

2022

Anna Akimova

SOFTWARE FOR CBRN MONITORING
IN ACCORDANCE WITH ATP45

STANDARD

Bachelor’s thesis

Bachelor of Engineering

Degree Programme in Information Technology

2022

2022

Degree title Bachelor of engineering
Author(s) Anna Akimova
Thesis title Software for CBRN monitoring in accordance with ATP45 standard
Commissioned by Observis Oy
Year 2022
Pages 43 pages
Supervisor(s) Timo Hynninen

ABSTRACT

With the growing number of possible kinds of weapons, it is very important to

every nation to be able to monitor, detect and to be ready to respond to

accidental or intentional attacks. One of the categories of threats that can

pose threat to large groups of people are chemical, biological, radiological and

nuclear incidents, commonly called CBRN threats. So, it is important to

develop software that can summarize information about the as efficient

distribution and utilization of correct information can enable timely and

properly targeted authority activities in response to CBRN accidents. Also, it is

important to spread information in a uniform way, so North Atlantic Treaty

Organization (NATO) developed its own standard for reporting information

regarding CBRN accidents – ATP45 standard. This thesis work is based on a

software development case-study, it involved the research of the ATP45

standard, improvement of the existing in the commissioning company software

and addition of further enhanced features.

In theoretical part, the main information about ATP45 standard was

summarized. The kinds of threats and data passed in different types of

messages were described in more detail. Also, information about basic

software requirements and technologies used in ATP 45 software was

described and main notions were clarified.

In the practical part of the thesis a real-word case of ATP-45 software

implementation developed by Observis Oy was presented. The conversion to

more appropriate Spring Boot implementation was described and also addition

of extra features to the existing software was explained in detail.

The last part of the thesis presents the summary of the results of the work and

reflection on which further improvements can be done to the software.

Keywords: Spring Boot, Docker, PostgreSQL, ATP45 NATO standard, CBRN

CONTENTS

1 INTRODUCTION .. 4

2 DEVELOPMENT CONTEXT .. 5

3 OVERVIEW OF JAVA AND SPRING BOOT REST API APPLICATIONS 6

3.1 Java and Spring boot .. 6

3.2 REST API ... 7

3.3 PostgreSQL databases, Spring JPA and Hibernate ... 10

3.4 Docker .. 11

4 OVERVIEW OF ATP45 NATO STANDARD ... 13

4.1 ATP45 standard and documentation: ATP45 and AEP45 13

4.2 Definition of CBRN threats .. 14

4.3 CBRN1-6 messages and data flow overview .. 15

4.4 CBRN messages and weather reports ... 18

4.5 Structure of a CBRN message.. 21

4.5.1 Message heading ... 21

4.5.2 Message sets – example of CBRN 1,3 AND 4 BIO .. 22

5 IMPLEMENTATION .. 25

5.1 Migration to Spring Boot ... 25

5.2 Exception handling ... 28

5.3 Logging ... 29

5.4 PostgreSQL connection .. 31

5.5 Dockerization: ATP45 and Postgis containers, compose file 33

5.5.1 ATP45 Docker container ... 33

5.5.2 Postgis container, compose file .. 34

5.6 CBRN 4 feature .. 38

6 CONCLUSION AND DISCUSSION .. 39

7 REFERENCES ... 40

8 ABBREVIATIONS ... 42

4

1 INTRODUCTION

Every country needs to be able to prepare for and respond to accidental or

intentional disasters categorized as chemical, biological, radiological or nuclear

(CBRN). It is also important to enhance the sophistication and analytic expertise

in the process of planning for and responding to CBRN incidents. So, collection

and sharing of information are the cornerstones in this process. Efficient

distribution and utilization of correct information enable timely and properly

targeted authority activities in response to CBRN accidents. Therefore, software

which collects, analyses and distributes the data to the relevant users in a timely

and clear manner is of an utter importance.

The North Atlantic Treaty Organization (NATO) specifies guidelines to provide

such information in its messaging standard ATP-45. The thesis work will be

devoted to improvement of the existing in Observis Oy software and addition of

some essential features.

In the first chapter the general context of the work will be described. Also,

definitions and explanations to the main terms, tools and technologies used in the

process of the software development will be given. There will be a brief

comparison of Java programming language and Spring Boot framework and why

the latter one is more suitable for development of standalone microservice

applications. The difference between Spring Boot JPA and Hibernate as tools for

managing Java objects in relational databases and the main principles of REST

API will be discussed. PostgreSQL databases and Docker containerization will

also be mentioned.

The second chapter will explain the idea of ATP-45 standard for CBRN reporting

and its goals, and also where Observis Oy stands in the field of CBRN and its

situational awareness systems and software. The goals of the work will also be

outlined in more detail.

5

A more detailed overview of the ATP-45 standard will be given including the

information about when and how this standard is used and what types of data are

collected, processed and distributed.

The third chapter will provide a detailed description of the implementation stage

of the work.

A summary of the completed tasks and the outcomes of the work will be made in

the conclusion.

2 DEVELOPMENT CONTEXT

Observis Oy (OOY) is aiming to provide world leading situational awareness

systems (SAS) to international CBRN monitoring and preparedness markets. To

support that purpose, there are certain key features that a SAS system should be

capable of providing. One such feature is the support for NATO incident

messaging standard ATP-45. Software that implements ATP-45 messaging and

reporting standard can be used by authorities responsible for responses to

CBRN-related accidents in both NATO member states and any other country

which needs clear guidelines and specifications for implementation of

sophisticated accident reporting system.

The current version of Observis situational awareness system (ObSAS) software

provides a rudimentary support for basic ATP-45 messages, simple predictions

based on AEP-45 implementation instructions as well as support for ADAT-3P

message format for relaying these messages. However, there are several key

features still missing from ObSAS ATP-45 implementation. Furthermore, the

usability and integration to available measurement devices is lacking. This work is

intended to study and provide solutions to some of those challenges.

The thesis work should cover the following themes:

1. The software providing ATP-45 support should be a standalone solution for a

more flexible integration with ObSAS.

6

2. Integrating ObSAS measurement device data to ATP-45 system by allowing

easy generation of ATP-45 CBRN-4 type messages from observed measurement

values and location information.

As a result of the thesis the aforementioned topics are discussed, an updated

version of ObSAS ATP-45 messaging component is developed providing a

solution to these issues.

