

Bachelor’s thesis

Information and Communications Technology

2022

Andrei Skorik

IMPLEMENTATION OF BLOCK-

BASED PROGRAMMING FOR

AN EDUCATIONAL DEVICE

Bachelor’s Thesis | Abstract

Turku University of Applied Sciences

Information and Communications Technology

2022 | 63 pages

Andrei Skorik

IMPLEMENTATION OF BLOCK-BASED

PROGRAMMING FOR AN EDUCATIONAL DEVICE

One of the noticeable challenges that appear in the adaptation of a programmable

device for educational purposes is the necessity to decrease the requirements

for basic programming skills of an end-user. This goal can be successfully

reached by the implementation of block-based programming language, which

substitutes the coding process with a much simpler approach: visual blocks

instead of text lines.

This Bachelor’s thesis covers the process of implementing a block-based

programming environment for the multipurpose portative interactive sensor

platform developed by AI2AI. The main goal was achieved by means of building

a MicroPython port to the Zephyr real-time operating system, adapting the BIPES

integrated development environment according to the company’s requirements,

and creating the set of Blockly-based blocks that can utilise application

programming interfaces created for the device.

The device with implemented block-based programming integrated development

environment was successfully used as an educational tool during demonstration

classes for pupils of different ages in Turku and Helsinki in May 2022.

Keywords:

Block-based programming, Blockly, IoT, software development, visual

programming.

Content

List of abbreviations 5

1 Introduction 7

2 Device Specifications 10

2.1 Hardware 10

2.2 Zephyr RTOS 10

3 STEM and STEAM Educational Approaches 12

3.1 STEM/STEAM Activities 12

3.2 STEAM educational program influence on students’ grades 13

3.3 Programmable devices’ opportunities 13

4 Overview of potential competitors 14

4.1 BBC micro:bit 14

4.2 Sphero Robots 15

5 Block-based Programming Languages 18

5.1 Scratch 18

5.2 Blockly 19

6 MicroPython 22

6.1 Zephyr Port 22

6.2 APIs 23

7 BIPES 24

7.1 BIPES UI 24

7.1.1 Blocks 24

7.1.2 Console 25

7.1.3 Files 26

7.2 New Blocks 26

8 Design of New Blocks for Pall0 28

8.1 Block Definition 29

8.1.1 Input 29

8.1.2 Field 37

8.1.3 Type 38

8.1.4 Colour 41

8.1.5 Additional features 44

8.2 Generator Stub 47

8.2.1 Variables 47

8.3 XML file for BIPES toolbox directory 49

8.3.1 Shadow of another block 50

9 BIPES modification for Pall0 52

9.1 Build or update software version 52

9.2 UI Modification 52

10 Demonstration. Hot Potato Game 54

11 Conclusion 57

11.1 Results 57

11.2 Possible Improvements 59

References 60

List of abbreviations

Abbreviation Explanation of abbreviation

API Application Programming Interface

BIPES Block-based Integrated Platform for Embedded

Systems

CPU Central Processor Unit

GPIO General Purpose Input/Output

GUI Graphical User Interface

HSV Hue Saturation Value colour scale

IDE Integrated Development Environment

IoT Internet of Things

LED Light-Emitting Diode

MPY MicroPython

OS Operating System

POSIX Portable Operating System Interface

REPL Read–Eval–Print Loop

RGB Red, Green, and Blue primary colours

RTOS Real-Time Operating System

SoC System on a Chip

STEM Science, Technology, Engineering, and Mathematics

STEAM Science, Technology, Engineering, Arts, and

Mathematics

UI User Interface

XML Extensible Markup Language

 7

Turku University of Applied Sciences Thesis | Andrei Skorik

1 Introduction

Digital technologies change modern society and shape the modern world.

Without doubts, digital technologies affect the educational system. The size of

the global market for programmable robots for STEAM education was estimated

at $496.27 million in 2021, $574.29 million in 2022, and will reach $1,207.56

million by 2027 [1]. Teachers and students benefit from understanding how digital

devices and coding affect the surrounding world. This situation creates a

significant demand for different programmable devices that might be applied for

educational purposes and, thus, provides great opportunities for developer

companies.

AI2AI is a Finnish IT company which aim is to create a device that makes it

possible to interact with the surrounding world without GUI. The latest company’s

prototype of such a device is Pall0 (Figure 1) a portative interactive sensor

platform - with a focus on motivating the user [2]. It aims to help end-user to

develop, test, and run their own applications.

Figure 1. Pall0

Compact size, variety of sensors, buttons, Bluetooth mesh, RGB LEDs, and

Zephyr RTOS make it possible to apply Pall0 for different purposes. Pall0 was

successfully tested as a well-being device, game controller, or medical

 8

Turku University of Applied Sciences Thesis | Andrei Skorik

diagnostics tool. One of the potential niches for Pall0 is education, especially the

STEM/STEAM educational approach.

AI2AI had a strong belief that Pall0 can be used for multiple STEM/STEAM

activities at school or at home. On the other hand, the company realised that

potentially the strongest competitors on the market implemented block-based

programming IDE, which made their devices more user-friendly and significantly

simplified acknowledgment with programming for children.

Thus, the need to implement a block-based programming environment for

STEM/STEAM activities became one of the main goals for the company.

The goal of this thesis is to implement block-based IDE for the existing prototype

of Pall0 that includes:

- evaluation of potential competitor devices;

- evaluation of block-based programming languages;

- implementation of required programming language on top of Zephyr

RTOS;

- implementation of required IDE for the device;

- creating programming blocks for the device’s APIs.

The thesis is structured as follows:

Chapter 1 introduces the goal and objectives of the thesis.

Chapter 2 provides the device’s specifications.

Chapter 3 introduces brief information about STEM and STEAM educational

approaches and the possibilities they provide for programmable devices.

Chapter 4 reviews the possible competitive devices.

