Metropolia

Piyusha Saran

Enhanced Test Automation of
Insurance Claim Product

Metropolia University of Applied Sciences
Master of Engineering

Information Technology

Master’s Thesis

16 September 2022

Author Piyusha Saran

Title Enhanced Test Automation of Insurance Claim Product
Number of Pages 63 pages (2 Appendices)

Date 16 September 2022

Degree Master of Engineering

Degree Programme Information Technology

Instructor(s) Sami Sainio, Lecturer, Metropolia UAS

Software Testing is an important phase of a software development life cycle. It is necessary
to thoroughly test the product before releasing it to the customer. There are two different
ways to carry out software testing manual testing or automation testing.

Automation testing comprises of a test automation framework, which is basically a collection
of software components to execute test cases and an all-inclusive reporting of test results.
There are several test automation tools available in the market like Selenium, Robot
Framework, KatalonStudio, Cucumber.

The test automation framework of insurance claim handling product in the case company
had a very complicated design and did not follow the market standards. Due to complicated
design the tests were difficult to understand and maintain which led to the collection of
obsolete tests. Hence, these stale tests resulted in high percentage of test failures in test
execution and overall unreliable test reports. Therefore, a major overhaul was required to
create or adopt a reliable test automation framework and hence regain the trust in the
automated testing of the insurance product.

The objective of this thesis was to implement an improved test automation framework in the
case company for the case software product by using latest Robot Framework libraries for
example ‘Browser Library’ powered by Microsoft Playwright. Page Object Model approach
was adopted, to improve maintainability and understandability of the test framework. Parallel
test executions and independent test cases writing were adopted in order to reduce test
execution duration. Integrations with build and test management tools were also
implemented as a part of this exercise which was not possible in the old automation suite.

As a result of this study, the automation framework was improved by using new tools and
new libraries, thereby improving the overall quality of test automation for the case company.
Due to the new implementation, the execution time was also significantly reduced, and
generated reports were used effectively to troubleshoot the problem areas and improve the
feedback loop for the software developers in the case company.

Keywords Automation Testing, Robot Framework, Browser Library,
Functional Testing, Python, Jenkins.

Contents

Abstract

List of Abbreviations

1 Introduction

1.1
1.2
1.3

Business Context
Business Challenge
Objective

2 Fundamentals of Automation Testing

2.1
2.2
2.3
24
2.5

2.6

Types of Testing in Brief
Why is Test Automation needed?
Concept of Automation Testing
Test Automation Process
Types of Automation frameworks
2.5.1 Data driven framework.
2.5.2 Keyword driven framework
2.5.3 Hybrid testing framework
2.5.4 Modular based testing framework
2.5.5 Linear Scripting
2.5.6 Test library architecture framework
Automation Tools & Frameworks Details
2.6.1 Robot framework
2.6.2 Python
2.6.3 Selenium
2.6.4 Robocop
2.6.5 Git and Gitlab
2.6.6 Jenkins
2.6.7 Pycharm
2.6.8 Pabot
2.6.9 TestRail
2.6.10 Allure
2.6.11 Browser Library

3 Project Specification

3.1

Initial State Analysis

© 00 o O

10
11
12
13
13
14
14
14
14
15
16
16
16
16
17
17
17
17
17

18

18

3.2 Research Process and Data Collection

4 Old Framework Setup and details

4.1 Setup Description
4.2 Major flaws in the old framework setup
4.2.1 High Failure Percentage
4.2.2 Prolonged Execution Time
4.2.3 Automation Quality
4.2.3.1 Unreadable log reports
4.2.3.2 Hardcoded Data Usage
4.2.3.3 Inter dependence of the tests
4.2.3.4 Documentation

5 New Automation Framework Details

5.1 Implementation
5.1.1 Python upgrade
5.1.2 IDE upgrade
5.1.3 Library Upgrade
5.1.4 Review process and tool implementation
5.1.5 Framework Packages and plugins
5.1.6 Framework Configuration
5.1.7 Directory Structure Simplification
5.1.8 Integrations Enhancements
5.1.9 Keyword Approach and Documentation
5.1.10 Parallel execution
5.1.11 Usage of tags
5.1.12 Reporting enhancements

6 Result Comparison
7 Conclusion
8 References
9 Appendix 1

10 Appendix 2

19

21

21
21
22
23
24
24
25
26
26

27

28
28
29
29
30
31
33
34
37
38
40
40
42

43

47

48

50

57

List of Abbreviations

i0S
App
URL
SUT
AUT
oS
Cl/ICD
PM
API
env
cmd
QA
Python
Pycharm
ASCII
IDE
JS

Operating system developed by Apple Inc.

Mobile Application

Uniform Resource Locator

Software/System Under Test

Application Under Test

Operating System

Continuous Integration Continuous Development
Product Manager

Application Programming Interface

environment files extension

command line

Quality Assurance

High level, interpreted, general purpose programming language
Pycharm editor for writing automated tests

American Standard Code for Information Interchange
Integrated Development Environment

javascript

1

Introduction

Software testing is a process where a software product is tested after the
development phase. Testing can be carried out manually or through automation.
Manual testing is a tedious process [1] and consumes considerable time of a
software tester. It takes considerable time [2] because it requires testers to perform
testing manually step by step, and they are always deficient of time to thoroughly test
the software, thereby software release cycles [3] are often delayed. Also, because of
repeatability and human involvement manual testing is sometimes considered
unreliable and error prone due to human errors. A major solution to the problem is

by providing the software testers with test automation techniques.

Test automation [4] is necessary for the software companies because of its reliability
and efficiency. It assists in creating a good quality software with lesser efforts [5] and
significantly reduces the duration of the release cycle [6], where a product feature is

released to the market after successful development and testing .

In order to have a successful automation for a product the test automation framework
needs to be stable, robust, and simple enough to be understood by the software
team comprising of testers and developers. A good automation framework based on
best practices and guidelines improves the overall performance of the product by
increasing the test coverage for the product. Test coverage determines how much
you are testing and what you are testing specifically [7]. The test framework structure
should be organised in such a way, that the different areas within the product should
be clearly categorised, in order to separate different functional areas within the

product like login, user accounts creation, case creation.

The case company had an insurance claim handling product, with the web portal
and the mobile app. It had an old automation suite which was used to test the
software product. The main goal of the case company was to have a test automation
framework which was reliable, scalable and was easy to understand by the testers
and developers. But the old automation suite in the case company had many flaws
like complicated structure, hardcoded data usage, limited test coverage, very long
test execution time, unparalleled execution. Due to these reasons, there were many
problems with the old automation suite and the overall test automation of the

insurance claim handling product became unreliable.

https://medium.com/@hanif.arkan/testing-a-sometimes-tedious-but-crucial-part-of-software-development-23923fa4aea1
https://www.sciencedirect.com/science/article/pii/S1877050916001277
https://theproductmanager.com/topics/software-release-life-cycle/
https://semaphoreci.com/blog/test-automation
https://www.cprime.com/resources/blog/why-automation-testing-necessary/
https://link.springer.com/article/10.1007/s11219-021-09561-2
https://stackify.com/test-coverage-in-software-testing-its-relevance-important-techniques-to-take-note/

Thus, the aim of this methodological study was to identify the shortcomings in the
old automation suite of the case company and implement a solution to overcome
the identified shortcomings. The objective of this study was derived based on the
discussions with software development team, management, and business

representatives.

The identified and accepted solution was basically to create a new test automation
framework using latest Robot Framework libraries. Selenium library was replaced
with a new library by Robot Framework called ‘Browser Library’ powered by
Microsoft Playwright to bring the latest features of automation testing apart from
numerous other implementations to remediate the identified shortcomings of the old

automation suite.

This thesis has been divided into 6 sections.
The first section explains the business context, business challenge and objective.

The second section details the theoretical concepts of automation and information
about the fundamentals of automation testing. Also, the different types of test

automation framework are described in this section.

The third section covers the project specification, where the current state analysis is
done to highlight the situation with the old automation suite. It gives details about
the research process used as well as the data collection methods used during this
thesis. Also, the fourth section gives more information about the old automation
suite, like the whole setup, and then it enlists the major drawbacks in the old

automation suite.

The fifth section however explains the implementation procedure of new test
automation framework, the high-level needs, the necessary setup, and

configuration.

The sixth section compares the old automation suite vs new framework for

comparisons and results

1.1 Business Context

This thesis was done for an insurance claim handling product company which has SaaS
web portal and mobile application. The case company is one of leading provider of
building claims in Nordics. The case company follows agile development style for product
delivery. They developed a product which makes case for the corresponding damage
happened at the customer site and after successful inspection, the details and cost

estimates were sent to the insurance companies for claim.

1.2 Business Challenge

Manual testing slows down the continuity of the agile delivery flow. Therefore, product
quality suffers as the development and testing of new features falls behind schedule.

Agile development is basically a school of thought where its decided on how to develop
and hand over the product whereas DevOps defines the method to continuously roll out
the software code by utilizing different automation tools and software. Automation is
considered as the wheels of the DevOps(a combination of Development and
Operations); an ineffective automation could lead to a struggling development process

which also means slower deliveries and unsatisfied customers.

There are broadly two platforms of the insurance claim handling product core (web) and
mobile platform. The web portal of the case company was used mainly to create case as

per the damage at the customer site.

The main challenge for the case company was unreliable test automation, it had an old
automation suite which had many flaws in it. The old automation suite was very
complicated and extremely hard to maintain and therefore overtime due to less

maintenance it lead to stale tests and eventually high number of errors.

It also means that most of the testing was actually performed manually to gain confidence
in the releases but as mentioned earlier, manual testing was slowing down the release
cycle significantly.
In other words, there were two chronic problems with the old automation suite:
1) Insufficiency: because testing of the product is performed manually which is a
slow and tedious process resulting in higher TTM/time to market.

2) Inefficiency: the test automation is complicated and has very high failure rate.

1.3 Objective

The main objective of this thesis is to understand the flaws of the old automation suite
and then implement a new framework which includes improvements and better design
along with guidelines. The biggest issue with old automation suite was its complexity
since it was written by a developer(s) by using Python [8] language heavily without
following the test automation framework best practices, it lead to a situation that the tests

were very complicated to maintain and even to understand.

Eventually, the framework started to collect obsolete tests due to less maintenance by
the software team over time. The stale tests further led to huge number of failures in the
test execution. It was practically impossible to debug the test results as the old

automation suite was complicated and hard to understand.

The test coverage was also insufficient because it was not possible to write the
automated tests for all functionalities due to competence limitations of python language
in test team for the old automation suite. It was impacting the product quality over time
specifically in integration areas. When new integration feature(s) were added to the
product most of the testing was being carried out manually which was very time
consuming. Due to time pressure, the testing was performed poorly or not completed

within release cycle, thereby bringing down the overall quality of the product.

With the help of this study, old automation suite will be improved in the most efficient way
as per coding guidelines so that the tests are structured and modularized. The new
automation framework will be implemented following the Page Object Model approach
[9], where the folders will be named as per the individual pages in the product. This
approach gives the framework better readability and reusability of the methods
developed. Tagging the tests will also be used majorly in the new automation framework

to improve the searchability of the tests and to identify the test scope and coverage.