3 OVERVIEW OF JAVA AND SPRING BOOT REST API APPLICATIONS

This chapter will give a brief description and comparisons of tools and

technologies used during the implementation of the thesis work. The original

piece of software that supports ATP45 standard was written in Java programming

language with OSGi framework. More modern approach with a more concise and

functional solution was to use Java with Spring Boot framework instead. Also the

use of Doker containers was chosen as it can allow easier transfer of the ATP45

software to further users.

3.1 Java and Spring boot

Spring Boot is a part of Java domain, more exactly it is a framework which assists

in orchestrating Java application and dependent libraries and plugins into an

executable environment in a more efficient way than plain Java applications. So,

Spring Boot is a step forward to simpler architecture and dependency

management.

Like mentioned before, one of the most powerful features of Spring Boot

compared to basic Java applications is dependency management. Before

introduction of the Spring Boot framework, software development required

knowledge of the compatible dependencies necessary to make the application up

and running. Spring Boot is a tool for automatic managing of dependencies and

configurations. With Spring Boot, it is not necessary to mention the version of the

dependency as the framework manages them on its own automatically. The

second feature is auto-configuration, which means that Spring Boot automatically

configures the application according to the dependencies. For example, If

7

PostgreSQL database dependency is mentioned on the classpath, and if

database connection was not configured by the developer, then Spring Boot has

an ability to auto-configure an in-memory application database. The third property

is the design of standalone applications. Running a plain Java application

involves four stages: package the application, choose the type of web server to

run an application, configure the web server and organize the deployment

process

With Spring Boot this process reduces to two steps, packaging the app and

running the app. Spring Boot takes care of configuring and deploying an

embedded web server. Another handy characteristic is embedded application

servers, which do not require further installation to use. This also provides fast

and efficient deployment. Summarizing, Spring Boot framework allows to avoid lot

of boilerplate code and reduce the number of manual configurations.

3.2 REST API

First of all, the term API stands for ‘application programming interface’. An API is

a set of rules that outlines the way for a programmer to arrange the program for

effective communication between client applications and a server.

REST stands for Representational State Transfer. REST is an architectural style

and methodology frequently used in internet services development (Fielding,

2000). In more technical terms the idea behind REST API is that when a RESTful

API is called, the server will transfer a representation of the requested resource’s

state to the client system (Figure 1).

Figure 1. Data flow in a REST API application

8

REST APIs have several features that are especially advantageous in the case of

use with web app services (Naeem, 2020). Firstly, REST APIs fetch data in

several data formats (JSON or XML) that allow quicker processing than, for

instance, Simple object access protocol (SOAP). SOAP being a protocol, has

strict built-in rules which cause SOAP’s complexity and overhead to increase,

which, in turn, may result in longer page load times. REST, on the other hand, is

not an official protocol, but a set of architectural principles. It doesn’t require so

much extra, overhead data, thus less bandwidth is used, making it more

appropriate for web services. Secondly, RESTful protocols are weakly coupled,

which means that parts of the application are independent, so there is flexibility

and re-usability to add, substitute, or adjust them.

There are some terms that we often come across when talking about the REST

APIs. REST APIs use the Request-Response system which uses HTTP protocol

to fetch and deliver data. The following HTTP requests are used:

 • GET (for fetching data)

 • PUT (for altering the state of data)

 • POST (for initial creation of data)

 • DELETE (for elimination of data)

Before moving to the principles of the REST API design, it is important to

distinguish the three key terms. First, resource – is any object the API can offer

information about. It is the primary abstraction of information in REST. Each

resource must have a distinct identifier, it can be either a name or a number.

Identifier is important to distinguish resources involved in the communication

between different elements. Second, server – is any system that stores the

resources (data). Third, client is a hardware or software that uses the API

provided by a server and utilizes data sent back to display information to the user.

So, the six principles that guide the REST API design are:

Principle one: client-server architecture. Client and server are separate entities

that communicate via HTTP requests and responses. In the meantime, client and

server can be modified, developed and scaled separately and independently.

9

Namely, it should be possible to make changes to the mobile application without

impacting either the data structure or the database design on the server.

Principle two: statelessness. Client-server communication should be stateless,

which means that client information is not stored between requests, therefore

each request must contain all the essential data to complete itself successfully.

REST API should not rely on data being stored on the server or sessions to

determine what to do with a call, but rather solely rely on the data that is provided

in that call itself. When all the state data is stored on the client and not on the

server, it reduces memory requirements.

Principle three: cacheable data. The principle of statelessness causes the

request overhead due to a large number of requests and responses. So, a REST

API design requires to store cacheable data when possible, to reduce the number

of interactions with the API. This means that when data is cacheable, the

response should indicate that the data can be stored up to a certain time

(expires-at), or in cases where data needs to be real-time, that the response

should not be cached by the client. It should be noted that caching is done on the

client side, the intent is to instruct the client on how it should proceed and

whether the client can store the data temporarily.

Principle four: uniform interface. Uniformity implies that information is transferred

in а standard form. The key to decoupling client from server is having а uniform

interface that allows independent evolution of the application without having the

application’s services, models, or actions tightly coupled to the АPI layer itself.

The uniform interface lets the client talk to the server in а single language,

independent of the architectural backend of either.

Principle five: layered system. А layered system is comprised of layers, with

each layer having а specific functionality and responsibility. Taking Model View

Controller (MVC) framework as an example to illustrate the layered system:

model defines how the data should be formed, the controller focuses on the

10

incoming actions and the view focusing on the output. Thus, layers are separated

but also interact with each other.

Principle six (optional): code-on-demand. Although most of the time, a server

returns static resource representation in XML or JSON format, it is also possible

to send executable code from the server to extend client’s functionality.

To sum up, REST API is an architectural style which complies to five basic

principles to provide better functionality to internet services. All of these

constraints build a flexible API.

3.3 PostgreSQL databases, Spring JPA and Hibernate

The main terms discussed in this part will be Spring JPA, ORM and Hibernate.

In most cases an app requires a connection to a database. To achieve that there

is Spring Boot Java Persistence API (JPA), which is a Java specification for

managing relational data in Java applications. In simple terms, a relational

database keeps tables and records, while Java application keeps classes and

objects, so it is necessary to convert, or map, one type of data structure to

another. So, JPA allows to access and persist data between Java object/class

and a relational database. JPA follows Object-Relation Mapping (ORM). As there

is no internal feature supported by Java which offers mapping between class

objects and database tables. So, when a java application connects to a relational

database, when SQL queries are run, the received results need to be converted

into Object instances. Apart from mapping Java objects to the database entities,

JPA has another task of making queries to the database for all the user

operations.

