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Abstract

As the prices of equipment suitable for laser-induced breakdown spectroscopy (LIBS)
have come down, more research and applications are being implemented with LIBS.
One of  the improvements  that  could be  made in  LIBS is  the removal  of  expertise
needed for calibration for analysis of different elements.

As LIBS doesn’t need extensive sample preparation and the results are available almost
instantly, it could be useful for different kinds of purposes like analyzing the contents
of batteries or online quality control of a production line.

Using a neural network to detect the contents of samples would make the analysis more
available and easier to use, once the models are trained.

The aim of this work is to find out if neural networks are suitable for analyzing the
LIBS spectra and what kind of network would work well in this task.
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LIST OF SYMBOLS AND TERMS

LIBS Laser-induced breakdown spectroscopy

Laser Light amplification by stimulated emission of radiation

NIST National Institute of Standards and Technology

Nd:YAG Neodymium-doped yttrium aluminum garnet, laser gain medium

Q-switch Used to produce a pulsed output beam from laser

MSE Mean squared error
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1 INTRODUCTION

The first records of laser-induced breakdown spectroscopy (LIBS) are from the early

1960’s ,  a few years after the invention of lasers. (Cremers & Radziemski,  2013,

p.7).  As LIBS equipment  has continued to  advance,  making it  smaller  and more

portable,  it  has  become  a  strong  competitor  in  the  field  of  spectroscopy.  Major

benefits of LIBS are that it doesn’t require sample preparation and having extremely

fast  measurement  time  allows  online  measuring.  Combined  with  the  increase  of

processing  power  in  computers,  advancements  in  deep  learning  and  reduced

equipment costs, LIBS has become more feasible to implement without extensive

experience in the field.

In this work we will compare how different configurations of the LIBS equipment

affect the predictions of the neural networks and which tested network architectures

produce the most accurate predictions and if networks can be trained with theoretical

data and transfer learning applied to those networks with the real data.
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2 LASER-INDUCED BREAKDOWN SPECTROSCOPY

Laser-induced  breakdown spectroscopy  (LIBS)  uses  a  pulsed  laser  to  generate  a

plasma from the sample.  Spectral  features emitted by the excited species,  mostly

atoms, are used to obtain information about the samples. It has been used on solid,

liquid, gas, slurry and aerosol samples. Some applications have been iron and steel

sampling,  searching for  soil  contaminants,  analyzing Mars  soil  and rocks,  dating

artwork and sampling for toxic substances like anthrax.   (Cremers & Radziemski,

2013, xi)

2.1 Laser

The word laser is an acronym that stands for "light amplification by stimulated

emission  of  radiation."  Lasers  are  kind  of  flashlights  in  that  sense  that  energy,

usually electricity, goes in and light comes out. Lasers can be extremely powerful,

but more often than not they are much weaker than a typical flashlight. There are

three differences  between light  from lasers and light  from flashlights.  First,  laser

beams are much narrower than flashlight beams. Second, lasers emit coherent light

while light emitted by flashlights  is incoherent. Third, all the light waves in a laser

beam  are  aligned  with  each  other,  while  the  light  waves  from  a  flashlight  are

arranged randomly. Alignment increases the amplitude of the light wave, i.e. makes

it more intense. (Hitz et al., 2012, p. 1)

Majority  of  LIBS  lasers  are   flashlamp-pumped  or  diode-pumped  Nd:YAG

(neodymium-doped yttrium aluminum garnet) lasers. They work by pumping light

into the gain medium, in this case the Nd:YAG rod, the photons excite the electrons

in  the  neodymium  to  a  higher  state.  If  the  pumping  is  sufficiently  strong,  a

population inversion is established in which the upper level of the lasing transition is

more populated than than the lower level. In this state, photons passing through the

laser rod at the same frequency as the lasing transition will experience amplification

by inducing decay of some of the ions from the upper to the lower state. This is

called stimulated emission. If the rod is surrounded by a resonant cavity composed of
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two mirrors  in  which  some of  this  amplified  light  is  directed  back into  the  rod,

significant amplification of light at the wavelength of the lasing transition can be

achieved along the optical axis of the cavity resulting in a highly monochromatic and

directional beam of light. (Cremers & Radziemski, 2013, p. 71). Figure 1 shows a

common configuration for a Q-switched laser.

