Laadukkaan demon tuotanto

Joonas Leppänen

Opinnäytetyö
Toukokuu 2014
Viestinnän koulutusohjelma
Digitaalinen ääni ja kaupallinen musiikki
TIIVISTELMÄ

Tampereen ammattikorkeakoulu
Viestinnän koulutusohjelma
Digitaalinen ääni ja kaupallinen musiikki

LEPPÄNEN, JOONAS:
Laadukkaan demon tuotanto

Opinnäytetyö 52 sivua, joista liitteitä 1 sivua
Toukokuu 2014

Perehdyn opinnäytetyössäni suoraviivaista rockia soittavan YOTB-yhtyeeni viiden kappaleen pituisen demon tuotantoprosessiin. Näistä kappaleista kolmeen perehdyn tarkemmin kirjallisessa raportissani. Toimin demolla säveltäjänä, sovittajana soittajana ja tuottajana yhdessä yhtyeen kanssa, sekä äänittäjänä, miksaajana ja masteroijana.

Opinnäytetyöni tavoitteena on perehtyä äänitteen tuotantoprosessiin, sekä taiteellisella että tekniellä tuotantotason, sekä erityisesti budjetin olemattomuuden tuomien rajoitusten aiheuttamiin ratkaisuihin äänityksessä ja jälkituotannossa. Äänitteen tavoitteena oli selvittää bändin musiikillista linjaa ja saada yhtyeelle fyysinen käyntikortti keikkoja ja muuta yhtyetoimintaa varten.

Äänitteemme onnistui olosuhteisiin nähden erittäin hyvin ja prosessi oli mielenkiintoinen. Opin sen aikana paljon uutta asiaa musiikin tuotannosta, erityisesti äänittämisestä, “in the box” miksaamisesta ja masteroiamisesta ilman ammattilaistasoinen studion suomia etuja.

Asiasanat: demo, äänitys, miksaus, tuottaminen
ABSTRACT

Tampere University of Applied Sciences
Degree Programme in Media
Option of Digital Sound and Commercial Music

LEPPÄNEN, JOONAS:
Producing a Demo Record

Bachelor's thesis 52 pages, appendices 1 pages
May 2014

My graduation project focused on the production process of a demo consisting of five songs that were made to our rock band called YOTB. A deeper look is taken into three of the songs on the demo in this thesis. In the project I worked as a composer, arranger and producer together with the other members of the band, and as a recording, mixing and mastering artist on my own.

The objective of my graduation project was to familiarize with the production process on both the artistic and technical level, and especially with the decisions in the recording and postproduction that had to be made because of the low budget. The purpose of the record was to refine the artistic line of the band and to make a physical business card for the band to be able to apply for concerts and introduce the music in other similar occasions.

The record turned out to be of high quality, considering the circumstances, and the process was highly interesting and educational. During the process, I learned a lot about music production, especially about recording, ”in the box” mixing and mastering without the ability to use professional recording facilities.

Key words: music production, recording, mixing, demo
7. MASTEROINTI...44
8. POHDINTAA ..46
 8.1 Lopputulos ..46
 8.2 Kaupallinen näkökanta..47
LÄHTEET ..49
LIITTEET ..51
ERITYISSANASTO

Akustointi - Akustoinnilla pyritään mahdollisimman tasaiseen huonesointiin, jolloin mikään taajuus ei korostu tai peity muiden alle. (Ruippo 1999, 51.)

Attack – Äänen syttymisen osa. (Gallagher 2008, 9.)

Aux kanava – Raita, jolle ja jonka kautta lähetetään ääntä, mutta joka ei itsessään sisällä audiota. (Gallagher 2008, 12.)

Automaatio – Voidaan säädellä eri parametreja, kuten äänentasoa aikaan sidotusti. (Gallagher 2008, 11.)

Buss kanava – Virtuaalinen raita, johon ohjetaan, esimerkiksi saman soitinryhmän soittimet. (Gallagher 2008, 26.)

DAW – Digital Audio Workstation, tietokone ohjelma, jolla voi äänittää ja prosessoida ääntä. (Gallagher 2008, 46.)

Desibeli – Vertailuyksikkö, joka kertoo arvon keskinäisen suhteen. Äänitekniikassa se kuvaa sähköisen tai akustisen signaalin tasoaa verrattuna ennalta määritetyn referenssitason. Se ei ole absoluuutinen arvo vaan käytössä on kehitetty eri standardeja nollataso määrittelyyn Ilmaistaan dB mittayksikköllä. Mitattaessa käytetään eri lisäkoristeita, kuten dB SPL (äänen voimakkuus), dBu ja dBV, jotka taas viittaavat äänen jännitearvoihin (voltti) (Suntola 2006, 11.)