Overall, the main improvement from the old test automation framework was the
implementation of Browser Library for Robot Framework[10] which helped in making the
tests less fragile, improved the test coverage and have faster execution times to generate

reports.

https://opensource.com/resources/python
https://testersdock.com/robot-framework-page-object-model/
https://robotframework.org/

2 Fundamentals of Automation Testing

There are mainly two ways of testing a software product manual testing or automation
testing. There are certain differences between the approach of these testing methods.
Manual testing involves a software tester verifying all the functional areas of the product
manually but to release the product faster, often test coverage of manual regression
testing is compromised which leads to poor quality of the product. The reliability of a
product increases if the testing has been done thoroughly. This work is prone to errors
because of poor coverage, repeatability, and human errors when done manually.
Automation testing on the other side is done using automated tools and test script to test
a software product. Automated testing reduces the testing time significantly.

The different types of tools used for automation have certain advantages to be used for
a certain product [11]. It is basically running the tests automatically, arranging and using
the test data and analysing the results for achieving enhanced quality of the software
product [12]. These automated scripts follow Standard guidelines to write code to
effectively execute the important functionalities within a product. Due to the increased
time spent in testing, by manual as well as automation the overall test coverage is
improved greatly. This chapter includes the background to define the need of automation
testing for a software product. It covers the importance of having automation apart from
other types of testing and their definition.

2.1 Types of Testing in Brief

There are mainly two different types of software testing [13]:
o Manual Testing
It means testing any software product manually without utilising any
additional tool(s).
o Automation Testing
It means testing any software product by executing the written test scripts
with an automation tool.
Based on the scope of testing, it can be further classified as
o Smoke/Sanity Testing

It means testing only the major features of a product to check if it works

properly.

https://www.xenonstack.com/insights/web-application-automated-testing-tools
https://www.bunnyshell.com/blog/what-is-test-automation
https://medium.com/edureka/types-of-software-testing-d7aa29090b5b

o Regression Testing
It means testing the areas where a defect or bug has been fixed to check
if the changes in the code did not break anything else in the total code.

o Endto End Testing
It means testing all the functionalities within the product to verify the whole

software product.

2.2 Why is Test Automation needed?

Manual testing is not sufficient for any software because human errors are unavoidable
during execution and the repetitive tasks decrease the productivity of a person, thereby
it's often seen that automation is a much more reliable and efficient way of testing [14].
The main reason behind automation testing is that it reduces cost, decreases the time
and efforts and is more reliable to schedule at desired time intervals. Initial introduction
of automation involves more effort and time as compared to manual testing, therefore

support from management is crucial.

Due to complexity of the product some functionalities in the insurance claims product
were kept untested or poorly tested, thereby resulting in the large number of errors in
that area. There were several production issues in those areas because of poor test
coverage, therefore automation testing is beneficial because the complex areas can be
covered thoroughly and any issues occurring can be analysed for the possible causes

easily.

https://www.cloudbees.com/blog/5-reasons-for-automated-testing

ave Time

\

Improve Test Coverage

Reduce Cost & Risk

Figure 2.1 Automated Software Testing Pyramid

The above Figure 2.1 shows the automated software testing pyramid. The pyramid
shows the benefits of automation testing for an organization, It is evident from the
pyramid that test automation easily saves time of execution by running the scripts

automatically rather than manually thereby saving time.

It improves the test coverage by adding automated tests for areas which are complex
and by running them repeatedly the errors can be removed faster. It ultimately reduces
the cost and risks associated with failures because those analysis results can then be
used by the developers to identify the root cause behind the failures and thereby
decreasing the TTM of new features of the product. Also, the overall quality of the product

is also improved.

2.3 Concept of Automation Testing

Automation is an overall process for the system or product to perform in a predefined
manner. The initial cost of test automation is quite high because lot of time is devoted in
the tool selection, framework finalisation, programming language selection and further
resources need to be planned for carrying out automation testing. There might be few
times conditions where the existing resources need extra training to learn automation

testing. During these stages, lot of time is spent in planning and execution.

After successful training of the resources, automation scripts are written, and framework
structure is organized. The initial scripts, when written are executed multiple number of
times to confirm the accuracy and the coverage of the feature for the AUT. Creation,
execution, and maintenance of the automated test scripts, test environment is a
challenging task and must be done periodically to implement the latest improvements in
the product. All new changes in the product must be refactored in the scripts so that the

scripts do not fail due to new changes in the software.

The major benefit of test automation is the cost, in addition to the cost there are several
advantages of test automation as follows:

Deeper test coverage of the AUT
Reliable results of test execution
Economizes Time and Cost
Accuracy is improved.

Lesser errors due to Efficiency
Faster execution speed
Re-usable test scripts

Early TTM

The criterion for selecting the test suites for test automation are following:

Business critical areas of the product
Workflows that are repetitive

Workflows that are difficult to be performed manually.

P w0 NP

Workflows that are time consuming.

The overall process of test automation comprises of test tool selection, scope definition,
planning, test execution, reports analysis and maintenance of the test suites. The
different types of tools used for automation have certain advantages to be used for a

certain product.

2.4 Test Automation Process

Automation testing is a step-by-step process where an automation tool executes the test
suites on certain functionality or features of the AUT, without any manual involvement.
After the careful selection of the tool, the next step is to organise the automation
framework in order to categorize the different areas of the product so as to keep the
necessary resources and keywords at the right place.

The process initiates with firstly analysing the benefits of having about the need of
automation, selecting the effective automation tool, developing the test automation
framework, creation and designing the test suites, execution of the test suites, report

analysis and lastly maintenance of the test suites.

Planning,
Test tool Design &
selection Development Maintenance
Define Test
Automation Execution

Scope

Figure 2.3 Automation Test Process

The above figure 2.3 shows how the test automation process goes in sequential form
from the test tool selection to maintenance of test automation scripts. In the process we
can see that it starts from the test tool to be selected depending on the feasibility and the
complexity of the product to be automated. After the tool selection, comes the definition
of automation scope to note down the areas to be covered for test automation. The tool

selection depends majorly on which technology the AUT is running.

After selecting a tool later, a proper framework is required, which will be detailed in the

next chapter. After careful framework selection then building proof of concept (POC) with

end-to-end scenarios to evaluate if the tool can support automation of applications
developed. The best approach to follow is to create clear folders where the necessary
pages, resources and tests can be stored. In order to make the framework simpler,
names should be kept as close as to the pages of the AUT, so that all the testers can

quickly understand the area of the automated tests being written.

After building the POC, framework development is carried out, which is a very important
step for the success of any test automation project. Framework should be designed after
careful analysis of the technology used by the application also its key features. The
automated scripts are developed and executed, executed results are analysed and
defects are logged if any. Test scripts are maintained in version control and need to be
updated according to the changes in the AUT.

2.5 Types of Automation frameworks

Testing frameworks are a very essential part of test automation. Basically, a testing
framework is basically a set of rules or guidelines defined for designing the test cases.
All these guidelines follow a standard practice and must be implemented always while
creating a test case. It helps to ameliorate the accuracy of tests, significantly reduces the
maintenance costs for the test and thereby decrease the overall cost of the project.

o)

|

odular

Testing
Framework

Keyword \
driven

Figure 2.4 Testing framework types

The different types of Testing frameworks are shown in figure 2.4. All these different
types of frameworks have their own advantages, disadvantages as well as structural

architecture. The details about these are provided in the next section.

2.5.1 Datadriven framework.

L N 3
Application Under Test

| Actual Output

Test Result (Compare) | o

Figure 2.4.1 Data driven framework

The above figure 2.4.1 for data driven framework allows the test data to be separated
from the test logic, so the data can be stored externally.
The data can be read from the external files like csv, excel, text files etc. and can be

infused into variables in the test scripts.

The biggest and foremost advantage of using this approach is that any changes to the
test scripts do not affect the test data. Due to this approach, it is possible to refactor the
automated tests easily by just changing the data at a central place which is much quicker
rather than hardcoding the data in all the automated tests. If the data is hardcoded, then
during the maintenance phase it becomes a tedious work to update the tests with new
data at every single place. It is very easy to miss out certain places because the tracking
of hard coded data is very difficult and can be complicated at times. Also, sometimes if
the values are changed then its next to impossible to remember all different places where
the data could have been used to correct it.

2.5.2 Keyword driven framework

Test Suite -
Automation Different
Test Script Library Browsers
Keyword Definitions
Test Cases
Reports
Test
Data
Test Steps

Figure 2.4.2 Keyword driven framework

As per the above figure 2.4.2 this framework requires the development of keywords and
tabular data. From the above figure 2.4.2 we can see that the test data is used in the test
steps. The test steps are basically the building blocks of workflow to be followed in a test
case to perform certain action.

These test cases use keyword/or commonly known as user actions to do some specific
tasks. With the help of the keywords, test script is organised to cover a unique functional
area of the product for example, Login and then collection of these kind of test scripts

are basically overall known as test suite.

This type of framework is easier for maintenance, because if there are any future
changes made for the SUT then only the changes needed will have to be done in the
keyword documentation. Its syntax basically lists test cases (data and action) in a table
format. Also, this methodology supports reusability to a larger extent because the same
keyword can be reused for different test scripts, thus saving time. This approach is the
one which will be used as a basis for our newly implemented automation framework. This
approach is quite easy to follow and is very modular. The benefit of this approach is that
it is possible to create a keyword which is basically user action to perform a task for
example, Select Inspection Assignment, this keyword clearly tells us that Inspection

Assignment must be selected to a particular place from a list of options available.

2.5.3 Hybrid testing framework

(~
Module <

~ J/

(B Test Script Keyword/Test Data
Module <

~ J/

p
Module

{ Common Library]
A

Figure 2.4.3 Hybrid Testing Framework

As stated from the figure 2.4.3 hybrid means a combination of data driven and keyword
driven framework approach. We can see from the figure that several modules make pup
a test script. These test scripts use a common library, which has a collection of already
written keywords in it to do some action. These test scripts can also have custom made
keywords which utilise test data for the test scripts. In this approach, the keywords as
well as the test data are both externalized. Keywords and test data both are maintained
individually in separate files for example, former is maintained in separate java class file
while latter is maintained in excel file/ properties file.

2.5.4 Modular based testing framework

Module 1

Module 2

[Test Script J ; 3

Module N

Figure 2.4.4 Modular Testing Framework

As stated from the figure 2.4.4, this framework breaks the test cases into smaller

modules. It follows a non-incremental and incremental approach. The modules are tested

in smaller groups and then tested as a whole. It is a reusable, scalable and efficient

approach but a little complicated approach.

2.5.5 Linear Scripting

This approach is straightforward and is kind of an elementary level of testing where the
test scripts are written consecutively and are run singly. It does not need custom code to
be written and is simple enough to understand by the automation testers. It is based on
the approach where one functionality is picked at a time, write the code, and test it. But
it needs high maintenance as the scripts need to be maintained for every single change

happening.

2.5.6 Test library architecture framework

In this kind of framework similarities among the test scripts are identified to be grouped
under similar functions. Therefore, the library collects all the sorted functions, thereby
making it highly reusable. This kind of approach is manly beneficial when the system has

similar kind of functionalities across various parts of the application.

2.6 Automation Tools & Frameworks Details

There are various automation tools available in the software market and it depends upon
the requirements of the company on which tool to use for their AUT. The simplest
available automation tools widely used nowadays are Robot Framework with different

languages like Python, Java [15] and supported by different libraries or plugins.

2.6.1 Robot Framework

Robot Framework is a test automation framework used mainly for user acceptance
testing and thereby acceptance test-driven development. Robot Framework uses a
keyword-driven testing framework which uses tabular test data to have a variety of test

data sets to verify the boundaries of the software.

