an open sourced solution for clus-

tered databases and evaluate them.

Idea of this thesis is a part of the project held in MAMK – Open Source Archive. The

main goal of the project is to build an environment which would be able to behave as

a dark archive – a long term data preservation storage. The project plans to offer the

dark archive for usage to MAMK and partners. This research covers the topic how the

archive is going to handle data from user into the archive. From the archive point of

view users could store any type of data inside therefore schema archive cannot satisfy

all the input data needs. Additionally when in the future archive grows one single

server database will not be enough for sufficient service delivery. Thus the project

need to find ideas about clustered database solutions, their implementation and per-

formance.

The research itself is fully based and built with open source software. Reason for that

is to follow the project structure and idea about using freeware open source for more

independent technology and the way how to project the costs of system in the future.

Research questions:

 Why the idea of a database is changing

 How different are types of modern databases

 How users and companies can adopt to the change

 Give recommendations and guidance for OSA project

 See performance of an open-source based database systems

What topics this thesis does not cover. Although here the nature of databases is cov-

ered this work does not show full mathematical scale origin of a database. Neither this

2

work provides a reader with full structures of specific databases. In addition even

though in this paper examples of queries and database manipulations are presented,

they do not cover full database administration/user aspect.

Research structure:

The study progresses for the theoretical part is built in a chronological order since flat

system into the newest graph database.

In chapter 2 part 2.1 a database as a term is explained. Inside there contains

information important to understand in order to follow the main subject of the work.

Additionally, the development of database system and reasons for creating it in a first

place are explained. Parts 2.2 and 2.3 are fully dedicated to a topic of relational

databases. Inside there the main points of SQL database operations are stated and

usage of this type of a data store for different purposes are shown. Part 2.4 is

introducing NoSQL database family and its 4 different types. 2.5 shows challenges of

NoSQL. In 2.6 the best practices examples can be viewed - why enterprises move to

NoSQL and how it affects performance and solves their challenges.

Chapter 3 introduces classification of different database. By introducing theorems

CAP, ACID and BASE a structured way to understand place of each type of database

is presented. Part 4.3 contains a table which has structured data about each database

which was selected in testing.

Next chapter 4 presents the idea about clustering. As it is impossible to imagine

nowadays a full scale database environment contained only on one machine this

chapter plays a big role in this work. In the part 4.2 different types of cluster

architecture are presented, how they are built and what it means for the user. Part 4.3

connects the database term with the cluster – meaning for a database to be in a cluster.

In there more information about sharding and vertical scaling is explained.

In chapters 5, 6 database solutions, mentioned in the paper are tested and shown their

operation. At first MariaDB and MongoDB are tested on a single data server, then

each is built in a cluster. The practical part is mostly oriented on building the clustered

systems, including step by step setup, testing, taking measurements, finding and

pointing out a solution for OSA project purposes.

3

Chapter 7 – conclusions - summarizes the whole research process. It presents the

measurements in a table and gives a brief information for the solution. In addition it

states possibilities for future research and development.

2 DATABASE ENVIRONMENT

This chapter contains information about the basic idea of a database and its definition.

Here additional information about a database structure and organization is presented.

Additionally, comparison of MySQL and NoSQL models is shown which helps to

understand the development of databases and follow the latest (year 2013) database

knowledge with an overview of databases and database management systems opera-

tions. CAP theory is also explained here as an overview on the existing types and

structures of a database systems. In the end of the chapter software tools particularly

used in this work are introduced in more detailed.

2.1 Database Basics

A database (DB) means simply a repository of information. It is one of the most im-

portant applications for computer for storing and managing information. DBs are pri-

mary used in banking for the transactions, airlines - schedules, universities - tran-

scripts, human resources – records and salaries and etc. Data in a DB is organized and

can be accessed within a database management system (DBMS) - a collection of dif-

ferent programs which allow a user to organize, administer and monitor DB storage.

[1]

Quite usually users mix ideas and terms of DB and DBMS. It can be easily confused

as those two terms are closely connected. The whole data, information can be stored in

tables, objects or document form which is a DB. In its turn, DBMS gives an interface

to access, store and retrieve that data. It can manage data across more than one DB

and in many cases it can make analyses on data queries. The main purpose of DBMS

is to store and transfer data into information. In order to operate properly a regular

DBMS consists of three elements: physical database, database engine and database

schema. Among the other functions DBMS provides concurrency, security and data

4

integrity for a database. In this work term database is used for identifying the whole

system, not only for the data contained inside. [2] [3] [4]

One of the specified DBMS usage is to make translations (within Open Database

Connectivity, ODBC) between different DB’s. ODBC standard was created in 1992

and it is supported by a number of different databases e.g. MySQL, Filemaker and

others. Every database where ODBC driver is included in, makes it possible for any

application (for example web application) to use the same set of commands with dif-

ferent databases. Therefore regardless on to a type of DBMS they can communicate

with each other. Examples of DBMS are MySQL, ORACLE, MariaDB and a number

of more now existing. [5]

With the growing number of DBMSs there is a certain need to be able to identify a

purpose of each one. DBs can be classified according to data contained inside, for

example it can be customer information oriented (names, addresses, account numbers,

etc.) or library data (accordingly titles, authors and index number). In computer world

databases most often are categorized according to an organization how data is stored.

[6]

One of the oldest type of DBMS is the simplest card catalog. It must be well-

organized and is efficient to use only if structured correctly. Although it is still very

difficult to handle a search process in when the DB grows rapidly. Early computer

model had a “flat file model” where records were stored one after another as a list of

rows. So when a search was performed it always needed to start from the beginning to

search sequentially. Such a DBMS was unable to handle massive data efficiently.

Therefore a new type of DBMS was needed which could be reliable, fast, random ac-

cessed and easily extendable. [6]

2.2 Relational Model and SQL Traditional View

A traditional and most well-known and by far most widely used type of computer da-

tabase is a relational model. Originally a relational datatabase was developed for

storing information for a long period of time. The very first relational database was

proposed by Ted Codd (IBM researcher) in 1970. [6] It was a different way from a

hierarchical model to store and organize data so that it can be accessed easily. In his

5

seminar paper “a Relational Model of Data Banks” Codd presented a relational data-

base system and defined it with Codd’s 12 rules. Those 13 rules (list is numbered from

0 to 12) give guidance and requirements for a database to perform as a relational one –

including definition how data is stored and in which form, null values, views, access

rules and etc. [7] [8]

The whole data load in a relational database is stored in tables– collections of rows

and columns. Tables can be viewed as organized bodies of relational data. Rows con-

tain unique sets of data and are organized by the column - each column identifies one

type of data (real number, data string, integer, etc.). Every table, row or column re-

quires a unique name, usually depends on data which is inside of the table so the

search can be conducted easily. For a separate block of tables there exists a primary

table where the main data is stored when the rest of data is divided into other sub ta-

bles. Different tables are connected by having matching data fields – relationships

which a RDBM uses to link tables together. Those relationships are created with the

help of keys. [9] [10]

A key for a database is a way to identify a record and with it allow a logical represen-

tation of information. In relational database some important values can be identified as

primary key, foreign key, composite key or candidate key. A primary key is a mini-

mal set of fields which can uniquely identify a value inside of one table. Examples of

such keys are student number, personal ID, number of a library book, bank account

number or any other identification number. It is not possible to have two people with

the same ID since it is unique to each individual. Thus, when each table is created it

can have only one primary key. At the same time there can be more options how a

record can be uniquely identified, it is called a candidate key. There can be multiple

candidate keys in a table and one of them is the primary one - the best applicable. A

key does not always mean only one separate value. If a key is composed of more than

attributes then it is called composite key. A foreign key is another type of key, it is

usually a primary key for another table. For example in a school library system a table

Book contains a column ‘BookID’ which is a primary key, but for the table Student

the same ‘BookID’, book which is borrowed, will become a foreign key. Therefore

while single table contains only one primary key at the same time there can be dupli-

cates of a foreign key value. By including a primary key from one table into another

6

one a foreign key is implemented. Thus, when two tables are joined, relationship is

established. At first when a table is created keys can be assigned manually to the each

column. [8] [9] [10] [11] [12]

An example of a single set of a relational DB is presented on a Figure 1. Such a DB is

the simplest model how records at school/university are handled. There exists 3 tables

“Student”, “Teacher” and “Course”. For a table Student it can be called “studentid,

first name, second name” – relation. There each row contains information about one

person with student ID (s_ID), first name (fname), and last name (lname). In this table

all unique values are the ones which are in s_ID column. In this case DB sees student

ID as a primary key value as it is non-repeatable and unique. For the table Course

c_ID is a primary key when at the same time we can see the same column in Student

table and that is how foreign key can be seen. Therefore, by viewing Student table

user also can learn which course the student is taking. In a real database environment

it looks and works more complicated with hundreds of tables and relations.

In Figure 2 such term as a single schema is graphically shown. A schema for a DB

can be compared to a much specified racks of hard drives. All of them are contained

in the same room (DB) but at the same time each rack is unique in its structure and

separated by walls, kept contained from outside and every table inside should be fol-

lowing schema rules only. Thus when a table inside of one schema is created it cannot

be moved into another one, as each schema identifies specific structure of the tables

created inside and cannot be changed. If it is necessary to move a table between sche-

mas, a new table should be formed in desired location and new properties. On Figure

2 a big DB contains multiple schemas inside. A user can work with each of them sepa-

FIGURE 1 Database Example with 3 tables

7

rately but each schema identifies rules what data can be stored inside. When a login

process is performed user should first log in into the DB and then choose a correct

working schema. [2] [13] [14]

From all DBMS functions manipulating data is primary. Under manipulation is under-

stood adding new data sets, changing and reorganizing. For every request from a data-

base a user writes a specific command, a query (meaning to search, to question or to

find). Queries and requests are usually constructed using specialized database pro-

gramming language. In 1970 a structured way to access the data and the data relations

from the DB was proposed with a name of SEQUEL and later shortened to SQL. SQL

is a Data Manipulation Language (DML) – language for accessing and manipulating

data organized by the appropriate data model. It is a high-level non-procedural lan-

guage which is used to communicate with the database. High-level language means

that the commands are translated from human to machine language through an inter-

preter. And a low-level language is very close to computer hardware such as machine

code or assembly language. In a non-procedural language a user specifies himself only

what data to get but without the way how to retrieve it. On a contrary, a procedural

language such as C or C+ defines not only what data to extract but also how to access

it. [15]

On Figure 3 an example of SELECT query is presented to identify DML. Such a

command is used to extract data from a specific table. In this example a user asks for

values under column sname from table student. This is the simplest example that can

FIGURE 2 Database Schemas

SELECT sname

FROM student

;

FIGURE 3 Select Query

Only yel-

low
Only red Only grey

8

be presented – more complicated structure can also include different constraints: con-

ditional search, grouping, sorting and even calculation functions.

When a table is created another type of query is taken place. Data Definition Lan-

guage (DDL) specifies attributes for DB schema. As an example of a CREATE query

on Figure 4.This query creates new table with a name Grade, two columns with names

s_ID (value of max 4 characters) and grade (integer). DDL statements are used to

modify the structure of tables and other objects in the database. DDL is also responsi-

ble to handle and specify key constraints called alter table. [1]

When a DDL statement is brought into a database DDL compiler generates a set of

tables stored in a data dictionary. Additionally, data dictionary contains metadata -

information about data. Example of metadata can be any attributes of an element:

height, weight or author. For the table metadata contains information about the length

of the table, number of columns or where the table is located. [16]

2.3 Relational Databases in Practical Usage

Most known corporate developers are IBM with DB2, Oracle, Microsoft SQL Server,

MySQL, dBASE. According to research company Gartner, the five leading commer-

cial relational database vendors by revenue in 2011 were Oracle (48.8%), IBM

(20.2%), Microsoft (17.0%), SAP including Sybase (4.6%), and Teradata (3.7%). Re-

lational database is the most widely used DB solution and while being the most well-

known relational DB is stated to be a mature state DB, reliable and along the years

proved to be functional. Most of the developers have proven themselves through years

and have kept good solutions, product support. From Open source side most well-

known are MySQL Server, Cubrid, Firebird, MariaDB and SmallSQL. [17] [18]

CREATE TABLE Grade (

s_ID char(4),

grade int)

;

FIGURE 4 Create Table Query

9

Relational DBs are used on a daily basis mostly by companies and also by private

users. Schools, hospitals, government, library, airports, business or banks, they all

have database inside of their systems. DBs are used for big purposes - webpages, data

storage and huge applications: internet stores, log data files, accounting software, air-

line registry, medical records for hospitals, statistics, marketing, etc. They also can be

seen operational in individual use, personal budgeting, planning or grading. Most

companies use relational DBs for simple data retrieve/storage. [9] [19] [20] [21]

Any sized company or organization can use a relational DB. There are couple of cases

where DB can be effective and convenient to use:

 Data is more or less stable. Tables are not changing constantly and the data is

mostly steady.

 Data set is from small to medium size. Although it is very hard to identify per-

fect data set size for best relational DB operation data cannot be too massive

(no bigger than about few hundred million records).

 Data transactions are taken place.

 There is only a slightest possibility for sudden future grows. Relational data-

base cannot be scaled “on-a-flow”, thus fast changes can bring system into

non-operational state. Besides it will take time and effort flow to change whole

database schema.