DI-boxi – pieni laatikko, joka soittimesta matkalla esivahvistimelle, muuttaa balansoinnottoman korkeaimpedanssiisen signaalin vahvistimelle sopivaksi balansoiduksi ja matalaimpedanssiseksi signaaliksi. (Suntola 2006, 40.)
Ekvalisointi – Äänen taajuuskaistaa leikataan tai korostetaan taajuuskorjaimella. (Gallagher 2008, 67.)

Levykaiku – Alun perin laite, jossa ääni heiluttaa jousilla kelluva levyä aiheuttaen kaiun, mutta virtuaalisessa ympäristössä tämän digitaalinen mallinnus. (Gallagher 2008, 158.)

Liitännäinen/plugin – DAW:iin saatava virtuaalinen prosessori, efekti tai instrumentti. (Gallagher 2008, 159.)

Siniaalto – Äänen ja muun värähtelyliikkeen yksinkertaisin perusmuoto, jossa äänen värähtelyn muoto noudattaa matematiikan sinfunktioita. (Laaksonen 2006, 5.)

Taajuus (frequency) - Äänen aallonpituuks voidaan määritellä kahden peräkkäisen paineaallon kohtaa, jossa aalto ohittaa nolla-arvon samaan suuntaan. Aaltoliikkeen taajuus (frequency) taas tarkoittaa sitä. Montako aaltoliikkeä havaitaan sekunnin aikana, joka taas yläsävelsarjojen kanssa määrittää äänen sävelkorkeuden (Mäkelä 2009, 20.)

Taajuusvaste – Audiolaitteiden ja niiden välisten kytkentöjen kyky kuljettaa kaikki taajuudet saman matkan samassa ajassa, niin ettei mikään taajuus viivästy ja näin korostu tai jää heikommaksi. (Laaksonen 2006, 8.)

Vaihe (phase) – Kuvaa kahden tai useamman ääniaallon välistä aste-eroa ja sitä mitataan asteina 0-360 astetta. Esimerkiksi samassa vaiheessa (samassa kulmassa) etenevät siniaallot summautuvat toisiinsa, kun taas vastavaiheessa olevat (180 astetta) kumoavat toisensa täysin. (Ruippo 1999, 10.)

Yläsävelsarja - Perustaaajuuden monikerrat ovat harmoninen yläsävelsarja. Jos ääni soi esim. 440 Hz, sen mukana soi vaihtelevalla voimakkuuksilla myös 880Hz, 1320Hz, 1760 Hz jne. Iso osa eri
soittimien luontenomaisista soundista on peräisin yläsävelsarjan eri osasten keskinäisistä voimakkuuksista (Mäkelä 2009, 21.)

Ääni –

On jossain väliaineessa, esimerkiksi ilmassa kulkevaa värähtelyä aiheuttaen vuoroin normaalia korkeampaa ja matalampaa ilmanpainetta (Suntola 2006, 9.)

Äänentaso –

Ääniaallon värähtelyn pystysuuntainen korkeus määrittää äänenvoimakkuuden. Sitä mitataan yleisin logaritmisella asteikolla, joka kuvastaa ihmisen havaitsemaa tason vaihtelua parhaiten. Tällöin puhutaan RMS tasoista (Root Mean Square), joka viittaa äänen tehollistason. Siniaallolla tämä tarkoittaa korkein huippuarvo jaettuna neliöjuuri kahdella. (Suntola 2006, 10.)
Kesällä 2013 aloitimme jamitteluprojektin uudella porukalla, joka koostui entisistä soittokavereistani ja työkavereistani. Projektin oli tarkoitus olla eräänlaina terapiaa muiden stressiä aiheuttavien yhtyeprojektien ohella.

Tällaiset vaatimattomalla kalustolla ja ilman studion suomia mahdollisuksia toteutetut äänitteet ovat nykypäivänä yleisiä yhtyeiden huonon rahatilanteen ja kovan kilpailun takia. Perus äänityskaluston hinnat ovat vuosien saatossa tuleet niin alas, että bänkeillä on nyt varaa hankkia laitteita harjoitustiloihinsa. Mutta kuinka saada niillä laitteilla ja niissä tiloissa tuotettua nykypäivän vaativiin standardeihin vastaava laadukas äänite? Nykypäivän ääniteenkin tulee elää ajan hermolla ja pystyä tuottamaan laadukasta jälkeä mitä vaatimattomimmissa olosuhteissa ja siihen faktaan aionkin nyt.
perehtyä tarkemmin kirjallisessa raportissani. Olen liittänyt työhöni myös taulukon ajankäytöstäni projektin eri vaiheissa (taulukko 1).

TAULUKKO 1: Ajankäytön jakautuminen opinnäytetyössä.