Different types of lasers use different gain medium. Laser gain media are typically

made from partially  transparent  materials.  Such materials  could  be  crystalline  or

glass solids, organic dyes dissolved in liquid solvents, or various types of gases or

gas  mixtures.  (Silfvast,  2004,  p.  25)  The gain  medium is  the  main  factor  which

defines  the  wavelength  that  the  laser  produces.  The  Nd:YAG  laser  produces  a

wavelength of 1064nm which is well suited for LIBS, since most of the emission

from samples is observed under 1000nm wavelength and the higher wavelength laser

doesn’t interfere with that.

For LIBS, powerful laser pulses are needed to form the micro-plasma when focused

to a small spot. These high powers are easily achieved using a pulsed and Q-switched

laser having moderate pulse energies. In this case, an electro-optic Q-switch shutter

is positioned in the cavity to prevent photons at the laser wavelength from making a

complete path through the cavity and inducing stimulated emission. In this way, the

Figure  1:  F,  flashlamp;  LR,  laser  rod;  M,  mirror;  Q,  Q-switch (Cremers  &

Radziemski, 2013, p. 71)
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population inversion between the upper and lower levels of the lasing transition can

become very large. When the Q-switch is activated by a suitably timed gate pulse

(active Q-switching), the Q-switch becomes transparent, allowing photons to make

many  traverses  of  the  laser  cavity  and  resulting  in  a  high-power  pulse  of  short

duration.  A  fraction  of  the  pulse  energy  leaves  the  cavity  through  a  partially

transmitting mirror. For the Nd:YAG laser, the Q-switched pulse length is on the

order  of  5–10  nanoseconds.  The  pulse  is  of  short  duration  because  once  lasing

begins, the population inversion is rapidly depleted and lasing terminates. The Q-

switch is intentionally closed shortly after the laser pulse to prevent the generation of

additional pulses. (Cremers & Radziemski, 2013, p. 71)

The laser used in our LIBS equipment was a Quantel Falcon (5mj), pictured in figure

2, which is a diode-pumped solid-state Nd:YAG laser that emits light at  1570nm

wavelength with a pulse duration less than 6 nanoseconds.

Figure 2: Quantel Falcon laser (Quantel, 2022)
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2.2 Plasma

Plasma is the fourth state of matter, alongside solid, liquid and gas. In LIBS, the laser

heats a small area of the sample to a high temperature, which causes some of the

electrons to be free from atoms. Photons are emitted when the electrons accelerate or

decelerate  in  collisions,  this  is  known  as  the  bremsstrahlung  process.  When  the

plasma starts  cooling  down,  the  free  electrons  start  recombining  with  the  atoms,

which also creates photons, this is known as recombination radiation. (Noll, 2012, p.

167) This radiation is referred as the plasma continuum. The desired photons are

created  when  electrons  move  from  higher  energy  orbitals  to  lower  ones.  Each

element emits a characteristic set of discrete wavelengths according to its electronic

structure. For LIBS the desired observation period is when the continuum has mostly

diminished but the atomic emission is still observable. Figure 3 shows the effect of

the laser beam and the continuum on the spectra.
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Figure 3: Graphs illustrate how the plasma continuum affects the spectrum (Cremers

& Radziemski, 2013, p. 31)

Plasmas  are  characterized  by  a  variety  of  parameters,  such  as  the  degree  of

ionization,  the  plasma  temperature,  and  the  electron  density.  A  weakly  ionized

plasma is one in which the ratio of electrons to other species, i.e. atoms, ions and

molecules,  is less than 10%. At the other extreme, highly ionized plasmas may have

atoms stripped of many of their electrons, resulting in very high electron to atom/ion

ratios.  LIBS  plasmas  typically  fall  in  the  category  of  weakly  ionized  plasmas.