 System is expected to be least distributed. Here means cloud computing and

relational database performance.

When a typical relational DB could hold from 10 to 1,000 tables it makes a significant

difference in searching process and queries executing. Additionally, each table in its

place contains a column or columns that other tables can key on to gather information

from other tables. When a data load becomes substantial more relations are estab-

lished, which means more key, rows, columns and tables needed. As the growing pro-

cess continues interrelation and mapping query execution slows down. In the end it is

inconvenient to use a system which requires even a slightest delay. For today’s time of

10

online applications and internet dependency an application which uses 5 or 10 minutes

for search becomes pointless. [12] Thus, RDB brings limitations for rapid growing

services, online applications and big companies with growing data. [22]

At first, with relational model and information so huge to handle, companies started to

buy and connect more and faster servers together to partition and distribute the infor-

mation. Eventually too massive data takes over even the largest server available.

[more in 3.2 Cluster in Database Solution]

For such a reason a relational solution exhausted its purposes for many usages. It was

the time when new type of storage – reliable, fast and capacious, started to attract de-

velopers and followers. Such a solution was introduced to the world as NoSQL

2.4 NoSQL

For years relational databases were used to store data. By the time when web applica-

tions came into a high popular usage, the amount of data became so massive that rela-

tional model started to lose its value and usability. Most changes in a storage order

were triggered by the rise of cloud computing, agile software development and de-

mand to use unstructured data. In order for cloud based system to work properly it

needs to act like a whole across multiple servers. For a complex and big SQL it takes

time to merge tables and perform distributed joins tables within a cloud. Besides of

being fast and reliable modern technology forces a database to be more flexible, set on

future development and changes – agile. While an application needs to be changed on

a fly it should stay operational and fully accessible at any time. Here is why unstruc-

tured data is needed – it allows to work with data even in its incomplete state also with

a possibility to be changed in the future. As a response to the changes, NoSQL storage

type was developed to support market demands and needs. [23] [24] [25]

NoSQL term stands (according to many sources) for Not Only SQL. For the first, the

term was used by Carlo Strozzi in 1998. Although it is discussable whether his project

was enough to be called NoSQL as Strozzi used the term for a lightweight but still a

relational database. [26] [27] [28]

11

Later in 2009 the term was picked up again and used by a developer of Last.fm Jon

Oskarsson on meeting in San Francisco. At the moment, term NoSQL database sys-

tems covers a type of database that is different from relational DB in its performance,

data storage, query or any other standard behavior. They are specifically developed to

support speed and scale of web type applications. As for the name some communities

uses NoSQL as “No to SQL” – a system, which does not use SQL. [26] [27] [28]

An idea and need for developing NoSQL solutions first came as individual cases for

companies such as Amazon, Facebook, LinkedIn, Google, Yahoo!, Twitter and others.

For Google at first came Big Tables (Column oriented database), GFS (Distributed

filesystem), Chubby (Distributed coordination system) and MAP Reduce (Parallel

execution system). Those projects and documents inspired open-source developers to

create a variety of under NoSQL name projects. [27] [28]

There are four different types of NoSQL categorized by the way data is stored in:

Wide Column Store/Column Families, Document Store, Key Value/Tuple Store,

Graph Database.

2.4.1 Wide Column Store

The way how column-oriented database stores data in a database is close to relational

database – a table. Only that relational model stores values rows by rows when a wide

column store keeps values by columns. In a code in Figure 5 two different structures

are presented, comparing RDB and Wide Column store. Even from a small dataset the

main difference can be seen that in RDB data goes together by the row and for Wide

column a column gives full dataset. One more interesting fact that C3 value misses its

fruit name and for RDB it can become a complication to query it and modify. For a

wide column changing the value is not a problem. [23]

 { A1, Apple, 14, 230

 B2, Orange, 22, 410 RDB

 C3,, 32, 120

 D4, Melon, 45, 300 }

 { A1, B2, C3, D4

 Apple, Orange,, Melon Wide column

 14, 22, 32, 45

 230, 410, 120, 300 }

Figure 5 Wide Column

12

Advantage of such structure is that any table can be updated simply at any time. When

a column is added it is not necessary to fill in every row with a value. In future it gives

an opportunity for a table to be flexible and support unexpected grows and changes.

At the same time for a number of columns the values stored are about the same length

across rows which makes it easier to compress and store data efficiently (for example

age or phone number in a user profile). [23]

Wide column data store was especially created for managing and manipulation of very

large amounts of data distributed over many machines. Column family is a way to

define the structure on the disk and arrange all columns, inside it contains name and

keys pointed to the data. As it can be seen on Figure 6, which presents an idea how

twitter posts (tweets) are structured, the key identifies a place. Although values are

stored by columns keys are important to map a location. [23] [29]

Figure 6 Column Family [49]

13

Examples of a Column oriented databases are Apache Cassandra, HBase, Google Big

Table (Datastore).

2.4.2 Document-oriented

In a document-oriented database data is not restricted by table or a row frame. On the

contrary, it is stored in a document type format with specific characteristics, which

acts like a row a column itself. Documents are written in JSON – JavaScript Object

Notation human-readable and machine easy to parse and generate format, very light-

weight; XML (Extensible Markup Language) –markup language for structured infor-

mation documents; BJSON – binary JSON, an extended form of JSON it allow to

work with more data types and encode and decode between different languages.. [31]

[32] [33]

With data access over HTTP using RESTful API (resourced based protocol) some

document (CouchDB) database provides access to each document through its ID,

which can be written inside of the document or embedded in. However, it is not nec-

essary that an ID is included into the document body – it can also be provided within

URL location. [28] [34] [36] [37] [39]

For the connection of related data for a relational database foreign keys would be

used. In a document-oriented the whole data relation is encapsulated together or stored

in a single document. [28] [36] [37] [39]

Document store allows inserting, retrieving and manipulating semi-structured data. In

order to perform one document does not need to be completed to function or to follow

a specific schema. For example, in a personal account file there can be possibly some

data left out, such as a phone number or any other information. Comparing two differ-

ent documents below, the first one contains the standard document data (document id,

version and other properties) and some information about the user – first and last

name and date of birth. Although the second user document gives more information

(address and phone number) both objects are treated equally in a database. Additional-

ly, even if any other object has no correlation to other documents it is still a part of a

database. This feature makes the document-oriented database type very useful in web

14

applications when there are different type of objects by bringing support of rapid

changes in future. [22] [23] [28] [36] [37] [39]

Document 1

{

 “user”: {

 “id” : “document-u1id”,

 “version” : “1.0.0.0”,

 “create_time” : “2010-10-10T10:10:10Z”,

 “last_update” : “2012-12-12T12:12:12Z”

 },

 “type”: “user-profile”,

 “personal”: {

 “firstName” : “Allen”,

 “lastName” : “Brown”,

 “date_of_birth” : “11-11-1991”,

 },

…

}

Document 2

{

 “user”: {

 “id” : “document-u2id”,

 “version” : “1.0.0.0”,

 “create_time” : “2010-10-10T10:10:10Z”,

 “last_update” : “2012-12-12T12:12:12Z”

 },

 “type”: “user-profile”,

 “personal”: {

 “firstName” : “Allen”,

 “lastName” : “Brown”,

 “date_of_birth” : “11-11-1991”,

 “address” : “123 Database Street 5”,

 “phone_number” : “123456789”,

 },

…

}

Under document-oriented category fall MongoDB, Couch DB, Lotus Notes, Cassan-

dra.

MongoDB is a relatively young open-source database, which development started in

2007. It provides rich index and query support, including secondary, geospatial and

15

text search indexes. Documents are encoded in BJSON for indexing and provides

JSON-encoded query syntax for document retrieval. [35] [40]

To show how this specific type of a database operates on Figure 7 a translation be-

tween MySQL and MongoDB is introduced and explained. From MySQL side an or-

dinary select query with some sorting filters, and math functions is shown. In order to

understand the functionality and difference between two systems statements are split

into major steps. When working with MongoDB place where data stored is called col-

lection: ‘mapreduce: “DenormArggCollection”’ is equal to ‘FROM DenormArgg-

Table’. With the first line standard ‘db.’ user identifies that an action with database is

performed. The statement can be followed with a name of collection, or a function, for

example createcollection(), insert() or as in our case runCommand(), which is useful

when query is expanded.

1. In MySQL data selection is categorized in the begging and in the end of query,

after operations is grouped together in the end. MongoDB groups columns at

the moment when they are pulled out as a map function. These allows to re-

duce size of the working set.

2. Standard functions of SUM and COUNT in NoSQL transfer into manual “+=

logic”.

3. Aggregates connected with records count and manipulation are performed in

finalization state.

4. CASE and WHEN commands transfers into procedural logic operations (here

if statement).

5. Filtering has an ORM/ActiveRecord-looking style, every filter unit separated.

6. Aggregate filtering like HAVING is applied to the result set in the end, but not

in the map/reduce.

7. ORDER BY = sort(); Ascending 1; Descending -1.

16

The document based database is completely different from the relational model. It

does not support SQL and contains another logic for data manipulation. Document

based database does not work with joints or tables. A table is represented as a collec-

tion and documents themselves. A document store is getting its popularity because of

the structure and the fact that it is a schemaless solution.

FIGURE 7 MySQL to MongoDB [41]

17

2.4.3 Key-value

Partly resembling document-oriented database, key-value store is the simplest type of

NoSQL. There is no specified schema forced on the value. As it can be viewed in Ta-

ble 1 it is a hash table with unique keys and pointers to particular points of data. This

structure allows easily scaling of large sets of data.

TABLE 1 Key-Value

key value

firstName Allen

lastName Brown

location Helsinki

As the database has the easiest structure compared to other NoSQL, it is very fast to

perform. But at the same time it does not support vast, complicated requests or calcu-

lations. As the database is queried against keys it gives them the best performance in

cache memory. [23] [28] [36] [37] [39] Examples of a Key-value database: Volde-

mort, Redis and Memcached.

2.4.4 Graph Database

Flexible graph model allows to present a database structure as relationships between

documents or nodes which are represented as graphs. The whole project is only on a

development stage so there are not so many proven solutions in the market. Some ex-

amples are Neo4J, InfoGrid, Infinite Graph, Circos. Figure 8 represents the idea how

data is organized inside of a graph database.

FIGURE 8 Graph database

Graph

Relationship

Node

Propeties

18

The best use practices of a graph are transport links, people connections on social

networks, and also network topologies. For that type of database to exist there always

needs to be a connection between nodes and there can be only one or many relations.

The reason for using Graph database for massive, interrelated data is that the database

uses shortest path algorithms to make queries more efficient. Compared to relational

database where with more relations more keys are added and then connections become

heavy and long to process, a Graph database is made to identify relationships between

nodes. [23] [28] [36] [37] [38] [39]

2.5 NoSQL Challenges

From this chapter it can be seen that NoSQL does not identify only one specific type

of a database - the name represents a change into the idea of storing data, a fully new

class. There is a variety of different compatible options to choose from. Which makes

it a great alternative to RDB when traditional solution is lacking in scalability, per-

formance and data maintenance (unstructured data). [22] [23] [42] [43]

NoSQL can bring a great deal change into the current data store model. Below are

pointed some reasons why it is practical to choose NoSQL solution over Relational

model:

 Can handle big massive of data

 Designed to scale

 Flexible – not limited by a specified schema

 Simple structure – easy to implement

 Relatively cheap to install, scale and maintain

Together with all the advantages NoSQL keeps some limitations and challenges which

should be considered before installing the system. [22] [23] [42] [43]

Support Often companies which offer services are not at global reach as they are

small and open-source. When the system fails there is a chance of not getting a timely

support. [22] [23] [42] [43]

19

Administration One of the development ideas for NoSQL was to create a system to

reduce administration work and make it user friendly. Unfortunately, at the moment it

takes a certain skill to install it and then later to maintain and support. [22] [23] [42]

[43]

Maturity For the companies it can be risky to apply a non-proven solution instead of

implemented and tested one. It is a simple logic of an enterprise – they do not want to

change an operational system into something they are not completely sure about. [22]

[23] [42] [43]

Expertise Is connected to the previous point – there are not as many experts as for

RDB. Almost every single developer is still in a learning state. The same is that not all

the database are perfectly ready to be used. [22] [23] [42] [43]

Compatibility When all the applications with embedded relational database are fully

operational, it might take time to change all the system structure and idea so it can be

used together with NoSQL. In most cases it is better to rebuild the system completely.

[22] [23] [42] [43]

Misunderstanding What happens now is also very interesting concept - NoSQL gets

into a bigger movement when having it is just fashionable. Companies then install and

use it without understanding the whole idea or purpose. For example, a company has a

database which does not need to be distributed and is contained on a single server.