In the keyword-driven testing framework tabular test data is used for a variety of test data
sets to verify the boundaries of the software. Robot Framework has built-in keywords,
which are imported as library to be used by the test cases for common functions in a web

page like Log, Run keyword etc. It is possible to write user-defined keywords as well

https://www.oracle.com/java/technologies/

which is compounding of other user defined keywords or built-in keywords. It is also
possible to give arguments to these keywords which then create the user-defined

keywords like functions, which can be reused later.

In the data-driven approach of Robot Framework it supports the keyword driven style
and the data driven style. It basically uses the high-level keywords which are then
implemented as a template to the test suite and the tests then utilize to share data with
the high-level keywords defined in the template. This kind of approach helps to have a
variety of data and therefore the tests can be very beneficial in terms of applications

where different kind of data is expected to be used.

Behavior driven approach of Robot Framework, which is basically an extension of test-
driven development, is an approach where tests are primarily based on the behavior of
the system. This approach explains different methods to nurture a feature based on the
behavior of the feature. Majorly, the Given-When-Then approach is used for designing
the tests

2.6.2 Python

Python is a very popular high level programming language which uses object-oriented
approach to aid the programmers write clear, logical programs. It has its own style of
writing and is easily compatible with Robot Framework. There are 2 major versions of
Python available Python 2x or Python 3x. Python 2x is becoming obsolete nowadays

and many tools have stopped supporting it.

Python language is suitable for the beginners in programming as well as experienced
programmers. It has comparatively better indentation support and therefore the python
code is easily readable. It has a massive collection of standard libraries, and these can
be used for the following areas:

e Machine learning

¢ GUI applications

e Image processing

e Testing frameworks

e Scientific computing

2.6.3 Selenium

Selenium is an open-source project comprising of a wide range of tools and libraries to
support the browser automation. It has a unique record and playback tool to help
programmers record the session activity for replay of actions. It uses the element id
recognition methods mainly to capture different elements on the web page to have

controlled action over the browser. Tests are written in Selenese language for Selenium.

Selenium was widely used automation technique for the element locators in the
webpage. It was quite successful earlier but then it started to have limitations about the

recognition of web elements.

2.6.4 Robocop

Robocop is a powerful tool that executes static code analysis of Robot Framework code.
It applies Robot Framework parsing API to execute checks on the existing code looking

for violations for the software program to the quality standards.

2.6.5 Git and Gitlab

Git is a version control system which is free and open source, used to handle varying
scale of projects with great accuracy and efficiency.
Gitlab is a platform which integrates the development, operations, and security groups

under a single application.

2.6.6 Jenkins

Jenkins is a free software tool which has many plugins for Continuous Integration. It
helps to build and test the software continuously to make it quite easy for the developers/
programmers to incorporate changes in the project. With the help of Jenkins, it is possible
to schedule automated tests at a desired time and reports can be generated quite easily

to see the execution status thereby to be analysed and investigated for failures.

2.6.7 Pycharm

Pycharm is a special Python based Integrated Development Environment (IDE) which
has multiple tools for Python programmers. It has several plugins like Robot Framework
for using it with Robot Framework. It is available in Community Edition (free) and
Professional Edition (free trial). Pycharm is an overall IDE for creating, executing tests.
It has various features to help the software professionals in programming and running

the code.

2.6.8 Pabot

Pabot is parallel executor for Robot Framework and is installed by a simple command
pip install -U robotframework-pabot, due to Pabot the execution time can be
significantly reduced. With the help of Pabot parallel execution is easily possible and the
total execution time can be checked.

2.6.9 TestRail

TestRail is a web-based test case management tool which helps to manage the software
testing processes. With the help of TestRail, test cases and test suites can be arranged

as per the functional area of the tests.

2.6.10 Allure

Allure is a Jenkins plugin to show the Robot Framework test reports in a simplified way

after each test execution.

2.6.11 Browser Library

Microsoft Playwright is a node.js based library to automate Chromium, Firefox and Web
kit browsers with a single API. It is much faster in execution than Selenium library
because it does not need explicit wait and sleep commands, it automatically waits for the

element.

3 Project Specification

This section lists the research methods used during the study and includes the details
about the old automation suite within the case company. It details the process followed
by the case company for then

3.1 Initial State Analysis

This section provides the overview of the old test automation in place in the case
company. The major source of information in analysing the current state of the system,
was interviews, peer reviews and discussions with the existing software professionals
and the business stakeholders. During the research process several meetings,
interviews and discussions were carried out with the business representatives and the
management, in order to understand the shortcomings in the old automation suite and

its impact on the management and business.

The automation test suite comprised of complex directory structure which was very hard
to understand and maintain. The main programming language used was Python2 which
also needed upgrade to newer version Python3. RIDE tool was used for test execution
of the automated tests which had a very limited features and had performance issues.
RIDE is a very basic tool with quite limited features and is not very intuitive like modern

IDEs for example Pycharm.

In the case company once the developer maodified the code it was being committed to git
repository without review since there was no review tool or process was in place for the
test automation suite. It led to poor code quality over time and sometimes defects in the

test automation suite itself.

The old automation suite had many issues like unparalleled test execution, hardcoded

data use, had lots of errors and warnings in the reports, complicated tests etc.

The old automation suite theoretically provided web automation as well as mobile
automation but practically was not being used as part of the testing process due to its

unreliability in both areas.

The state of unreliability emerged over time and due to its design and implementation
shortcomings. The test suite was developed by the developer(s) and was cantered
around python instead of Robot Framework and without using testing approach. Over
time it became very complex and hard to manage by the test team and eventually was

not being used at all in the testing process.

Since the testing was carried out manually, the elongated testing period started to impact
end user in terms of slower and poor-quality production releases of the product in the

case company.

After prolonged discussions and interview sessions within the team, it was agreed that a
new test automation framework is needed to address all the problems of the old

automation suite.

3.2 Research Process and Data Collection

There are multiple ways to classify a research such as objective, approach, procedures,
and data collection. This research applies the action research methodology with the
quantitative analysis (approach) of the data being analysed and arranged during the
research work. Action research is initiated to solve an immediate issue and aims to bring

positive change within the organization.

This section defines the research process adapted during the analysis of the problem
within the case company. It basically details the activities performed to interpret the
existing problems within the case company and for that several steps were taken. For
this several meetings, discussions within the team were initiated and meeting notes were

recorded to assist the data collection.

Following table gives details for the different types of questions discussed during the

meetings with business stakeholders of the company:

S. No Questions/discussions

1. How much does the current framework fulfil the needs considering the

coverage?

Is the framework easier to follow?

What is the failure rate of night tests?

How well are the robot tests structured in terms of functionality?

Is there anyone responsible for refactoring the tests as and when needed?

What are the important functional areas not automated?

How many tests are there in the framework?

© N @ g A DN

Which programming language was used in the designing of robot tests and

why?

9. Are the tests searchable for specific functional area?

10. Are the currents tests easier to debug in case of failure?

11. Are the tests complicated to write and understand?

During the discussions couple of shortcomings within the old automation suite were
identified, like complicated tests, high number of failures, unreadable reports, legacy

scripts etc.

Another major flaw in the old automation suite was that it was written with Python
language and used Python libraries and keywords, which made the overall test

automation framework quite complicated for the test engineers to understand.

Therefore, after several discussions with the QA Manager and PM, certain conclusions
were drawn to implement a new test framework which will be addressing all the major

problems identified in the old framework.

4 Old Framework Setup and details

This section will give detailed information about the old automation suite setup and will

further emphasize the major flaws identified within the existing framework.

4.1 Setup Description

This section describes the old automation suite setup details. In this framework there
were 2 major sections mobile and web. Both these sections have their relevant
automated tests within the product.

The mobile section was divided into 3 different platforms: Android, iOS and windows.
The case company has a mobile app in all the 3 different OS(s). The coverage of the
mobile automation was very limited because of unavailability of resources. Appium is
used for the mobile automation because it supports automating native, mobile web, and

hybrid applications on iOS mobile, Android mobile, and Windows desktop platforms.

Web section was also divided into different folders like main test scripts, resource folder
for common keywords, documentation, and logs. All the automated tests were written in
Python language and used Python libraries. Pycharm was used for writing the automated
tests. The style of writing the old test was purely Python and the tests were written using

custom keywords of Python.

4.2 Major flaws in the old framework setup

This section aims out the major flaws in the existing framework setup. Appendix 2 details
out the main reasons for switching from old framework to the new one. Whereas some
of the major problems with the old test automation framework have been detailed out

below.

4.2.1 High Failure Percentage

Status: 239 tests failed

Elapsed Time: 00:03:25.749
Log File: log.html

Total Statistics Total + Pass = i Elapsed + Pass [Fail / Skip

All Tests 248 9 00:02:38 | n——
Statistics by Tag + Total #+ Pass # Fail + Skip # Elapsed+ Pass/Fail/ Skip

actionsWithlnvoice " 0 1 0 00:00:00 e———
addAndRemoveTasks 8 0 8 0 00:00:00 —
addingWiToRepairPlan 7 0 7 0 00:00:00 ——
area 3 0 3 0 00:00-:00 = ——
assigningPMTask 2 0 2 0 00:00:00 ———
assignMultipleTasksToMultiplePersons 1 0 1 0 00:00:00 ————
authorityLevels 8 0] 0 00:00:00 —————
automaticBudgetApproval 35 0 35 0 00:00:00 | e———
autoMemberSelectionInOffice 1 0 1 0 00:00:00 ——
budgetViewEditPermissions 23 2 21 0 00:01:01 m————
buildA 248 k] 239 0 00:02:38 —
casefctiveStatus 4 0 4 0 00:00:00 ——
caseCreationRules 2 0 2 0 00:00:00 —
caseCreationTaskAssigning 7 0 7 0 00:00:00 ——
caseHandler 7 1 6 0 00:01:00 o —
costControl 38 0 38 0 00:00:00 = —
customerPage 1 0 1 0 00:00:00 ———
customer Settlement 30 & 24 0 00:00:37 | e ——
directedC hatNotifications 27 0 27 0 00:00:00 e———
248 9 239 0 00:02:38 | ne——

internalNotes 9 0 El 0 00:00:00 e———
nightTests 174 8 166 0 00:01:38 D——
outOfNightTests 26 1 25 0 00:01:00 P———
reportedBug 4 0 4 0 00:00:00 @ =—————
smokeTests 6 0 6 0 00:00:00 e———
stable 104 3 101 0 00:02:01 I—
web 248 9 239 0 00:02:38 | i———

Figure 4.2.1 Jenkins failure report

As shown from figure 4.2.1 high number of test failure was observed every time
the night tests were executed approximately 239 tests failed out of total 248
tests. The high failure percentage (96.3%) shows the instability of tests and

insufficient information for the causes of the failures.

4.2.2 Prolonged Execution Time

Unparalleled execution while running the night tests in the old framework, causing long
duration of execution times.

@ Jenkins e ——— L
MultiJob Project MultiJobNext
Ths o Gaaicated fo running tasts n paraller n ordr 1o cecrease running
4 s w Job Last St Last Failure Last Duration Console Built Or
vy 2 @ i
] dankies
] Q
- L otherPorials

BEERE B

Robot Framework Tests Trend (all tests)

P

BEEBERES

Figure 4.2.2 Jenkins Pipeline

This figure 4.2.2 clearly shows the long duration of the test execution which is more than
13 hours. This is a very long duration and basically makes it practically impossible to
debug the errors fast enough to be communicated to the developers.

Due to lengthy duration, the tests were forced to be run only during night because they
took very long time for execution. Because of this prolonged duration, the test automation
became unreliable, as it was difficult to conclude the test execution status during the
Scrum meetings. Overall, no returns from the test automation suite which ideally is
implemented to reduce the testing time and provide quicker feedback and quicker
decisions and hence shortened period of release cycle(s).