 9

Turku University of Applied Sciences Thesis | Andrei Skorik

Chapter 5 provides brief information about two block-based programming

languages: Scratch and Blockly.

Chapter 6 introduces MicroPython and its implementation for Zephyr RTOS.

Chapter 7 reviews BIPES UI and BIPES requirements for new blocks.

Chapter 8 describes the process of creating new blocks for Pall0.

Chapter 9 introduces brief information about modifications of the BIPES UI that

were made for Pall0.

Chapter 10 provides an example of a game that was created for Pall0 using

implemented block-based programming IDE.

Chapter 11 summarises the results as well as possible improvements.

 10

Turku University of Applied Sciences Thesis | Andrei Skorik

2 Device Specifications

2.1 Hardware

Pall0 is based on Nordic Semiconductor nRF5340 SoC. Figure 2 displays Pall0’s

specifications.

Figure 2. Pall0 in details [3]

2.2 Zephyr RTOS

Management of Pall0 is under the control of Zephyr RTOS created for embedded

and resource-constrained devices. Zephyr is developed to meet the following list

of requirements:

• Independence from CPU architecture;

• Low system requirements (10 kB is enough to run the OS);

• High level of security;

 11

Turku University of Applied Sciences Thesis | Andrei Skorik

• Connectivity (support for different types of wired and wireless

technologies);

• Implementation of effective development tools;

• Open-source code. [4]

Zephyr provides a wide range of essential features:

• Multithreading for cooperative, priority-based, non-preemptive, and

preemptive threads;

• Interrupt services at compile time and runtime;

• Memory allocation services;

• Inter-thread synchronisation services (e.g., binary, counting, and

mutex semaphores);

• Inter-thread data passing services for message queues and byte

streams;

• Power management services (e.g., tickless idle and an advanced

idling infrastructure);

• Support for multiple thread scheduling choices (e.g., cooperative and

preemptive scheduling, earliest deadline first (EDF), multiple

queuing strategies, etc.);

• Memory protection for memory-constrained devices;

• Configurability and flexibility;

• Native POSIX port, which supports running Zephyr as a Linux

application. [5]

 12

Turku University of Applied Sciences Thesis | Andrei Skorik

3 STEM and STEAM Educational Approaches

STEM and STEAM are two educational approaches. Both approaches use

Science, Technology, Engineering, and Mathematics as access points for the

educational process. In addition, the STEAM approach adds Arts as a very

important and effective part of classroom and at-home learning.

3.1 STEM/STEAM Activities

The significant difference between STEM and STEAM approaches can be shown

using for example the catapult activity, which is widely used by students as a part

of STEM education.

Standard STEM catapult activity is creating a small catapult from rubber bands

and different kinds of sticks to fling small-sized objects (e.g., marshmallows) to

hit a target. In this activity students should utilise serious STEM skills:

- Science: knowledge of energy’s ability to create motion;

- Technology: skills to combine different materials and to develop and

test prototypes;

- Engineering: the creation of catapult design;

- Mathematics: calculations and measurements of length and mass.

To create a STEAM activity, Art elements should be added. One of the generic

approaches for the catapult activity is students’ acknowledgement of Jackson

Pollock’s arts and the methods he created. As a result, the new goal for students

is not just a competition of hitting a target with their catapults, but a creation of

Pollock-style art by throwing small objects covered with watercolours.

It's worth admitting, that just the addition of watercolours does not make this a

STEAM activity, but the emphasis that students can create their Pollock-style arts

does. The process of building a catapult turns into the creation of the instrument

 13

Turku University of Applied Sciences Thesis | Andrei Skorik

children use to make their own art. In this case, it is a STEAM activity that still

helps students to gain serious STEM skills. Moreover, art’s elements help

children to engage creatively, critically, and confidently in their learning [6].

Another example of STEAM activities is Liquid Xylophones. Children fill glasses

with different liquids (e.g., syrup, ketchup, oil, or water) and get an opportunity to

obtain knowledge of connections between changes in pitch and the density of a

liquid creating their own music [7].

3.2 STEAM educational program influence on students’ grades

Children understand lessons better if lessons utilise STEAM, and, moreover,

STEAM activities can help to increase students’ grades e.g., compared to

students from control groups. For example, participants of the STEAM program

at the Phoenix Symphony in Arizona average annual score:

- 17 points higher (science questions);

- 13 points higher (mathematics questions);

- 10 points higher (language and arts questions);

- 13 points higher (all subjects combined) [8].

3.3 Programmable devices’ opportunities

Increasing STEM skills throughout the STEAM approach provides a good

opportunity for programmable devices to gain their own niche in school education.

Nowadays different schools make use of a number of different programmable

platforms for educational purposes (e.g., Arduino, Raspberry Pi, BBC micro:bit).

Sphero positions its robots as “number one” tools for STEAM learning [9].

 14

Turku University of Applied Sciences Thesis | Andrei Skorik

4 Overview of potential competitors

To clarify Pall0’s feasible position on the market of programmable platforms for

education the evaluation of potential competitors was performed with the focus

on BBC micro:bit and Sphero robots.

4.1 BBC micro:bit

Micro:bit is an open-source embedded system designed by the BBC for use

primarily in education. For the moment it is one of the most popular educational

programmable devices in the world since there are approximately over four

million micro:bits in over 60 countries [10].

The popularity of this device is caused by its cheap price (moreover, a significant

number of micro:bits were donated for schools [11]), inbuild LEDs and sensors,

and the possibility of using different languages (Scratch, MakeCode, Python) to

program device.

Figure 3 features the main specification of BBC micro:bit.

Figure 3. BBC micro:bit [12].

Inbuilt sensors provide an opportunity to program them to affect inbuilt LEDs or

speaker, which might be a part of STEM/STEAM activity for students (e.g., create

a program that may distort sound if the device is tilted). Figure 4 displays basic

Scratch code for such kind of activity.