After moving to NoSQL performance will not change (if not becomes slower). [44]

2.6 Best Practices Examples

Facebook created its Cassandra data store to power a new search feature on its Web

site rather than use its existing database, MySQL. That particular internet service

stores a huge deal of information and the information is usually not static. It changes

and varies as users want to delete, update and add more data all the time. According to

official facebook statistics information (on Oct. 2013) there are:

 819 million monthly active users who used Facebook mobile products as of
June 30, 2013

20

 699 million daily active users on average in June 2013

 Approximately 80% of our daily active users are outside the U.S. and Canada

 1.15 billion monthly active users as of June 2013 [45]

With such amount of active users texting, sharing, loading pictures, links and videos

the data flows with a high speed and changes constantly. According to a presentation

by Facebook engineer Avinash Lakshman [Cassandra Structured Storage System over

a P2P Network], Cassandra can write to a data store taking up 50GB on disk in just

0.12 milliseconds, more than 2,500 times faster than MySQL. As it is seen the compa-

ny had to change database strategy in order to assure the best performance. Cassandra

project in Facebook combines elements of Google’s Big Table and Amazon’s Dyna-

mo designs, Apache HBase distributed database. In the end they got strong consisten-

cy model, with automatic failover, load-balancing and compression. [44]

Craigslist is a private company which offers specified web services. They provide

advertisements in 50 countries around the world, there are sections about jobs offers,

sales and housing. They moved over 2 billion archived postings from MySQL into a

set of replicated MongoDB servers in documented, schemaless format. With this

move the service gained performance and reliability. As their archives are so large and

replicated, so any change of a table would take at least couple of month. New and ac-

tive advertisements are still handled separately in MySQL. The division brought the

system into an easier state to handle and flexible for a change. [44]

One more Enterprise who applied MongoDB is the world-wide well known network-

ing company Cisco. When in November 2011 they launched new platform WebEx

Social for social and mobile collaboration the company had to think about the changes

in the environment. For Cisco it was difficult to handle schema updates on their old

relational database, additionally SQL queries took lots of overloading and were diffi-

cult to execute. Migration to MongoDB was made to manage user activities and social

analytics. MongoDB allowed to accelerate reads from 30 seconds to minimum (some

single cases gave such an improvement) tens of milliseconds. [46] [47]

For a conclusion, NoSQL has a variety of different solutions, many of the existing

already proven itself useful in a current environment and received their acceptance

21

from big enterprises. Apart from all the positive characteristics of new data system, a

part of database community takes the importance of NoSQL very skeptically. Alt-

hough the input and revolutionary ideas of a new DB concept cannot be denied it is

not assured whether NoSQL will become dominion DB environment and RDB will

not be used in the future. On the other hand potentially both systems can be used and

operate together at the same time. One thing is for certain that traditional SQL is not

going away just yet.

3 CHOOSING A DATABASE ENVIRONMENT

At the moment there are hundreds of different DBMS manipulating data. There are so

many of them that a user often has no idea which one to choose. Some users rely on

big labels such as IBM (handles DB2) or ORACLE. As the name comes with a price

others make their choice on assets available. This brings a user to a shorter list of low-

cost or open-source options. Although, the last ones do not always mean a dreadful

quality and difficult maintenance. [48] [49]

3.1 CAP

In theory the most sufficient way to get a system one need is to recognize and analyze

the requirements. Proposed in 2000 Symposium on Principles of Distributed Compu-

ting by Eric Brewer a conjecture and later proved by Seth Gilbert and Nancy Lynch

theorem that for distributed computing it is impossible to provide simultaneously

Consistency, Availability and Partitioning tolerance (CAP theorem). Because of its

founder it is also known as “Brewer’s theorem” and it gives a vivid picture about the

classification of different DBMS available. [48] [49]

According to the theorem a distributed computer system can have at most two from

the CAP factors.

 Consistency - having a single up-to-date copy of data. So that every node op-
erates with the same copy. As for distributed system is highly inconvenient to
be without consistency, term weak consistency means eventual consistency. In
such a system data is replicated across the nodes they are all working with the
same object but different versions. The newest version is somewhere on the

22

cluster and eventually every node will learn about it. After that the system
reaches the consistent state.

 Availability - information can be accessed easily from any node at any time.

 Partitioning tolerance - the system will continue working even after a fail
over of one element.

The theorem was introduced for developers of new systems so it will be easier to iden-

tify the goals and predict the final product. Here CAP theorem is shown as a tool to

ease the process of choosing the best fit environment. [48] [49]

For example a database prioritizing consistency and availability (CA) is a simple one

node system, which stores only one version of data. Relational traditional database is

the simplest example, it is not distributed therefore there is no need to store more than

one copy of data. [48] [49]

AP database brings the system into fully functional, even without any node connectiv-

ity it would be possible to attempt operations in a database. For example in a system

of two nodes the connection faults, both nodes still should continue working with cli-

FIGURE 9 GAP theory

Consistency

Availability

Partitioning

tolerance

Traditional relational

database

Cassandra

Voldemort

CouchDB

HBase

MongoDB

Redis

Mem-

cacheDB

23

ents as the system has to be available. As two nodes are working separately without

connection they are unable to see each other or exchange data. Until partitioned link is

restored the data inside stays inconsistent. Here a weak consistency takes place. [48]

[49]

CAP theorem can be misleading for most in a “pick two out of three” concept. From

the last examples it can be seen that it does not in any case set consistency to 0% when

availability and partitioning tolerance are 100%. It means, that by analyzing the most

needed qualities of a database, current database solution are not able to provide all of

them at the same time. Therefore every improvement in one sector will cause some

interruptions inside the other two components. [48] [49]

Simultaneously CAP theorem itself cannot fully identify all the needs of every DB.

There exist other design philosophies for DBs such as ACID and BASE.

3.2 ACID

ACID is used for little less than a DB classification but it shows the requirements for a

transaction, a single DB operation. ACID is an acronym for Atomicity, Consistency,

Isolation and Durability. To identify «A» value a DB should be able to follow the

rule of all tasks are performed or nothing. In an example of a bank single payment

transaction, if one account a wants to pay a 100$ so it gets minus that value when on

another account b where the payment should be transfer will get +100$. If (in any

case) the second part of the whole transaction fails the whole operation should be

rolled back. For «C», consistency and hold is the same idea as in CAP theorem for

having only one version of the file across the whole system. «I» comes with a DB able

to handle data locks within isolation levels. In respect of keeping data being concur-

rent when one operation is performed other operations should not be able to access

(have read/write permissions) until the operation is committed (finished). «D» is set to

bring a DB into a solid state as if an operation was committed it cannot be undone

anymore. Although, later it can be changed by the next operation. Durability is han-

dled by the databases by keeping a log file where the history of all the operations is

written. Thus, even if server is restarted the transaction log persists. [50]

24

The whole picture can be explained in a hotel booking example. On a travelling agen-

cy or airplane company it is possible to book room. If there are about 100 users

searching for a room, while some of them are ordering the room it is not possible to

see it for others. And this happened because until the accurate number of inventory is

seen for all the users that data set will be locked by the system. This service will work

with delays and many customers will get angry and leave the page. To change the sys-

tem will require to violate integrity of data and can be a wise solution in the end. Am-

azon sets an operating example of using cached data – users do not see the count at

that moment, instead they see a snapshot from couple of hours before. Sometimes

there could be mistakes in book numbers in a digital warehouse and some users will

not be able to purchase the book. But for a company with a customer base all over the

world it is easier to apologize to couple of customers than to lose the client base. [50]

3.3 BASE

The BASE (Basically Available, Soft state, Eventual consistency) is mostly used as an

opposite to ACID concept. As for ACID it is important that data is consistent, a BASE

system it does not make any requirements - it sacrifices consistency for availability,

which makes it wise to think about for an online application where availability is eve-

rything. [50]

Brewer points out in this presentation, there is a continuum between ACID and BASE.

One can decide how close to be to one end of the continuum or the other according to

system priorities. [50]

3.4 Software Used

In this work open source DBMS are used. Below is a summary table, Table 2, for dif-

ferent types of database storage which were presented in this paper. All four databases

MariaDB, MongoDB, Cassandra, Neo4j) which are presented in the table are used in

and testing. In the table the main data provided are names of the databases with a

quick summary. Main characteristics such as the model type of a database (if it is rela-

tional of a part of NoSQL), language it is writer in, the protocol each database uses to

access the data, storage type and a description from their vendors, what the database

stands for and their aims.

25

TABLE 2 Used Software Summary

Name
Mod-

el/type

Lan-

guage

Pro-

tocol
Storage Description

MariaDB One of the

relational

C, C++ DDL,

DML

tables “MariaDB is a drop-in replacement for

MySQL.” – MariaDB Foundation.

MongoDB document-

oriented

C++ BSON document

memory

mapped b-

trees

“MongoDB was designed for how we

build and run applications today… It

is an agile database that allows sche-

mas to change quickly as applications

evolve…” – Mongo DB, Inc.

Cassandra

and Cas-

sandraSE*

Wide Col-

umn

Java HTTP/

REST

or

TCP/Th

rift

memta-

ble/SSTab

le

"In terms of scalability, there is a clear

winner throughout our experiments.

Cassandra achieves the highest

throughput for the maximum number

of nodes in all experiments."- Univer-

sity of Toronto

Neo4J* Graph Java HTTP/

REST

File Sys-

tem Vola-

tile

memory

“embedded, disk-based, fully transac-

tional Java persistence engine that

stores data structured in graphs rather

than in tables" - Neo4j developers

*Originally, all the databases presented in the table were planned to be tested. In this work

CassandraSE and Neo4j are only viewed and evaluated for the future development.

Modern database systems are not viewed as single servers due to the cloud computing

and massive data stores. The databases MariaDB and MongoDB used in this work are

presented in examples of clustered database implementations.

26

4 CLUSTER AND DATABASE CLUSTER

This chapter gives an overall view for a term of a cluster in computer and data system.

Here also different types of clusters will be shown with simple examples, such as

Master-Master relations or Shared-Disk architecture, and how they can be used to

optimize a DB system. [51] [52]

Cluster in a computer science can mean and be connected to different aspects of per-

formance and architecture. In overall idea a cluster itself presents a system of comput-

er devices connected together and work together so they all can be viewed as a one

whole system. [51] [52]

A database cluster is a specified cluster which is built only for database usage. It is not

just storage connected together. A database cluster is designed to be fully operational

across distributed environment. Or in other words it is a system which is shared by

being simultaneously mounted on multiple servers. [51] [52]

Parallel file system – a type of clustered filed system that spread data across multiple

storage nodes. Usually such actions are taken in order to increase redundancy or per-

formance. In this paper the term cluster is to be understand only as a cluster build as a

part of DBMS or inside of it. [51] [52]

For a DB system a cluster solution where a full DB keeps the whole information on

multiple components connected together makes the system scalable increase availabil-

ity with lower cost. For every DBs’ working requirements there is in somewhat unique

need architecture. [51] [52]

A database build on a top of a cluster can bring a system to faster performance or fail-

over backup. At the same time every development comes with the price, in this case

features to sacrifice and some to be put in first order. [51] [52]

27

4.1 Cluster Types

In a clustered system all the parts should be connected together in order to share the

data. The connection is build based on hierarchy within a network line, high-speed

connection such a fiber channel and shared disks.

The ways how server nodes can be connected can be classified into two separate

groups: disk sharing dependency (Shared-Nothing, Shared Disk) and relation-role

dependency (Master-Master, Master-Slave).

4.1.1 Shared-Nothing

Shared-Nothing architecture is the first option presents disk-sharing group. Shared-

Nothing brings a full set of data into different separate locations. Those disks are still

connected to each other and can be seen as a complete system but each node has its

own part of data. On the Figure 10 a big DB with information about Users, Orders and

Products is split into 3 equal server “memory cells”. Servers can be separated accord-

ing to type of data stored as on the figure or a geographical location, as Headquarter,

South Office or North Office. When such a distribution happens an architect designer

has to figure out what king of data is used more in each location. As Orders for exam-

ple can be mostly used by Accounting Department when Products are needed for a

Supplier Manager. In a situation when another node from the cluster needs to access a

part of a DB which it does not possess, it makes a request to other nodes in a cluster.

After the communication is established and nodes with needed information set are

identified the needed part of data can be transferred to needed location. Although eve-

ry single node can work very fast and efficient with own data, the communication part

brings a delay. Thus, such an architecture requires smart partitioning and communica-

tion is based on data – shipping. [52]

Users, Orders,

Products

Users Orders Products

FIGURE 10 Shared-nothing cluster

28

An example with a company for this architecture is a case where there exists multiple

servers across the world for a single web site. There is no master-server and all the

servers are equal, however they do communicate but at the same time do not share any

memory or disk space. When every node in this system is working as an independent

and self-sufficient the data load is separated between them and every additional node

makes the system to work faster. [52]

Shared-nothing architecture is also partly known as sharding. Sharding is a method

breaking data into parts – “shards” and storing them across multiple servers. This

technique allows the database to gain more performance and scalability. As big data is

spread across multiple machines it is handled with more computing power.