There is various enterprises vendor such as Eclipse, RedHat and Oracle that

provide products by adding the JPA in them. There are some popular JPA

implementations frameworks and one of them is Hibernate. So, to distinguish

between JPA and Hibernate. JPA is a general specification that defines the ways

to access, manage, and persist data between Java object and relational

11

database, it defines ORM as a standard approach. Hibernate is one of the JPA

implementations and an ORM tool.

Although there is a wide choice of relational database management systems

(RDBMSs) - SQLite, MySQL, and PostgreSQL. In the case of ATP-45 software

PostgreSQL was chosen.

As opposed to its counterparts, PostgreSQL has a high priority to data integrity

(Nguyen, 2021). It implements control to ensure that data remains consistent.

Also, PostgreSQL is compatible with a different programming languages. This

means that migration of the database to another operating system or integration

with a specific tool, is a rather uncomplicated process with a PostgreSQL.

Moreover, PostgreSQL has strong support for complex operations like data

storage and online transaction processing. Given that ATP-45 functionality may

require adjustments to the specific needs of a particular client purchasing the

ObSAS solution and sensitivity of the stored data, PostgreSQL is the best choice

because of its reliability of data consistency and options for integration with other

tools.

3.4 Docker

ATP-45 software requires an easy way to be transferred and installed on different

new systems. For easier relocation it is reasonable to use Docker containers.

Containerization is a type of virtualization. But as opposed to virtualization, which

is the technique of importing guest operating system on top of a host operating

system that eliminates the need for extra hardware resource, containerization is

the technique of bringing virtualization to the operating system level (Pandit,

2021). While virtualization brings abstraction to the hardware, containerization

brings abstraction to the operating system (Figure 2).

12

Virtualization Containerization

Figure 2. Comparison of virtualization and

containerization

This containerization feature guarantees that the application works in any

environment. So, a developer can build a container having an application or

different applications installed on it and pass it to further users. The users then

would only need to run the container to replicate the developer’s environment.

A Dockerfile is a text document which contains all the commands to assemble an

image. Upon issue of the ‘docker build’ command by the developer, Docker file

becomes a Docker Image. Docker image is a kind of template which is used to

create actual Docker container. And when a Docker image is run, it becomes a

Docker Container. Docker Container is a running instance of a Docker Image as

they hold the entire package needed to run the application (Figure 3) ().

Figure 3. Process of creation of a Docker container from Dockerfile

One of the important notions regarding Docker containers are microservices. The

idea behind those microservices is that certain types of applications become

easier to build and maintain when they are broken down into smaller, composable

13

pieces which work together (). Each component is developed separately, and the

application is then simply the sum of its constituent components. For example, an

online shop can be divided into separate microservices for shop user accounts,

product catalogues, list of orders and processing statuses. So, if one of the

microservices fails, the entire application can continue working and it is much

easier to manage in general.

4 OVERVIEW OF ATP45 NATO STANDARD

This chapter describes the idea of NATO ATP45 standard. First, the documents

that give definitions to CBRN related terms and procedures are presented. Then,

definitions of the threats are given, followed by description of each of six types of

CBRN messages. Then data flow between different levels of messages is

illustrated and explained. Also, the importance of weather data in assessment of

CBRN incident-related hazard areas is highlighted.

4.1 ATP45 standard and documentation: ATP45 and AEP45

Defense against Chemical, Biological, Radiological and Nuclear (CBRN)

weapons and incidents have usually been classified as one subject area within

NATO military publications. All these kinds of attacks are grouped together

because they have similar features: they affect wide geographic areas; there are

large numbers of people potentially at risk and certain similarities in protection

measures; and the supposed ‘novelty’ of each of these classes of science-

derived weapons (ATP45 (operators manual) 2014). The main users of the CBRN

related information are national authorities, NATO command centers and

command forces as well as local civilian authorities.

To improve coordination between different groups of authorities regarding CBRN

activities and spread of data upon an occurrence, some standards were

developed. The two of most important documents of the NATO standard are the

‘ATP45 Operators Manual’ and ‘AEP45 Reference Manual’ documents.

The purpose of ‘ATP45 Operators Manual’ is to prescribe the CBRN procedures

to be followed by land, air and naval forces for the:

14

- Reporting of CBR attacks, nuclear detonations and resulting contamination

- Predicting and warning of hazard areas from CBRN incidents.

- Assessment of CBRN information

- Warning of allies about the forthcoming nuclear strikes or interception of an

adversary incoming missile

- Alerting about potential CBRN incidents

- Interchange of reports

AEP45 Reference Manual provides requirements and functional specifications for

CBRN informational constructs, activities and functionality necessary for the

procedures mentioned in the previous paragraph.

Summarizing, ‘ATP45 Operators Manual’ is a higher-level document that

describes general approach and procedures of warning and reporting the

incidents, while ‘AEP45 Reference Manual’ gives more detailed guidelines for

calculations and predictions of hazard areas, speed of spread etc.

4.2 Definition of CBRN threats

CBRN threats refer to hazardous incidents caused by chemical substances (C),

biological pathogens (B), radioactive materials (R), nuclear weapons (N) as well

as by the misuse of expertise related to these. No one would argue that in case

of such serious matters it is important to maintain general situational awareness,

detect and prevent intentional and unintentional CBRN incidents. In the case of

occurrence, it is crucial to be prepared and to spread information in a concise,

clear and timely manner. It is important to all the parties who are in charge of

making decisions and implementing risk-reducing measures from higher

authorities to the first responders.

Chemical. A chemical weapon or device is any material or item that projects,

disperses, or disseminates a chemical substance (ATP45 Operators Manual,

2014).

Biological. A biological weapon or device is any item or material, which projects,

disperses, or disseminates a biological agent including arthropod vectors.

Arthropod vectors refer to living organisms that transmit an infectious agents from

15

an infected animal to a human or another animal. Such arthropods are frequently

mosquitoes, ticks, flies, fleas and lice (ATP45 Operators Manual, 2014).

Radiological. A radiological device is designed to employ radioactive material by

disseminating it to cause destruction, damage or injury by means of the radiation

produced by the decay of such material (ATP45 Operators Manual, 2014).

Nuclear. A nuclear weapon is a type of weapon that produces nuclear reaction

and release of energy after prescribed arming, fusing and firing sequence. Thus,

the 2 distinctive features of such weapons are: effect of this kind of weapons is

derived from physical energy and some of it is released in the form of

radioactivity (as compared to chemical and biological weapons, for example).