(Cremers & Radziemski, 2013, p. 29)

2.3 Atomic emission spectrometry

Atomic  emission  spectroscopy  is  a  method  of  chemical  analysis  that  uses  the

intensity of light emitted from a flame, plasma, arc, or spark at a particular
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wavelength to determine the quantity of an element in a sample. In LIBS a laser is

used  to  create  the  plasma.  The  basis  of  any  LIBS  measurement  is  the  plasma

spectrum,  shown in figure 4,  that  contains  information about the elements  in the

target sample. This information is in the form of emission lines located at specific

wavelengths, the intensity of the lines, their relative intensities, and sometimes other

data such as the line widths or temporal behavior. (Cremers & Radziemski, 2013, p.

151)

Figure  4: Measured spectra from a copper sample and below a theoretical copper

sample
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Ideally  the  relative  line  intensities  of  elements  are  directly  proportional  to  their

concentration  in  the  sample.  Difficulties  in  interpreting  are caused by the matrix

effect,  which  arises  from  several  elements  being  present  in  the  sample.  The

overlapping lines between elements make it challenging to determine how much of

each element is present in the sample. Example of this is shown in figure 5.

The lines are measured with a spectrometer. Important technical specifications in a

spectrometer for LIBS include wavelength range and resolution. Wavelength range

should  be  chosen  depending  on  which  elements  are  to  be  studied.  Most  intense

emission  lines  are  observed  between  150-1000nm.  A  smaller  resolution  helps

distinguish between peaks, which often are close to each other.

The spectrometer used in our experiments is a StarLine AvaSpec-ULS4096CL-EVO,

shown  in  figure  6,  from  Avantes  with  wavelength  range  185nm-460nm  and  a

resolution of 0.067nm. A fiber optic cable connected to a lens is used to collect the

light from the plasma. It outputs values between 0 and 65535 on 4096 channels. The

spectrometer uses Hamamatsu S13496 CMOS linear image sensor. The photodiodes

of the CMOS sensor accumulate electrical charge when exposed to light, and those

charges are then converted to voltage, amplified and transmitted as electrical signals.

Figure 7 shows the path light travels inside the spectrometer.

Figure 5: Nickel and palladium lines overlapping (NIST, 2022)
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Figure 6: StarLine AvaSpec-ULS4096CL-EVO (Avantes, 2022)

Figure 7: Light enters the optical bench through a standard SMA-905 connector and

is collimated by a spherical mirror. A plain grating diffracts the collimated light

after which a second spherical mirror focuses the resulting diffracted light. An image

of the spectrum is projected onto a 1-dimensional linear detector array. (Avantes,

2022)
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3 DEEP LEARNING

3.1 What is deep learning?

Throughout  its  history  deep  learning  has  been  known  by  many  names.  Broadly

speaking,  there  have  been  three  waves  of  development  of  deep  learning:  deep

learning  known  as  cybernetics  in  the  1940s–1960s,  deep  learning  known  as

connectionism in the 1980s–1990s, and the current resurgence under the name deep

learning beginning in 2006. Some of the earliest learning algorithms we recognize

today were intended to be computational models of biological learning, i.e. models of

how learning happens or could happen in the brain. As a result, one of the names that

deep learning has gone by is artificial neural networks (ANNs).   (Goodfellow et al,

2016, p. 13). Figure 8 shows how deep learning and AI connect.

Figure  8:  A Venn  diagram showing how deep  learning is  a  kind  of  representation

learning, which is in turn a kind of machine learning, which is used for many but not all

approaches to AI.  Each section of the Venn diagram includes  an example of an AI

technology. (Goodfellow et al, 2016, p. 9)
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Extremely simplified way of looking at neural networks is that numbers go in and

numbers  come out.  They consist  of input  layer,  output  layer  and in  between are

hidden  layers.  Networks  with  only  one  hidden  layer  are  called  shallow  neural

networks whereas with multiple hidden layers they are called deep neural networks.

There are different kinds of layers that can be used. One of the most common layers

are dense layers which consist of nodes also known as neurons. Dense layer nodes

have their own weights and bias. When they receive an input, that value is multiplied

by the weight and the bias is added. In dense neural network each node is connected

to every node on the previous and the next layer. A simple neural network is shown

in figure 9.