4.1.2 Shared-Disk

Shared-Disk architecture is the second type of what cluster can be. In a Shared-Disk

cluster all the nodes have a shared storage space which can be accessed by any node,

any time when the data is needed. As it is shown on Figure 11 from one big database

the information is moved into a fast, easy accessed storage space. Then as many serv-

ers’ machines can be connected to the storage (in this example 3) usually the number

of servers depends on system requirement. Such a solution brings each node in the

cluster to act as if it has its own single collection of data. According to connection and

disk speed this architecture designed to bring speed into the system. The users can

work with a file at the same time therefore redundancy becomes a weak point. [53]

Users, Orders,

Products

Users, Orders, Products

FIGURE 11 Shared disk cluster

29

For a shared-disk architecture it is also usual to have an inter-nodal messaging, it in-

cludes locking, buffering and general status information about the nodes. Those mes-

sages are fixed-size and amount grows linearly according to the number of nodes. [53]

Such architecture is easier to set up than shared nothing – it does not require addition-

al partitioning or routing tables. On contrary to SN in future maintenance the system

will work freely, without additional partitioning, which is time, performance and

money consuming. In most cases shared-disk is used for applications which are dy-

namic or could have temporal toggling changes. [53]

Table 3 shows the basic differences between two architectures and allows to identify

and compare two different architectures. Every row identifies the main opposites of

Shared-Disk and Shared-Nothing.

TABLE 3 Shared-disk and shared-nothing comparison

Disk and data sharing between the machines are a very efficient way to increase the

performance of a database. However, it is not the only way how data can be stored and

alone it is not enough to create a fully backed up system.

4.1.3 Master-Slave and Master-Master

A Master-Slave cluster is an example of a role-dependency architecture. As it can be

seen from the name there are two main roles –Master and Slave. Master has a full ac-

Shared-Disk Shared-Nothing

Quick adaptive in changing workloads Can exploit simpler, cheaper hardware

High availability High-volume, read-write environment

Dynamic load balancing Fixed load balancing

Data need not be partitioned Data is partitioned across the cluster

Performs best in a heavy read envi-

ronment

Almost unlimited scalability

Messaging overhead limits total num-

ber of nodes

Depends on partitioning, data shipping can

kill scalability

30

cess to data so it can read and write data. When a slave is only a copy of a master state

(similar to backup solution) has only granted permission to read the data. Thus, as it is

shown on Figure 12 each slave has a replication of data from master. As changes can

be made only by master system becomes more reliable. In case if one of the Master

node fails over and loses data everything can be restored from the copy. [54]

Sometimes it is not enough to have only one slave in such a situation the full data set

can grow in a whole “slave tree” as on Figure 13. Here Slaves still have no writing

privileges but they make a second layer backup which can bring even higher failover

system. Additionally it makes higher performance to a system where reads occur more

often than updates. [55] [56]

Apart from Master-Slave architecture, Master-Master is the relation between nodes

where all the DBs in a cluster are granted with permissions to equally read and modify

data. Here any node can act as a back-up to every other node. It bring to the system

Master Master

Slave Slave

Master

Slave

FIGURE 12 Master-Slave architecture

Master

1st level

2nd 2nd

1st level

2nd 2nd

FIGURE 13 Master-slave tree

31

increased fail-over solution. On the other hand every node being a master means reads

and writes are ought to be committed fast – high performance, expensive software is

required. In the end it will guarantee full speed, easy planning and installation as no

partitioning is needed and Load Balancing of the data would be done efficiently. [55]

[56]

Comparing all the architectures there is no correct answer from which is better as eve-

ry system has its advantages and drawbacks. SN is cheap to install but it takes time to

design and maintain. If it is done correctly SN would be a good solution and add high-

er availability to the system. SD would require more investments but easier to set up

and scale in the future. The choice for the system totally depends on personal prefer-

ence, system size and demands. [55] [56]

Example of how both types of architecture can used together can be shown effectively

in a case of unplanned downtime (connection is lost or server fails). Shared-nothing

would work in a master-slave architecture system which means it relies on a single

node failure. If it is a master which is down then a slave would take over and become

a master. For SD after a failover node the next node/server would take place, therefore

there would be no need for master-slave replica on the back nodes. Although, for the

improved security it can be wise to back-up the main storage itself as a master-master

replica. [55] [56]

4.2 Clusters in Database Solution

The previous chapter presented problems connected with low scale and performance

connected with relational database management system. When a DB grows in size and

more users get connection it becomes difficult to maintain and support. There are two

ways to solve the problem: scale up or scale out.

When scaling up or vertical scaling, large numbers of CPUs and RAM are added. But

capacity cannot be increased continuously. At first it makes system too massive, ex-

pensive and also every single machine has a limit for increasing capacity. A cloud

provider can be a solution, although in this case a company needs to think if it is se-

cure for personal data and records. Scaling up with relational technology. Shared eve-

rything architecture, bigger servers with more CPUs, more memory. As amount of

32

users can vary from 10 to 1000 so the prediction and building environment is risky –

“Too much and you’ve overspent; too little and users can have a bad experience or the

application can outright fail.” [44]

Distributed system is a way how data can be scaled horizontally or in other words

sharding. During sharding process all the nodes contain inside identical schemas for

each data block. This technique shows the best practice in a place where data does not

need to be provided in one set but can be delivered to the application or user separate-

ly. A smaller database is shown easier to handle, it is faster and can reduce costs com-

pared to vertical scaling technique. [57]

Both types of scaling gives a database an ability to scale and support more users and

data. Extending the useful scope of relational database – sharding, denormalizing,

distributed caching solves the first problem of relational database. As all of those ac-

tions deal with the problem but in time create another. Relational database cannot

support too many nodes on a cluster, moving between the nodes for a system means

bringing the operational status down. For a relational database it also does not assure

redundancy and availability of data. [54] [57]

4.3 Clusters Examples in Open Source Databases

MariaDB Galera Cluster is a synchronous multi-master fully free supported cluster

solution for MariaDB. Read and write can be operated by any node same as client can

connect to any node. MariaDB developers point that for better performance and node

recovery minimum 3 nodes in a cluster. Operations between nodes are load balanced.

Has a potential being setup on WAN scale to connect different data centers. [51]

MariaDB Replication cluster is an example for master-slave architecture. Master node

writes about every event occurred into the binary log, then slaves read the data from

each master so the data is replicated. In replication scenario nodes do not need to be in

a constant connection with each other. If a slave node for some reason lost communi-

cation after it reconnects all the data would be mirrored from the master node. [58]

While RDB were searching and creating different solutions how to move into the clus-

ter, making updates and changing structure, NoSQL are created from the very begin-

33

ning to work on a distributed system. They are easy to scale out, build to tolerate fail-

ures. When working with NoSQL does not matter how many nodes system has or will

have in the future - the application will always see system as a whole, single database.

Due to its structure NoSQL can support auto-sharding and work as fast on hundred

distributed servers. Auto-sharding means that the database spreads data across the

servers automatically without application knowing it. As a result data is handled with-

out application interruption and if a server goes down, it will be recovered from the

other node. If more servers are added (and NoSQL can work with virtual servers) the

data is spread and balanced into a larger cluster. [59]

MongoDB Replication is a solution which allows store synchronized data on multiple

servers. It is an example of master-slave cluster architecture. Replication in MongoDB

increases data availability and recover from hardware failure. As one of the servers

can be disaster recovery node, reporting or a backup node. [60]

MongoDB Sharding shows shared-nothing architecture in practice. Data is distributed

across shards by shard keys. Shard key is a specified field (index) which exists in eve-

ry document in a collection. Shard key values are divided into chunks (range group)

and then they are evenly spread across the shards. There are two ways how the shards

are grouped together: range based partitioning and hash based partitioning. In the

first type the numeric index shows to which chunk data belongs. For example for the

range of serial numbers some specified numeric sets will form a chunk (Figure 14).

[60]

FIGURE 14 Range Based Sharding [60]

For hash based partitioning MongoDB computes a hash value for every document and

then the chunks are creating using those values. In this type of partitioning unlike the

34

first one, document with neighboring key index will most likely not be in the same

chunk. Such logic ensures very random distribution across the servers.

In Chapter 7 shards usage reduces the load of a single server by distributing read and

write operations between each node. [60]

5 ENVIRONMENT OVERVIEW AND INITIAL CONFIGURATION

This part describe hands on testing cases for database types and clusters covered in the

theoretical part. On the testing scope in this part there are a relational MariaDB,

NoSQL solution MongoDB and their clustered replications. The goal of the chapter is

to build the databases and clusters, evaluate the installation process, weight each limi-

tations, advantages and if possible to test performance on a sample dataset.

As it was show in a table 2 all the software used is open-sourced and easily accessible

to download freely in the web. Every database chosen has full documentation, white

papers and command manuals in order to set ups systems correctly and us it. In this

mostly used official documentation provided by developer companies and tutorials

from independent developers as a base for the configurations bases. There is already a

number of software presented in the web with GUI for building and administrating

database clusters. However, in this work every configuration is made from a scratch,

without any third-party software in use.

Both databases and their clustered solutions are tested for performance on relatively

sizable scale data. Stress-test for multi-user access, running queries and transactions.

Big part of testing is to evaluate how databases would be able to react for rapid chang-

es and workload. For MariaDB and MongoDB I would like to get more into the clus-

tered solutions, evaluate implementation difficulties and their performance on man-

ageable scale.

Syntax for practical part:

#command and output used in terminal OS

>command used in database and sql files
Test inside of config files

//any other comment

35

5.1 OSA Project and Testing Environment

In the project the system is based on RedHat environment. It provides an interface to

deploy virtual machines and have remote access to them. In the system there are 3

virtual machines in the same LAN segment, no firewalls between the servers. The

project plans to use CentOS for database purposes. For the thesis testing purposes all

the installation have been done in a classroom lab on 3 PCs connected through LAN

network with a switch. Virtualization is done with VMware Player. Every VM is cre-

ated on separate PC, dual core, 2048MB RAM and 50GB disk, Bridged Interface

Network interface card which uses the host interface. On VMs Linux CentOS is run-

ning. Therefore, if other OS is used commands/installations may vary for every other

system/configuration. Such configurations are chosen in order to get the testing envi-

ronment to the real project as close as possible.

5.2 MariaDB Environment

MariaDB newest release 10.0.10 (claimed to be stable by MariaDB Foundation)

shown itself operating on singe machine in MariaDB server and MariaDB-client, and

Galera-cluster 10.0 even being in Alpha state seems operational already. Replication

and Galera are clustered solution for MariaDB database. Stress testing on MariaDB is

done with mysqlslap. It is a built-in diagnostic tool for testing the database perfor-

mance. Mysqlslap allows to perform an auto-generated sql queries or custom user

defined queries. In the configuration for mysqlslap it is also possible to define simul-

taneous number of users, number of queries and precision of every test. For MariaDB

testing data used is taken from MySQL AB, SAMPLE EMPLOYEE DATABASE.

The file is given as SQL script with .dump files. The database was creating for testing

purposes. It contains 300,000 employee records and 2.8 million salary entries. Which

makes the database heavy enough for testing. The database structure is presented in

APPENDIX Figure13.

Additional testing for MariaDB can be done with MySQL Testing Suite. It allows

over 4000 different tests for database performance, security and optimization check.

Additionally using Testing Suite Framework a user can create its own customized

tests for the database. Testing suite is installed in this thesis together with database.

The location of the environment is under /usr/share/mysql/mysql-test.

36

MongoDB is presented in this work with the latest release of 2.6 presented on April, 8

in 2014. “Key features include aggregation enhancements, text search integration,

query engine improvements, a new write operation protocol, and security enhance-

ments.” [Release Notes for MongoDB 2.6] For MongoDB system clustering is per-

formed with Replica and Sharding solutions. Testing for MongoDB is planned to be

done with mongoperf and mongo-perf tools.

Data is download from https://launchpad.net/test-db/employees-db-

1/1.0.6/+download/employees_db-full-1.0.6.tar.bz2 and untar employees_db-full-

1.0.6.tar.bz2 source to the needed location. In employees_db directory edit employ-

ees.sql file as follows:

Leave only “storage_engine=InnoDB” from the storage engines. For every .dump file

write the full PATH, as example:

SELECT 'LOADING departments' as 'INFO';

source /home/student/employees_db/load_departments.dump ;

Create database in MariaDB:

>CREATE DATABASE employees;

In shell locate and import the data file:

#mysql –u root employees < employees.sql

5.3 MongoDB Environment

As MongoDB is a totally different architecture database the same data set cannot be

used for all the cases. For this reason a new data is taken in json format from Mon-

goDB sample data, named zips. The sample data contains City name, longitude and

latitude, state and zipcode. Full data set is 29470 objects. Into mongo the object are

imported with mongoimport.

#mongoimport –d thesisdb –c zips - -type json - -file

/home/student/zips.json

37

For MongoDB there exist mongoperf built-in package. Although it is designed as

MongoDB performance testing tool for now it cannot be used on mongod (database)

or mongos (shards), only for system disk performance. In future developers are an-

nouncing to add support for testing the database itself.

There are other development testing tools in Mongo suit. For example, there are vari-

ous different test available as part of smoke.py. While the idea and description of tests

seems helpful in database performance evaluation, the suit does not fit into the re-

quired system. The main driver for every suite is Pymongo, which is run with specific

python, both of which are not included with CentOS and require the installation. Alt-

hough with the correct python installation location for the suits is not found for this

MongoDB installations.

5.4 Cluster Nodes Configuration

Pre-configuration: For cluster configurations every node need to have communica-

tion between each other, without any security or firewall setting in the way. Therefore,

hosts has to be configured for networking and in case of problem with connection be-

tween nodes security is shut down.

Firewall: for testing purposes it is better to turn off all the firewalls so it will not cre-

ate interference.

#service iptables stop chkconfig iptables off

Security-Enhanced Linux: Linux kernel security module provides high process con-

trol security and it restricts database engines. As this work is not concentrated on se-

curity SELinus is disabled here.