<table>
<thead>
<tr>
<th>Työvaihe</th>
<th>Käytetty aika (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aiheen valinta ja lähdemateriaaliin tutustuminen</td>
<td>40</td>
</tr>
<tr>
<td>Äänitteensä esituotanto</td>
<td>25</td>
</tr>
<tr>
<td>Äänitys</td>
<td>55</td>
</tr>
<tr>
<td>Jälkituotanto</td>
<td>155</td>
</tr>
<tr>
<td>Raportin kirjoittaminen</td>
<td>40</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>315</td>
</tr>
</tbody>
</table>
2.1 Teoreettinen lähtökohta

Tässä prosessissa äänitteiden laatua oletettavasti kärsii ja studioteknologien on mukauduttava uusiin työympäristöihin ja tiloihin. Toki vanhemmat äänitteiden tuottajat ovat aikanaan aloittaneet työnsä yhtyeiden harjoitustiloina toimineista betonikellareista, ja uskaltaisin ennustaa, että ainakin tuntemattomien indie-yhtyeiden ja levy-yhtiöiden tiimoilta on tässä asiassa osittain palattu juurille.

Onko tämä tekniikan nopea kehittyminen ja halpeneminen loppujen lopuksi niin huono asia? Onko kuitenkin parempi, että rahan liikkuvessa vähemmän ja äänityöläisten ammattipätevissä kilpailun lisääntyessä, pienemmän budjetin sessioillekin löytyy kysyntää ja työtä? Jos yhteillä ei ole varaa maksaa kallista studioaikaa, millä ne saavat musiikkaan esitettyä levy-yhtiölle ja kuuntelijoille muuten, kuin soittamalla livenä? Toki laitteiston halventuessa, ja internetin suomien nopeiden ja helppojen oppimiskeinojen aikana, musiikoiden on helppo itsekin opetella äänittämisen ja miksaamisen saloja, mutta onko se todellista ammattitaitoa. Oleellisinta musiikin kanssa työskentelyssä on kuitenkin luovuus, asenne ja into, eikä raha, laitteet ja ohjelmistot. Halvoilla kasettinauhureilla on aikanaan tehty laadukkaampia ja ajallisesti kestävämpää äänitteitä kuin nykypäivän arvokkaissa studioissa. (Mäkelä 2009, 8,10.)

2.2 Yhtye

3 TYÖLOKAATIOT

3.1 Äänitys

Noin 30 neliömetrinen harjoitustilamme Tampereen Kalevassa päätyi luonnollisesti varsinaiseksi äänityslokaatioksemmme. Tila on noin kaksi ja puoli metriä korkea ja nelioon muotoinen. Jokainen seinä on betonia, joten tila ei ole soinnultaan millään tapaa ideaali varsinkaan rumpujen äänittämiselle. Tiloista löytyy PA-laitteet, rummut, useita kitaravahvistimia ja bassovahvistimia, mikrofoneja, mikrofonitelineitä ja – kaapeleita, sekä erilaisia syntetisaattoreita ja efektilaitteita.

Lisäksi huoneen takaseinällä on useita sohvia ja seinusteilla vahvistimia ja muita tarvikkeita, jotka luonnostaan absorboivat ääntä ja hajottavat äänialtoja ympäriinsä. Tila on siis hyvinkin perinteinen ja luonnollinen. Olen elämäni aikana musisoinut useissa eri samantyylijäätä betoniseinäissä tiloissa ja tämän tilan betoninen kaiku oli onnistuttu vaimentamaan parhaiten. Aiheesta tietämätön on varmasti kokenut kaikuisen tilan efektiin, kun on tehnyt muuttoa ja asunto on tyhjä tavarointa. Tyhjässä huoneessa kaiukas sointi on niin epämiellyttävä, että normaali puhekin voi olla epäselvää. Parhaaseen tulokseen pääsee monipuolisilla ratkaisuilla, joissa hajotetaan äänialtojen kulkuja ja vaimennetaan huoneen jälkikäintää. Liuka kaiku puurouttaa soinnin ja kaiuton tila kuoleutta sen. (Ruippo 1999, 51.)

3.2 Jälkityö

Huoneestani löytyy myös lähikenttämonitorit mallia Behringer Truth b2030a, joka on halpavalmistajan mallinus Genelecin samannollisista monitoreista. Kyseiset monitorit ovat hintalaatusuhteeltaan kuitenkin täysin riittävät tämänhetkiseen käyttööni. Olen sijoitellut huoneeni seinälle oman tietämykseni nojalla tärkeisiin kokemiini kohtiin akustolevyjä, jotka olen itse kehystänyt laudalla. Erityisesti olen pyrkinyt vähentämään monitorien takaan tulevia

4 ESITUOTANTO

4.1 Yleistä

Dan Tigersted: *Hyvä lähtökohta on tilanne jossa bändillä on hyvä kokonaisnäkemys projektista, ja tuottaja voi toimia lähinnä niin sanotusti tuomarina, hyväksyen tai hyläten soittosuorituksia, sekä henkisenä tukihenkilönä* (Suntola 2006, 37).