 15

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 4. Scratch code for BBC micro:bit [13].

4.2 Sphero Robots

Sphero is an American company that creates a line-up of spherical programmable

robots. The company positions itself as the industry leader in edtech

programmable robots and claims that millions of students use their robots all over

the world at more than 20,000 educational institutions [14]. For the moment, the

most advanced Sphero robot is BOLT. Figure 5 depicts the main specification of

Sphero BOLT.

 16

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 5. Sphero BOLT (composed from screenshots of the 3D model featured

in the Sphero Edu App) [15].

BOLT was developed as a computer science educational tool for PK-12 students,

which can be utilised as a part of the STEAM approach. It is controlled via an

application installed on a smartphone or tablet. The main feature of BOLT, as well

 17

Turku University of Applied Sciences Thesis | Andrei Skorik

as of all Sphero’s robots, is the ability to roll around, but the LED matrix and

variety of sensors significantly increase the robot’s functional abilities. Students

can program new functions for BOLT using Scratch language.

As an example of a STEAM activity for BOLT can be mentioned the possibility to

use the robot as a substitution for a brush for painting. Covered with colour BOLT

can roll around a canvas or paper under the control of a student creating paintings

[16].

 18

Turku University of Applied Sciences Thesis | Andrei Skorik

5 Block-based Programming Languages

Block-based coding converts text-based programming into a drag-and-drop

process where lines of text code are represented as visual blocks that can be

combined to create a working code. For this work two most popular programming

environments that use a graphical interface of interlocking blocks were examined:

Scratch and Blockly.

5.1 Scratch

Scratch is a block-based visual programming language, which was created by

MIT almost 20 years ago in 2003. Creators of Scratch claim that it is “the world’s

largest coding community for children” [17] with over 95 million registered users

[18]. The latest third version of Scratch is based on HTML5 and JavaScript [19].

Both devices (BBC micro:bit and Sphero Bolt) that were examined as potential

Pall0’s competitors implement Scratch as a programming tool.

Micro:bit uses Scratch as one of the possible programming options along with

MakeCode and Python [20]. Figure 6 shows Scratch GUI with micro:bit extension

and small micro:bit project.

Figure 6. Scratch UI with micro:bit project.

 19

Turku University of Applied Sciences Thesis | Andrei Skorik

Sphero implemented Scratch to create its own block-based IDE Sphero Edu [21].

The GUI of Spero Edu includes the possibility to see JavaScript code that was

created with blocks. Users can copy this code and edit it in a text-based editor.

Figure 7 shows one of the Sphero programs available for the Sphero community

[22].

Figure 7. Sphero Edu UI with the project for the Sphero robot.

It is worth admitting that the implementation of Scratch as a programming

language converts a development board into a controller connected to GUI. This

approach opposes the aim to create a multipurpose programmable device that

can be used without any GUI.

5.2 Blockly

Blockly is a Google project that created a visual programming language based

on JavaScript [23] and makes it possible by default to implement code in

JavaScript, Python, PHP, Lua, and Dart (Figure 8).

 20

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 8. Blockly default UI that is available on the web [24].

Along with the possibility to generate code in multiple languages, Blockly provides

GUI for building new blocks - Block Factory.

In addition to Scratch micro:bit implements Blockly as one of its programming

options as Microsoft created an open-source framework MakeCode which is

based on Blockly [25]. One of the most interesting features of MakeCode is an

instant view of a running code on its UI (Figure 9).

Figure 9. MakeCode UI for micro:bit available on web [26].

 21

Turku University of Applied Sciences Thesis | Andrei Skorik

Other than the MakeCode implementation of Blockly is Block-based Integrated

Platform for Embedded Systems or BIPES (Figure 10). BIPES is an open-source

platform aimed for the creation of IoT applications with help of block-based code

on UI and MicroPython installed on a development board [27].

Figure 10. BIPES UI with the project for blinking a LED on ESP8266 that is

available on the web [28].

One of the significant advantages of Blockly-based IDEs is that they allow flash

applications to a board, then disconnect the board from the GUI of the IDE and

apply the device with a standalone application [29].

 22

Turku University of Applied Sciences Thesis | Andrei Skorik

6 MicroPython

MicroPython (MPY) is an open-source software implementation of a Python 3

optimised to be run directly on a microcontroller and thus may perform functions

of a very minimalistic OS [30], but on the other hand, MPY can be run on top of

operation system (e.g., Unix) with constrained resources [31]. One of the greatest

advantages of MicroPython for AI2AI is the availability of the port for Zephyr

RTOS.

6.1 Zephyr Port

Building Zephyr port of MPY is possible as a building of any other Zephyr

application, utilising special Zephyr RTOS tool west:

$ west build -b name_of_the_board ~/path_to_mpy_zephyr_port

The same tool can be used to flash a built firmware to a board:

$ west flash

Also, it is possible to build and flash firmware using for example VS Code

extension nRF Connect. Another potential way to flash the newest build in the

Windows environment is to utilise the Programmer application of Nordic

Semiconductor’s software nRF Connect for Desktop.

After flashing a MicroPython firmware to Pall0 it is possible to establish a serial

connection between Pall0 and BIPES IDE and get access to MicroPython’s REPL

via the BIPES console. The console displays information on a MicroPython’s build

and connected device info. Moreover, it is possible to check a board’s response

by sending commands to a board via console, for example, typing help() or any

elementary arithmetic operation (Figure 11).

 23

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 11. BIPES console with MicroPython's REPL response.

6.2 APIs

By default, the Zephyr port of MPY has APIs for GPIO and sensors with channels

for acceleration, magnetic field, angular velocity, temperature, humidity, air

pressure, illuminance, and altitude [32].

In addition to existing APIs AI2AI created APIs for LEDs, vibration, and Bluetooth

mesh. These APIs were utilised to create new blocks that make it possible to

program Pall0 in the BIPES environment.