#nano /etc/sysconfig/selinux

SELINUX=disabled

#setenforce 0

Hosts: in this work ip configurations are static and are same for every node configura-

tion.

38

#nano /etc/hosts

200.100.1.30 node1 //always here the main/master node

200.100.1.20 node2

200.100.1.10 node3

6 CLUSTER BUIDING AND PERFORMANCE TESTS

For every cluster built in this practical work the working structure is the same. At first

the installation of the machine cluster is documented through step by step with notes

and explanations. Loading of data is skipped as it is already guided in part 5

PRACTICAL PART. Next, stress and performance testing is done in different envi-

ronments (where it is possible) for MariaDB and MongoDB. System backup, failover,

recovery is performed/explained in the end of each testing part.

6.1 Single Server MariaDB

MariaDB is a case of relational database. Its source is based on MySQL, which makes

those two databases very close in structure and processing. SQL queries for both data-

bases can be adopted to each other. Therefore if a user is familiar with MySQL then

MariaDB will not bring difficulties.

Installation: For MariaDB single server it is very straight forward. Depending on the

operating system repo script for yum installation can be found from

https://downloads.mariadb.org/mariadb/repositories/#mirror=netinch. The commands

to place it in right directory looks like this:

#nano /etc/yum.repos.d/MariaDB.repo

The command will create MariaDB.repo and open, where the repo can be placed

inside:

MariaDB 10.0 CentOS repository list - created 2014-04-09 12:42 UTC

http://mariadb.org/mariadb/repositories/

[mariadb]

name = MariaDB

baseurl = http://yum.mariadb.org/10.0/centos6-amd64

gpgkey=https://yum.mariadb.org/RPM-GPG-KEY-MariaDB

gpgcheck=1

Next is installation with yum:

http://mariadb.org/mariadb/repositories/
http://yum.mariadb.org/10.0/centos6-amd64
https://yum.mariadb.org/RPM-GPG-KEY-MariaDB

39

#sudo yum install MariaDB-server MariaDB-client MariaDB-test

NOTE! If there is a conflict during the installation with mysql then all the compo-

nents of mysql server need to be removed.

#yum remove mysql-server mysql-libs mysql-devel mysql*

About my.cnf file. More ready-made cnf templates can be found in location

/usr/share/mysql/. There are 5 different configurations. For all the installations in this

work I have been using my-huge.cnf (full my-huge.cnf can be found in APPENDIX).

For every installation I have replaced it into the /etc directory with name my.cnf.

After the package is installed and the configuration is ready to run the database server:

#sudo /etc/init.d/mysql start

or

#service mysql start

This work is not focused on running a secure server therefore the login into database

can be done with root user without password or any additional settings for one server.

#mysql –u root

Running tests: As soon as queries are loaded testing can start. As it was pointed out

earlier the tool used for testing is mysqlslap. Commands are entered from shell with

identified parameters.

/usr/bin/mysqlslap --user=root --auto-generate-sql --

concurrency=100 --iterations=20 --number-of-queries=100

 Average number of seconds to run all queries: 0.075 seconds

 Minimum number of seconds to run all queries: 0.048 seconds

 Maximum number of seconds to run all queries: 0.174 seconds

 Number of clients running queries: 100

 Average number of queries per client: 1

/usr/bin/mysqlslap --user=root --auto-generate-sql --

concurrency=100 --iterations=20 --number-of-queries=5000

 Average number of seconds to run all queries: 1.965 seconds

 Minimum number of seconds to run all queries: 1.854 seconds

 Maximum number of seconds to run all queries: 2.115 seconds

 Number of clients running queries: 100

 Average number of queries per client: 50

For running test1 query (APPENDIX) on Employees database:

40

[root@localhost employees_db]# /usr/bin/mysqlslap --user=root --

query=/home/student/test1.sql --concurrency=100 --iterations=20 --

number-of-queries=5000 --create-schema=employees

 Average number of seconds to run all queries: 2.078 seconds

 Minimum number of seconds to run all queries: 1.988 seconds

 Maximum number of seconds to run all queries: 2.554 seconds

 Number of clients running queries: 100

 Average number of queries per client: 50

[root@localhost employees_db]# /usr/bin/mysqlslap --user=root --

query=/home/student/test1.sql --concurrency=1000 --iterations=5 --

number-of-queries=100000 --create-schema=employees

 Average number of seconds to run all queries: 2.120 seconds

 Minimum number of seconds to run all queries: 2.097 seconds

 Maximum number of seconds to run all queries: 2.194 seconds

 Number of clients running queries: 1000

 Average number of queries per client: 100

For the write operation I have chosen the queries for the longest table salaries by add-

ing an additional column and populating it with data from employees table:

>ALTER TABLE salaries ADD name varchar(14);

Query OK, 0 rows affected (24.70 sec)

>UPDATE salaries JOIN employees ON (salaries.emp_no = employees.emp_no) SET sala-

ries.name = employees.first_name;

Query OK, 2844047 rows affected (1 min 11.07 sec)

Rows matched: 2844047 Changed: 2844047 Warnings: 0

For a single server failover and backup is highly irrelevant as data is contained on one

machine. Therefore, in case of disaster, break-in or “drop table” command all the con-

figurations and data are lost.

Result: If no complication appears the installation is straight forward. Errors can

come from errors in depositories or previously installed packages. Configuration is

minimum as only one server is required however with a growth of users and data the

performance gets low. There is no backup or disaster recovery procedure with a single

node.

41

6.2 Single Server MongoDB

Installation for MongoDB is very straight forward. Everything is followed by the tuto-

rial from MongoDB. The procedure resembles the installation of MariaDB (or any

“Red Hat” like installation):

Create repo #nano/etc/yum.repos.d/mongodb.repo

[mongodb]

name=MongoDB Repository

baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/x86_64/

gpgcheck=0

enabled=1

#sudo yum install mongodb-org

Running tests: Performance and stress testing run into complication due to underde-

velopment of mongoperf.

Result: The installation is easy and along multiple installations there have been no

complications for single MongoDB server. For the backup and recovery the result is

same like in MariaDB case, as the system is formed by a single node.

6.3 Replication Cluster MariaDB

In order to build the replication cluster in MariaDB configurations from 5.1 a) on 3

servers except are done for each node. The data is imported only into master node.

The cluster topology is presented in Figure 13. The replication is done with 3 nodes:

FIGURE 15 MariaDB Replication Topology

Master

Slave1 Slave2

42

one is Master and two others are Slaves. This type of clustering is expected to get

higher read performance, compared to single server, with balancing the queries be-

tween nodes when master node gets overloaded. In replication cluster of MariaDB

slaves can be synchronous or asynchronous.

For Replication cluster in MariaDB main connection idea is that the nodes get the data

from the binary log. In order for the cluster to function the master server is needed to

be configured first. In the config file my.cnf these lines are changed:

bind-address=200.100.1.30 //ip of the master node binder to the working machine

server-id=1 //this configuration is already in place, make sure the id number for each

node is unique

Log-bin =/var/lib/mysql/mysql-bin.log //the exact path for MariaDB binary log

files

binlog_do_db=employees //name of the database to be replicated, can be multiple at

the same time

MariaDB server is restarted from database shell grant privileges to the replication user

can be assigned:

>GRANT REPLICATION SLAVE ON *.* TO ‘slave_user’@’%’ IDENTIFIED BY ‘psw’; //so

slave nodes in replication set can access the database as replication users

>FLUSH PRIVILEGES; //used in order the privilege settings got in effect

. - revokes Global privileges so nodes can be added into the cluster

Next step is to distribute all the data to the slaves so they would become identical to

master. On master node the table to be shared is locked and a fixed location for the

master status is recorded, for the later slave replication.

>FLUSH TABLES WITH DEAD LOCK;

>SHOW MASTER STATUS;

43

+-----------------------+------------+--------------------+------------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+-----------------------+------------+--------------------+------------------------+

| mysql-bin.000005 | 1863 | employees | |

+-----------------------+-------------+-------------------+------------------------+

Next step is to get a snapshot of the master database. This command has to be done in

new terminal window so the position will stay locked:

#mysqldump –u root –opt employees > employees.sql

Dump file can be found from the directory terminal. After the file is ready on master

database tabled can be released:

>UNLOCK TABLES;

For now master configuration is ready and slaves can be configured. For each slave on

MariaDB servers database is created and the dump file loaded:

>CREATE DATABASE employees;

mysql -u root employees < PATH/employees.sql

Once the data is imported my.cnf can be changed. For every slave a unique id is need-

ed and log location pointed:

Server-id=3

Relay-log=/var/lib/mysql/mysql-replay-bin.log

Log_bin=/var/lib/mysql/mysql-bin.log

Binlog_do_db=employees

To apply the configurations slave servers are restarted. Master-server information in

MariaDB shell for slaves:

>CHANGE MASTER TO

 MASTER_HOST='200.100.1.30',

 MASTER_USER='slave_user', //replication user name

 MASTER_PASSWORD='psw'

44

 MASTER_PORT=3306, //default port is 3306, change if another port is in use

 MASTER_LOG_FILE='mysql-bin.000005',

 MASTER_LOG_POS=1863;

With this command slave server knows the location/address of the master node, gets

the correct login credentials and tells the server where to start the replication from

binary log.

Now each slave can be started:

>START SLAVE;

Slave status can be seen with command:

>SHOW SLAVE STATUS\G;

Slave_IO_State: Waiting for master to send event //the connection is set but binaries currently

are not transmitted

Master_Host: 200.100.1.30

Master_User: slave_user

Master_Port: 3306

Connect_Retry: 60

Master_Log_File: mysql-bin.000006

Read_Master_Log_Pos: 326

Relay_Log_File: mysql-relay-bin.000003

Relay_Log_Pos: 613

Relay_Master_Log_File: mysql-bin.000006

Slave_IO_Running: Yes

Slave_SQL_Running: Yes

…

On Master node slaves stats can be checked with command:

>SHOW SLAVE HOSTS;

+-----------+------+--------+--------------+

| Server_id | Host | Port | Master_id |

+-----------+------+---------+-------------+

| 3 | | 3306 | 1 |

| 8 | | 3306 | 1 |

+-----------+------+-------+---------------+

45

Running tests:

Tests for write operations are performed in the same order as for singe server.

/usr/bin/mysqlslap --user=root --auto-generate-sql --

concurrency=100 --iterations=20 --number-of-queries=100

 Average number of seconds to run all queries: 0.054 seconds

 Minimum number of seconds to run all queries: 0.041 seconds

 Maximum number of seconds to run all queries: 0.083 seconds

 Number of clients running queries: 100

 Average number of queries per client: 1

/usr/bin/mysqlslap --user=root --auto-generate-sql --

concurrency=100 --iterations=20 --number-of-queries=5000

 Average number of seconds to run all queries: 1.955 seconds

 Minimum number of seconds to run all queries: 1.831 seconds

 Maximum number of seconds to run all queries: 2.294 seconds

 Number of clients running queries: 100

 Average number of queries per client: 50

/usr/bin/mysqlslap --user=root -- query=/home/student/test1.sql --

concurrency=100 --iterations=20 --number-of-queries=5000 --create-

schema=employees

 Average number of seconds to run all queries: 2.007 seconds

 Minimum number of seconds to run all queries: 1.998 seconds

 Maximum number of seconds to run all queries: 2.653 seconds

 Number of clients running queries: 100

 Average number of queries per client: 50

/usr/bin/mysqlslap --user=root --query=/home/student/test1.sql --

concurrency=1000 --iterations=5 --number-of-queries=100000 --create-

schema=employees

 Average number of seconds to run all queries: 2.025 seconds

 Minimum number of seconds to run all queries: 2.012 seconds

 Maximum number of seconds to run all queries: 2.047 seconds

 Number of clients running queries: 1000

 Average number of queries per client: 100

Write operation has shown exactly the same stats as one server case, as only Master

can perform write operations, so the queries cannot be balanced. What is peculiar

here, that after the change is done, the command is committed on Master it automati-

cally passes the binary log to the slaves and the same changes can be seen from the

slave nodes.

Failover testing: For every additional node added into the cluster the process goes the

same ways in building the cluster. If a slave node goes down, in order to recover it the

process goes the same as adding new node into the cluster. It the master node goes

down it can be recovered from one of the slave nodes in a condition that the node con-

46

tains the newest version of data. After the databases are loaded into the master node

the whole replication process starts from the beginning.

Even though a replication cluster is viewed by many users as a backup solution only

replication is not enough to provide a behavior a stable backup node. If a regular slave

node in a system is considered to be as a backup it cannot stay connected to the cluster

the whole time. As in that case any accident drop table or database query can damage

the data on every slave depending on one master node. Therefore, the replication sce-

nario is to create synchronizing schedule and keep the backup node offline in regular

usage.

Result: Each machine installation is easy, linking them together is more challenge.

Some difficulties can come from networking issues, firewalls or security systems.

Additionally is it very important to make the configurations in my.conf correctly, for

example bind address and replication name. Database migrations are manual therefore

set up is needed for each database. In order to keep the cluster operational changes and

logs have to check on regular bases therefore routine maintenance and support are

required. Later when the databases become too big it might take time for synchroniza-

tion on startup and when new nodes are added. Cluster does not affect write opera-

tions but it performs well in term of Replication set and read operations. Recovery

option is tricky in case of the master node failover and, additionally, only replication

is not enough for fully reliable system.