Ilkan laulumelodiat syntyvät hyräilemällä kappaleita soittaessa, lukuun ottamatta hänen valmiita kappalepohjia. Joistakin näistä Ilkalla oli jo valmiit kotona tehtyä raakadeomet, jotka hän lähetti muille soittajille dropboxin kautta. Dropbox on verkossa sijaitseva virtuaalinen tiedostojen synkronointisovellus, jossa voi säilyttää ja jakaa tiedostoja internetin välityksellä (Dropbox 2014.)

4.2 Magic Of The Moment

4.3 Road Of The Raging Bull

Tähän kappaleeseen Ilkalla oli valmis pohja, jonka riffit hän opetti muille soittajille treenitiloissa. 70-lukuiselta rockilta kuulostavan intron perusteella halusimme kuitenkin tehdä kappaleen saundimailmasta perinteikkäämmän, emmekä sekoittaneet sinne progressiivisia saati sitten funkien elementtejä. Kappaleessa piti olla myös perinteinen kitarasoolo, mutta loppujen lopuksi päällyimme antamaan basistille tilaa esitellä omaa näkemystään ja näin soolon soittaakin basso.

4.4 Deepthroat

tunsimme erittäin taitavan puhallinsoittajan. Saksofonien lisäämisen jälkeen kappa
nousi uusiin ulottuvuuksiin ja yhtyeen itsensä makuun jopa demon parhaaksi teokseksi.
5. ÄÄNITYS

5.1 Työkalut

Seuraavassa osiossa kerron tarkemmin äänitysprosessista, mutta sitä ennen aavasta käyttävän sanaston ja laitteiston merkityksiä. On hyvä perehtyä työkaluihin, ennen kuin analysoidaan itse äänitysprosessia.

5.1.1 Tallennus

5.1.2 Mikrofonit

Suomalainen musiikin tuottaja Dan Tigersted toteaa, että, monilla äänittäjillä on turha kunnioitus tiettyjä mikrofoneja kohtaan; kyseessä on usein Neumann U 87, joka monen mielestä edustaa totuutta. Kokeilun kautta kannattaa jokaisen kuitenkin etsiä omaa totuutta. (Suntola 2006, 42.) Tässä projektissa lainasimme mikrofonit äänityksiä varten Markus Pajakkalanalta. Äänityksistä sovittaessa oli siis vain tieto, että saamme tarvittavan määran mikrofoneja. Vasta kun päivämäärät olivat lyöty lukkoon, sain sähköpostiini listan mikrofoneista, joita oli käytettävissä. Huippulaadukkaita mikrofoneja siitä ei löytynyt, mutta kattaus riitti meille mainiosti, sillä äänitystiloihin nähden kokisin tuhansien eurojen mikrofonien olevan turhamaista hienosäättöä. Seuraavassa kerron hieman yleistä mikrofoneista ja etuasteista perhehtymättä kuitenkaan liian tarkasti asiaan. Opinnäytetyöni tarkoittaa, että yleensä kalliilla laitteilla "hifistely" on vain hyvien puitteiden tuomaa lisää.

Mikrofoni muuttaa äänen ilmanpainevärähtelyt sähköiseksi jännitevärähtelyiksi, jota vahvistetaan esivahvistimilla (Ruippo 1999, 11). Mikrofoneja valmistetaan monenlaisia ja monilla eri suuntakuvioilla, mutta tässä projektissa olen käyttänyt vain yleisimpiä dynaamisia ja kondensaattorimikrofoneja. Toki myös sähkökitaroissa ja bassoissa on magneettiset mikrofoni, mutta ne on rakennettu soittimeen, eikä niiden säättämisellä pysty soundiin vaikuttamaan niin paljoa kuin erikseen sijoiteltavilla mikrofoneilla.

Eddie Kramer toteaa, että hänelle mikrofoni on kuin väri maalarin väripaletissa. Sinä valitset mitä mikrofonia käytät (Owsinski 2009, 1).