4.3 CBRN1-6 messages and data flow overview

Purpose of a CBRN Warning and Reporting System is to provide pre-incident and

post-incident information. Pre-incident information may include friendly nuclear

strike warnings (STRIKWARN) about an anticipated strike from allies and

hazardous material release warnings to friendly Forces (HAZWARN). Post-

incident information may include missile intercept reports, operationally pertinent

facts about CBRN incidents and their effects and assessment of the CBRN

situation and hazard areas.

The next part will describe different types of CBRN messages which will be

essentially necessary to understand the working principles of ATP45 software.

As already mentioned before, there are four distinct types of messages

depending on the type of threat – chemical substances (C), biological pathogens

(B), radioactive materials (R), nuclear weapons (N). Each of these types can be

further divided into six levels, level one being the most general information about

the hazardous event and level six – the most detailed description.

CBRN 1 is a report giving basic data about an incident that was obtained by a

human observer. In simple words, CBRN 1 is the most basic level of CBRN

messages, it is some data reported by people in the field about what they saw.

For example, an official observer in duty can report blasts, with approximate

estimation of the distance and direction of the incident. This report provides the

observer’s initial report if the location of the source is known. Processing of

16

CBRN 1 reports results in identification of clusters of messages that belong to the

same incident (clustered by time and location) and generation of CBRN 2

messages from these clusters.

CBRN 2 is a report for passing the evaluated data from collected CBRN 1 reports

(ATP45 Operators Manual, 2014). CBRN 2 messages present a minimal analysis

of data from CBRN 1 messages. For example, data from two CBRN 1 messages

is analyzed to determine a more precise place, time, size and kind of strike and

released substance.

CBRN 3 is again a more detailed report than the previous type. Two or more

CBRN 2 messages are correlated together to form one CBRN 3 message. It

provides data about predicted contamination and hazard areas. Precise

instructions for the calculations of contaminated and hazard areas are given in

the ‘ATP45 Operators Manual’.

CBRN 4 messages are a more sophisticated type of messages. Data for this

report is collected by different sensors and detectors. This report is used for two

cases. Case one, an attack is not observed, and the first indication of CBRN

contamination is by detection. Case two, report measured contamination as a

part of a survey or monitoring team.

CBRN 5 is a report for passing information on areas of actual contamination. This

report can include areas of possible contamination, but only if actual

contamination co-ordinates are included in the report. CBRN 5 messages provide

contour information on air or ground contamination. This information allows

commanders to determine appropriate contamination avoidance measures, such

as protecting troops, or decontamination needs.

CBRN 6 is a report for passing detailed information on CBRN incidents (ATP45

Operators Manual, 2014). It is usually submitted only when requested.

17

To understand the process of generation of CBRN messages, it is also important

to understand the general data flow in a CBRN system – Command Information

Systems (CIS). The processing can be either automated or manual or a mix of

both. At the highest level the data flows into and out of the Automated CBRN CIS

from various sources. First, there are several types of input data:

a. Environment and battlefield data related to specific incidents.

b. Meteorological data on current and forecast conditions

c. Situational information including tactical data and current objectives

d. Specific user inputs and requests

It should be specifically noted that initial CBRN incident data must not be in the

form of CBRN messages as these messages are generated by the Automated

CBRN system. The initial data is usually entered manually in a user interface

which requests particular values for specific phenomena or is sent from devices.

Only after that the ATP45 system generates messages in a standard ATP45

format.

The output data can be in three forms: CBRN warnings, CBRN situational

information or responses to user inputs and requests.

The diagram in Figure 4 illustrates data flow for radiological (RAD) messages 1-6:

18

 Figure 4. Warning and reporting flow chart (radiological incidents)

4.4 CBRN messages and weather reports

Weather conditions are one of the most important factors when building a

prediction model for contaminated and hazard areas and any sort of impact by

CBRN incident. Detailed weather information such as temperature, humidity, wind

speed, wind direction, precipitation, air stability category, sunlight and air

exposure must be obtained to determine the effects of a CBRN hazard on

surrounding environment of the incident and how fast and far it will spread

(ATP45 Operators Manual, 2014).

In CBRN defense it is essential to have up-to-date meteorological data or

weather forecast. This information is essential for calculations of predicted hazard

areas and for protection of anyone downwind. Below are the most common

meteorological terms within ATP-45:

- Temperature. This indicator is important because the rate of evaporation of a

liquid chemical agent or toxic industrial chemical varies with the temperature.

High temperatures increase the speed of evaporation and lower temperatures

19

diminish it. Lower temperatures have the opposite effect. Lower temperatures

may also reduce or even eliminate casualty potential. However, a contact hazard

may remain for several days or weeks. On the other hand, temperature is not

expected to have any significant effect on the hazard area resulting from a

biological, radiological or nuclear release (ATP45 Operators Manual, 2014).

- Air Stability Category. The air stability describes how easily the released agent

can be mixed with the air in the lower atmosphere. There exist three general air

stability categories:

(1) Stable. Under stable conditions there is little blending of air and released

agent and, thus, higher concentrations of the agent can be detected. Also,

the agent cloud will be harmful over long distances.

(2) Neutral. Neutral conditions are the most common type, the define the

intermediate range for mixing.

(3) Unstable. Under unstable conditions there is strong mixing and thus smaller

hazard areas (ATP45 Operators Manual, 2014).

- Wind. The wind speed and direction impact the spread of contamination. High

winds can increase the rate of evaporation of liquid chemical agents and the rate

at which chemical clouds are dissipated.

- Downwind direction is the direction towards which, the airborne cloud travels in

the hazard area.

- Humidity and Precipitation. Humidity and precipitation change the effects of

chemical agents in different ways. High humidity, for instance, increases the

effectiveness of blister agents, but will not directly influence the effectiveness of

nerve agents. Humidity will alter the effects of biological agents in different ways.

Very low humidity decreases the strength by increasing the rate at which agents

dry out from atmospheric exposure. Heavy or continuous rain will wash away

liquid chemical contamination, and light rain after a liquid release can cause the

recurrence of a contact hazard. Rain after a blister or persistent nerve agent

release will temporarily increase the evaporation rate, thus increasing the vapour

20

hazard. Snow reduces the evaporation rate of liquid chemical agents, thus

reducing the vapour hazard in the release area. Heavy or continuous rain will

locally reduce nuclear and biological contamination by washing it out of the air

(ATP45 operators manual, 2014).

- Height. In most cases increase in height above the ground level, decreases the

concentration of the agent and low concentration is reached at approximately 800

metres altitude. Usually areas at altitudes above 3000 metres above ground are

safe.