Figure 9: Dense neural network with two hidden layers. Each hidden layer is made

up of 8 nodes. Input layer has 8 nodes and output layer is only a single node.
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In LIBS the input would consist of the values from the spectrometer, although some

sort  of  data  pre-processing  can  be  made  before  feeding  the  data  to  the  neural

network.  Also  other  information  could  be  given  to  the  neural  network  if  it  is

available, e.g. laser pulse power or some information about the sample.

3.2 Data

To get started with deep learning we always need data. In LIBS the main source of

data is the spectrometer, although we can also generate data with theoretical values.

National Institute of Standards and Technology (NIST) provides a database and a

service which can calculate the theoretical spectra for most of the elements in the

periodic table. For deep learning the more data there is the better, provided that the

data is of good quality. Because LIBS is measuring a phenomenon based on physics,

the  possible  errors  in  data  come  from the  measuring  process,  the  setup  and  the

equipment used.

The NIST data used is collected with regular intervals of approximately 0.067nm,

but the spectrometer produces data with varying intervals. For the lowest channels

the  interval  is  0.073nm,  the  highest  channels  0.060nm  and  in  the  middle  it’s

0.067nm. In the middle channels the wavelength for NIST data is 322.575nm and

spectrometer is 329.322nm, a  6.747nm difference.  Figure 10 shows the intervals

between spectrometer channels. The NIST intensity data, shown in figure 11, is in

arbitrary units, meaning that the values itself are not as important as their relative

intensity to other values. The maximum intensity value in the data was 5798156264,

almost 6 billion. Spectrometer produces data in 0-65535 range. In spectrometer data

noise is present and without corrections every channel usually shows a value of at

least 900, while the NIST data with few elements present has 0 for most channels.

Figure 12 shows the spectrometer data.
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Figure 10: Channels of the spectrometer are not evenly spaced

Figure 11: Clean spectrum of copper from NIST data
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The spectrum also changes depending on electron temperature and electron density.
The  NIST  data  was  collected  with  electron  temperature  of  1.0  electronvolt  and
electron density (cm ³)  of 1e17. At the time of writing the LIBS project at SAMK⁻
hasn’t looked into measuring the electron temperature or density of observed plasma.

The spectrometer data was gathered by shooting five consecutive shots at one point
then moving the sample by some tens to hundreds of microns. The multiple shots are
done so that the first shots clean the surface of the sample from impurities.

3.2.1 Data preprocessing

As the NIST data  is  theoretical  data based on calculations  it  is  perfect  data.  The

challenge is making it as close to the spectrometer data as possible to make it more

useful for transfer learning. Three  different preprocessing techniques were used to

make the NIST data more similar to the real data, added noise, clipped high values

and scaling.

First  the NIST data  was clipped at  value  1000000,  1  million,  since some of  the

elements have very high maximum intensities compared to the other elements and

even if  those elements  were  encountered  in  samples,  the  channels  with  the  high

Figure 12: 99,9% copper measured with SAMK LIBS equipment
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intensities would over saturate and stop at maximum value of 65535, making them

have no further relevant information.

Secondly noise was added. Since 1 million was now the maximum value for the

NIST data and 65535 for spectrometer and the spectrometer values were showing

approximately 600 for channels with no peaks the similar noise for the clipped NIST

data would be  around 9000. For each channel with  values less than 10000 in the

NIST data a random number between 1 and 9000 was added.

Thirdly the NIST data was scaled between 0 and 1. Scaling data often helps the

performance of several algorithms.

Also shifting the NIST data wavelengths to match the spectrometer was tried. It was

done by interpolating the intensities based on the wavelengths. 1000 models were

trained for each data, with the shifting and without it. Without shifting the average

MSE was 6.805989e-4 while the shifted one was 6.787509e-4, a 1.848e-6 difference.

The  difference  is  minuscule  and  such  difference  could  come  from  random

initialization of the weights. 