 24

Turku University of Applied Sciences Thesis | Andrei Skorik

7 BIPES

Blockly-based programming in combination with MicroPython made BIPES the

optimal choice for Pall0 as a block-based programming IDE, that can be

accessed via Google Chrome and Microsoft Edge browsers.

7.1 BIPES UI

BIPES top menu consists of several tabs and buttons which provide access to

different workspaces, establish a connection to a board (serial, WiFi, Bluetooth),

and allow upload/download a file with a block code (Figure 12).

Figure 12. BIPES UI top menu.

Although tabs of this menu provide access to different BIPES features, such as

information about supported boards or EasyMQTT sessions, for this work only

three main BIPES workspaces (Blocks, Console, and Files) were mainly used.

7.1.1 Blocks

Blocks workspace allows drag-and-drop blocks, combining them and creating

block-based code. By default, BIPES IDE contains Python blocks that provide the

possibility to run Python commands line by line even without the creation of a

new block intended for a certain board. These Python blocks make it possible to

construct and run the classic “blink LED” test. MicroPython has instant support of

GPIO API, which allows to toggle on and off certain GPIO pin assigned to onboard

LED. In this case, it is pin number 3 (Figure 13).

 25

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 13. “Blink LED” code for Pall0 made of default Python and timing blocks.

7.1.2 Console

BIPES console acts as a classic terminal that provides a command prompt,

shows a live view of a generated text version for a running block-based code,

prints warnings, etc. Figure 14 displays lines of Python code for the previously

shown block-based “blink LED” test.

Figure 14. BIPES console with a text version of the "blink LED" code.

 26

Turku University of Applied Sciences Thesis | Andrei Skorik

7.1.3 Files

This workspace provides access to Python or XML versions of running block-

based code with the possibility to download these versions for further

improvements or debugging. Figure 15 shows the Python version of the “blink

LED” code, which is available in the Files workspace after the block-based code

has been executed.

Figure 15. Python code for "blink LED" test available in Files.

7.2 New Blocks

Although BIPES provides an instant possibility to run a Python code, every board

including Pall0 has its own APIs with the necessity to create special blocks

utilising these APIs.

To prepare the device for upcoming school events, it was needed to create blocks

for the accelerometer, magnetic field sensor, LEDs, vibration, and for Bluetooth

mesh. In addition, default generic BIPES blocks usually don’t meet the company’s

requirements, which establishes the next task to redesign at least several of

them.

BIPES IDE involves three files to create a new working block:

• core/block_definitions.js - defines the appearance of each block

(inputs, outputs, block type, and colour);

 27

Turku University of Applied Sciences Thesis | Andrei Skorik

• core/generator_stubs.js - defines the actual behaviour for each

block (MicroPython code for each block should be implemented

here);

• toolbox/name_of_the_device.xml – defines which blocks are

available to each device (these blocks are available to choose from

the left-side tool panel) [33].

It’s possible to create a new block by writing JavaScript/Python code directly to

these three files, but it’s easier to use Block Factory, a web-based developer tool

that visualises the process of making a new block and automatically generates

part of the needed JavaScript code.

 28

Turku University of Applied Sciences Thesis | Andrei Skorik

8 Design of New Blocks for Pall0

This chapter explores the process of creating a custom Pall0 block for BIPES IDE

by means of Block Factory UI.

Figure 16 shows Block Factory UI with an already built “Send a message” block.

Figure 16. Block Factory UI that shows a custom-built block for BIPES.

The process of creating a new block in Block Factory resembles the process of

block coding as it uses the same Blockly technology. The initial UI prompt

contains only a draft for a new block, which has initial code for block definition,

generation stub, and an instant block preview (with already predefined colour,

type of inputs connection, etc.). All these features might be edited and completed

with other blocks from the left-side menu (Figure 17).

 29

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 17. Block Factory. Initial GUI prompt.

8.1 Block Definition

From the left-side menu user must choose blocks for four main appearance

features of a new block:

• Input (value input, statement input, or dummy input);

• Field (text input, numeric input, angle input, dropdown menu,

checkbox menu, etc.);

• Type (Boolean, string, number, other (custom defined type) or any

type);

• Colour of a block.

8.1.1 Input

Block Factory prompts three types of inputs: value, statement, and dummy input

(Figure 18).

 30

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 18. Block Factory input types.

Dummy input is the simplest type of input. It creates a space in a new block, which

can be filled with information that helps to label a block. For this purpose, Dummy

input should be completed with a text block from the Field menu (Figure 19), and

a custom text should be added inside the text block for labelling (e.g., “Send a

message” for the example block).

Figure 19. Block Factory. Dummy input.

 31

Turku University of Applied Sciences Thesis | Andrei Skorik

Besides a text field, dummy input can be filled with other types of fields. Figure

20 shows a dropdown menu added to a block with dummy inputs.

Figure 20. Block Factory. Dummy input with a dropdown menu.

It is worth admitting, that the dropdown menu field contains the icon with gear.

This icon can be seen at various Blockly blocks, assigned to a construction menu,

that helps to add new items to a block (e.g., Figure 21 shows that it is possible

to expand the default dropdown menu of three options with new elements).

 32

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 21. Gear icon.

Value input makes it possible to create a block that can connect to other blocks.

Thus, it gives a possibility to create a complex block that manages values from

different other blocks connected to it. Figure 22 shows the block, which can be

connected only to one block with a message for a device, but it is possible to

create a block with multiple connectors for multiple blocks with value inputs

(Figure 23).

Figure 22. Value input.

 33

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 23. LED control block for Pall0 with multiple value input blocks.

Block Factory constructor has an option to create blocks with different

visualisation of input connections. Figures 22,23, and 24 display the inline type

of input connection, although it is possible to choose external input (Figure 25).

Figure 24. Block Factory. Block with an inline input.

 34

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 25. Block Factory. Block with external input.