4.2.3 Automation Quality

Below are the main factors which contributed to the poor automation quality of the old

test automation suite:

4.2.3.1 Unreadable log reports

Status: 239 tests failed

Elapsed Time: 00:03:25.749
Log File: log.html

Total Statistics Elapsed + Pass [Fail / Skip
All Tests 00:02:38

Statistics by Tag %+ Total #+ Pass = Fail + Skip + Elapsed+ Pass/ Fail/ Skip

actionsWithlnvoice " 0 1 0 00:00:00 | e———
addAndRemoveTasks 8 0] 0 00:00:00 e————
addingWiToRepairPlan T 0 i 0 00:00:00 ———
area 3 0 3 0 00:00:00 | S —————
assigningPMTask 2 0 2 0 00:00:00 —————
assignMultipleTasksToMultiplePersons 1 0 1 0 00:00:00 ——
authorityLevels 8 0 8 0 00:00:00 ——
automaticBudgetApproval 35 0 35 0 00:00:00 = —
autoMemberSelectioninOffice 1 0 1 0 00:00:00 ———
budgetViewEditPermissions 23 2 21 0 00:01:01 w——
buildA 248 9 239 0 00:02:38 | i———
caseActive Status 4 0 4 0 00:00:00 ——
caseCreationRules 2 0 2 0 00:00:00 —
caseCreationTaskAssigning 7 0 i 0 00:00:00 | e———
caseHandler T 1] 0 00:01:00 wo ——
costControl 38 0 38 0 00:00:00 e———
customerPage 1 0 1 0 00:00:00 —
customerSettlement 30 6 24 0 00:00:37 | e —
directedC hatNotifications 27 0 27 0 00:00:00 e———
248 9 239 0 00:02:38 | ne———

internalNotes 9 0 g 0 00:00:00 | S —————
nightTests 174 i 166 0 00:01:38 | n——
outOfNightTests 26 1 25 0 00:01:00 | re——
reportedBug 4 0 4 0 00:00:00 | e———
smokeTests 6 0 6 0 00:00:00 | e———
stable 104 3 101 0 00:02:01 | ——
web 248 9 239 0 00:02:38 | —

Figure 4.2.3.1 Jenkins test summary

As shown in above figure 4.2.3.1 these reports gave no information of the root cause of
the failures and too cumbersome to spot the errors in code. These reports just give very
basic information that some tests were executed and there is no categorization based
on any functionality etc. In these report all the atomic groups are not grouped and therefor
they form a list of 200-300 lines.

4.2.3.2 Hardcoded Data Usage

Usage of hardcoded data makes the automated tests less scalable because they
depend always on the exact data that is provided, making the tests fragile and more

prone to failure.

Sample code from old test suite:
“from
resources.web.<project name>.useCases.zipcodeAndDistrict.Create

and filter cases with district import MyUseCase, Variables

class Create and filter cases with district (MyUseCase):
def init (self):
import
resources.web.<project name>.portalVariables.portalVariables as
_portalVariables
import
resources.web.<project name>.portalVariables.insuranceCompany as

_insuranceCompany

MyUseCase. init (
self,
variables=Variables (
browser= portalVariables.browser,

baseURL= portalVariables.baseURL,

portalAdminEmail= insuranceCompany.Office.UserLevel’/.email,

portalAdminPassword= insuranceCompany.Office.UserLevel7.password
’
firstZipcode="12345",
firstDistrict="<dist name>",
secondZipcode="12346",
secondDistrict="Telemark",

filterCategory="District",

) ANY

The above sample of code gives a glimpse of the old tests written in a complicated way

and using hardcoded data in the tests, which makes the tests practically unscalable.

4.2.3.3 Inter dependence of the tests

The tests in the old framework were dependent on each other and therefore if one test
failed then all the other tests dependent on it would also fail, thereby tests were failing
mostly because of one or other reason and eventually whole test suite would fail, making
it hard to debug the cause of failure.

4.2.3.4 Documentation

The documentation in old automation suite was poor and there was no information about
what action is being performed. The tests had no information about the functionality
being covered by the automated tests, which makes it rather complicated to understand
the whole purpose of the tests. Since there was no documentation written in the tests it

was much difficult to debug the tests in case of any failures.

r evaluation modular" -> On and save changes

spection to a partner
ected for sending the evaluation notification to the customer

ROBOT_LIBRARY SCOPE = RobotTestScopes.SUITE

We! .

self.suitese
self iteTeardownFunctions.
eURL portalVariabl
elDs 1]
uranceAdmin = insurar
uranceLoginEmail = ir

mction)
nnUnselectFilter)

ontactEmail = "
self.url = None
self.evaluationPage = None

self.insuranceAdmin, self.password)

TrueFalse ("Enable custo r evaluation when case closed modular", True)
gAsTrueFalse ("Enable allow handler to control send customer evaluation modular", True)
sSaveInConfigAs

rtner (self.serviceCompany.name, self.serviceCompany.Office.name)

Figure 4.2.3.4

The figure 4.2.3.4 shows a code snippet where the tests have no documentation thereby

giving no information about the functionality being covered by the automated test.

5 New Automation Framework Details

This section mainly gives overall details about the new framework with following sections
describing the implementation method, python upgrade, IDE upgrade and necessary
tools implementation details.

The discussions from the interviews, meetings with the PM and QA Manager proposed
a sample methodology to be adopted and implemented in small part of code to analyse
its performance with improved coding guidelines. After several meetings and discussions
about the new approach a new framework was created where few workflows were
targeted to be automated at first. A list of all the necessary workflows along with the
agreement from the business side was created. The test coverage [16] was monitored
strictly in order to cover all the important areas as identified through management
discussions. The overall structure of the new automation framework was based on the

Page object model methodology.

Robot Framework (Robot Framework, 2021) with a keyword driven approach was
identified as solution for the new automation suite. The new framework was based on
Robot Framework and Python3, and it utilizes the best practices and latest tools to

enhance test automation for the case company.

With the keyword driven approach being followed for Robot Framework, at present a
non-programming background is also able to write test cases. Pycharm editor was
selected as the IDE for writing the robot tests, with several additional plugins installed to
support the latest coding guidelines.

The robot tests were integrated with Jenkins for CI&CD to execute the tests at scheduled
time automatically, in order to decrease the manual work. and identify the defects much
before the production failures. With the help of Jenkins, it is possible to schedule a single
test or group of tests to analyse the results and generate the test reports at any desired
time. Due to the simplest approach being followed in the new automation framework, it
will be easier for the test engineers to write automated scripts quickly and communicate

the failure to the developer faster, to improve the overall quality of the product.

Review tools like Robocop and Pylama were also implemented and used in the new test

framework to enhance the code quality for the test automation framework.

https://stackify.com/test-coverage-in-software-testing-its-relevance-important-techniques-to-take-note/

Reporting was also improved in the new test framework by the help of new tool Allure
implementation. Different reports were generated to understand the failure in the tests,
through which it was much easier to understand the error prone areas and the exact
cause of failure with screenshots etc. These reports were simple, human readable and

were used to identify the total percentage of failed tests.

The overall implementation of the new automation framework was done in steps with

defined objectives so that the targets were easily achieved.

5.1 Implementation

This section provides the insight into the implementation details, tasks and activities

performed in order to improve the shortcomings of old test suite.

Following major areas were improved as part of the new framework setup:

e Python upgrade

e |DE upgrade

e Review process and tool implementation

o Framework packages and plugins

¢ Framework Configuration

¢ Directory structure simplification — Page object model implementation
e Integrations enhancements — Jenkins and TestRail integration

e Keyword approach and documentation

o Parallel execution tool implementation

e Usage of tags to control selective execution

¢ Reporting enhancements

5.1.1 Python upgrade

Old test suite was using Python 2x, which was no longer being supported by robot

framework, therefore it was necessary to upgrade from Python 2x to Python 3x.

Some key differences between Python 2 and Python 3 as shown in figure 5.2.1a below.

Parameters Python 2 Python 3

Print command it is a statement it is a function
Strings to be stored in | ASCII UNICODE

Division integral value floating point value
Exceptions in notation in parenthesis
Syntax complication too much difficult easy to understand
Current usage not used anymore in use

Compatibility Incompatible libraries Compatible libraries

Figure 5.2.1a Python 2 vs 3

5.1.2 IDE upgrade

Initially RIDE tool was being used for test development but it had many limitations apart
from performance issues. The basic editor was replaced by modern integrated
development environment tool called Pycharm from Jetbrains company.

As part of this exercise, usage of Pycharm was commonly agreed as IDE for test

development and was installed on all testers machines.

5.1.3 Library Upgrade

Previously Selenium Library was being used for identifying the elements on the web page
of the web portal of the case company. This library had certain limitations and was much
slower in identifying the exact elements of the web page, also it needed ‘sleep’
commands to be used in the robot tests sometimes to wait for certain elements to appear
on the web page. Therefore, Browser library powered by Microsoft’s Playwright, was
implemented in the new test automation framework because of certain advantages as
follows:

o No wait and sleep needed, automatically waits for the element

o Utilizes javascript(JS) based tech known as Playwright which directly

interacts with browser API and its contents

o runs headless and does not need browser to be opened visibly

o High Performance: because pages in two separate contexts do not share
cookies, sessions, or profile settings. Compared to Selenium, these do
not require their own browser process. To get a clean environment a test
can just open a new context. Due to this new independent browser
sessions can be opened with Robot Framework Browser about 10 times
faster than with Selenium by just opening a New Context within the

opened browser.

5.1.4 Review process and tool implementation

All the tests written within the suite should follow certain coding guidelines and best
practices as defined by Robot Framework documentation. As per best practice and to
keep the code quality over long period, the test development team responsible of
creating test-cases should be reviewed and later the changes should be merged into the
Git repository.

Initially there was no review tool in place which overtime compromised the code quality
but as part of this initiative, a tool named Robocop for checking any coding guidelines
violations was implemented. This review tool is very helpful for quick debugging of the

code because it can immediately locate the deviations from the coding standard.

This enabled a non-programming background test developers to contribute into the test

suite creation and write test cases without affecting the code quality.

In the new framework, there was hardly a need of writing in python code but for some
corners where is necessary, another tool called Pylama was also implemented, which

helps verify the test scripts as per the Python coding guidelines.

Overall, the review tools enforced the review process automatically since it wasn’t
possible to merge the code to master without fixing the violations reported by the review

tools(s).

5.1.5 Framework Packages and plugins

Pycharm was upgraded with the latest Robot Framework version, different libraries, and
plugins to support the latest test scripts. Several libraries were installed in Pycharm to
support the latest automated tests as shown in figure 5.1.5a and 5.1.5b

Browser library

e Env files support

e Batch script support
e Cmd support

¢ Robot Framework Language Server

As part of this initiative, old selenium library was replaced by latest Robot Framework
browser library which is based on Microsoft playwright library. The new browser library
implementation was enabled by adding the readily available plugin in Robot Framework

through Pycharm.

Similarly, other plugins were included in the framework like .env files support for the .env
files which were used to define the environment details like browser, url, timeout etc.
Batch script support for supporting the batch files written to write commands for
executing the robot test, cmd support for enabling highlighting in the test cases, and

‘Robot Framework Language Server’ for Robot Framework support.