3.2.2 Data labeling

The NIST data  was  collected  with  in  an  array  of  numbers  in  which  each  index

corresponded to a certain element. The percentages were added as numbers between

zero and one. Same kind of labeling was used for the spectrometer data. Earliest tests

used a network which tried to predict several elements at once, but this proved to be

challenging and the network was changed to predict a single element. For this the

labels  would  be cut  to  a  single  element  so that  the  label  would  be just  a  single

number between zero and one, i.e. earlier the labels were [0.4, 0.5, 0.1] if the sample

contained 40% copper, 50, aluminum and 1% zinc, but now the label would be just

[0.4] for the copper and for each element own network would be trained.
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3.3 Transfer learning

Transfer learning refers to the situation where what has been learned in one setting

(i.e., distribution P 1 ) is exploited to improve generalization in another setting (say

distribution P 2 )  (Goodfellow et al, 2016, p. 536).  Transfer learning is often used

e.g. in object detection where a network is trained with hundreds of thousand or more

images with some classes for example different kinds of animals or objects like cars,

airplanes  etc.  and  then  that  network  is  trained  with  other  kinds  of  classes,  e.g.

different kinds of fruits. With this kind of training better results can be achieved with

fewer images.  Transfer learning was tested on LIBS data and it  was found to be

useful. 

3.4 Error metric

For calculating the error mean squared error (MSE) was chosen.

MSE is the average squared difference between the observed and predicted values.

Since the difference is squared bigger errors are penalized more than smaller errors.

When we take the root of our MSE we get the average error in percentage points

because our labels are provided as percentages.

3.5 Network architecture

Several different  network architectures  were tried.  First  tests were done trying to

predict  the  percentage  of  all  elements  in  the  sample.  This  did not  produce  good

results so it was changed so that the network would only predict a single element and

then for every element a network would be trained and the predictions combined.

Initial  tests  for  single  elements  were  made  on  networks  that  were  deeper  but

narrower.  For all hidden dense layers a L2 kernel regularizer was used to reduce

overfitting.  All  hidden  layers  used  tanh  activation  function.  The  default  weight
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initializer was used, which is glorot uniform, it produces values between -1 and 1.

Adam  optimizer  was  used  for  all  networks  to  reduce  the  time  it  takes  to  tune

parameters as finding a good architecture and training parameters takes considerable

time already (Adam, 2017). A few tests were done with the adam learning rate and

lowering the initial learning rate seemed useful, although not much testing was done

on that  since adam updates  any parameter  with an individual  learning rate.  This

means that every parameter in the network has a specific learning rate associated.

But the single learning rate for each parameter is computed using lambda (the initial

learning rate) as an upper limit.  In earlier tests dropout layers were used but were

later dropped.

First network tests were done with 6 hidden layer of which second was a dropout

layer with 10% value. A dropout layer randomly drops connections by a percentage

provided. For the second tests another dropout layer was added between third and

fourth dense layers with 5% drop rate. In third network third dropout layer was added

and the dropout layers were placed between first and second, second and third and

finally third and fourth dense layers with rates of 5%, 7% and 5%. Several tests were

done with the third configuration with different epoch, batch and neuron settings.

Each dense layer had the same amount of neurons. The output layer was a single

neuron dense layer with linear activation for every network tested.

Later a test with reinforcement learning algorithm Advantage Actor Critic (A2C) to

find a better architecture. Although it was utilized more as a random search it yielded

results. The algorithm preferred networks without dropout layers and wider rather

than deeper networks. After couple days of searching for a network, the best result

was with a network of just 2 hidden layers, with 16384 neurons in the first and 128

neurons in the second.

3.6 Training

The datasets were initially split to training and validation sets with 90% for training

and 10% for validation. Later when spectrometer data was available, the NIST data

was split 99% for training and 1% for validation and the spectrometer data was split
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90% training and 10% validation. This was done so that less information would be

lost on the NIST data for transfer learning. The data was randomly split with a set

random seed so that the same data would always be used for training/validation.

3.6.1 Epoch

A one  epoch  occurs  when  all  of  the  dataset  is  being  passed  through  the  neural

network. As the weights are updated gradually, more epochs mean a better fit for the

data. The risk with too many epochs is overfitting, which means that the model will

not generalize to unseen data.