Mikrofonien valinnoilla ja sijoittelulla on äänilähteen jälkeen luultavasti suurin merkitys soundiin. Mikrofonien käytön opetteleminen on äänittäjälle sanoinkuvaamattoman tärkeää ja se yleensä erottaa ammattilaiset amatööristä. Mikrofonien tarkalla sijoittelulla voidaan vähentää työtä miksausvaiheessa ja sen opettle vuattia paljon kokeilua ja kokemusta. Jos esimerkiksi laulajan s-äänteet suhahtavat voimakkaasti on hyvä valita pehmeästi diskanttia toistava mikrofoni, ja jos bassorumpu soi liian pehmeästi on hyvä valita terävämmiä diskanttia toistava mikrofoni (Ruippo 1999, 16). Suuresti särötyt sähkökitarit, esimerkiksi metallimusikissa taas on hyvä äänittää huonosti diskanttia pominvillä dynaamisilla mikrofoneilla, jottei nauhalle tulisi liikaa yläkerran "sihinää". Tiettyjä perusperiaatteita on kuitenkin hyvä noudattaa, mutta
pienetkin panoroinnit eli mikrofonin sivuttaissuuntaiset liikkeet akselinsa ympäri, tilttakuset eli mikrofonin pystysuuntaiset liikkeet akselinsa ympäri ja kulman muutokset saattavat muokata soundia todella paljon. Mikrofonin valinnan jälkeen kaksi soundia määrittävää tärkeää tekijää ovat mikrofonin sijoittelu ja akustinen ympäristö, jossa ääntä tallennetaan (Gibson 2002, 6).

Kalvon herkemmän liikkumisen ansiosta kondensaattorimikrofoni poimii transientit helpommin ja on näin herkempi kuin dynaaminen mikrofoni. Sen taajuusvaste on tasaisempi. Toisaalta se ei kuitenkaan saa äänenpainetta kuin dynaaminen ja kovan äänen taltioidessaan mikrofonin kalvo saattaa osua elektrodiin, joka säröttää signaalin ja pahimmassa tapauksessa rikkoo mikrofonin. (Laaksonen 2006, 243.) Johtuen tasaisemmasta taajuusvasteesta, paremmin taltioidusta ylähävaelarjasta ja näin ollen
luonnollisemmasta soundista, niitä käytetään yleensä akustisten instrumenttien ja laulun äänittämiseen. Ne ovat myös kalliimpia kuin dynaamiset mikrofonit.

KUVA 1: Mikrofonien suuntakuviot (Äänipää 2006).

5.1.3 Etuvahvistimet

Tässä projektissa käytin esivahvistimena Focusrite Saffire Pro 24 DSP äänikorttini kahta etuvahvistinta, sekä siihen adat-väylällä yhdistettyä M-audion Profire 2626 äänikorttia, josta sain käyttööni kahdeksan etuvahvistinta lisää. ADAT optical on Alesisken kehitämä formaatti, jossa TOSLink kaapelilla voidaan kuljettaa digitaalisesti kahdeksan kanavaa ääntä laitteelta toiselle (Gallagher 2008, 3). Näiden äänikorttien etuvahvistimet eivät ole huippuluokkaa toisin kuin kalliit ulkoiset etuasteraudat, jotka yleensä poimivat yläsävelsarjat ja bassotaajuudet huomattavasti paremmin. Tällaisia kalliita ja laadukkaita etuvahvistimia ovat esimerkiksi Neve 1083 ja API 512, joiden läpi on käytetty lukemattomia soundiltaan erittäin tunnistettavia myyntimenestysalbumeita. (Owsinski 2009, 63-65.)

5.1.4 Signaalit ja kaapelit

Analogisesti äänittäessä on ääni tallennettava nauhalle, ja nykypäivänä analoginauhurat ja nauhat ovat koko ajan harvinaisempia ja vaikeammin saatavissa. Nauhalle äänitettäessä, ei soittajan ottoja voi noin vain ottaa kymmeniä kertoja uusiksi, sillä nauha on kallista ja sen editointi leikkää/liiomaa menetelmällä huomattavasti työläämpää. Lukuisat äänittäjät ovat kuitenkin mieltyneet analogiseen soundiin, joka on mieleetti lämpimäksi ja vannovat analogisuuden puolesta. Itse olen kuitenkin sitä mieltä, että kuulija ei huomaa eroa hyvin tuotetun digitaalisen ja analogisen tallenteen välillä.

Sähkövirran kanssa tulee äänitystilanteessa olla tarkkana. Sähköjen lähdöt tulisi olla maadoitettuja ja samasta sulakelähdöstä, jotta valittaa sisäisiin maalenkeiltä ja sähkön aiheuttamilta hurinoiltta elektronisissa soittimissa. (Ruippo 1999, 51.) Jos esimerkiksi kitari on paljon efektipedaaleja kitaran ja vahvistimen välissä, olisi jokaiselle pedaalille hyvä olla eristetty virransyöttö. Rinnakkain kytkeyt efekti aiheuttavat
maalenkkejä ja täten sähköisiä hurinoita, jotka vahvistuvat vahvistimen kautta. Jos kitaristi ei omista virransyötöt, joissa on eristetyt virransyötöt jokaiselle pedaalille, voi niihin syöttää virran pattereilla. Patterit toki kuluvat ja niiden jatkuva vaihtaminen on vähintäänkin rasittavaa, mutta ääniläisytilanteessa se ehkäisee maalenkkien syntymisen.