6.4 Galera Cluster MariaDB

As Galera cluster is Master-Master performance increase is expected. Write and read

operations can be done form any node. The topology of the installation is three equal

master nodes connected together.

Installation: According to official MariaDB page for Galera cluster installation is the

same as for single MariaDB-server as the Galera package is included into the reposito-

ry. The yum command only is needed to be changed:

#sudo yum install MariaDB-Galera-server galera MariaDB-client Mari-

aDB-test setroubleshoot

47

However, during this work the package was not presented in the repository and gave

the notification ‘No package available MariaDB-Galera’. In this case other packag-

es are to be downloaded still such as MariaDB-client, galera and others.

In this scenario the download and installation of MariaDB-Galera should be done

manually with rpm download. Source for the package -

http://mirror.netinch.com/pub/mariadb/mariadb-10.0.8/yum/centos6-amd64/rpms/.

Name for the package “MariaDB-Galera-10.0.7-centos6-x86_64-server.rpm”. The

file is downloaded it and installed with terminal. To install rpm:

#rpm –Uvh MariaDB-Galera-10.0.7-centos6-x86_64-server.rpm

Then the operation is repeated for every machine is added into the cluster and start the

server. If /etc/init.d/mysql ‘*)’ problem comment the line 429 in the file script. If a

SELinux prompt an error #setenforce 0 command fixes it. If SELinux (appears as

ERROR! The server quit without updating the file..) is needed to be on restart CentOS

then run MariaDB and setroubleshooot (was installed with yum package) will report 3

errors. In every error report Details there are commands which needed to run to

allow MariaDB access.

For the first master configurations here we need to set user and the password. Any

additional user can be created but in this work all the configurations are done with

root user:

>GRANT ALL ON *.* TO ‘root’@’localhost’ IDENTIFIED BY ‘psw’ WITH GRANT OPTION;

>GRANT ALL ON *.* TO ‘root’@’%’ IDENTIFIED BY ‘psw’ WITH GRANT OPTION;

>FLUSH PRIVILEGES;

Next, firewall network ports have to be opened. SQL server firewall adjustments:

#system-config-firewall-tui

Ports 3306, 4567 and 4444 must be enabled with tcp for MariaDB cluster. Theoreti-

cally, this option should be enough but seems that Galera uses another ports as until

all firewall settings are disabled. It is not the smartest solution but this subject can be

used by further research. Therefore all the firewalls are needed to be turned off.

48

Galera Cluster ports:

3306 – Mysql client connections

4567 Galera Cluster replication traffic

4568 – Incremental State Transfer

4444 – all SSTs, Full State Transfer, used wsrep

Next configurations need to be done in my.cnf file (path /etc/my.cnf). Configurations

for node1, main (configurations different from my-huge.cnf):

[mysqld]

bind-address=0.0.0.0

socket=/var/lib/mysql/mysql.sock

query_cache_size=0

binlog_format=ROW

default_storage_engine=innodb

innodb_autoinc_lock_mode=2

datadir=/var/lib/mysql

wsrep_provider=/usr/lib64/galera/libgalera_smm.so //default galera

files

wsrep_provider_options="gcache.size=32G; gcache.page_siz=1G"

wsrep_cluster_address=gcomm://200.100.1.30 //cluster location address

wsrep_cluster_name='magatest' //name of the cluster

wsrep_node_address='200.100.1.30'

wsrep_node_name='node1'

wsrep_sst_method=rsync

wsrep_sst_auth=root:psw

For the second and other nodes the configurations are the same except for the node

address and node name should specified for that node. Note!

wsrep_cluster_address stays the same as that is the address for the cluster itself,

so the nodes know where to connect. Cluster name has to be same on every node, or

the configuration is failed.

After all the configurations are done the cluster can be started. Before that making

sure that mysql server is not running:

#service mysql stop

On the first node command is run in order to start creating a cluster:

#mysqld --wsrep_new_cluster --user=mysql

49

This command will tell the node that it is the main one, create a new cluster and uses

the logging data from mysql server. After other outputs and configuration process if

all the configurations are done right the first node should show this:

mysqld: ready for connections.

Version: '10.0.7-MariaDB-wsrep’ socket: '/var/lib/mysql/mysql.sock’

port: 3306 MariaDB Server, wsrep_25.9.r3928

On the next and every other node in a cluster connection is also opened, cluster ad-

dress is pointed with user credentials:

#mysqld --wsrep_cluster_address=gcomm://200.100.1.30 --user=mysql

After the command execution the connection between nodes is established and they

are ready to communicate. In order to check the connection table modifications can be

made and then they will be seen on the other nodes.

The terminal windows should stay open and for the access to the database new termi-

nal window should be opened. Galera cluster status can be viewed from any node. As

soon as something changes in the cluster the updated configurations are seen.

WSREP: Quorum results:

version = 3,

component = PRIMARY, //master-master replication every node is primary

conf_id = 13,

members = 3/3 (joined/total),

act_id = 238264,

last_appl. = 0,

protocols = 0/5/2 (gcs/repl/appl),

group UUID = 3511cbf1-c3c7-11e3-ab44-e757256286d8

For my.cnf file a lot more options can be defined for security, better data transfer and

more complex networking.

Loading data: Although in the cluster there are 3 nodes, the database is loaded only

on one node and while it is loading it is also parallel distributed to other nodes. For the

future data grow data can loaded from any node in the system and other members syn-

chronize it.

50

Running tests:

/usr/bin/mysqlslap --user=root -p --auto-generate-sql --

concurrency=100 --iterations=20 --number-of-queries=100

 Average number of seconds to run all queries: 2.102 seconds

 Minimum number of seconds to run all queries: 2.000 seconds

 Maximum number of seconds to run all queries: 2.390 seconds

 Number of clients running queries: 100

 Average number of queries per client: 1

/usr/bin/mysqlslap --user=root -p --auto-generate-sql --

concurrency=100 --iterations=20 --number-of-queries=5000

 Average number of seconds to run all queries: 13.593 seconds

 Minimum number of seconds to run all queries: 13.086 seconds

 Maximum number of seconds to run all queries: 14.103 seconds

 Number of clients running queries: 100

 Average number of queries per client: 50

For the next tests the execution time took too long and the query had to be stopped.

Such performance can be explained from the nature of the database. As SQL database

originally was not created for distributed data even new suite in Galera form is not

enough to provide full distributed performance. The system is built presents itself as

three equal communicating nodes – there is no master as in previous replication.

Which means due to the structure all the nodes are overloaded and trying to split the

data across for better performance but none of them can split the data into correct sets,

so they communicate blindly. In order to fix the problem an external load balancer is

needed for the system. Galera Cluster used to have a separate load balancer - Galera

Load Balancer (at the moment it is missing for download neither in the depository).

Failover testing: Apart from mysqlslap testing for the cluster it is possible to test its

architecture reliability. All the nodes have been disconnected and then put together, it

takes less than couple of seconds to bring them back into the cluster. The same situa-

tion if one node gets disconnected form the cluster (except for the main node) after

establishing the connection back it will be synchronized with the cluster changing

state from JOINER to JOINED and then SYNCED. |Note! If data on the cluster is

massive it can take a while| If the main primary node gets disconnected the cluster still

stays operational. However if and when the cluster is restarted the main node is need-

ed to be configured again as if the cluster is just being built. In my.cnf it is possible to

set parameters so every server will be connecting automatically into the cluster as

soon as it is turned on.

51

Result: As Galera cluster continues update and development the latest versions can be

unstable and have problems with repositories and newest versions. During installation

complications can appear form the configurations – wsrep options, user access, ad-

dressing and firewall. Only cluster installation and operations are not enough to bring

the system to function with all the benefits of a cluster. Only with additional load bal-

ancer write and read operations can be balanced across the nodes for better perfor-

mance. If two nodes trying to commit changes for the same database the cluster will

prevent the data conflict and set a deadlock for the table. However, if query is being

executed from two or more nodes simultaneously and perform with different data-

bases, performance increases and deadlock will not occur. Nodes are managed auto-

matically, so if server drops it is deleted from members list. When new databases or

tables are added to one server the data is automatically copied to other nodes in a clus-

ter.

Galera architecture holds a very promising WAN scale system potential. Plus, when

the system grows every master node could hold its own slave replication with its every

benefit such as local read performance and backup.

6.5 Replication Cluster MongoDB

For building a cluster in MongoDB there is no need to download any additional pack-

age as everything is inside of the basic installation package. For NoSQL developers it

is essential to assume that the database is going to be used on multiple machines. Min-

imum number of nodes is 3 - 1 is primary and 2 others are secondaries. Topology fol-

lows MariaDB replication Figure 13. Primary node is the only node to accept write

operations, after the changes are recorded into the oplog. Secondary nodes get repli-

cates of the log and apply the changes in their own datasets, additionally only accept

external read operations.

Installation: Before configuring MongoDB or starting the server configurations are

modified in Operating System for SElinux and firewall. |Note! MongoDB supports

hosts names (Local or DNS)|. In order for every node to work MongoDB server needs

to be installed on every machine. For replication MongoDB uses mongod package

which stores files in different location from mongo. The storage has to be created

manually on each node:

52

#mkdir /data/db

#chmod 777 /data/db

Next step is to change configuration file for every node. The file can be found in

/etc/mongod.conf. Initial configuration can be found in APPENDIX. In configuration

file sets for various replica configuration:

port=27017 //can be manually specified port

bind_ip=127.0.0.1 // comment the line for the interface listens to other ports

replSet=rs0 //sets the replication name – has to be identical for every node

Same configuration is done for each node.

Try mongod --replSet "rs0" // possibly, does not work

Next command starts mongod with forced configuration and points out to the replica-

tion name:

[root@node1 /]# mongod --config /etc/mongod.conf

about to fork child process, waiting until server is ready for con-

nections.

forked process: 25405

child process started successfully, parent exiting

With this the command mongo service is started and now it is listening for incoming

connections.

Next step is to connect to mongo

[root@node1 /]# mongo

MongoDB shell version: 2.6.0

connecting to: test

Welcome to the MongoDB shell.

For interactive help, type "help".

For more comprehensive documentation, see

 http://docs.mongodb.org/

Questions? Try the support group

 http://groups.google.com/group/mongodb-user

As node1 is a primary node it is the first to start replica initiation. With rs.initiate()

command replica configurations built locally and the node becomes primary.

53

> rs.initiate()

{

 "info2" : "no configuration explicitly specified -- making

one",

 "me" : "node1:27017",

 "info" : "Config now saved locally. Should come online in

about a minute.",

 "ok" : 1

}

With rs.config() configuration status for the cluster can be viewed. For now it holds

only one host.

> rs.config()

{

 "_id" : "rs0",

 "version" : 1,

 "members" : [

 {

 "_id" : 0,

 "host" : "node1:27017"

 }

]

}

In order to add other members into the cluster mongod should be started with new

configurations holding replica name:

[root@node3 /]# mongod --config /etc/mongod.conf

about to fork child process, waiting until server is ready for con-

nections.

forked process: 2695

child process started successfully, parent exiting

When the hosts are ready for connection on the main node from Mongo shell each

cluster member can be added using host names:

rs0:PRIMARY> rs.add("node2")

{ "ok" : 1 }

rs0:PRIMARY> rs.add("node3")

{ "ok" : 1 }

For monitoring cluster activity rs.status() command can be issued for nodes id, node

and cluster states, uptime and cluster updates timing.