Plugins Marketplace Installed @ £
* Appearance & Behavior e / 1o see option: : .
. .env files support
et Downloaded (12 of 14 enabled) Update all @
+ Editor de 1
’ .env tiles support .
12 A
“ Version Control
Background oy dgnore) omepage | Github | |
Changelists A% 0
Sponsors
Commit P
Confirmation Batch Scripts Support /]
LEE 1012 vexey Efimov, utler, Alexander Kriegisch, Johnny Boy, Ale New Relic
File Status Colars) . -
CodeStream
> GitToalBox
CMD Support
Ignore Files Support) Eliminate context switching and costly distractions, Create and merge PRs and perform code reviews fro
Issue Navigation using jump-to-definition, your keybindings, and other IDE favarites. Learn more.
Shelf CodeGlance
Git 1.54] .
. Loy Laravel Idea
GitHub)
Docker
Mercurial |
1174428 JetBrain: The most productive Laravel development environment. Learn more
> Subversion
“ Project: robot-tests EnvFile (] Features
Bython Interpreter orys Piero Environment variables completion based on env, Dackerfile and docker-compose.ymi files.
Project Structure ® Go to declaration(in .enw file) and usages(in code), by Ctrl(Cmd) +click or hot key(Ctri(Cmd)-B, etc.)
® env file syntax highlighter
Build, Execution, Deployment & GitToolBox env file syntax highlighte
1 u , >
N — Change Notes
- Debugger
Data Views tni ugin homepage
11669344 Jetrain
Stepping
Python Debugger ntelliBot
Buildout Support I3
: (o I

Figure 5.1.5 a Plugin details

& Settings

> Appearance & Behavior
Keymap
> Editor

 Version Control

Background
Changelists
Commit
Confirmation
File Status Colors

> GitToolBox
Ignare Files Support
Issue Navigation
Shelf
Git
GitHub
Mercurial

> Subversion

 Project: robot-tests

Python Interpreter
Project Structure

Build, Execution, Deployment
Build Toals

~ Debugger

Data Views
Stepping

Python Debugger
Buildout Support

Plugins

- type / to see option:
m Rainbow CSV

Requirements

@ Robot Framework Language Server

Robot Framework Suppert

req txt

IDE Settings

Settings Repositary

Languages

[Fag) Morkdown

Propertics

S:e‘ll Seript

YAML

Update.

Disable all

Disable all

x
Marketplace Installed @3 -3
.env files support o

® -

Homepage | Github | Issues.

Sponsors

New Relic
CodeStream
Eliminate context switching and costly distractions. Create and merge PRs and perform code reviews fra

liging jump-to-definition, your keybindings, and other IDE favorites, Learn more,

\L—I Laravel Idea

The most productive Laravel Ll

Features
® Environment variables completion based on .env, Dockerfile and docker-compase.ymi files
® Go to declaration(in .env file) and usages(in cade), by Ctri(Cmd)+click or hot key(Ctri(Cma)-B, ete
® env file syntax highlighter

» Change Notes

Plugin hemepage »

Figure 5.1.5 b Plugin details contd.

Necessary plugins were added to Pycharm IDE to support the latest automated tests

scripts. These plugins support new coding style and provide quite efficient methods to

achieve solutions to difficult problems related to the framework.

ﬁ Settings

Q

> Appearance & Behavior
Keymap

> Editor
Plugins

> Version Control

* Project: robot-tests

Python Interpreter

Praject Structure
> Build, Execution, Deployment
> Languages & Frameworks
> Tools

CodeGlance

Project: robot-tests * Python Interpreter

Python Interpreter:

+ ®
Package
Appium-Python-Client
PySocks

PyYAML

allure-python-commons
allure-robotframework
astroid

attrs
backports.cached-property
blinker

certifi

cffi

chardet
charset-normalizer
colorama

cryptography

decorator

docutils

grpcio

grpcio-tools

h11

h2

hpack

hyperframe

%, Python 3.7 (robot-tests) c:\insm

Version
120
171
541
2943
2943
2713
2120
1.0
14
2020.12.5
1.14.5
400
204
044
346
508
0171
1390
1390
0120
4.00
400
6.0.0

Latest version
-~ 200
171
- 60
& 2945
& 2945
A 230
21.20
101
14
- 2021108
- 1,150
400
A 207
044
“ 3600
4 510
- 0181
- 1420
- 1420
0120
- 410
400
& 601

Cancel Apply

Figure 5.1.4 c Packages installed

Different Packages as shown in figure 5.1.4 ¢ above, were included through Pycharm
IDE to improve the library support for writing automated tests, by utilising some important

keywords from these libraries.

5.1.6 Framework Configuration

This section details the necessary configuration or versions of the different libraries or

tools used in the new test automation framework:

Dependencies needed for running tests and code quality checks
to install them simply run: pip install -r requirements.txt

pylama ==7.7.1 # wrapper for linters for Python code
pylint == 2.11.1 # linter for Python code

pyyami ==5.4.1 #yaml support

robotframework ==4.1.2 # testing framework
robotframework-browser ==7.1.1 #library for running tests with browsers
robotframework-pabot ==2.0.1 # parallel runner for RF

requests == 2.26.0 # Python HTTP requests library
robotframework-requests ==0.9.1 #RF HTTP requests library
robotframework-robocop == 1.12.0 # linter for RF code
robotframework-appiumlibrary ==1.6.2 # Appium library for RF

selenium == 3.141.0 # browser automation library
selenium-wire ==4.4.0 # selenium version for preview requests
allure-robotframework ==2.9.45 # create report in pipeline
Appium-Python-Client == 1.3.0 # Python client for Appium

psutil ==5.8.0 # For handling emulator process

These dependencies were stored in the project under the file requirements.txt in
Pycharm and it was possible to update the version of any dependency from the file itself.
This way it became quite comfortable to have everything under single file stored.

P g Add Co

&) session.resource utils.py & common.resource &) report_templates.robot & requirements.txt

7.1 # for linters for Pyt

pylama == 7.

pylint == 2.11.1 # lint for Pyt

pyyaml == 5.4.1 = L t

robotframework == 4.1.2 # testing f
robotframework-browser == 7.1.1 # 11 y f ing tests wit
robotframework-pabot == 2.0.1 # 1lel for RF
requests == 2.26.8 # Pyt HTTP ts 11
robotframework-requests == 0.9.1 # RF HTTP ts 11
robotframework-robocop == 1.12.8 # linter fi RF
robotframework-appiumlibrary == 1.6.2 = i 1i

selenium == 3.141.8 # tomati 11
seleniuvm-wire == 4.4.8 # i f selenium f i t
allure-robotframework == 2.9.45 # t t in pipeli
Appium-Python-Client == 1.3.0 # Pyt lient fi i
psutil == 5.8.0 #F 11 lat

Figure 5.1.5 Requirements file screenshot

From the figure 5.2.2 we see the requirement file being added to the test automation
framework. This file, as we see is easily maintainable by the user and gives hints to the
user if the installed package needs to be upgraded to the next version. Also, it was a

convenient way to maintain the installed versions of the software at a centralised place.

5.1.7 Directory Structure Simplification — Page Object Model Implementation

During the setup, the directory structure was written and finalised to support the modular
approach for Test automation. It was discussed with the Quality Assurance Manager and
the business stakeholders to keep the overall test framework structure as per the overall
design of the case company’s webpages/portal. Page Object Model approach where
the folders will be named as per the individual pages in the product. This approach gives

the framework better readability and reusability of the methods developed.

v
> Appearance & Behavior
Keymap
> Editor
Plugins 2l
> Version Control
* Project: robot-tests

Python Interpreter

0]

Project Structure =
> Build, Execution, Deployment
> Languages & Frameworks
> Tools

CodeGlance

Project: robot-tests * Project Structure

Mark as: Sources Excluded

s C xRS (ETTD5\ robot-tests
.githooks

Idea

pabat_results

pages

resources

VO W W

robot_reports

tasks
> test_data
> tests
> venv
Exclude files:

Use ; to separate name patterns, * for any number of symbols, ? for
one.

Figure 5.1.6 Directory structure

Here is a quick view of the directory structure as shown in the figure 5.1.6 above been

developed for the new test automation framework:

The project structure:

The root directory (robot-tests) contains several directories and files where each serve a

different purpose:

RN

robot-tests
F—— pages
| F——web

| | I———<page_name>

| | F——page_name.

pages for Page Object Model pattern

container for specific webpage

yaml # file with defined locators

| | L page name.resource # file with defined keywords

| L— mobile # a structure similar to web pages
I

I—resources # data shared by all tests

| I—common # keywords and variables common

| I—environments # run configurations as input files
| L —nmobile # mobile custom libraries and functions
I—tasks # tasks to execute test data load
I—test_data # place for keeping all test data

| I—— web # test data for UI tests

| L—mobile # test data for mobile tests
|—tests # main directory with tests

| I—mobile # mobile tests

| L— web # UI tests

| |—<Suite_name>. robot # suite files with RF tests
I—robot_reports # output files from test execution
— .. # Other files in root like readme,
requirements etc.

This type of folder structure was quite helpful and efficient for the test automation
engineer because this was completely as per the practical page structure of the case
company’s product. Since the product contained the mobile and the web part therefore
two different folders were created to store the relevant artifacts and the necessary page

object resources.

The directory structure was strictly maintained and implemented using the Page Object
Model Approach in the new framework. This approach was implemented in order to
improve the complicated design of old test automation suite, and it was much easier to

understand by the test team.

td

Run

r
New Context
Open Login Page

Log In With Account

BASE-11871 BASE-11577
${ENV_URL} S {ENDPOINT _MEMBER LIST}

n Modal For Member Creation
§{member_email}

Search For Member
[Teardown]

5 {member_email}

mber And Verify visibili
tion] it member for email address and verify visibility on members page
edit ber E £-11871 BASE-11577 bug_BASE- 13257

$(MEMBER_EMATL}

m Action For Member
er Email And Verify

Deactivate Member ${MEMBER_EMAIL}

Figure 5.1.6 Sample Testl

5.1.8 Integrations Enhancements — Jenkins and TestRail Integration

The test management tool TestRail was setup and the integration between the
automated tests and TestRail was established. The integration was helpful because
whenever the tests were created in Pycharm there was a placeholder test created for it

in TestRail thereby eliminating the need for manual creation of the test case in TestRail.

The CI/CD pipeline was created with Jenkins to run the pipeline with necessary
configuration and integrated with the automated tests to run them over night, regression
test suites and also whenever new commit was pushed to repository. Basically,
whenever a new feature/functionality was developed with automated tests after every
single commit pushed to the repos, the pipeline used to run to execute all the tests in the
framework, to detect any flaky tests which would fail. After careful analysis of the reports,
the reason of the failing tests.

5.1.9 Keyword Approach and Documentation

The automated tests were implemented in the new framework by using keyword driven
approach [17]. This approach means that each user action to be performed will be written
in the form of a customized keyword. Therefore, by using the customised keywords in
the tests, a particular functionality can be easily covered by the automated scripts.

Following code snippet shows a sample test from the newly implemented test automation
framework using keyword driven approach:

*** Settings ***

Documentation Test suite under members page
Library String

Variables ${EXECDIR}/test data/web/members.yaml
Suite Setup Run Keywords

Run Browser

New Context

Open Login Page

Log In With Account
Handle Popups

Force Tags members

*** Test Cases ***

Create Member And Verify Visibility

[Documentation] Create a new member
[Tags] add member
[Setup] Go To ${ENV_URL}${ENDPOINT MEMBER LIST}

Open Modal For Member Creation

$ {member email} Create New Member
authority level=1
company name=Comp X
office index=1

Search For Member ${member email}

[Teardown] Deactivate Member $ {member email}

This code shows the test for creating a member in a company and searching for its

availability after creation from the list of members available. As per the code, different

https://www.ranorex.com/keyword-driven-testing/

keywords like “Create Member And Verify Visibility”, “Search For
Member”, create new member, deactivate member are used to perform user actions.
The keyword names resemble the user action that they are going to perform for e.g
deactivate member will be deactivating a member been created previously. Additionally,
tags are used within the tests to help with searchability according to the functionality for
example, adding a member is tagged as add_member. Using this tag, it becomes very

easy to search for a particular test written for this functionality in the product.