5.1.5 Prosessointilaitteet

5.2 Rumpujen äänitys

Olennaista rumpujen virityksessä on saada kukin rumpu soimaan luonnollisessa vireessä itsekseen ja niin että kokonaisuus soi hyvin. Tällöin yritetään eliminoida muiden rumpujen pahimmat resonoinnit toista rumpua lyödessä. Ensin lyöntikalvot viritetään haluttuun vireeseen, niin että kalvo soi joka puolelta samassa vireessä ja jokainen rumpu kokonsa mukaisessa vireessä. Sitten pyritään alakalvo virittämään samaan vireeseen, tai hieman korkeampaan, jos sointia halutaan lyhentää (Gibson 2007, 90). Tässä tapauksessa viritimme tomien alakalvot hieman korkeammalle kuin lyöntikalvot. Rockmusiikissa bassorummusta pyritään taltioimaan tukeva alakerta sekä attack, joten viritimme bassorummun niin matalaan vireeseen kun se soinnin kannalta oli mahdollista.

Mikrofonien sijoittelua lahdimme tekemään Led Zeppelinin John Bonhamiaakin äänittäneen Glyn Johnin kolmen mikrofonin tekniikalla. Siinä rumpuja ja etenkin peltejä

5.3 Basson äänitys

Basson tehtävä on tukevoittaa koko orkesterin soittoa. Se yhdessä bassorummun soinnin ja koko alakerran rockmusiikissa. Yleensä jos miksausta kuuntelee vaihdellen bassoa päälle ja pois, häviää bassaleelta niin sanotusti ”munat”. Basso myös eräällä tavalla liimaa koko paketin kasaan. (Gibson 2007, 133.)

Harkitsimme basson äänittämistä ystävämme ”rantausaunaksikin” kutsutun Ampeg-merkkisen vahvistimen kautta, mutta aikatauluja ja tilavaruksia pohtiessamme päädymme kokeilemaan ratkaisua, jossa taltioimme basson suoraan linjasignaalilla äänikortille, jossa on valmiiksi instrumenttitason input. Äänitimme bassoraidat omalla Yamahan BB-sarjan bassollani, joka osoittautui pienistä kosketushäiriööngelmistaan huolimatta laadukkaaksi soittimeksi. Siinä on aktiivielektroniikka ja sen mikrofoneissa erittäin tukeva sointi.

5.4 Kitaroiden äänitys

Egnaterin yhteydessä olleen Blackstarin kaapin eteen sijoitin Audixin i5 dynaamisen mikrofonin, koska kyseessä oli säröinen soundi ja se tuli vahvistimesta kovalla

Päätin kokeilla kitaroiden tilojen äänittämiseen hieman tavanomaisesta poikkeavaa tekniikkaa ja äänitin kitaroiden tilat rummuissa käyttämälläni Glyn John mikrofoniteknikalla, jättäen kuitenkin bassorummun mikrofonin pois pelistä. Näin sain yksin soiviin kitaroihin stereomaisemman äänikuvan. Samalla sain taltioitua enemmän

Muut efektit kuten tremolon lisäsin lenkin loppupäähän tarvittaessa, sillä modulaatioefektit ja aikaeffektit kannattaa aina laittaa lenkin viimeiseksi, jollei erityisesti halua rikkoa sääntöjä ja esimerkiksi säröttää viivesignaalia. Eihän musiikissa ole kuitenkaan kyse säännöistä.

5.5 Laulujen äänitys

Mikrofoni oli säädetty teleneeseen siten, että laulaja lauloi hieman yläviistoon. Näin laulajan on helpompi hengittää ja laulusoundin tulee täyteläisyyttä ja sointia (Baragar

5.6 Saksofonin ja muiden lisäsoittimien äänitys

Itse soittosuorituksseen meni noin tunti. Laitoin Markukselle kappaleen soimaan, ja hän soitti kappaleen kolme kertaa läpi taltioiden toinen toistaan taidokkaampia suorituksia. Tämän jälkeen hän soitti kappaleen loppuun kaksi stemmaraitaa ja sessio oli valmis. On suuri ilo ja kunnia tehdä yhteistyötä ammattitaitoisen muusikon kanssa.