- Sunlight and Air Exposure. Most biological agents lose their viability or toxicity

with time after exposure to the atmosphere. Most biological agents will have a

greater rate of loss of viability or toxicity when exposed to bright sunlight (ATP45

Operators Manual, 2014).

Impact of Terrain. The path and speed of airborne clouds is significantly

influenced by the terrаin in the downwind area. Contaminant clouds can flow over

rolling terrain, down valleys and around structures such as buildings. Dangerous

concentrations may persist in hollows, depressions and trenches. The

contaminant clouds tend to go over or around obstacles such as hills, but tend to

be retarded by rough ground, tall grass and bushes. Flat terrаin allows for an

even, steady movement. (ATP45 operators manual, 2014)

21

Figure 5. Typical Effects of Terrain and Structures on Wind Patterns

The movements of air are depicted in Figure 5 as lines and hollows, depressions

and trenches are illustrated as semi-circles.

4.5 Structure of a CBRN message

Each CBRN message consists of a heading and a collection of data sets.

Message heading is the same for every kind of CBRN message and includes the

information about location, time and date, type of message and identification

items. As opposed to message heading, which is standard for all messages,

collection of sets depends on the message type. For example, nuclear incidents

of level 4 include a specific set for passing data about detected radiation levels.

4.5.1 Message heading

A standard ATP-45 message consists of a heading and a collection of predefined

sets. For different types (chemical, biological, radiological and nuclear) of

messages, and for different levels of messages (1 – 6) there are different

collections of sets to be used to make reports.

Message heading consists of different SETS, for example ‘EXER’, ‘OPER’, etc.

(Figure 6), which has general identification information about the event.

Figure 6. Messages Heading

22

4.5.2 Message sets – example of CBRN 1,3 AND 4 BIO

Next, CBRN 1 BIO message – observer’s initial report about an incident

converted into ATP-45 message – is described (Figure 7).

Figure 7. CBRN 1 BIO Message

Sets in the main part of the message are called I accordance with NATO phonetic

alphabet – ALFA, BRAVO, etc. This alphabet is a kind of code where 26 letters of

English alphabet are assigned 26 words, so that the names for letters would be

as distinct as possible so as to be easily understood by those who exchanged

voice messages by radio or telephone, regardless of language differences or the

quality of the connection. For instance, set FOXTROT contains data about the

location of an incident in a specific format. Set GENTEXT (which is not a part of

NATO phonetic alphabet) provides other information, which is not specified in

other standard sets.

23

Next is CBRN 3 BIO message – immediate warning of expected contamination of

hazard area (Figure 8). It contains more sets than CBRN 1 BIO (although not of

the are mandatory to fill in) which give more information about expected hazard

areas, for example in sets PAPAA and XRAYB - ‘Predicted Release and Hazard

Area’ and ‘Predicted Contour Information’ correspondingly.

Figure 8. CBRN 3 BIO Message

CBRN 4 BIO message is the type of message which reports reconnaissance,

monitoring and survey results, which in many cases implies reporting of detector

and sensor readings values (Figure 9). So, CBRN 4 BIO report has a set

WHISKEY for reporting sensor information. As there may be several kinds of

sensors for one incident, this field can repeat in one report up to 20 times. But the

sensor data would be rather useless without a corresponding location (set

QUEBEC) and timestamp (set SIERRA). Thus, some sets can form ‘segments’

which can repeat only together.

24

Figure 9. CBRN 4 BIO Message

Each set, in turn, can be divided into field. For example, set YANKEE consists of

two mandatory fields – ‘Downwind direction’ and ‘Downwind speed’ (Figure 10).

Figure 10. Set YANKEE and its fields

Each value in the set has a defined meaning and a particular place, values are

separated by a ‘/’ sign.

25

5 IMPLEMENTATION

This chapter describes a step-by-step process of migration of the existing

software written in Java code using OSGi framework to Spring Boot framework.

Next, a few specifics about exception handling and logging in Spring Boot are

reviewed. Also, the most interesting features of PostgreSQL database connection

are emphasized. Next, the process of dockerization is described. Another

significant part of the thesis implementation is addition of support for CBRN 4

messages. The most crucial features about the added CBRN 4 functionality are

also highlighted.

5.1 Migration to Spring Boot

Apart from configuring dependencies in a .pom file and creating the main method

with appropriate Spring Boot annotation - @SpringBootApplication - the first

steps to build a Java REST app with Spring Boot is to think of the software

structure. There are four layers in Spring boot:

• Presentation layer which consists of the front-end part and handles the

HTTP requests. This request is then authenticated and transferred to the

business layer.

• Business layer which handles the business logic and performs

authentication and validation.

• Persistence layer contains the storage logic that translates the business

object to database rows.

• Database layer performs the CRUD (Create, Retrieve, Update and Delete)

operations

Here is a simplified structure for ATP45 Message endpoint. Same structure is

used for other endpoints, for example, ATP45 hazard areas.

 +- ObSAS

 +- ATP45Application.java

 |

 +- ATPMessage

26

 | +- ATPMessageEntity.java

 | +- ATPMessageRepository.java

 | +- ATPMessageService.java

 | +- ATPMessageController.java

The cornerstone classes of a Spring Boot app are entities (persistence layer),

repository (database layer), controller (presentation layer) and service (business

layer).

ATP45Message Entity is a structure in which the data about the message will be

stored in the database (Figure 11).

Figure 11. Entity class

27

This data structure corresponds to a PostgreSQL database representation

(Figure 12):

 Figure 12. PostgreSQL table

These two things, the Spring Boot class and the database representation are

correlated by persistence, repository layer. Repository is a standard class which

utilizes the Java Persistence API (JPA) - persistence standard of the Java

ecosystem. It allows us to map Java data models directly to the database

structures and then gives the flexibility of manipulating objects in the code (Figure

13).

Figure 13. Repository class

The service layer could be combined with the controller level, because they are

basically two steps of the same process. But it is highly recommended to keep

them as two separate layers for three reasons - it provides separation of concern,

security and loose coupling (Figure 14).

Figure 14. Service class

28

The pattern with service layer and controller layer separated reduces the risk of

exposing database connection to the controller class (Figure 15).

Figure 15. Controller class

5.2 Exception handling

There are several ways to implement exception handling with Spring for a REST

API. But the one used in ATP45 software is global exception handling. It ensures

that all exceptions are handled in a consistent manner and the response returned

is of a specific format.