This approach was used in all the tests within the new test automation framework so that
the name of the keyword would clearly define about the user action performed in contrast
to the old test suite where neither the tests nor the documentation gave any hint on the

user actions being performed.

A~ | Add Configuration...

— @ session.resource & utils.py & common.resource) report_templates.robot # requirements. et

e T e S B T ST L SN
${EXECDIR}/test_data/web/credentials.yaml
${EXECDIR}/pages/web/login_page/login_page.yamlL
${EXECDIR}/pages/web/top_nav_bar/top_nav_bar.yaml
${EXECDIR}/pages/web/company_admin/main_menu/main_meny. yaml
S{EXECDIR}/pages/web/company_adnin/main_menu/in4mo_configuration/in4mo_configuration.yaml
${EXECDIR}/pages/web/cases_main_view/cases_main_view.yaml

${EXECDIR}/resources/common/common, yaml

*%% Variables #+%

${BROWSER} chromivm faul lue normally
${HEADLESS} §{True} # use False lve to force b e
${sLowMo}] # slows do executi y specifie
${DEFAULT_ACCOUNT} ${ADMIN_ACCOUNT}

${INITIAL_PASSWORD} passwordd

${GLOBAL_PASSWORD} passwordl

${INSURANCE _USERS_PATH} test_data/web/users/insurance
${CONTRACTOR_USERS_PATH} test_data/web/users/contractor

*%% Keywords %
Run Browser
[Documentation] R seript fo owse
ew Browse browser=${BROWSER}
headless=${HEADLESS}
sLowto=${SLOWNO}

Open Portal
[Docunentati

urL=${ENY_URL}

Open Login Page
[Documentation
[ar

1 ens login page
${portal_url}=${ENV_URL}
url=${portal_ur1}${LOGIN_PAGE_URL}

Go To Main Page
[Documentation] Goes t in view avoiloble ofter log i
6o To url=${ENV_URL}${CASES_MATN_VIEW_URL}

Log In With User And Password
[Documentation] Trigger er log in procedure
[Arguments] ${user}=${DEFAULT_ACCOUNT .user}
${password}=${DEFAULT _ACCOUNT.password}
s ${validate}=§{False}
Fill Text ${INPUT_EMAIL_FIELD} ${user}

Fill Secret ${INPUT_PASSWORD_FIELD} $password

Figure 5.1.8 Keywords sample

From the figure 5.1.8 above we can see that the tests use a keyword approach and
some of the common keywords are taken from the Browser Library, while others were

customised for the user action as per the product needs.

5.1.10 Parallel execution tool implementation

In the new framework, an additional tool was implemented called Pabot, the parallel
executor tool, which executes the robot tests in parallel. Due to Pabot, the execution time
was significantly reduced as can be seen from the figure below.

Tests & Tests Report 20220112 124719 UT G000

Summary Information

Status: All tests passed
Elapsed Time: 00:12:47 513
Log File: log,htm|
Test Statistics
Total Statistics Total Pass Fail Skip Elapsed Pass / Fail / Skip
All Tests 142 142 o 0 00:09:21
Ny S— —
Statistics by Tag Total Pass Fail Skip Elapsed Pass / Fail / Skip
activate_icc_for_all_offices 1 1 0 0 00:00:03
add_band 3 3 1] 0 00:00:02
add_extra_trips 4 4 o] 0 00:00:01
add_filter 1 1 0 0 00:00:08
add_inspection 2 2 o 0 00:00:07
add_member 1 1 0] 00:00:03
add_remove_tasks 6 6 0 0 00:00:19
add_repairtask 2 2 o 0 00:00:06
address_fields 4 4 0] 00:00:17
address_validation 28 28 0 0 00:01:45
api 15 15 o 0 00:00:11
BASE=11504 4 4 0 0 00:00:12
BASE-11577 1 1 0 0 00:00:03
1 1 0 0

BASE-11871 00:00:03

Figure 5.1.9 Test Report

The above attached report in figure 5.1.9, shows that due to parallel execution being
implemented in the new test framework, test execution time is 10 mins whereas it was

13 hours for old test automation suite.

5.1.11 Usage of tags to control selective execution

In the new test framework, robot tests were created by implementing Tags. Tags are the
simplest way to run the automated tests for a specific functionality, by using the standard
robot command for test execution, tags can be included so as to run the tests or search

for the tests using the tags in the test reports.

As mentioned above about tags, we can see from the example below, the following

command uses ‘smoke’ tag to execute all the tests which have tags as ‘smoke’ while

writing the tests.

robot --include add filter --variable HOST:10.0.0.42
path/to/tests/

robot-tests | tests ' web | fiters | & damage_type.robot &~ | | Add Lonnguration... w ¥ v oS 9w ww
i Project v = @ — @ login_pagerobot lamage_type.robot ® login_page.resource ® common.resource s login_page.yaml s commonyam! v}
| # execution-time-checker.py

' @ mobileresource erx Test Cases ik

© sessionresource

: 78703073 Select Damage Type er And Verify Case With Applied Filter

i & sniffer.py N |) _
H & update_get_apl.files.py [Documentation] Se ge type filter and validate t
Typ ynction
£ @ user_management.resource s ypa::Functionar
% utils.py [Tags] BASE-14047 add_filter
> B environments Veri i 1 n
> mobile Verify Filter Is Present And Select Filter Option Checkbox Damage type
> I output_options Open_Insurance Case Created For This Suite
> W tasks Open Case Information And Validate Damage Type Other
> I test data - |
9e =
v tests b |
Handle Popups |
> M api =
i Teardown]
> B mobile
v B web ; : 4
> B calendar modular C81370068 Edit Damage Type Filter And Verify Filtered Cases 5|
> BN case han;iling [Documentation] Edits the damaoge type filter and volidate the coses w il
> I certification_portal Type: Functional e
> W company_admin Tags] BASE-14287 edit_filter
; 2 Mo Verify Filter List Is Open
§ B filters Damage type OthE
i © damage typasobot ${SUITE_CASE_ID} —
© save fiterrobot Perform Action On Filter And Verify Damage type Edit
) > M % S
5 f“ . Verify ter Popup Is Opened
! > W invoice e . £
i > B login Vamage ype .
| Terminak: Local + v x -
& file Edit View Navigate Code Refactor Run Tools Git Window Help robot ersonal\robot-tests-20220314T120025Z-001\robot-tests\robot-te: \web\login\login_pagerobot — =} X
robot-tests ~ tests web login = @ login_page.robot &~ | Add Configuration.. Gt ¥ v 20 QOP
% Project v QI = & — Blogin b o login | 2 | e members.yaml H
> B cost_control 041 A
8 > B documents_library

%%k Test Cases ¥k

> B new_workplan i e
© case_page-resource 64622638 Invalid standard login
2 case_page_viewyam| [Documentation] Verifies login with invalid credentials on login
> B cases_main_view [Tags] invalid_login
> B8 company_admin [setup] Open Login Page
> confirm_location_modal [Template] Login With Invalid Credentials And Validate
v W login_page FOR ${account} IN e{1! TSH
® login_page.resource ${account}
P
i login_page.yami END
> member
> B my_calendar 2 %
. 64622639 Valid standard login
> W popups
N it caleidar [Documentation]
> B top_nav_bar [Tags] valid_login
> B user_page [setup) 0pen_Login Page =
v I resources Login With valid Credentials And Validate ${DEFAULT_ACCOUNT}
~ B8 common
> B data-load C64622640 Validate all languages in dropdown
s =
EH © case_management.resource [Documentation] Checks if change language button works for all LG&
5
H ® common.resource [setup] Open_Login Page
2 ~) | =
: o CommMOon.yam [Template] nge Login Page Language And Validate
i execution-time-checker.py FOR s } o {LANG)
£ @ mobile resource ANARAnS G{LANGY
g ® session.resource ${tanguage}
i "R END
¥ Terminat Local + v -
P Git TODO @ Problems ¥ Python Packages @ Python Console | B Terminal Q Event Log

J Undefined keyword: Open Login Page. 3941 CRIF UTF-8 4spac.. Python 39 (robot-tests) P master ‘s

Figure 5.1.10b Sample Test2

In these figures 5.1.10a and b, it can be clearly seen that these tests are created with
suitable Tags as per the functional area of the tests for example valid_login for the

verification of valid login into the product portal.

5.1.12 Reporting enhancements

For clear and simple reports, the new framework was implemented with Allure reports.
These reports generated after the test execution were much convenient to understand
because of clear graphs which showed the total number of tests passing or failing.

ALLURE REPORT 9/16/2021 TREND

23 52.17%

SUITES

ENVIRONMENT

CATEGORIES
FEATURES BY STORIES

EXECUTORS

€ senwns
s

Figure 5.1.11 Allure report

Above figure 5.1.11 shows the test execution status for a particular test run. These

reports were implemented using Jenkins as a plugin in the new framework.

6 Result Comparison

This section presents the comparison of old test automation suite and the new test

automation framework from various perspectives:

Old Suite New Framework
Execution Time / Performance Up to 13h Less than 12mins
Parallel Test Execution Not available Capable (Pabot)
Review Capability not available Available
Independent Test Cases 0-10% Only 100%
Automation Standards Not followed Maintained in all tests
Code Quality Poor Excellent

Understandability of Tests

Complicated and difficult

Easy to follow

Requirements File

not available

Available

Failure Percentage

50-99 %

0-10%

Jenkins’s integration

Available - limited extent

Available - full extent

Testrail Integration not available Available

Debugging complicated Easy (Failure
screenshot captured)

Readability of Reports Average Excellent

Table 6a Comparison of Old vs New Framework

As can be seen from the above comparison table 6a, the new framework due to being
implemented with many great features improves the overall tests usability and readability
of reports.

The overall test execution time was improved by a great extent from few hours to few
minutes because of the usage of parallel execution and tests were written independently
in order to make parallel execution possible. The performance improvement was also
brought by usage of better keywords provided by modern browser library up to certain

extent.

Parallel test execution saves a lot of time because all the tests can be run within a single
instance using parallel process ids, with the help of Pabot the parallel execution tool used
in the new test framework. It was not implemented in the old frameworks and therefore

the execution time was 35 times longer than the new framework.

The new test automation framework employed the review tools called Robocop and
Pylama which alerts the user for any coding guideline not been followed, which makes
the automated tests aligned with automation standards and guidelines and ensuring the

code quality in long run.

The code quality of the automated scripts was also improved by following the guidelines
in the new framework in its implementation phase itself. The tests created were easy to
script and easier to understand by the fellow team members. Any discrepancies in the
guidelines, were pointed out by the code review tool Robocop in the new test framework.
These steps were followed for each test pushed to the suite repository. These kinds of
checks were not available for the old framework and therefore the old tests had many

complications and failures.

The requirements file is being maintained in the new framework in order to enlist all the
packages and the dependencies needed for running tests and code quality checks. Old

framework didn’t have any such practice in place.