3.6.2 Batch

Batch size determines how many samples of the dataset we pass through the network

at a time. A larger batch size means faster training, but sometimes that is limited by

the hardware. Also if the batch size is very large that might degrade our network

since  the  weights  are  usually  upgraded  after  each  batch  is  passed  through  the

network.

3.7 Datasets

Datasets  in  this  project  are  divided  into  the  NIST datasets  and the  spectrometer

dataset.

3.7.1 NIST datasets

The first NIST dataset had a total of 14960 samples. It consisted of 15 elements,

carbon,  magnesium,  aluminum,  silicon,  titanium,  vanadium,  iron,  cobalt,  nickel,

copper, manganese, lithium, zinc, oxygen and phosphorus. Samples consisted of one

to three element combinations. With single element samples of 100%, two-element
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samples from 1% to 99% in 1% steps and three-element combinations of [33, 34,

33],  [40, 20, 40], [20, 40, 40], [40, 40, 20], [60, 20, 20], [20, 60, 20], [20, 20, 60],

[80, 10, 10], [10, 80, 10], [10, 10, 80].

The  second  NIST dataset  consists  of  24  different  elements,  carbon,  magnesium,

aluminum,  silicon,  titanium,  vanadium,  iron,  cobalt,  nickel,  copper,  manganese,

lithium,  zinc,  oxygen,  phosphorus,  platinum,  gold,  silver,  iridium,  tungsten,

palladium, tin, technetium and yttrium. Altogether  53660 NIST data samples was

collected and used. They consist of combinations of 1 to 3 different elements.   The

different  sample compositions  were a single element  100% samples,  two-element

samples increasing from 1% to 99% with 1% steps and three-element samples with

the following combinations [33, 34, 33], [40, 20, 40], [20, 40, 40], [40, 40, 20], [60,

20, 20], [20, 60, 20], [20, 20, 60], [80, 10, 10], [10, 80, 10], [10, 10, 80], [15, 30, 55],

[30, 55, 15], [55, 15, 30]. 

3.7.2 Spectrometer dataset

The spectrometer dataset used consist of third shots of the samples. Most samples are

from sheets of copper which had between 99.995% and 99.96% copper in them, the

rest was unknown. Other samples included sheets of brass with 85.0% copper and

rest zinc, a zinc bars with 63.10%-63.60% copper and 35.40%-35.80% zinc and the

rest a combination of silicon, phosphorous, lead and bismuth. Also 99.99% reference

samples of carbon, magnesium, aluminum, silicon, titanium, vanadium, iron, cobalt,

nickel, copper, zinc and tin were included. The samples are shown in figures 13 and

14.
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Figure 14: 99.99% reference samples

Figure 13: Copper and brass samples
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4 RESULTS

4.1 First network tests

For training the networks different numbers of epochs, batch sizes and neurons were

used. Because of the random initialization of the weights, each network was trained

100 times and the average MSE was calculated. A combination of [2, 4, 6, 8, 10]

epochs, [16, 64, 512, 1024] batch sizes and [64, 256, 512, 1024, 2048] neurons. The

lowest MSE of 0.005047 was achieved with the largest values of 10 epochs, 1024

batch size and 2048 neurons. Initial learning rate for the adam optimizer was 1e-4.

Data that was used was only NIST data as data from spectrometer wasn’t available at

the time. The first NIST dataset was used.

Table 1: Top 10 results of the first network tests

Epochs Batch size Neurons MSE

10 1024 2048 0.0050479

8 1024 2048 0.0052536

6 512 2048 0.0054870

8 512 2048 0.0056326

4 512 2048 0.0058435

10 512 2048 0.0060021

6 1024 2048 0.0061080

10 1024 1024 0.0075520

8 1024 1024 0.0076527

6 512 1024 0.0081316

From these tests it was clear that a larger network with more training would provide

better results.
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4.2 Second network tests

For the second network the number of epochs, batch and neurons were all increased

based on the results of the first tests. The combination was [8, 9, 10, 11, 12, 13, 14,

15] for epochs, [128, 256, 512, 1024, 2048] for batch size and [1024, 2048, 4096] for

neurons. Initial learning rate was the same as in the first tests, 1e-4. The first NIST

dataset was used.