6. JÄLKITUOTANTO

6.1 Editointi

Erityisesti rumpuraitojen editoiminen ennen muiden soittimien äänittämistä on tärkeää, sillä en voi vaatia soitattajaa soittamaan tarkasti, jos pohjaraita ei ole tarkka. Kävin siis rumpuraidat kaikista tarkimmin läpi ja tein kaikki editoinnit yksittäin käytännössä hyvinkin yleistä Pro Toolsin Beat Detective -ominaisuutta, joka automaattisesti pilkkoo raidat ja sijoittaa iskut projektin tempoon oikeaan tahtiin. Tällä tavoin kuulin kaikki virheet ja aikaheitetut kohdallakin ja sain ne korjattua luonnollisemman kuulokesiksi.

Kielisoittimista korjasin pahimmat aikaerovirheet, erityisesti bassosta, jotta se soisi hyvällä sykkeellä bassorummun kanssa ja molemmat erottuisivat miksaussessa selkeämmin. Lauluissa editoin taustalaulujen aikaerot täsmäämään päälauluraidan kanssa erityisesti konsonanttien kohdalla, joiden aikavirheet kuuluvat selkeimmiksi.

Tässä työvaiheessa lisäsin myös bassorummulle ja virvelille sampleraidat. Tein sen Pro Toolsista löytävää Avidin Sound Replaceria käyttäen. Tämä plugin säädettää tekemään tyhjälle audiotoraidalle alkuperäisraidan iskuille halutusta samplesta oma isku säättämällä herkkyyys, minkä korkuisesta transientista plugin tekee kopion. Lisäksi plugin saa säädettää dynamiikan, miten tarkkaan iskujen voimakkuudet seuraavat alkuperäistä. Bassorumpuun lisäisin kaksi sampleraitaa lisäämään attackia ja sointia, sillä taltioitu bassorumppuraita ei ollut tarpeeksi tukeva suhteessa muihin rumpuihin. Virveliraitaan
lisäsin samplen, jolla suunnitelman mukaan saatiin lisää jälkisointia. Tom-raitoihin en kokenut tarvitsevani samplea, niiden ollessa hyvän kuuloiset sellaisenaan.

6.2 Miksaus

Seuraavassa osiossa kerron projektin miksausvaiheesta. Avaan ensin hieman yleistää asiaa miksauksesta ja tämän jälkeen perehdyin metodeihin, joita käytin itse miksatessani. En kuitenkaan avaa aihetta liian yksityiskohtaisesti, sillä aiheesta saisi jo oman erillisen opinnäytetyön aikaiseksi.

6.2.1 Ideologia

Miksausesssa äänitetyt ja editoidut raidat yhdistetään eheäksi kokonaisuudeksi, jossa kaikki soittimet soivat selkeästi ja hyvässä tasapainossa keskenään (Gallagher 2008, 125). Tämän projektin puitteissa raidat yhdistettiin miksaussessa stereokokonaisuudeksi. Nykyään suuri osa miksaaksista tehdään myös surround-formaattiin, jolloin kanavia on kahden sijasta kuusi: left, center, right, left surround, right surround ja lfe kanava, joka toistaa bassotaajuudet erilliseltä subwooferkaiuttimesta.

6.2.2 Kappaleiden miksaus

Kun volumetasot ja alataajuuksien balanssi oli saatu kuntoon tein perus ekvalisoinnit kaikille rumpuraidoille. Leikkasin turhat alataajuudet ylipäästösuotimilla ja tarvittaessa

Kitaroihin tein samantapaiset perusmiksaukset kuin muihin raitoihin. Kuuntelin kitaroita soololla ja koko kappaleen mukana ja säädin lähimiksisignaalien keskinäistä suhdetta aina halutun soundin mukaan, sekä lisäsin tarvittavissa kappaleissa ja kohdissa tilasignaalia automaatiolla lähimikrofonisignaalien rinnalle. Tilan mikrofonyhdistelmä
toimukavast
i garage
rock-
tunnelmaa
kappaleisiin.
Ajoin kaikki kitarasignaalit yhteiseen stereo aux-raitaan, jotta sain kitarit yhdessä faderin taakse. Tähän auxiin lisäisin nauhasaturaatiota Masseyn TapeHead -liitännäisellä tasoittamaan ylätaajuuksien terävyyttä, sekä tein tilaa stereokentän keskiosaan laululle ja virvelille käyttäen Wavesin Center -liitännäistä. Tällä pluginilla voi säätää erikseen stereoraidan keskipaineen ja laitojen äänentasoa (Waves 2014).

Deepthroat kappaleen saksofonin miksaamiseen sain Markus Pajakkalalta hyvät ohjeet. Lisäsin taajuuskorjaimella siihen alataajuuksia ja poistin nasaaliutta 2 kHz:n yläpuolelta, kompressoin raitaa, sekä lisäsin nauhasaturaatiomallinnusta Digidesignin LoFi -liitännäisellä. Näin sain saksofonin lähemmäksi kuulijaa ja soundi tukevoitui huomattavasti.