External input decreases the usability of a block and readability of the whole code,

which consists of blocks of such type, especially if each of these blocks has

multiple external inputs. It highly increases the length of a block making it hard

to see the whole code on screen without scrolling. Figure 26 shows an example

of a long block with multiple external inputs.

Figure 26. "Set date and time" block from original BIPES project.

Block Factory provides a possibility to add one or several fields to value input.

One of the possible cases of the utilisation of this feature is a need for an

additional label for a value input’s connector. Figures 26 and 27 show text fields

 35

Turku University of Applied Sciences Thesis | Andrei Skorik

for value inputs. Also, it is worth noting, that besides a text field any other type of

field (or several different fields) can be attached to a value input.

Figure 27. Block Factory. Text field for a value input.

Statement input can be used to define a loop or IF statement. Figure 28 shows

the Pall0 timer loop, which includes the statement input.

 36

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 28. Block Factory. Statement input.

Regardless of the type of input, each block can be configured with different kinds

of connectors, which define a method of connection to other blocks in a visual

code. Top and bottom connections define the ability to form a stack of blocks,

although the only bottom connection defines this block as the very first block in a

stack (e.g., initialization or start block), and the only top connection defines the

very last block in a stack (e.g., stop or exit block). Left output connection defines

blocks, which can be connected as value inputs or parts of statements.

Respectively a block without connectors is a standalone block. Figure 29

displays Send a message block with different types of connections.

 37

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 29. Block Factory. Different types of connections for blocks.

8.1.2 Field

The field menu offers blocks that elaborate any kind of input. It is possible to use

several types of text fields, numeric and angle fields, fields for dropdown and

checkbox menus, fields for colour selector, variable, and image. The image field

by default contains the yellow star image, which can be replaced by another web

or local image. Figure 30 shows all possible variants of blocks available in the

field menu of Block Factory.

 38

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 30. Block Factory. Field menu.

8.1.3 Type

Block Factory’s Type menu provides settings for connectors of value and

statements inputs. It is possible to make these connections compatible with any

kind of block or to make a connection compatible only with certain types of blocks:

Boolean, Number, String, or Array. Blockly provides a possibility to set a custom

type of connection (e.g., blocks from a certain list) or to create a connection

possible for several types of blocks. Figure 31 displays Block Factory’s Type

menu.

 39

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 31. Block Factory. Type menu.

Figure 32 shows that the value input of Pall0’s “Repeat for” loop has a Number

type of connector, thus only blocks with number values can be attached here,

although the statement input is compatible with any type of block. The top and

bottom connectors of Pall0’s “Repeat for” loop are also compatible with any

possible types of blocks above and below in the stack of blocks.

 40

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 32. Block Factory. Different types of connections for Pall0's “Repeat for”

loop.

Figure 33 demonstrates a custom-defined type of connection for Pall0’s “LED

control” block. The value input of this block has led_color type of connection, thus

an end-user cannot insert into this block any other value (number, string, etc.)

than the colour of the LED.

 41

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 33. Block Factory. Custom-defined type of connector.

8.1.4 Colour

The last menu in Block Factory is Colour selection, which provides preselected

nine colours in the Hue-Saturation-Value colour model for the block constructor

(Figure 34).

 42

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 34. Block Factory. Colour menu.

These colour blocks can be attached to colour fields in a block constructor, but

there are other possibilities to change a colour of a block that is under

construction: a user can type the number of a hue-saturation colour directly inside

the colour block or utilise a dial selector. The change of the colour of a colour

block is instantly visible in the block preview (Figure 35).

 43

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 35. Block Factory. Change of the colour of Pall0's "Send a message"

block.

HSV colour model shares with blocks in a block-based code a cohesive, but very

constrained palette. Some types of blocks (e.g., start or stop blocks) might need

to be of brighter and more perceptible colour. Blockly provides a possibility to set

a colour of a block using the HEX value of RGB colour instead of the HSV

number. Figure 36 shows the code for the “Stop” block for Pall0 with HEX value

for the red colour in JavaScript notation.

 44

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 36. HEX value for colour of a block instead of HSV.

8.1.5 Additional features

It can be concluded that Block Factory provides a possibility to complete block

definition code for block_definitions.js file only using block coding. It is possible

to admit some excludes such as other than HSV colours for blocks, which cannot

be set directly in Block Factory.

Moreover, it is worth admitting, that a block definition code can contain lines that

affect visualisation of a block and cannot be substituted by means of Block

Factory’s block coding. As an example, the code for Pall0’s block, which controls

the colour of RGB LED, can be provided. Figure 37 shows Block Factory’s

standard block code and automatically generated block definition code.

 45

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 37. Standard Block Factory code for Pall0's block, which controls LEDs

colour.

In addition to this standard generated block definition code, additional lines of

code can be manually added to the block’s style code (Figure 38). It highly

increases the usability of block coding, as an end-user gets an instant view of a

colour that will be applied to the device’s LED.

 46

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 38. Edited block definition for Pall0's block.

The completed code of a new block should be added to

core/block_definitions.js file.

 47

Turku University of Applied Sciences Thesis | Andrei Skorik

8.2 Generator Stub

While Block Factory allows almost completely to create block definition code for

the block_definitions.js file using only block coding, it makes only a draft of a

generator stub code for the generator_stubs.js file, that contains only JavaScript

functions, which are needed for inputs defined in Block Definition. Figure 39

shows, that the generator stub is incomplete and contains this notification line (for

Python notation):

// TODO: Assemble Python into code variable.

Also, var code is not assigned to anything significant:

var code = '...\n';

Note, that this code already contains an assigned variable for value input

“message”.

Figure 39. Block Factory. Generator stub code for Pall0's “Send a message”

block.

8.2.1 Variables

Variable “code” should be created manually with Python code. This variable is

responsible for the actual behaviour of a block in block code. Figure 40 displays

a full variant of generator stub code for Pall0’s “Send a message” block including

Python code for variable “code”. Python code in its turn utilises the API for

Bluetooth Mesh created by AI2AI.