Before introduction of @ControllerAdvice annotation for global exception

handling, there were other methods. Two of those approaches are

@ExceptionHandler annotation and the HandlerExceptionResolver, but both of

them have some clear downsides.

As for the first method, @ExceptionHandler, it is a controller level method. The

method annotated with @ExceptionHandler is only active for that particular

Controller, not globally for the entire application. And surely adding the piece of

code like the one below to every controller makes it not well suited for a general

exception handling mechanism (Figure 16).

Figure 16. Exception handler

29

Regarding the second method, HandlerExceptionResolver, it sets the status code

of the Response properly and can handle exceptions across all application, but

the limitation is that it doesn't set anything to the body of the Response.

So, the optimum solution is the @ControllerAdvice annotation, which allows to

consolidate multiple scattered @ExceptionHandlers into a single, global error

handling component.

The mechanism of this option is very simple, but flexible. It gives full control over

the body of the response and the status code. It provides mapping of several

exceptions to the same method, to be handled together (Figure 17).

Figure 17. Global exception handler class

In the picture above there is a part of Global exception handler class, which

describes standard methods for handling different types of exceptions. It provides

uniform method for information representation and response to all errors

occurring in the application.

5.3 Logging

Logging is a powerful aid for understanding and debugging program's run-time

behavior. Logs also capture and persist the important data and make it available

for analysis at any point in time.

30

While there is always an option for a default Java.Util.Logging present in any

Java application, there are other logging frameworks. And to discuss other

options, it is important to define some logging-related terms first.

There are three logging components: loggers, appenders, and layouts that need

to be configured. Loggers prepare log statements to be written to console or log

file.Log levels indicate the type of event that the system logs. You can assign the

following levels to Loggers: DEBUG, INFO, WARN, ERROR, and FATAL.

Appenders specify the output definitions for loggers. For example, a rolling

appender writes log statements to a specified file. Once a size limit for the file is

reached, that file is renamed, and a new file is created. Appenders can exist for

consoles or files. Console appender writes log statements to the application

server console. Rolling appender writes log statements to the specified file. Once

the file size limit is reached (5 MB by default), the current file is renamed, and a

new file is created. A layout specifies the output format of the log statement, e.g.,

timestamp and text format, and is always associated with an appender.

In ATP45 Logback logger is used. Configurations for console and file logs are

made in Logback.xml file (Figure 18).

In the file below, there are configurations for both console output and for a special

log file, which means that log records will be done while the program is running in

the console. And a separate file with event records will be kept separately.

31

Figure 18. Logback configuration file

5.4 PostgreSQL connection

The configuration of database connection is rather straightforward. It takes only a

few lines (Figure 19):

Figure 19. PostgreSQL connection configuration file

32

Line one determines the path to the database, and initially the application runs in

the same machine as PostgreSQL, so the path is to localhost via default

database port 5432, which then connects to database called ‘postgres’.

In lines two and three the username and password to this database are stated.

Line four allows SQL queries to be recorded in the standard output of the

development environment or terminal (Figure 20).

Figure 20. PostgreSQL queries in Eclipse IDE

In line five port on which the application is running on the machine is exposed to

the connection to the database.

Configuration in line eight is a bit more complex, here a dialect for the database is

defined. Dialect in Hibernate is a class that bridges java language data types and

database datatypes. Dialect allows Hibernate to be optimized for generation of

SQL queries for a particular relational database type. Hibernate generates

queries for the specific database based on the Dialect class. In this case PostGIS

dialect is indicated. It adds support for the Postgis spatial types, functions and

operators. It is particularly important because ATP45 software needs to keep

records of spatial data – locations of incidents and coordinates to calculate and

draw on the map expected hazard areas.

Finally, Hibernate property defined in line eleven, ‘ddl-auto’ defines the manner in

which tables are created in the database. Here it is set to ‘update’ which is a

convenient option in development stage as, in this case, new columns and

constraints can be added upon re-run of the application but columns or

constraints that existed previously are not removed, even if they are no longer

part of the object model from a prior run. It may be a bit problematic as

constraints that may exist from previous executions are no longer necessary or

33

interfere with the new code. In production stage, on the other hand, it's often

highly recommended you use ‘none’ or not to specify this property.

5.5 Dockerization: ATP45 and Postgis containers, compose file

This section discusses the process of ATP45 application containerization. As

there are two containers for the ATP45 application to run – the ATP45 itself and a

container that runs PostgreSQL database with PostGIS geographical extension –

there are several steps to configure smooth work of combined containers. The

steps are depicted in detail in the next part.

5.5.1 ATP45 Docker container

After all the changes were applied to convert the original application to a Spring

Boot one, it was containerized using Docker for better further transportability.

Dockerization of ATP45 itself is a simple process. Given that Docker is installed

and configured on the machine running the application, there are only few small

steps. Firstly, the application is run as ‘Maven install’ to create a .jar file

Next, it is necessary to add a Dockerfile into the structure of the application in the

development environment and specify some docker build things (Figure 21):

Figure 21. Docker configuration file

The final step in creating an application docker container is to use the command,

which creates a container with the name ‘ATP45’: ‘docker build -t ATP45:latest .’

34

5.5.2 Postgis container, compose file

The ATP45 is not the only component for the system to work. This application,

running in a container, also requires a database to run in a container. Fortunately,

There already exists and official Docker image for a PostgreSQL database, but

as already noted before, one of the important features of ATP45 is storage of

geographic coordinates of incident locations and hazard areas. Thus, a plain

PostgreSQL Docker image does not suffice. However there already is a

PostgreSQL image with PostGIS support - postgis/postgis image, which can be

found in official Docker Hub container image library. The postgis/postgis image

provides tags for running Postgres with PostGIS extensions installed. PostGIS is

a spatial database extender for PostgreSQL object-relational database. It adds

support for geographic objects allowing location queries to be run in SQL.

For example, with this extension, it is possible to use some special queries. Here

is the initial data in hazard_areas table that correspond to one ATP45

message(Figure 22).

Figure 22. Geometry data in PostgreSQL

35

Having PostGIS extension, it is possible to extract coordinates in a JSON format

and use them to draw a hazard area (Figure 23 and 24).

Figure 23. GeoJson query in PostgreSQL

Figure 24. Coordinates from geojson

36

However, to run two containers as a single system, it is necessary to form a set of

instructions. It is done with the use of Docker compose file (Figure 25).

Figure 25. Docker compose file

In lines three and fourteen, two containers, here called ‘services’ are specified -

‘atp45’ and ‘postgis’. The exact names of the containers can be checked either in

Docker Desktop app or using a command ‘docker ls’ in terminal.