Table 2: Top 10 results of the second network tests

Epochs Batch size Neurons MSE

15 1024 4096 0.0017068

11 512 4096 0.0017098

10 512 4096 0.0017173

9 512 4096 0.0017249

8 512 4096 0.0017372

14 1024 4096 0.0017431

12 512 4096 0.0017926

12 1024 4096 0.0018023

13 1024 4096 0.0018185

14 512 4096 0.0018369

It seems that the main factor in performance is the size of the network, the bigger the

better.
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4.3 Third network tests

For the third network tests the batch sizes were kept the same as before but number

of neurons and epochs were increased. For neurons the options were [3500, 4096,

5120] and the epochs [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Initial learning

rate was 1e-4. The first NIST dataset was used.

Table 3: Top 10 results of the third network tests

Epochs Batch size Neurons MSE

10 512 5120 0.0013283

20 1024 5120 0.0013343

19 1024 5120 0.0013525

21 1024 5120 0.0013600

18 1024 5120 0.0013684

17 1024 5120 0.0013770

11 512 5120 0.0013885

16 1024 5120 0.0014000

12 512 5120 0.0014078

14 512 5120 0.0014525
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4.4 Fourth network tests

For the fourth tests the batch sizes remained the same but the number of epochs were

changed to [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and the neurons

were tested only with 8192. Initial learning rate was 1e-4. The second NIST dataset

was used which most likely affected the observed MSE.

Table 4: Top 10 results of the fourth network tests

Epochs Batch size Neurons MSE

15 512 8192 6.125e-4

14 512 8192 6.208e-4

12 512 8192 6.342e-4

17 512 8192 6.390e-4

9 256 8192 6.418e-4

8 256 8192 6.447e-4

19 512 8192 6.454e-4

7 256 8192 6.465e-4

16 512 8192 6.479e-4

13 512 8192 6.551e-4
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4.5 Fifth network tests

The fifth network tests were done with a different kind of network which consisted

only of 2 hidden layers of 16384 and 128 neurons. Different batch sizes and epochs

were not tested. Instead the effects of different kinds of preprocessing on the data

was tested and additional tests with another test dataset  were conducted. Each test

was ran 100 times and the average MSE recorded. Tests were done so that first a

network was trained with NIST data and tested with NIST data and the spectrometer

data. Then that model was retrained with spectrometer data, i.e. transfer learning as

used, and tested with spectrometer data validation set and additional copper data also

gathered  with  the  spectrometer.  The  preprocessing  done  on  NIST  data  included

clipping the highest values, adding noise and scaling the data between 0 and 1. No

preprocessing was done on the spectrometer data.  Initial learning rate was 5e-5.

Table 5: Effects of different preprocessing techniques on MSE

Preprocessing NIST trained

NIST tested

NIST trained

spectrometer

data tested

Transfer

learning

Transfer

learning copper

tested

No

preprocessing

0.0074788 0.5687736 2.478e-4 3.812e-4

Clip 0.0063265 0.5567484 6.291e-4 6.820e-4

Clip + noise 0.0010603 0.6233914 8.16e-5 2.480e-4

Clip  +  noise  +

scaling

1.219e-4 0.1264416 4.08e-5 1.619e-4

The best results in each of the tests were achieved with including all of the three

preprocessing techniques. Also training a network with only spectrometer data was

tested which resulted in MSE of 1.047e-4 with the validation set and 3.417e-4 with

the copper test set. From this we can conclude that transfer learning clearly helps the

network to learn.
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Although most predictions are very close to correct, some are far off as can be seen

from tables 6 and 7. 