 48

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 40. Full generator stub code for Pall0's "Send a message" block.

It is worth admitting, that the variable “value_message” contains a code from the

generator stub of another block (e.g. Pall0’s “Turn ON all LEDs” block shown in

Figure 41).

Figure 41. Pall0's "Send a message" block with the value input that contains the

"Turn ON all LEDs" block.

Thus, any value input that was defined for a block in Block Definition, creates its

own variable in Generation Stub of this particular block. And as it was said before,

the variable picks code from var code of a block, which is placed into a value

input. In this case, the value input of the “Send a message” block is filled with the

“Turn ON all LEDs” block. Figure 42 shows the generator stub code for the “Turn

ON all LEDs” block.

Figure 42. Generator stub code for the "Turn ON all LEDs" block.

Altogether these two blocks (“Send a message” and “Turn ON all LEDs”) create

the following consequence. The “Send a message” block utilises the specific API

for Bluetooth Mesh and the “Turn ON all LEDs” block contains a string, which is

needed for this API.

 49

Turku University of Applied Sciences Thesis | Andrei Skorik

Python code for block’s variable “code” can contain multiple lines. In this case, it

is very important to use Python special characters for a new line (\n) and an

indentation (\t). Figure 43 demonstrates the generation stub’s code for Pall0’s

“Receive a message” block, which contains a multiline Python code, that utilises

APIs for Bluetooth mesh and LED control.

Figure 43. Generator stub's code for Pall0's "Receive a message" block with

highlighted Python's special characters.

8.3 XML file for BIPES toolbox directory

BIPES toolbox folder contains XML files that are responsible for the display of

created blocks. Figure 44 shows Pall0’s toolbox in BIPES UI and Figure 45

displays the XML code for the “Start/Stop” category of blocks.

Figure 44. Pall0's toolbox in BIPES UI with opened "Start/Stop" category of

blocks.

 50

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 45. XML code for Pall0's "Start/Stop" category of blocks.

8.3.1 Shadow of another block

To increase the usability of blocks it is worth using shadows of other blocks, which

could be inserted into value inputs of the main block. Figure 46 demonstrates

that Pall0’s RGB block already contains shadows of three number blocks with the

pre-set value of 0 in each. Shadows of blocks have the same function as the

blocks they represent. End-users need only input RGB values to set the LED

colour.

Figure 46. Shadows of "Number" block inside Pall0's RGB block.

Without shadows, an end-user should first drag and drop three number blocks

inside the RGB block and only then gets an opportunity to set RGB values (Figure

47).

 51

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 47. Pall0's RGB block without shadows of number blocks.

The shadow of a block can be replaced at any moment in BIPES GUI by any

other suitable block (Figure 48).

Figure 48. Block's shadow and its replacement.

 52

Turku University of Applied Sciences Thesis | Andrei Skorik

9 BIPES modification for Pall0

The addition of any new block or alteration in BIPES UI creates a necessity to

update the version of BIPES software.

9.1 Build or update software version

For this work, an offline version of modified BIPES was used. To build a new

version of the software that contains all new editions of blocks or UI is needed to

run the command

make offline

in the directory that contains Makefile. This command creates index_offline.html

that runs a modified version of BIPES in a browser.

9.2 UI Modification

Originally the BIPES project was created for multiple different boards and

provides for an end-user multiplicity of toolbox categories and features for boards’

use. Most of those features were excessive for STEM/STEAM lessons, and one

of the tasks was the modification of the BIPES UI for Pall0. To implement this

task the main changes were made in two files, which are located in the UI folder

of the BIPES project: index.html (e.g., UI buttons) and style.css (e.g., UI icons).

Figure 49 displays the difference between the original BIPES project UI and the

modified Pall0 UI.

 53

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 49. UI difference.

 54

Turku University of Applied Sciences Thesis | Andrei Skorik

10 Demonstration. Hot Potato Game

Hot Potato was one of the games prepared for school events in May 2022 in

Turku and Helsinki. The rules of this game are:

- To start the game session, the player should rotate Pall0 upside

down.

- All Pall0 LEDs become green.

- Player has 30 seconds to do something with the “potato” (e.g., bring

it to a specific place) before it becomes “too hot”. After 30 seconds

all LEDs become red, and Pall0 vibrates. Then LEDs and vibration

are turned off, which means that this game session has ended.

- Within 30 seconds of a game session the player should move

“potato” as carefully as possible because any shake of “potato”

makes it “hotter” and changes the LEDs’ colour gradually from green

to red. When LEDs become red the game session ends.

- To start a new game session, the player should turn Pall0 upside

down again.

This game utilises Pall0’s MicroPython APIs for vibration, LED, and

accelerometer. Figure 50 shows the block code for the Hot Potato game. It is

worth noting, that this code was used for school events in May 2022 (Figure 51)

and made the game process possible, but it was not optimised, because

developing new blocks for Pall0 was an ongoing process, and at that time

problems with “Repeat for X seconds” block were revealed. That is why it was

necessary to utilise the “Break out of loop” block, although the code should work

theoretically without this block. Lately, this problem was solved.

 55

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 50. Block code of Hot Potato game in BIPES UI.

 56

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 51. The pupil observes the block code of the Hot Potato game during a

school event in Turku.

 57

Turku University of Applied Sciences Thesis | Andrei Skorik

11 Conclusion

The process of implementation of block-based programming IDE for Pall0 was

completed by May 2022, as well as the design of custom Pall0 blocks for BIPES,

which can utilise APIs for vibration, LED, accelerometer, and Bluetooth Mesh.

11.1 Results

Pall0 and its block-based programming IDE were demonstrated as a potential

educational device for teachers and pupils during several demonstration classes

in Turku and Helsinki (Figure 52). It is worth admitting that those demonstrations

were conducted without significant software problems on Windows OS as well as

on iPadOS. Pupils could easily edit block codes that were made for Pall0, as well

as could create their own block code utilising Pall0’s features.