In lines six and eighteen there are ports on which the app and the database run.

There is also a dependency, in line eight, of atp45 container on postgis container.

This means that the main application cannot run without a connection to a

database.

It is also interesting to note line twenty-four in PostGIS image configuration. This

line indicates that there is a script that should run upon creation of PostGIS

container.

Figure 26. Folder containing files required for docker compose

37

Both compose file and initialization script should be placed in the same folder

somewhere outside the application (Figure 26). Upon run of docker compose file,

docker_postgres_init.sql script is run. It keeps an instruction to run SQL query

upon creation (Figure 27).

Figure 27. Configuration file for Postgis container

This module implements the hstore data type for storing sets of key/value pairs

within a single PostgreSQL value.

Finally, running a ‘docker compose up’ commands brings the set of instruction

from Docker compose file and initialization script into action (Figure 28).

38

Figure 28. Starting containers with ‘docker compose up’ command

5.6 CBRN 4 feature

As noted before, in Chapter 2, CBRN4 is a type of message which combines and

reports data from detection devices as opposed to CBRN1, CBRN2 or CBRN 3

messages – which report data collected by human observers who notice an

incident, report their observations and add location data, CBRN3 messages also

summarize data about expected hazard areas.

Data flow for a CBRN4 message is more complex. There is usually a collection of

devices - detectors of poisonous gases, radiation detectors, equipment for

biological analysis, which are assembled either in a stationary base or in a

vehicle. Data from the devices is sent by MQTT network protocol over Bluetooth

to be collected in a centralized location. This data needs to be fetched by ATP45

application, processed and stored at its own database.

Regarding the code, CBRN 4 message feature has a standard structure, which

includes:

- controller level that routes requests to the correct endpoint,

39

- service layer that provides the logic and validity checks for fetching and

combining the data,

- persistence layer (data representation as an entity and storage at the

repository)

However, there are a few interesting features in the implementation of the logic

for CBRN4. For example, initially location data is stored in form of latitude and

longitude in decimal degrees, while for the purpose of ATP45, the location must

be expressed in a special coordinate system – Military Grid Reference System

(MGRS). Conversions from latitude and longitude are performed using NASA

World Wind package (Figure 29).

Figure 29. Coordinate conversion feature

6 CONCLUSION AND DISCUSSION

This thesis work deals with the topic implementation of NATO ATP45 standard in

software. Such kind of work requires, first, a great deal of investigation of the

ATP45 specifications to complete the tasks accurately. Secondly, it requires good

understanding of modern architecture of REST API Spring Boot applications and

their connections to relational databases. The work itself also included several

steps, some of which were not related to each other, but all served to improve the

functionality of the broad ATP45 system application.

The major strength of this thesis work is that it allowed me to use a real-world

case and to co-operate with employees of Observis Oy. Thus, I acquired not only

computer programming skills and enhance my approach towards solving coding

tasks, but also took part in the day-to-day life of a software development

company developing real-world working skills.

40

This is also worth mentioning that introduction of Spring Boot brought the existing

in the company ATP45 software on a new level of simplicity and applicability as a

REST API microservice. Also, a feature of CBRN4 message reporting was added

to increase the value of the application for future users.

However, there is still room for improvement of this piece of software – external

weather reporting data can be considered when forming CBRN messages and

reports. There is also possibility of further development of user interface

interactions with the ATP45 system.

7 REFERENCES

Bos, S. 2020. Java Basics: What is Spring Boot? Web page. August 5, 2020.
Available at https://www.jrebel.com/blog/what-is-spring-boot [Accessed 12 July
2022].

Council Directive 98/83/EC 3 November 1998. The quality of water intended for
human consumption. WWW document. Available at: http://eur-
lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=EN
[Accessed 5 February 2017].

EnterpriseDB. 2020. Generating and Managing PostgreSQL Database Migrations
(Upgrades) with Spring Boot JPA. Web page. July 20, 2020. Available at:
https://www.enterprisedb.com/blog/generating-and-managing-postgresql-
database-migrationsupgrades-spring-boot-jpa [Accessed 13 September 2022].

Fielding, R. 2000. Architectural Styles and the Design of Network-based Software
Architectures. Dissertation. 2000.

Fishman, R. 2005. The rise and fall of suburbia. Ebook. Chester: Castle Press.
Available at: http://libweb.anglia.ac.uk [Accessed 12 May 2010].

Hall, R.S., Pauls, K., Mcculloch, S., Savage, D. OSGi in Action: Creating Modular
Applications in Java, Manning Publications (2010).

Hasselbach, S. 2020. Migrating OSGi Plugins to standalone applications. Web
page. January 13, 2020. Available at http://hasselba.ch/blog/?p=2865 [Accessed
1 June 2022].

Haroon, M. 2020. RESTful CRUD API using PostgreSQL and Spring Boot – Part
2. Web page. June 16, 2020. Available at

https://www.jrebel.com/blog/what-is-spring-boot
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=EN
https://www.enterprisedb.com/blog/generating-and-managing-postgresql-database-migrationsupgrades-spring-boot-jpa
https://www.enterprisedb.com/blog/generating-and-managing-postgresql-database-migrationsupgrades-spring-boot-jpa
http://libweb.anglia.ac.uk/
http://hasselba.ch/blog/?p=2865

41

https://www.2ndquadrant.com/en/blog/restful-crud-api-using-postgresql-and-
spring-boot-part-2/ [Accessed 09 August 2022].

IBM. 2020. Java Spring Boot Learn how Java Spring Boot simplifies development
of web applications and microservices with Java Spring Framework. Web page.
March 25, 2020. Available at https://www.ibm.com/cloud/learn/java-spring-boot
[Accessed 1 June 2022].

Jensen, K. L., Toftum, J. & Friis-Hansen, P. 2009. A Bayesian network approach
to the evaluation of building design and its consequences for employee
performance and operational costs. Building and Environment 44, 456–462.

Kappagantula, S. 2021. Docker Explained – An Introductory Guide To Docker.
Web page. December 15, 2021. Available at:
https://www.edureka.co/blog/docker-explained/ [Accessed 19 August 2022].

Naeem, T. 2020. REST API Definition: Understanding the Basics of REST APIs.
Web page. January 28, 2020. Available at https://www.astera.com/type/blog/rest-
api-definition/ [Accessed 12 July 2022].