The requirements file was a simple .txt file which was maintained throughout the
implementation and application of the new framework. This txt file has all the necessary
library tools and their versions needed for the framework. If some tool needs an update,
then there were hints provided in the new framework to upgrade the tool to next version.
It helped to maintain the framework dependencies at a single place and whenever
upgrade was needed it can be done from the single place. This file was not available in
the old framework and thus tools were sometimes outdated and there was no simple way

to update them for the whole framework.

¢« C A Notsecure | local/view/all/ Qa® & 8 *»Q :

Dashboard + All +

& People

= Build History

ALL BITBUCKET BUILD MONITOR MOBILE MULTIRUN PERFORMANCE REGRESSION RUN WITH PARAMETERS SMOKE TEST RUNS

O, Project Reltianship

=

Last BUILT
NAME | LAST SUCCESS LAST FAILURE e 2 ROBOT RESULTS + DURATION TREND

2 Chack File Fingsrprint

® O it vobiotogy 1A R 2o It
(@ Open Blue Ocaan
O G Andoidmobionn 3dweiehe 4292 A 2h 42 min Jonking
¥ Job Import Plugin
® G Android Tess A dpimo 3 6350 Jenking
Build Queue ~
® G snaroiddeeiop - W 2hr38min Jenans
i the e
® G AvomatedReguesion ygmaohe 202 4min %207 4min§ sec
Pipeline
Build Excautor Siatus ~
@ e || R 2o [12 min senilly[FETTEE
™
L § O Eiucetioboutes Tmin2sec iog WA 15
E
® g et wme 6 Wma # 8 min 59 see Jenking
‘i
5 ide ® Gh Frameworczo “’"’_ b sasac Jonkins [BY DA
aaf + I
5
N ® @ rennepune zay ey @ 2950
s o & - wa 2138 min Jmm@

ddays10hr 4539 TyrSmo 440 7 hr Vmin Jankis 29 e

D)

@ @
D

AdaysT0hr #8539 N/A 4 hr 83 min Jenkins]

U allure-report zip - Showall X

Figure 6a Total reports

The above figure 6a total report shows us that with the new automation framework the
pass percentage for the tests became 100% (142/142 tests passed) while with old
framework total tests it was just 4.4% (39/879 tests passed). These values clearly show
us that the new approach is better, easy to follow and much more reliable as compared
to old tests.

« C 4 Notsecure | R ocob ions/jenk 19 20tests %20regression/detal d%20tests %2 /289 tests a2 B @ :

+/ Automated tests regression < testauto_#289 Changes Tests

Branch: — @ 12m 3285

Commit: — © 7hoursago

) All tests are passing

passing.
Passed - 142

B C78809629 Case metadata s
P ;78809630 Dozuments 15
M - 78809631 Invice s
B . 78809632 Invoice metadata <15
P : 78809633 Members <15
P C78009634 Multimedia <15
Y ;- 78309635 Office <15
¥ . 78809536 Task endopint <15
O . 78809637 Task metadata <t
Y 78309638 Teams <5
B . 98319470 Case contacts s
B 84566607 Get All Versians <15
W CBA566607 Get Ml Versions <15
O C69393977 Verity I My Cale 2
W C69393977 Verify I My Cale 3
Pl 5 Cova93978 Verity If o 2

Figure 6b Detailed report

The above figure 6b shows clearly the areas covered for the automated test in the new
framework. It is easily readable and gives the information quickly about execution time,

functional areas, fail/pass percentage etc.

As discussed previously, all the tests in the new framework have been kept independent

of each other so that if there is one test failing the others should not be affected.

The new framework strictly follows the Automation Guidelines attached as Appendix to
this thesis. These guidelines were not followed in the old framework and hence lot of

things were improved because of following the guidelines.

Jenkins integration was fully implemented and with the help of using tags, it was possible
to run the selective tests for example smoke, tests of only of specific module or full
regression suite depending upon the test scenario or requirement in the new setup using
Jenkins but in the old setup only basic integration was present which was triggering the
nightly tests only as full regression suite.

TestRail the test management tool was integrated with the new test framework in such
a way that when the automated scripts were created in Pycharm a place holder ticket
was automatically created in TestRail, so manual work was much reduced. This tool was

not available with the old framework.

Reporting has been improved in the new test framework due to Allure report plugin
implemented in Jenkins. These reports provide clear information about the test failures,
as well as screenshots were also captured for any failures due to which debugging was
very convenient. The old test suite did not have any reporting tools and screenshots were

also not captured due to which debugging was very difficult.

7 Conclusion

As we see from all these comparison points, the new test framework implementation was
quite helpful for the case company, and it improved the overall test automation status for
the product.

These improvements were highly appreciated by the business stakeholders and the
peers. The new test framework has been accepted by the company and all the old tests
will eventually be rewritten as per the new framework structure. The reports are analysed
every day and feedback is provided to the developers quickly for any failures occurring
in the code.

The test coverage has been improved to a great extent because of the new framework

and all the tests written are maintained regularly as per any latest changes in the code.

8 References

1. [1] Testing is Tedious, https://medium.com/@hanif.arkan/testing-a-sometimes-
tedious-but-crucial-part-of-software-development-23923fad4aeal, Accessed 12
Sep 22

2. [2] Testing is time consuming,
https://www.sciencedirect.com/science/article/pii/S1877050916001277,
Accessed 12 Sep 22

3. [3] Software release life cycle, https://theproductmanager.com/topics/software-
release-life-cycle/, Accessed 12 Sep 22

4. [4] Test automation, https://semaphoreci.com/blog/test-automation, Accessed 13
Sep 22

5. [5] Why automation testing is necessary
https://www.cprime.com/resources/blog/why-automation-testing-necessary/.
Accessed on 27 July 2021

6. [6] Sprints cycle, https://link.springer.com/article/10.1007/s11219-021-09561-2,
Accessed 13 Sep 22

7. [7] Test coverage,
https://stackify.com/test-coverage-in-software-testing-its-relevance-important-
technigues-to-take-note/. Accessed 28 July 2021

8. [8] Python, https://opensource.com/resources/python. Accessed 15 Aug 2021

©

[9] Page Object model approach, https://testersdock.com/robot-framework-
page-object-model/. Accessed 03 April 2022

10. [10] Robot Framework, https://robotframework.org/. Accessed 03 May 2022

11.[11] Web application testing tools, https://www.xenonstack.com/insights/web-
application-automated-testing-tools. Accessed 31 May 2022.

12. [12] https://www.bunnyshell.com/blog/what-is-test-automation, Accessed 13
Sep 22

13. [13] Types of software testing, https://medium.com/edurekal/types-of-software-
testing-d7aa29090b5b, Accessed 13 Sep 22

14.[14] Reasons to do automation, https://www.cloudbees.com/blog/5-reasons-for-

automated-testing. Accessed 31 May 2022

15. [15] Java, https://www.oracle.com/java/technologies/. Accessed 03 June 2022

https://medium.com/@hanif.arkan/testing-a-sometimes-tedious-but-crucial-part-of-software-development-23923fa4aea1
https://medium.com/@hanif.arkan/testing-a-sometimes-tedious-but-crucial-part-of-software-development-23923fa4aea1
https://www.sciencedirect.com/science/article/pii/S1877050916001277
https://theproductmanager.com/topics/software-release-life-cycle/
https://theproductmanager.com/topics/software-release-life-cycle/
https://semaphoreci.com/blog/test-automation
https://www.cprime.com/resources/blog/why-automation-testing-necessary/
https://link.springer.com/article/10.1007/s11219-021-09561-2
https://stackify.com/test-coverage-in-software-testing-its-relevance-important-techniques-to-take-note/
https://stackify.com/test-coverage-in-software-testing-its-relevance-important-techniques-to-take-note/
https://testersdock.com/robot-framework-page-object-model/
https://testersdock.com/robot-framework-page-object-model/
https://robotframework.org/
https://www.xenonstack.com/insights/web-application-automated-testing-tools.%20Accessed%2031%20May%202022
https://www.xenonstack.com/insights/web-application-automated-testing-tools.%20Accessed%2031%20May%202022
https://www.bunnyshell.com/blog/what-is-test-automation
https://medium.com/edureka/types-of-software-testing-d7aa29090b5b
https://medium.com/edureka/types-of-software-testing-d7aa29090b5b
https://www.cloudbees.com/blog/5-reasons-for-automated-testing
https://www.cloudbees.com/blog/5-reasons-for-automated-testing
https://www.oracle.com/java/technologies/

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. [16] Test coverage,https://stackify.com/test-coverage-in-software-testing-its-
relevance-important-techniques-to-take-note/. Accessed 28 June 2022

[17] Keyword driven testing, https://www.ranorex.com/keyword-driven-testing/.
Accessed on 18 June 2022

Mojtaba Shahin, Muhammad Ali Babar, Liming Zhu. Continuous integration
delivery and deployment: a systematic review on approaches, tools, challenges,
and practices. Australia: 2017.

Tom Lecklider. Software testing features agile footwork. July 2014
Christian Bonnin, Atmel. Advances in Test Program Automation. July 2007

Jain Prateek, Non-functional Test Automation for Windows Phone Apps. April
2016

Chithra Prabha Peachi Muthu. Visibility of the project status, usage of agile
methods and tools. October 2014

Singh Karan, Web Application Performance Requirements Deriving
Methodology. May 2016

Venalainen Pekka, Detecting Software License Violations. May 2021

Bezirganoglu Sefika, Securing Cloud with Palo Alto Networks Firewalls,
November 2020

Salama Risto, “Down with Regression”-Generating Test Suites for the Web,
April 2020

Brinkmann Eliza, Adjustable automation for the homebrewing process, August
2021

Jaaksola Mikko, Software testing failures through the history and how to prepare
for them, December 2018

Knaappila Jani, Measuring Structural Software Quality, November 2020

Lukkarinen Pasi, Data Center Automation- and Hybrid Cloud System
Requirements, May 2020

https://stackify.com/test-coverage-in-software-testing-its-relevance-important-techniques-to-take-note/
https://stackify.com/test-coverage-in-software-testing-its-relevance-important-techniques-to-take-note/
https://www.ranorex.com/keyword-driven-testing/

9 Appendix 1

This appendix presents the test automation standards and guidelines documented by

Robot Framework community, same has been referred in the thesis work on continuous

basis.

Automation Standards and Guidelines

Pull requests and peer reviews

In Testcases repository, standard GitLab pull request process for shared repositories
should be followed for merging to any protected branches (at the time of the writing,
master). Following additions to GitHub PR process apply:

Before submitting the request, rebase from master to make sure merge is clean
Before merging, an approved review from a person other than the author is
required

Same code of conduct is followed as in software development.

Merge to master with squash, this will keep the version history clean and linear
Delete unneeded branches after merge

Adding a link to a successful test run against the branch to be merged is
recommended

Code review process

Peer review of automation code is highly recommended and one of the best
practices in the industry. It ensures that all members of the team adhere to the
published standards and best practices with regard to developing automated
tests.

When an automation engineer is done with developing and unit testing an
automated test, he/she needs to have a peer review the script.

A reviewer should review the code/script against all standards and best practices
published in the “Automation Standards and Guidelines” section of the Test
Handbook.

Checklist for reviewing automated script/code:

Folder structure should be followed

Folder naming conventions should be followed

Dynamic objects should be handled correctly.