 58

Turku University of Applied Sciences Thesis | Andrei Skorik

Figure 52. Events in Helsinki and Turku in May 2022.

During the school events, one of the main goals was to show pupils that a

programmable device can be a game tool that helps interact with another player

avoiding using a computer or smartphone with an internet connection. Moreover,

it was shown that live interaction between players makes it possible to change

 59

Turku University of Applied Sciences Thesis | Andrei Skorik

the rules of the game on the fly either without changing the code of the game

(e.g. adding obstacles to a player's path, which makes it more difficult not to

shake Pall0 while trying to bring it to a certain spot within 30 seconds), or by an

edition of the game code using block-based programming (e.g. changing timer,

activating random numbers in colours change, etc.).

On the other hand, during these events, it was demonstrated to pupils and

teachers that block-based programming is an easy approach to start studying

programming even for those who have no experience in coding.

11.2 Possible Improvements

Even though the functionality that was required was achieved, there is a list of

possible improvements that can be made to increase the usability of Pall0’s block-

based programming IDE:

- addition of new blocks that can utilise APIs for buttons, screen,

gyroscope, etc.;

- improvement of generator stub code to optimise the memory usage;

- implementation of block’s design ideas from Scratch, which are not

available for Blockly;

- modification of BIPES UI to add features that increase usability (e.g.,

display of sensors’ values).

 60

Turku University of Applied Sciences Thesis | Andrei Skorik

References

[1] 360iResearch. Programmable Robots for STEAM Learning Tools

Market Research Report by Type (Primary Education and Secondary

Education), Component, Region (Americas, Asia-Pacific, and

Europe, Middle East & Africa) - Global Forecast to 2027 - Cumulative

Impact of COVID-19 [Online]. MarketResearch.com; Apr. 2022.

Available from: https://www.marketresearch.com/360iResearch-

v4164/Programmable-Robots-STEAM-Learning-Tools-31205813/

[Accessed 14 September 2022].

[2] FAQ [Online]. AI2AI; 2022. Available from: https://www.ai2ai.fi/

[Accessed 12 September 2022].

[3] Sensor Highlights [Image on Internet]. Developer AI2AI; 2022.

Available from: https://www.ai2ai.fi/dev [Accessed 12 September

2022].

[4] Lehrbaum R. Meet Linux's little brother: Zephyr, a tiny open-source

IoT RTOS [Online]. LinuxGizmos; 17 Feb. 2016. Available from:

https://linuxgizmos.com/zephyr-a-tiny-open-source-iot-rtos/

[Accessed 12 September 2022].

[5] Zephyr Project members and individual contributors. Introduction

[Online]. Zephyr Project Documentation; 12 Sep. 2022. Available

from: https://docs.zephyrproject.org/latest/introduction/index.html

[Accessed 12 September 2022].

[6] Branstetter D. Design Challenge: Understanding STEAM vs STEM

[Online]. The Institute for Arts Integration and STEAM; Apr. 2018.

Available from: https://artsintegration.com/2018/04/01/stem-to-

steam-action-jackson-catapults/ [Accessed 12 September 2022].

[7] A STEM Initiative: Science, Technology, Engineering and Math

[Online]. The Phoenix Symphony; 2022. Available from:

https://www.phoenixsymphony.org/education-and-community/mind-

over-music [Accessed 12 September 2022].

https://www.marketresearch.com/360iResearch-v4164/Programmable-Robots-STEAM-Learning-Tools-31205813/
https://www.marketresearch.com/360iResearch-v4164/Programmable-Robots-STEAM-Learning-Tools-31205813/
https://www.ai2ai.fi/
https://www.ai2ai.fi/dev
https://linuxgizmos.com/zephyr-a-tiny-open-source-iot-rtos/
https://docs.zephyrproject.org/latest/introduction/index.html
https://artsintegration.com/2018/04/01/stem-to-steam-action-jackson-catapults/
https://artsintegration.com/2018/04/01/stem-to-steam-action-jackson-catapults/
https://www.phoenixsymphony.org/education-and-community/mind-over-music
https://www.phoenixsymphony.org/education-and-community/mind-over-music

 61

Turku University of Applied Sciences Thesis | Andrei Skorik

[8] Mind Over Music in Practice [Online]. The Phoenix Symphony; 2022.

Available from: https://www.phoenixsymphony.org/education-and-

community/mind-over-music [Accessed 12 September 2022].

[9] STEAM Education Kits & Educational Robots For Students PK–12

[Online]. Sphero; 2022. Available from:

https://sphero.com/collections/for-school [Accessed 13 September

2022].

[10] Austin J, Baker H, Ball T, Devine J, Finney J, De Halleux P, Hodges

S, Moskal M, Stockdale G. The BBC micro:bit – From the U.K. to the

World [Online]. Communications of the ACM, Mar. 2020, Vol. 63 No.

3, Pages 62-69. Available from:

https://cacm.acm.org/magazines/2020/3/243028-the-bbc-microbit-

from-the-uk-to-the-world/fulltext [Accessed 13 September 2022].

[11] 57,000 BBC micro:bits to be donated to primary schools [Online].

Micro:bit Educational Foundation; 30 Mar. 2022. Available from:

https://microbit.org/news/2022-03-30/57000-bbc-microbits-to-be-

donated-to-primary-schools/ [Accessed 13 September 2022].

[12] New micro:bit with sound [Image on Internet]. Micro:bit Educational

Foundation; 2022. Available from: https://microbit.org/get-

started/user-guide/overview/ [Accessed 13 September 2022].

[13] Othermachines. Spooky Halloween micro:bit Scratch bat theremin

[Video on Internet]. YouTube; 31 Oct. 2019. Available from:

https://www.youtube.com/watch?v=IOD5LDxfzgg [Accessed 13

September 2022].