Vokaalit ovat yleensä lauletun musiikin tärkein elementti. Varsinkin kevyemmässä musiikissa sanoitukset ovat suuressa roolissa ja sanoista on saatava selvää. Laulut on siis miksattava selkeäksi ja pintaan. Normaalisti laulut tulevat stereokuvan keskeltä, joten miksataessa on oltava tarkka, ettei jokin muu samoilla taajuuksilla voimakkaasti soita soitin maskaa laulu.

Perus balanssisäätojen, panonorointien, ekvalisoinnin ja dynamiikkaprosessoinnin jälkeen lisäsän tarvittaviin kanaviin efektejä kuten kaikuja ja viiveitä käyttäen niitä aux-kanavien kautta. Tällöin pystyin lähettämään esimerkiksi yhteen kaiuku-auxiin useita eri instrumentteja. Esimerkiksi Saksofonille tein konserttisalia emuloivan kaiun, johon

Lisäsin myös virvelille ja tomeille oman levykaiun, jota automaatiosa säädin kappaleen eri osioihin. Soolokitaroihin lisäsin aux-kanavan kautta viiveen, jonka ajoin kaiun läpi luoden näin pitkään jatkuvaan kaiun, jonka häntää ei erota kovin selkeästi.
7. MASTEROINTI

Masterointi on äänitetuotannon viimeinen työvaihe, ennen kappaleen tai albumin printtausta ja julkaisua markkinoille. Masteroijan tehtävän voi mieltää monella tavalla, mutta pääasiassa masteroija yhdistää joukon kappaleita soundillisesti ja äänen tasollisesti hyvin yhteen soivaksi kokonaisuudeksi, muokkaa kappaleiden välit oikean pituisiksi sekä lisää tarvittavan metadatat, kuten kappaleiden nimet, tekijätiedot ja isrc-koodit.

(Owsinski 2000, 1.)

Bernie Grundman: *I think that mastering is a way of maximizing music to make it more effective for the listeners, as well as maybe maximizing it in a competitive way for the industry. It’s the final creative step and the last chance to do any modifications that might take the song to the next level* (Owsinski 200, 1).

8. POHDINTAA

Seuraavassa osassa osaaminen onnistumista ja koko oppimisprosessia. Mikä oli tämän demon tarkoitus ja hyöty.

8.1 Lopputulos

Tavoitteenamme oli saada äänitteestä laadukas käyntikortti tulevia keikoja ja ehkä myös tulevan albumin äänitystä varten. Olisi hienoa saada levy-yhtiön rahoitus taustalle ja päästä tekemään sama prosessi uudestaan, mutta tällä kertaa budjetin ja varteenotettavien tilojen ja laitteiden kera. Kappaleet poiltamme levylle, ja yhdistämme sen saatetirjeeseen, jota sitten lähetämme keikkapaikoille esiintymisten toivossa.

8.2 Kaupallinen näkökanta

asiakaskuntaa, jotta jonain päivänä voisin perustaa yrityksen ja elättää äänituotannolla itseni. Taitavalta äänittäjältä vaaditaan kokemusta, ja sitä saa vain tekemällä lisää äänityspjekteja. Alkuun on pakko tehdä harjoitusprojekteja ja hieman pienemmillä korvauksilla, mutta jossain vaiheessa on äänittäjänkin hinnoiteltava itsensä.
LÄHTEET

Mäkelä, J.P. Oma Studio Ja Äänittämisen Taito. Helsinki: Like

Elektroniset lähteet

http://www.avid.com/US/products/family/pro-tools

https://www.dropbox.com/

http://fi.wikipedia.org/wiki/FireWire

Korpinen, P. Kenttämies, J. 2006. Mikrofonit. Äänipää
http://www.aanipaa.tamk.fi/analog_2.htm

http://www.soundonsound.com/sos/sep12/articles/mixing-bass.htm

http://www.soundonsound.com/sos/dec08/articles/cubasetech.htm

http://www.soundonsound.com/sos/sep11/articles/kicking-bottom.htm

Luettu 12.3.2014
LIITTEET

LIITE 1. CD-levy

YOTB – kolmen kappaleen demo

1. Magic Of The Moment
säv Joonas Leppänen ja Tuukka Mäkiranta san Ilkka Kovala, sov YOTB

2. Road Of The Raging Bull
säv/san. Ilkka Kovala, sov. YOTB

3. Deepthroat
säv. Joonas Leppänen, san. Ilkka Kovala, sov. YOTB

Yhtye

Ilkka Kovala – laulu
Joonas Leppänen – kitara
Tuukka Mäkiranta – basso
Jesse Hämäläinen – rummut

Lisäksi

Markus Pajakkala – saksofoni

Tuotanto – YOTB

Äänitys, miksaus ja masterointi – Joonas Leppänen