Naming conventions followed for variables

Naming conventions followed for constants

Naming conventions followed for environment variables

Naming conventions followed for functions (common functions, POM)
Function headers are created correctly (common functions, POM)
Comments added according to standards

Indentation followed according to standards

Only one excel file used per application for storing test data

Only recommended test data related functions from common function library used
Handled known errors correctly

Contents of configuration files is correct

https://docs.gitlab.com/ee/user/project/merge_requests/

Test header is created correctly
Re-used existing functions where applicable, instead of re-creating them
Re-usable blocks of code have been converted into functions

Review the code according to the checklist given above and provide feedback/ comment
on the merge request to the owner of the test. The owner then makes
changes/modifications and submits for the review again. This cycle continues until all the
items in the checklist have passed.

Git Code review process:

Push your branch with created/updated test to the repository on GitLab

Go to GitLab / project

You'll see a new notification that you pushed changes about minute ago
Create merge request button

Give some description, select the reviewer and submit merge request

After review - apply changes/give comments if needed

Rebase your branch and commit all fixes. Make merge request again.

After approved review, merge your test branch to master - check out on master
(pull latest code) and merge with your branch. Resolve all conflicts and push to
master.

Go to GitLab and remove your test branch.

Coding standard(s)

Robot Framework coding conventions:

Use plain text format and .robot file extension for your robot test and keyword
files.

Use robot.tidy utility (it is bundled with Robot Framework) before committing your
changes:

python -m robot.tidy --recursive
This will harmonize the formatting of robot files.

Every robot test suite must have the default test timeout set. A common default
is defined in variable ${ROBOT_DEFAULT_TIMEOUT}. When the default value
is not suitable, use your own.

Every suite should have a documentation section where the general scope of the
suite is briefly explained.

User keywords related to a component should be kept in component-specific
resource file, for example pipeline helpers.robot,
project helpers.robot. Keyword names should be self-documenting. If the
keyword has parameters or return values, these should be described in the
documentation.

Command-line variables should not be added unless absolutely necessary. Use
variable files when the values of variables are environment or version specific.
Browser-specific functionality must rely on the ${BROWSER} command-line
variable. The tests must be kept runnable against any browser without local
modifications.

e If you add comments within the robot tests, use # format, not the Comment
keyword (which will also write your comment to the test log.)

Python coding conventions:
Basic rules:

e Naming conventions:
lower_case_with_underscores
used for :

o function names

parameter names

package names

module names

project file and folder names

folder names

local variables

o O O O O O

UPPER_CASE_WITH_UNDERSCORES
used for:

o global variables

o constants defined in the class

UpperCamelCase
used for:
o defining the class name
o defining exceptions (they should be classes)

e Indentations:

don’t mix a Tab with four spaces

4 spaces are recommended

Tab is allowed (but if you start it is better to use spaces)

you can set the environment to replace the tabulator with 4 spaces

o O O O

e Maximum line length:
o limit to all lines to a maximum of 79 characters
o the line length should be limited to 72 characters in docstrings or
comments
o only in exceptions where the xpath is very long then the maximum line
length can be exceeded.

e Line spacing:
o surround top-level function and class definitions with two blank lines
o method definitions inside a class are surrounded by a single blank line
o add blank line in the end of the file with code

e Imports:
o imports are always at the top of the file, just after any module comments
and docstrings, and before module globals and constants
o imports should be grouped in the following order:
1. standard library imports
2. related third party imports
3. local application/library specific imports

e imports should usually be on separate lines for example
Correct:
import os
import sys

Wrong:
import sys, os

Correct:
from subprocess import Popen, PIPE

Whitespace in Expressions and Statements:

Avoid extraneous whitespace in the following situations:
e Immediately inside parentheses, brackets or braces:
Correct:
spam (ham[1], {eggs: 2})

Wrong:

spam(ham[1], { eggs: 2 })

e Between a trailing comma and a following close parenthesis:
Correct:

foo = (0,)
Wrong:
bar = (0,)

e Immediately before a comma, semicolon, or colon:
Correct:

if == 4: print(x, V); X, V = VY, X
Wrong:
if x == 4 : print (x , y) ; x , Y=Y , X

e However, in a slice the colon acts like a binary operator, and should have equal
amounts on either side (treating it as the operator with the lowest priority). In an
extended slice, both colons must have the same amount of spacing applied.
Exception: when a slice parameter is omitted, the space is omitted:

Correct:

ham[1:9], ham[1:9:3], ham[:9:3], ham[1l::3], ham[1:9:]

ham[lower: upper], ham[lower: upper:], ham[lower::step]

ham[lower+offset : uppertoffset]
ham[: upper fn(x) : step fn(x)], ham[:: step fn(x)]
ham[lower + offset : upper + offset]

Wrong:

ham[lower + offset: upper + offset]
ham[1l: 9], ham[l :9], ham[1:9 :3]
ham[lower : : upper]

ham[upper]

e Immediately before the open parenthesis that starts the argument list of a
function call:

Correct:

spam (1)

Wrong:

spam (1)

o Immediately before the open parenthesis that starts an indexing or slicing:
Correct:

dct['key'] = lst[index]
Wrong:
dct ['key'] = 1st [index]

More than one space around an assignment (or other) operator to align it with

another:
Correct:
x =1
y = 2
long variable = 3
Wrong:
X =1
y = 2
long variable = 3
Other rules:
e Strings always in single or double quote. Remember to use the same style in all
your code.

e Before each function use function definition (PEP 257) eg.
def function():
"""rpocstring documenting the function - definition"""

print ('This is the function')

Source documentation (PEP 8):

Following PEP-8 (https://www.python.org/dev/peps/pep-0008/) is recommended.

https://www.python.org/dev/peps/pep-0008/

Keyword conventions

1. Keyword names should be descriptive and clear to be easily understandable.

2. Keywords will explain the functionality, not how it does its task(s).

3. Keywords should have different abstraction levels (for example Input Text or
Administrator logs into system) to clearly define what it is doing

4. A keyword should be fully title cased or have only the first letter be capitalized.

a) Title casing is often used when the keyword name is short (for example
Input Text).

b) Capitalizing just the first letter typically works better with keywords that are
like sentences (for example Trainer logs into system) which are mainly
considered higher level.

Function naming conventions:

Function names should be named in lower_case_with_underscores or short names

Function names should contain only alphanumeric characters (only English
alphabet). Spaces and special characters should NOT be used

Function name cannot be reserved words

Function names cannot begin with a number

Function names should be descriptive enough to understand what it will do
Function names should begin with a verb such as find, get, check, verify, compare,
delete, remove, and so on

Function name should not exceed 10 words. Three to five words would be ideal
Words in the function name should be continuous without any spaces or
underscores. Each new word in the function name should begin with an upper-case
letter

IMPORTANT NOTES:

If you create variables inside functions, you must always declare them using the
correct datatype to confine the scope of the variables to that function

All function arguments in the function definition should be defined using correct
datatype

All variables used with in a function must be declared using the keyword of correct
datatype.

Naming convention (files, keywords, tests, linking, tagging in robot tests):

Tagging of robot tests has two uses: reporting of test cases and selecting/excluding
subsets of tests for execution (robot options - and -e). Tagging policy is summarized by
the Following table.

Robot Tag Meaning

not_ready Test case will not be executed in Cl. Test needs adaptation to SUT
changes
noncritical Unstable test case, which may fail occasionally. Needs to be fixed.

UC_Comp_6 | Tests use case 6 of component Comp. Every test should have a use
case tag

component Component the test suite is testing. Every test suite should have one
component tag.

positive Positive test case

negative Negative test case

10 Appendix 2

This appendix presents the document which was prepared and presented to the project

team listing the reasons for changing and implementing a new test framework.

New Test Framework

New Framework will be based on Robot Framework and Python. It will utilize the best
practices and latest tools to support test automation.

The main purpose is to create it in a way that will enable us to integrate with other tools
and develop CI&CD.

Main reasons for switching from legacy framework to the new one

e Unreadable reports, when all the atomic steps are not grouped and follow one-
by-one forming list of 200-300 lines

e Unparalleled execution

e Poor performance and efficiency — long execution time, lots of redundant waits
and code duplications

e Huge result files — loading them takes time

e Lot of errors & warnings

¢ No abstraction level - all tests contain dozens of waits, assertions, clicks,
screenshots under 1 nesting level

e Hardcoded data

e Long execution time

e Low passed rate - around 25-45%

e Too much fragmentation done to suites - no visible and understandable
separation

b, Execute turn [oomplete), readyState) &8 (window. i ifdk q5 A v X
et Element Should Be Visible xpath = | @id="case-list"] Log level: | INF
s Element Should Be Enabled xpath = finput @id="keyword']

e Execut return [complete’). readyState) &4 (window.jQ 1l window,jQ
win. Get = [div| @id=" ' "Giensidige']]

wau Execute davascript window. scrollBy{719,115)

won Element Should Ba = i @id=" jensidige"]]

e Cllck Element xpath = /] @id="Insurance-tabVafcontainsi., "Glensicige)]

+ Bt Wait Until Keyword Succeeds 1.5 seconds, 0.5 seconds, web.element_should_be_uisible, xpath = /i iey']]
+ ([IEI0) we Element Should Be Visible xpath = /idiv] @id="unread-news-modal’]
Execute ['complete i dySlate) && (window.ju 1 winde

. Walt Until Keyword Succeeds 30 seconds, 0.5 seconds, wab.element should be vislola, spath = /iiv[@Id="nsurance-tab"Vafcontains(.. ‘Giensidige") and
contains{@class, "selectec’)]

e Element Should Ba Vislble xpath = /J/di| @id="case-list"}J/\d[@1lla="Case ID: 443y
et Exgeul return [complete] readyState) && (window.jQ 1l windowjQ
win. Get WebElement xpath = [idiv| @id="case-list'}/id[@ lile="Case ID: 20200620004453857620,443")..

won Execute davascript window scrallBy{719,185)

o, Element Should Ba Visible xpath = /i @id="case-list Jd[@

e Click Element xpath = eliv] @id="case-list il @title="Case: ID: 443}
e Execute Javascript return [complete] i e indow.jQuery===undefined Il active===0)

+ [T o, Wait Until Keyword Succeeds 5 seoonds, 0.5 seconds, web.element_should_be_visible, xpath = icy')]
sunn. Walt Until Keyword Succeeds 30 seconds, 0.5 seconds, web.element_should_be_visible, xpath = /a] cantains(@onclick "getCammoninio) and @rel="case" |

wen. Element Should Be Visible xpath = /idiv| @id="case-menu’]

B wea, Element Should Be Visible xpath = Jdiv @id="case-menu selected Drying’]
b, Execute eturn [oomplete’) readyState) && (window. G "
et Gt = | @id="case- ‘Yie| @title="Drying’]

wen. Exocute Javascript window.scrollBy(s44,398)
et Element Should Be Visible xpath = Jiv] @id="case-menu}ial @itle="Drying’] S
wen Click Element path = idiv] @id="case-men"jia| @iile="Drying’]

5 . Wait Until Keyword Succeeds 30 ssconds, 0.5 seconds, web.slement_should_be_visibis, palh = /[@id="case-menu" |11 Gciass="ssleclec|a/blnormalize-

space(ehid:text()="Drying’]

Requirements

High level
o Parallel execution with flexible number of threads
e Multi-browser support (we still have to support IE 11)
e Mobile tests support (Android, iOS, Win Mobile)
e ?API tests support?
e Integration with TestRail and Jira
e Test data upload to env before testing
o Test data clean-up (redundant cases, members and other data) vs. snapshot
for testing
Low level

e Code guidelines supported with "monitoring" tool (linter)
e Merge checks: static code analysis (linter), automatic execution
e Self-documenting code

BrowserLibrary vs Selenium - Rewrite robot tests to use Browser library instead of

Selenium

CICD

o History of executions
o Parallel executions