[14] Mantz K. What is Sphero? The Who, What, and Why [Online].

Sphero; 07 Jun. 2021. Available from:

https://sphero.com/blogs/news/what-is-sphero [Accessed 13

September 2022].

[15] Sphero Edu App [Application on Internet]. Sphero; 2022. Available

from: https://sphero.com/pages/apps [Accessed 13 September

2022].

[16] Inspired Minds. Painting with Robots - Sphero [Video on Internet].

YouTube; 27 Nov. 2017. Available from:

https://www.phoenixsymphony.org/education-and-community/mind-over-music
https://www.phoenixsymphony.org/education-and-community/mind-over-music
https://sphero.com/collections/for-school
https://cacm.acm.org/magazines/2020/3/243028-the-bbc-microbit-from-the-uk-to-the-world/fulltext
https://cacm.acm.org/magazines/2020/3/243028-the-bbc-microbit-from-the-uk-to-the-world/fulltext
https://microbit.org/news/2022-03-30/57000-bbc-microbits-to-be-donated-to-primary-schools/
https://microbit.org/news/2022-03-30/57000-bbc-microbits-to-be-donated-to-primary-schools/
https://microbit.org/get-started/user-guide/overview/
https://microbit.org/get-started/user-guide/overview/
https://www.youtube.com/watch?v=IOD5LDxfzgg
https://sphero.com/blogs/news/what-is-sphero
https://sphero.com/pages/apps

 62

Turku University of Applied Sciences Thesis | Andrei Skorik

https://www.youtube.com/watch?v=sroZqLzLiBU [Accessed 13

September 2022].

[17] About Scratch [Online]. Scratch; 2022. Available from:

https://scratch.mit.edu/about [Accessed 13 September 2022].

[18] Community statistics at a glance [Online]. Scratch; 2022. Available

from: https://scratch.mit.edu/statistics [Accessed 13 September

2022].

[19] Scratch 3.0 [Online]. Scratch Wiki; 06 Jun. 2022. Available from:

https://en.scratch-wiki.info/wiki/Scratch_3.0 [Accessed 13

September 2022].

[20] Let's code [Online]. Micro:bit Educational Foundation; 2022.

Available from: https://microbit.org/code/ [Accessed 13 September

2022].

[21] Sphero Team. Sphero Edu Implements Scratch [Online]. Sphero; 19

Jun. 2018. Available from: https://sphero.com/blogs/news/sphero-

edu-implements-scratch [Accessed 13 September 2022].

[22] Sphero. Lesson 7: BOLT Plays with Probability [Online]. Sphero Edu;

2022. Available from: https://edu.sphero.com/remixes/9564362

[Accessed 13 September 2022].

[23] Blockly for Web [Online]. Google Developers; 2022. Available from:

https://developers.google.com/blockly [Accessed 13 September

2022].

[24] Try Blockly [Online]. Google Developers; 2022. Available from:

https://developers.google.com/blockly [Accessed 13 September

2022].

[25] About MakeCode [Online]. MakeCode (PXT) Documentation; 2022.

Available from: https://makecode.com/about [Accessed 13

September 2022].

[26] Editor [Online]. Micro:bit MakeCode; 2022. Available from:

https://makecode.microbit.org/#editor [Accessed 13 September

2022].

https://www.youtube.com/watch?v=sroZqLzLiBU
https://scratch.mit.edu/about
https://scratch.mit.edu/statistics
https://en.scratch-wiki.info/wiki/Scratch_3.0
https://microbit.org/code/
https://sphero.com/blogs/news/sphero-edu-implements-scratch
https://sphero.com/blogs/news/sphero-edu-implements-scratch
https://edu.sphero.com/remixes/9564362
https://developers.google.com/blockly
https://developers.google.com/blockly
https://makecode.com/about
https://makecode.microbit.org/#editor

 63

Turku University of Applied Sciences Thesis | Andrei Skorik

[27] Arouca R, Marques J, Silva CA. Tech Details. How BIPES works

[Online]. BIPES:Dev; 2021. Available from:

http://bipes.net.br/docs/get-started/tech-details.html [Accessed 13

September 2022].

[28] Arouca R. LED test for ESP8266 [Online]. BIPES Project IDE; 2022.

Available from: http://bipes.net.br/beta2/ui/#7tmkuc [Accessed 13

September 2022].

[29] Arouca R, Marques J, Silva CA. Tech Details. How BIPES works

[Online]. BIPES:Dev; 2021. Available from:

http://bipes.net.br/docs/get-started/tech-details.html [Accessed 13

September 2022].

[30] George DP. MicroPython [Online]. MicroPython; 2022. Available

from: https://micropython.org/ [Accessed 13 September 2022].

[31] Supported platforms & architectures [Online]. GitHub; 2022.

Available from: https://github.com/micropython/micropython

[Accessed 13 September 2022].

[32] George DP, Sokolovsky P, and contributors. zsensor — Zephyr

sensor bindings [Online]. The MicroPython Documentation; Sep.

2022. Available from:

https://docs.micropython.org/en/latest/library/zephyr.zsensor.html#z

sensor-sensor [Accessed 13 September 2022].

[33] Arouca R, Marques J, Silva CA. Creating new blocks [Online].

BIPES:Dev; 2021. Available from: http://bipes.net.br/docs/get-

started/create-block.html [Accessed 13 September 2022].

http://bipes.net.br/docs/get-started/tech-details.html
http://bipes.net.br/beta2/ui/#7tmkuc
http://bipes.net.br/docs/get-started/tech-details.html
https://micropython.org/
https://github.com/micropython/micropython
https://docs.micropython.org/en/latest/library/zephyr.zsensor.html#zsensor-sensor
https://docs.micropython.org/en/latest/library/zephyr.zsensor.html#zsensor-sensor
http://bipes.net.br/docs/get-started/create-block.html
http://bipes.net.br/docs/get-started/create-block.html