54

rs0:PRIMARY> rs.status()

{

 "set" : "rs0",

 "date" : ISODate("2014-04-23T14:31:32Z"),

 "myState" : 1,

 "members" : [

 {

 "_id" : 0,

 "name" : "node1:27017",

 "health" : 1,

 "state" : 1,

 "stateStr" : "PRIMARY",

 "uptime" : 179,

 "optime" : Timestamp(1398263485, 1),

 "optimeDate" : ISODate("2014-04-23T14:31:25Z"),

 "electionTime" : Timestamp(1398263344, 2),

 "electionDate" : ISODate("2014-04-

23T14:29:04Z"),

 "self" : true

 },

 {

 "_id" : 1,

 "name" : "node2:27017",

 "health" : 1,

 "state" : 5,

 "stateStr" : "STARTUP2",

 "uptime" : 14,

 "optime" : Timestamp(0, 0),

 "optimeDate" : ISODate("1970-01-01T00:00:00Z"),

 "lastHeartbeat" : ISODate("2014-04-

23T14:31:32Z"),

 "lastHeartbeatRecv" : ISODate("2014-04-

23T14:31:31Z"),

 "pingMs" : 0,

 "lastHeartbeatMessage" : "initial sync need a

member to be primary or secondary to do our initial sync"

 },

 {

 "_id" : 2,

 "name" : "node3:27017",

 "health" : 1,

 "state" : 5,

 "stateStr" : "STARTUP2",

 "uptime" : 7,

 "optime" : Timestamp(0, 0),

 "optimeDate" : ISODate("1970-01-01T00:00:00Z"),

 "lastHeartbeat" : ISODate("2014-04-

23T14:31:31Z"),

 "lastHeartbeatRecv" : ISODate("2014-04-

23T14:31:31Z"),

 "pingMs" : 0,

 "lastHeartbeatMessage" : "initial sync need a

member to be primary or secondary to do our initial sync"

 }

],

 "ok" : 1

}

After a while later the heartbeat message will be sent over to the STARTUP nodes and

they will change the configurations to SECONDARY. When refreshing the rs.config()

55

rs0:PRIMARY> rs.status()

{

 "set" : "rs0",

 "date" : ISODate("2014-04-23T14:42:44Z"),

 "myState" : 1,

 "members" : [

 {

 "_id" : 0,

 "name" : "node1:27017",

 "health" : 1,

 "state" : 1,

 "stateStr" : "PRIMARY",

 "uptime" : 851,

 "optime" : Timestamp(1398263485, 1),

 "optimeDate" : ISODate("2014-04-23T14:31:25Z"),

 "electionTime" : Timestamp(1398263344, 2),

 "electionDate" : ISODate("2014-04-

23T14:29:04Z"),

 "self" : true

 },

 {

 "_id" : 1,

 "name" : "node2:27017",

 "health" : 1,

 "state" : 2,

 "stateStr" : "SECONDARY",

 "uptime" : 686,

 "optime" : Timestamp(1398263485, 1),

 "optimeDate" : ISODate("2014-04-23T14:31:25Z"),

 "lastHeartbeat" : ISODate("2014-04-

23T14:42:43Z"),

 "lastHeartbeatRecv" : ISODate("2014-04-

23T14:42:42Z"),

 "pingMs" : 0,

 "syncingTo" : "node1:27017"

 },

 {

 "_id" : 2,

 "name" : "node3:27017",

 "health" : 1,

 "state" : 2,

 "stateStr" : "SECONDARY",

 "uptime" : 679,

 "optime" : Timestamp(1398263485, 1),

 "optimeDate" : ISODate("2014-04-23T14:31:25Z"),

 "lastHeartbeat" : ISODate("2014-04-

23T14:42:44Z"),

 "lastHeartbeatRecv" : ISODate("2014-04-

23T14:42:42Z"),

 "pingMs" : 0,

 "syncingTo" : "node1:27017"

 }

],

 "ok" : 1

}

Failover: In Mongo Replica Set Secondary nodes are not only the one which repli-

cates data but also in case of primary node failure they elect new primary node, ac-

cording to data/update state, location or priority. Arbiter node however is another type

56

of node which does not hold the data but play a role in case of new primary node elec-

tion but cannot become primary. BackUp node holds the data and can be a part of the

election process but will never become primary. As in the architecture map the Back-

Up node is in a hidden state. There can be up to 12 members in a Replica Set.

Result: Installation of the cluster is very logically built, failover and backup solutions

provide high reliability, secondary nodes can increase read capacity as they have an

ability to send read and write operations to other nodes. Additional nodes can be con-

figured easily, failover process is automatic. Replica Set has a possibility to be geo-

graphically distributed for providing fault tolerance if one of the datacenters is not

available. For such architecture a secondary node with priority 0 which cannot be-

come primary is installed in different data center form original data. Thus the data can

be fully recovered from even if the whole data center falls down.

6.6 Sharding Cluster MongoDB

Sharding allows to store data across multiple nodes. For correct and successful con-

figuration each Sharding cluster must have 3 different types of nodes:

Shard nodes store the data. For the production environment best performance each

shard is a separate replica set.

Query Routers run mongos instance. It is a link between client and appropriate

shards. In a sharded cluster there can be more than one query router. Mongos instance

does not need much resources therefore can be run together with mongod instance on

the same machine.

Config Servers contain cluster’s metadata. It is used to target operations to the correct

shard. In a production there has to be three config servers.

Sharding Cluster topology is presented in Figure 14. The figure is taken form Mon-

goDB Sharding tutorial.

57

Figure 16 Sharding MongoDB

Installation:

Nodes has to be able to communicate with each other. Therefore firewall, selinux and

hosts configurations are needed. MongoDB server is installed on each machine. After

the installation file on each machine in mongod.conf comment out bind_ip so the

servers listen to all interfaces. First one to configure is Config Server (node 1). There

should should be 3 Servers per cluster but in this work for testing purposes only one is

used (in a smaller development for mongo servers multiple instances can be run from

the same machine). The directory with permissions is created for Server instance.

#mkdir /data/ins1

#chmod 777 /data/ins1

This command will start server instance for the selected location, on a required port.

#mongod - -configsvr - -dbpath /data/ins1 - -port 27023

After the server started running the configurations are ready and the Server is waiting

for connections. Next to add to the cluster are Mongos instances (Router) node2. In

order to run correctly Router node has to get connection and path for the Config Serv-

er. There can be more than one router in a cluster – the installation procedure is the

same.

58

#Mongos - -configdb node1 (if there are 3 config Servers then for each starting

mongos they have to be listed in the same order).

At last adding Shards From node3

[root@node3 ~]# mongo --host node2 --port 27017

MongoDB shell version: 2.6.0

connecting to: node2:27017/test

At this moment node3 is the master shard – place where the configuration is starting.

When issuing status command we can see that there is no shards yet added.

mongos> sh.status()

--- Sharding Status ---

 sharding version: {

 "_id" : 1,

 "version" : 4,

 "minCompatibleVersion" : 4,

 "currentVersion" : 5,

 "clusterId" : ObjectId("5358d65ac0cfed7b558f3396")

}

 shards:

 databases:

 { "_id" : "admin", "partitioned" : false, "primary"

: "config" }

In order to add shards on each shard the router needs to be identify to open the con-

nection:

mongo --host node2 --port 27017

After that on the main shard new members can be added. In this work node2 is added

as a shard to test how it can be running along with router. For that configuration is

modified in mongod.conf file for the port line. As in mongos 27017 port is taken, I

changed for mongod port 27018.

Shards are added from the first shard node (in this case node3), it is important to iden-

tify the ports if they are different:

59

mongos> sh.addShard("node2:27018")

{ "shardAdded" : "shard0000", "ok" : 1 }

For this testing I have additionally added VM number 4 with a host name noden for

more sharded connections.

mongos> sh.addShard("noden")

{ "shardAdded" : "shard0001", "ok" : 1 }

After shards are added successfully status shows us different update.

mongos> sh.status()

--- Sharding Status ---

 sharding version: {

 "_id" : 1,

 "version" : 4,

 "minCompatibleVersion" : 4,

 "currentVersion" : 5,

 "clusterId" : ObjectId("5358d65ac0cfed7b558f3396")

}

 shards:

 { "_id" : "shard0000", "host" : "node2:27018" }

 { "_id" : "shard0001", "host" : "noden:27017" }

 databases:

 { "_id" : "admin", "partitioned" : false, "primary"

: "config" }

After the shard cluster is build and totally functional data is need to be loaded and

allowed to be sharded in the cluster. This will allow to distribute the collection across

the shards, with specified key parameter. Shard key will be used to from the chunks.

{ shardCollection: "<database>.<collection>", key: <shardkey> }

Chunk control and balancing data and chunk migrations run in the background of

sharded cluster. When a chunk size exeedes the maximum it is split and if needed mi-

grated. [http://docs.mongodb.org/manual/core/sharding-introduction/]

60

Result: Installation of sharded cluster is complicated because of the nodes roles and

cluster structure. As a single server load is distributed across the shards it allows high

throughput applications better performance. If the system is geographically dependent

each shard can be specified for the location. Although the cluster does not allow back-

up by itself but if each shard uses a Replica Set instead of single server the system

becomes reliable and high available.

61

7 CONCLUSIONS

This chapter concludes all the result which was found out during the thesis work. The

aim of the study was to get familiar with database cluster solutions, find out different

options and give recommendations for OSA project.

Clustered databases can help to overcome a number of limitations of a single server.

As it was explained in chapters 2, 3 and 4 clustered solution together with NoSQL

movement are a logical step into the database development. Together they can solve

the problems of performance, reliability and availability compared to the relational

model. During this work four different clusters have been built and from the testing it

can be viewed that clustered solutions make difference in data organization. Each of

them carries on different architecture, requirements and purposes. For a small compa-

ny a single replication is enough so it achieves backup function and load balancing for

read operations. For another company it would be efficient not only to balance the

read but also write operations. And the third company wants to achieve concurrency

on a WAN level.

Not every goal of the research was achieved. As the database behavior depends and

varies a lot on a number of configurations there was no possibility to carry out full

statistical dependencies and analysis. As for OSA project there is no concrete solution

can be given of which cluster is the best to build as their project is a unique case.

From the archive point of view the best system would be if a user can upload any type

of data inside of the archive without limitations, after the upload the processed data

would be structured and contained with a help of relational model based storage.

Along the research it was found out that such a solution is being developed and shown

an operational potential with CassandraSE.

This thesis presents clustered database example implementations and clustered logic

references for the future and current state of the OSA project. As the project not only

focuses on performance but also reliability and backup solutions replication clusters

are able to fulfill the project requirements. In the future as the data store and users

pool grows it could be helpful to implement Galera and Sharded clustes. In addition,

replication or Galera can bring advantages into the system with coexistence with Cas-

sandraSE.

62

CassandraSE and Neo4j were originally planned to be tested in this work but I have

found them difficult to implement for current environment stage. CassandraSE, as it

was mentioned in the newest release MariaDB 10.0.10, gives the user a possibility to

connect relational and non-relational (column) systems. As the developers assign it is

a window from SQL into NoSQL. While conducting the research I have found some

successful stories about Cassandra and MariaDB implementation but mostly only for

testing. From what I have read most people are using Ubuntu as OS and also conduct-

ing the installations by using third party tools such as Vargant. Example of such in-

stallation can be found in Julien Duponchelle blog [61]

Neo4j is another type of the database with graph structure for which no testing project

data have been found. As a NoSQL database Neo4j operates with its own language -

Cypher there is no easy way to implement data from other sources. I still think that in

future Neo4j can be helpful for the development, for example system architecture map

or client files fast dependencies.

While I have been following tutorials from both vendors (MongoBD and MariaDB) I

could not skip the documentation evaluation. For both systems there exist official and

developers tutorials and documentations. Sadly I have grown an opinion that they

alone are not enough. Along the installations I have been reading lots of different

courses as was not able to get a full picture form the official documentation. Although

in the end of the research after reading the files again I found them quite clear and

well-written. MariaDB misses some initial system requirements, clear view about the

cluster, easier to read configuration options and also some working examples of an

operational system. In MongoDB everything seems being in its place. They bring the

information in a very compact way and easy to follow. Even though there could be

more pointers into config file organization and mongodb contributers.

Open Source is always more challenging to handle than other types of software. In

this case it was my first experience with Open Source databases and clusters. Building

the system was not as time consuming as trying and find all the answers for every

coming error during the installation process. After thousand times of trying when all

the possible complication are found then new ones can appear. Sometimes the prob-

lem appear as a fact that the software is still in a development state. When I had just

63

started my work there were some difficulties in initial installation stage of MariaDB

but upon the thesis finalization seems that developers have fixed some issues.

Thesis reliability and limitations

The main work limitation is that the thesis practical part have not been tested in actual

project environment. Clusters building and operations have been carried on tested data

which was not able to show the working scope as the files stored in archive differ in

size and types therefore different from testing data. The full data set would be too

complicated to virtualize for testing. There are number of points which were not con-

sidered before the thesis process such as OS issues, additional testing and virtualizing

programs. Software for testing brought challenges as good freeware testing programs

is difficult to find. As it comes to no surprise any system optimization is a consuming

and expensive work. Unfortunately, testing with inside built systems is not always

enough. Therefore there can be several ways to overcome the dilemma – to test the

performance in a real time working environment or to create specified testing tools

which would support all the tests required for the system.

Additionally for system overview CentOS might not be the best decision for running a

database cluster. It is considered very reliable and full Linux distribution it has limita-

tions in installations and configuration for open source databases.

Future research

The topic is Database Cluster and NoSQL connection to SQL is quite new. In this

work I have completed raw configurations of multiple clustered servers. The systems

are crude as there is not real data with it, they are not connected to the actual system,

and there is no security configured inside or proper user names. The systems which

were built are not the last step in how a databases or a database cluster can be opti-

mized. Thus for the future research it would be really necessary and relevant to im-

plement user access, security customization, implement the system into the real envi-

ronment and see how it performs with archive data. For even further research devel-

opment of SQL and NoSQL implementations needs to be followed.

64

BIBLIOGRAPHY

[1] Sharma, Neeraj (ed). 2010. Database Fundamentals. IBM Canada.

[2] Sumanti, S., Esakkirajan, S. 2007 Fundamentals of Relational Database Man-

agement Systems. Studies in Computational Intelligence, Volume 47. Heidelberg:

Springer.

[3] Educational Portal | Data Management. 2013. http://education-

portal.com/academy/topic/data-management.html Referred: 10.11.2013.

[4] Java Programming Tips and Hints. http://www.erpgreat.com/java/difference-

between-database-and-management-system.htm Referred: 26.03.2014.

[5] Tech Terms Open db Connectivity. 2013.

http://www.techterms.com/definition/odbc. Referred: 10.12.2013.

[6] Computer History Museum | History of Databases. 2013.

http://www.computerhistory.org/revolution/memory-storage/8/265/2207 Referred:

20.9.2013.