NATO publications. 2014. Project on Minimum Standards and Non-Binding
Guidelines for First Responders Regarding Planning, Training, Procedure and
Equipment for Chemical, Biological, Radiological and Nuclear (CBRN) Incidents
GUIDELINES FOR FIRST RESPONDERS TO A CBRN INCIDENT. Online
document. August 1, 2014. Available at
https://www.nato.int/nato_static_fl2014/assets/pdf/pdf_2016_08/20160802_14080
1-cep-first-responders-CBR.pdf [Accessed 23 July 2022].

NATO standardization agency (NSA). 2014. ATP-45 warning and reporting and

hazard prediction of chemical, biological, radiological and nuclear incidents

(operators manual) (edition E version 1). Document. January 2014

NATO standardization agency (NSA). 2018. AEP-45 warning and reporting and

hazard prediction of chemical, biological, radiological and nuclear incidents

(reference manual). Document. August 2018.

Nguyen, T. 2021 Spring Boot, Hibernate, MySQL example: CRUD app. Web
page. May 13, 2021. Available at: https://dev.to/tienbku/spring-boot-hibernate-
mysql-example-crud-app-4mhb [Accessed 13 September 2022].

Oracle. n.d. What is a Relational Database (RDBMS)? Web page. Available at:
https://www.oracle.com/database/what-is-a-relational-database/ [Accessed 09
August 2022].

Pandit, S. 2021. What is Docker Container? – Containerize Your Application
Using Docker. Web page. December 15,2021. Available at:
https://www.edureka.co/blog/docker-container/ [Accessed 19 August 2022].

https://www.2ndquadrant.com/en/blog/restful-crud-api-using-postgresql-and-spring-boot-part-2/
https://www.2ndquadrant.com/en/blog/restful-crud-api-using-postgresql-and-spring-boot-part-2/
https://www.ibm.com/cloud/learn/java-spring-boot
https://www.edureka.co/blog/author/sahiti-kappagantulaedureka-co/
https://www.edureka.co/blog/docker-explained/
https://www.astera.com/type/blog/rest-api-definition/
https://www.astera.com/type/blog/rest-api-definition/
https://www.nato.int/nato_static_fl2014/assets/pdf/pdf_2016_08/20160802_140801-cep-first-responders-CBR.pdf
https://www.nato.int/nato_static_fl2014/assets/pdf/pdf_2016_08/20160802_140801-cep-first-responders-CBR.pdf
https://dev.to/tienbku/spring-boot-hibernate-mysql-example-crud-app-4mhb
https://dev.to/tienbku/spring-boot-hibernate-mysql-example-crud-app-4mhb
https://www.oracle.com/database/what-is-a-relational-database/
https://www.edureka.co/blog/docker-container/

42

Peräjärvi, K. 2022. Finnish nuclear security detection architecture for nuclear and
other radioactive material out of regulatory control. Online document. May, 2022.
Available at https://www.julkari.fi/bitstream/handle/10024/144407/STUK-
A_267_Finnish_nuclear_security_detection_architecture_for_nuclear_and_other_
radioactive_material_out_of_regulatory_control.pdf?sequence=2&isAllowed=y
[Accessed 09 August 2022].

Redhat. 2020. What is a REST API? Web page. May 8, 2020. Available at
https://www.redhat.com/en/topics/api/what-is-a-rest-api [Accessed 23 July 2022].
Angel, S. 2021. REST API Best Practices and Standards in 2022. Web page.
November 1, 2021. Available at https://hevodata.com/learn/rest-api-best-
practices/ [Accessed 23 July 2022].

Sirgur, B. 2021. Spring Boot, Hibernate, JPA and H2 Database CRUD REST API
Example. Web page. February 05, 2021. Available at
https://javatechonline.com/spring-boot-bean-annotations-with-examples/
[Accessed 1 June 2022].

8 ABBREVIATIONS

API – Application Programming Interface

CBRN – Chemical, Biological, Radiological and Nuclear

CIS – Command Information Systems

JPA – Java Persistence API

JSON – JavaScript Object Notation

MGRS – Military Grid Reference System

MQTT – MQ Telemetry Transport (protocol)

MVC – Model View Controller

NATO – North Atlantic Treaty Organization

ObSAS – Observis situational awareness system

https://www.julkari.fi/bitstream/handle/10024/144407/STUK-A_267_Finnish_nuclear_security_detection_architecture_for_nuclear_and_other_radioactive_material_out_of_regulatory_control.pdf?sequence=2&isAllowed=y
https://www.julkari.fi/bitstream/handle/10024/144407/STUK-A_267_Finnish_nuclear_security_detection_architecture_for_nuclear_and_other_radioactive_material_out_of_regulatory_control.pdf?sequence=2&isAllowed=y
https://www.julkari.fi/bitstream/handle/10024/144407/STUK-A_267_Finnish_nuclear_security_detection_architecture_for_nuclear_and_other_radioactive_material_out_of_regulatory_control.pdf?sequence=2&isAllowed=y
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://hevodata.com/learn/rest-api-best-practices/
https://hevodata.com/learn/rest-api-best-practices/
https://javatechonline.com/spring-boot-bean-annotations-with-examples/

43

ORM – Object-Relation Mapping

RDBMSs – Relational Database Management Systems

REST – Representational State Transfer

SAS – Situational Awareness System

SOAP – Simple object access protocol

XML – Extensible Markup Language

	1 INTRODUCTION
	2 DEVELOPMENT CONTEXT
	3 OVERVIEW OF JAVA AND SPRING BOOT REST API APPLICATIONS
	3.1 Java and Spring boot
	3.2 REST API
	3.3 PostgreSQL databases, Spring JPA and Hibernate
	3.4 Docker

	4 OVERVIEW OF ATP45 NATO STANDARD
	4.1 ATP45 standard and documentation: ATP45 and AEP45
	4.2 Definition of CBRN threats
	4.3 CBRN1-6 messages and data flow overview
	4.4 CBRN messages and weather reports
	4.5 Structure of a CBRN message
	4.5.1 Message heading
	4.5.2 Message sets – example of CBRN 1,3 AND 4 BIO

	5 IMPLEMENTATION
	5.1 Migration to Spring Boot
	5.2 Exception handling
	5.3 Logging
	5.4 PostgreSQL connection
	5.5 Dockerization: ATP45 and Postgis containers, compose file
	5.5.1 ATP45 Docker container
	5.5.2 Postgis container, compose file

	5.6 CBRN 4 feature

	6 CONCLUSION AND DISCUSSION
	7 REFERENCES
	8 ABBREVIATIONS