Table 6: Bad predictions from the network

Predicted Label Prediction – Label

0.081178136 0.999 -0.9178

0.012133906 0.999 -0.9869

-0.0107268 0.999 -1.0097

-0.014411053 0.999 -1.0134

0.0063202777 0.999 -0.9927

-0.017494997 0.999 -1.0165

0.06240226 0.999 -0.9366

0.06865663 0.999 -0.9303

0.0061571696 0.999 -0.9928

0.0462044 0.999 -0.9528

Table 7: Better predictions from the network

Predicted Label Label – prediction

0.997506 0.999 -0.0015

0.8655777 0.85 0.0156

0.9973346 0.999 -0.0017

0.9941029 0.999 -0.0049

-0.015855422 0.0 -0.0159

0.61475134 0.631 -0.0162

0.0017584956 0.0 0.0018

0.9904094 0.999 -0.0086

0.99488956 0.999 -0.0041
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A closer look at the data shows that some of the spectra are very different from each

other even if they are supposed to be almost the same. In figure 15 a large difference

in intensities between samples can be seen.

Figure 15: Two >99,9% copper samples
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4.6 Additional test

Another test was performed to see if data could be created by combining two >99.9%

samples. The test was done by combining measured copper and zinc samples. 50

samples of each were combined while multiplying them by a factor and adding them

together. Each of the samples were multiplied with factors of 0.1 to 0.9 with 0.1

steps, i.e. the copper sample would be multiplied by 0.4 while the zinc sample was

multiplied with 0.6. The different copper and zinc samples were not mixed between

different factors.

This test provided worse results than without the mixed samples. With the samples

the MSE was 1.412-04 and without them 9.540e-05. The test was run a few times

and every  time  the  results  were  similar,  without  the  added  samples  the  network

performed better.

It could be that the samples used for these tests were not optimal and more carefully

selected samples could provide better results. Also mixing the samples with more

variety could be useful. It was also hypothesized that different compositions of the

elements  would  result  in  different  electron  temperatures,  which  would  affect  the

measured spectra.

5 LIBS EQUIPMENT

The LIBS equipment at SAMK, shown in figures 16 and 17, consist of the laser,

spectrometer,  computer  for controlling the equipment,  surrounding box for cover,

two linear motors for moving the samples in two axes and a webcam inside the box

used for setting the sample to correct position. Also optical tube with two lenses to

focus the laser beam are used and another lens to collect the light from the plasma to

the spectrometer via an optical fiber cable.
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Figure 16: Inside of the box with the laser, optical tube, spectrometer

lens and the two linear motors visible
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Figure 17: Back of the box with the spectrometer and computer visible
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6 FUTURE WORK

At the time of writing the available samples are limited with most samples being

close to 100% of one element and some samples with 85% copper,15% zinc and 63%

copper and 35% zinc. The accuracy of the models would most likely improve with

more diverse samples and the testing of the models would be more reliable if the

testing set included samples with contents not included in the training set.

Currently  the  positioning  of  the  sample  is  done  by  taking  measurements  of  the

sample and moving along the vertical axis recording the maximum intensity, figure

18, and when the intensity starts to lower going back to the position with the highest

recorded  intensity.  This  is  time  consuming  and  the  maximum  intensities  also

fluctuate as seen in the image below. That leads to measurements happening from

different distances which might affect results.

Figure 18: Y-axis: the maximum intensity of the spectrum. X-axis: the number of

steps from the highest position
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Some  sort  of  distance  measuring  device  will  be  added  in  the  future  so  the

measurements will always happen from the same distance.

One  possibility  is  to  also  test  networks  with  different  kinds  of  layers  like  one

dimensional  convolutional  neural  network and to try even wider or deeper  dense

networks. Also combining the networks that are trained to predict the percentage of

a single element to a single network and see if that improves the predictions.

More work on finding out if the networks generalize well to unseen data should be

made.  At  the  moment  it  is  not  clear  if  the  networks  recognize  the  important

relativities  between peaks.  The results  do suggest  that  the  tested networks  might

focus on the absolute intensities instead.

7 CONCLUSION

Analyzing the spectra with neural networks  could be viable and so far the results

suggest predictions within 1% to be possible. This method requires taking a lot of

samples of the elements that are to be predicted but once that is done no expertise on

LIBS is required to use the models. The tests performed also suggest that changes in

measurements, such as spectrometer lens positioning, heavily affect the predictions.
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