[7] Codd, E. F. 1970. A Relational Model of Data for Large Shared Data Banks.

Communications of the ACM: 5.06.1970, Volume 13.

[8] Stanford University Lecture Notes. Chapter 8.

http://infolab.stanford.edu/~ullman/focs/ch08.pdf.

[9] Hernanndes, Michael J. 2013. Database Design For Mere Mortals. Michigan:

Edwars Brothers Malloy.

[10] Database Management Wikia. Relational Database: Keys.

http://databasemanagement.wikia.com/wiki/Database:_Keys. Referred: 10.11.2013.

[11] The IT Education Site. Candidate Key. 2013.

http://www.techopedia.com/definition/21/candidate-key. Referred: 10.11.2013.

65

[12] What are Relational Database?

http://computer.howstuffworks.com/question599.htm Referred: 9.12.2013.

[13] IBM WebSphereStudio Application Developer Version 5.1.2 Product Over-

view, Defining Schema. Second Edition. 2002. IBM Canada.

[14] Worboys, M. F. 2001. Chapter 26, Relational databases and beyond. In a book

Longley P.A. (ed), Geographical Information Systems. England: John Wiley & Sons,

373 – 384.

[15] Rischert, Alice. 2002. Oracle® SQL Interactive Workbook, Second Edition.

Prentice Hall.

[16] Database Management Wikia. Relational Database: Metadata

http://databasemanagement.wikia.com/wiki/Metadata Referred: 10.11.2013.

[17] IT knowledge Exchange | Eye on Oracle. 2014.

http://itknowledgeexchange.techtarget.com/eye-on-oracle/oracle-the-clear-leader-in-

24-billion-rdbms-market/. Referred: 20.03.2014.

[18] Market Share MySQL. 2014. http://www.mysql.com/why-mysql/marketshare/

Referred: 26.03.2014.

[19] Example of relational database. Indiana.

http://www.cs.indiana.edu/classes/a114-dger/lastYear/flights.pdf. Referred:

22.03.2014.

[20] How are relational databases utilized in accounting? 2014.

http://www.examiner.com/article/how-are-relational-databases-utilized-accounting.

Referred: 22.03.2014.

[21] Hughes, Arthur Middleton. 2014. How a Relational Database helps Marketers.

Database Marketing Institute. http://www.dbmarketing.com/articles/Art223.htm. Re-

ferred: 2.04.2014.

66

[22] SkySQL. 2012. MySQL vs. MariaDB. Whitepaper.

[23] Lith, Adam, Mattsson, Jakob. 2010. Investigating Storage Solutions for Large

Data. Chalmers University of Technology

[24] Harrison, Guy. 2010. NoSQL and Document-Oriented Databases. Database

Trends and Applications. Referred: 3.02.2014.

[25] MongoDB. Document Database. 2014. http://www.mongodb.com/document-

databases. Referred: 20.02.2014.

[26] Tiwari, Shashank. 2011. Professional NoSQL. John Willey & Sons.

[27] Burd, Greg. 2011. NoSQL. [WhynoSQL]

[28] Your Ultimate Guide to the Non-Relational Universe! http://nosql-

database.org/. Referred: 20.02.2014.

[29] Strauch, Christof. NoSQL. Stuttgart Media University.

[30] http://maxgrinev.files.wordpress.com/2010/07/twitterschema-tweets.png. Re-

ferred: 28.03.2014.

[31] Introducing JSON. http://json.org/. Referred: 3.4.2014.

[32] MongoDB. JSON and BSON. http://www.mongodb.com/json-and-bson. Re-

ferred: 3.4.2014.

[33] XML from inside out O’Reilly Media, Inc.

http://www.xml.com/pub/a/98/10/guide0.html?page=2#AEN58. Referred: 3.4.2014.

[34] REST API Tutorial. 2012.

http://www.restapitutorial.com/lessons/whatisrest.html. Referred: 3.4.2014.

[35] MongoDB. About MongoDB. 2014. https://www.mongodb.com/mongodb-

overview. Referred: 20.02.2014.

67

[36] Vaish, Gaurav. 2013. Getting started with NoSQL. Packt.

[37] Dyson, Larry. 2012. The Four Horsemen of NoSQL.

http://www.modelmetrics.com/technology-viewpoint/the-four-horsemen-of-nosql/.

Referred: 16.02.2014.

[38] Neo4j. 2.1 What is a Graph Database? 2014.

http://docs.neo4j.org/chunked/stable/what-is-a-graphdb.html Reffered: 16.02.2014.

[39] The four categories of NoSQL databases. 2013.

http://rebelic.nl/2011/05/28/the-four-categories-of-nosql-databases/. Referred:

16.02.2014.

[40] MongoDB. 2013. Architecture Guide 2.4.

[41] Rick Osborne, rickosborne.org

[42] Harrison, Guy. 2010. 10 things you should know about NoSQL databases.

http://www.techrepublic.com/blog/10-things/10-things-you-should-know-about-

nosql-databases/#. Referred: 3.02.2014.

[43] MongoDB. 2014. NoSQL Databases Explained. Whitepaper.

[44] Couchbase. 2013. Why NoSQL. Whitepaper.

[45] Facebook Newsroom http://newsroom.fb.com/company-info/

[46] MongoDB. 2014. Cisco Case Studies. Whitepaper.

[47] MongoDB. 2014. Quantifying Business Advantages. Whitepaper.

[48] Gilbert, Seth, Lynch, Nancy. Brewer’s Conjecture and the Feasibility of Con-

sistent, Available, Partition-Tolerant Web Services.

[49] Foundationdb. CAP Theorem. https://foundationdb.com/white-papers/the-cap-

theorem. Referred: 16.02.2014.

68

[50] ACID versus BASE for database transactions. 2009.

http://www.johndcook.com/blog/2009/07/06/brewer-cap-theorem-base/. Referred:

16.02.2014.

[51] SkySQL. 2013. MySQL and MariaDB Clustering with Galera. Whitepaper.

[52] Safari Books Online. 2012. Shared-Nothing Architecture.

http://blog.safaribooksonline.com/2012/08/21/shared-nothing-architecture/ Referred:

10.11.2013.

[53] ScaleDB. Hogan, Mike. Cluster Architecture. Whitepaper

[54] CodeFutures. 2008. Database Sharding. Whitepaper.

[55] Versant. 2007. Database Scalability and Clustering. Whitepaper.

[56] Song, Huaiming, (ed). A Hybrid Shared-nothing/Shared-data Storage Archi-

tecture for Large Scale Databases. Illinois Institute of Technology, Chicago Texas

Tech University, Lubbock. [Hybrid Poster ccgrid]

[57] An Introduction to SQL Server Clustes. 2012.

http://www.brentozar.com/archive/2012/02/introduction-sql-server-clusters/. Re-

ferred: 1.04.2014.

[58] MariaDB Replication Overview https://mariadb.com/kb/en/replication-

overview/ Referred: 10.4.2014

[59] MongoDB. Manual. Sharding. http://docs.mongodb.org/manual/core/sharding-

introduction/. Referred: 20.03.2014.

[60] MongoDB Manual http://docs.mongodb.org/manual/core/replication-

introduction/ Referred: 10.4.2014

69

[61] Julien Duponchelle, Cassandra MariaDB Virtual Box

http://julien.duponchelle.info/Cassandra-MariaDB-Virtual-Box.html Referred:

4.5.2014.

APPENDIX

In this part configuration scripts and database schemas can be found.

MariaDB my.cnf derivated form standart my-huge.cnf

[client]

#password = your_password

port = 3306

socket = /var/lib/mysql/mysql.sock

Here follows entries for some specific programs

The MySQL server

[mysqld]

port = 3306

socket = /var/lib/mysql/mysql.sock

skip-external-locking

key_buffer_size = 384M

max_allowed_packet = 1M

table_open_cache = 512

sort_buffer_size = 2M

read_buffer_size = 2M

read_rnd_buffer_size = 8M

myisam_sort_buffer_size = 64M

thread_cache_size = 8

query_cache_size = 32M

Try number of CPU's*2 for thread_concurrency

thread_concurrency = 8

Point the following paths to a dedicated disk

#tmpdir = /tmp/

Don't listen on a TCP/IP port at all. This can be a security enhancement,

if all processes that need to connect to mysqld run on the same host.

All interaction with mysqld must be made via Unix sockets or named pipes.

Note that using this option without enabling named pipes on Windows

(via the "enable-named-pipe" option) will render mysqld useless!

#skip-networking

Replication Master Server (default)

binary logging is required for replication

log-bin=mysql-bin

required unique id between 1 and 2^32 - 1

defaults to 1 if master-host is not set

but will not function as a master if omitted

server-id = 1

APPENDIX

Replication Slave (comment out master section to use this)

To configure this host as a replication slave, you can choose between

two methods :

1) Use the CHANGE MASTER TO command (fully described in our manual) -

the syntax is:

CHANGE MASTER TO MASTER_HOST=<host>, MASTER_PORT=<port>,

MASTER_USER=<user>, MASTER_PASSWORD=<password> ;

where you replace <host>, <user>, <password> by quoted strings and

<port> by the master's port number (3306 by default).

Example:

CHANGE MASTER TO MASTER_HOST='125.564.12.1', MASTER_PORT=3306,

MASTER_USER='joe', MASTER_PASSWORD='secret';

OR

2) Set the variables below. However, in case you choose this method, then

start replication for the first time (even unsuccessfully, for example

if you mistyped the password in master-password and the slave fails to

connect), the slave will create a master.info file, and any later

change in this file to the variables' values below will be ignored and

overridden by the content of the master.info file, unless you shutdown

the slave server, delete master.info and restart the slaver server.

For that reason, you may want to leave the lines below untouched

(commented) and instead use CHANGE MASTER TO (see above)

required unique id between 2 and 2^32 - 1

(and different from the master)

defaults to 2 if master-host is set

but will not function as a slave if omitted

#server-id = 2

The replication master for this slave - required

#master-host = <hostname>

The username the slave will use for authentication when connecting

to the master - required

#master-user = <username>

The password the slave will authenticate with when connecting to

the master - required

#master-password = <password>

The port the master is listening on.

optional - defaults to 3306

#master-port = <port>

binary logging - not required for slaves, but recommended

APPENDIX

#log-bin=mysql-bin

binary logging format - mixed recommended

#binlog_format=mixed

Uncomment the following if you are using InnoDB tables

#innodb_data_home_dir = /var/lib/mysql

#innodb_data_file_path = ibdata1:2000M;ibdata2:10M:autoextend

#innodb_log_group_home_dir = /var/lib/mysql

You can set .._buffer_pool_size up to 50 - 80 %

of RAM but beware of setting memory usage too high

#innodb_buffer_pool_size = 384M

#innodb_additional_mem_pool_size = 20M

Set .._log_file_size to 25 % of buffer pool size

#innodb_log_file_size = 100M

#innodb_log_buffer_size = 8M

#innodb_flush_log_at_trx_commit = 1

#innodb_lock_wait_timeout = 50

[mysqldump]

quick

max_allowed_packet = 16M

[mysql]

no-auto-rehash

Remove the next comment character if you are not familiar with SQL

#safe-updates

[myisamchk]

key_buffer_size = 256M

sort_buffer_size = 256M

read_buffer = 2M

write_buffer = 2M

[mysqlhotcopy]

interactive-timeout

Configuration for standard mongod.conf

mongod.conf

#where to log

logpath=/var/log/mongodb/mongod.log

logappend=true

APPENDIX

fork and run in background

fork=true

#port=27017

dbpath=/var/lib/mongo

location of pidfile

pidfilepath=/var/run/mongodb/mongod.pid

Listen to local interface only. Comment out to listen on all interfaces.

bind_ip=127.0.0.1

Disables write-ahead journaling

nojournal=true

Enables periodic logging of CPU utilization and I/O wait

#cpu=true

Turn on/off security. Off is currently the default

#noauth=true

#auth=true

Verbose logging output.

#verbose=true

Inspect all client data for validity on receipt (useful for

developing drivers)

#objcheck=true

Enable db quota management

#quota=true

Set oplogging level where n is

0=off (default)

1=W

2=R

3=both

7=W+some reads

#diaglog=0

Ignore query hints

#nohints=true

Disable the HTTP interface (Defaults to localhost:27018).

#nohttpinterface=true

Turns off server-side scripting. This will result in greatly limited

functionality

#noscripting=true

Turns off table scans. Any query that would do a table scan fails.

#notablescan=true

Disable data file preallocation.

#noprealloc=true

APPENDIX

Specify .ns file size for new databases.

nssize=<size>

Replication Options

in replicated mongo databases, specify the replica set name here

#replSet=setname

maximum size in megabytes for replication operation log

#oplogSize=1024

path to a key file storing authentication info for connections

between replica set members

#keyFile=/path/to/keyfile

SQL QUERY TEST1

SELECT employees.*

FROM employees

JOIN dept_emp ON (dept_emp.emp_no = employees.emp_no)

JOIN salaries ON (salaries.emp_no = salaries.emp_no)

WHERE employees.first_name

LIKE '%Jo%'

AND salaries.from_date > '1993-01-21'

AND salaries.to_date <'1998-01-01'

LIMIT 0, 100

;

FIGURE 17 Employees Schema

