

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

4 September 2022

Sravanthi Gelley

Migrate Cloud Foundry Application to
Kubernetes

Author
Title

Number of Pages
Date

Sravanthi Gelley
Migrating a cloud foundry application to Kubernetes

41 pages
4 September 2022

Degree Master of Engineering

Degree Programme Information Technology

Instructor(s)

Ville Jääskeläinen, Principal Lecturer

The case company has an insurance-related application. The application was run-
ning in a Pivotal cloud foundry environment. Due to high licensing costs, the man-
agement decided to migrate to the Kubernetes environment. The thesis is related to
migrating the insurance application from Pivotal Cloud Foundry to Kubernetes. The
thesis describes the various steps taken as part of the migration from the application
developer’s perspective.

The thesis objective is to document all the steps the developer did for the migration.
The thesis is divided into multiple sections that describe application’s state before
migration, a literature overview of the different software needed for migration, the
implementation of the migration steps, and the results after the migration.

The main challenge during the migration was that no one in the development team
had any previous technical expertise related to the Kubernetes environment. So, a
considerable learning path was needed along the migration.

The steps needed in the migration are described. The application migration was
completed successfully in the development environment first and then in quality, cus-
tomer test, and finally in the production environment.

Keywords Docker, Kubernetes, Jenkins, Vault, Continuous Integra-
tion, Helm, Pivotal Cloud Foundry

Contents

List of Figures

List of Abbreviations

1 Introduction 1

2 Project Specifications 3

3 Containerization and Kubernetes Concepts 5

3.1 Virtualization 5

3.2 Containerization 6

3.3 Kubernetes 8

3.3.1 Architecture 8

3.3.2 Pod Creation 9

3.3.3 Deployment 11

3.3.4 Labels and Annotations 13

3.3.5 Services 14

3.3.6 Ingress 16

3.3.7 Config Maps and Secrets 16

3.4 Continuous Integration 18

4 Migration Implementation 20

4.1 Pod Structure 20

4.2 Dockerfile 20

4.3 Deployment Files 22

4.3.1 Service 22

4.3.2 Deployment 23

4.3.3 Ingress 26

4.4 Migrate Secrets to Vault 26

4.5 Jenkins Pipelines 28

4.5.1 Jenkins Build Application Image Pipeline 28

4.5.2 Jenkins Deploy Application Pipeline 32

4.6 Results 33

4.7 Logging 34

4.8 Future Development 36

5 Conclusion 38

6 References 40

List of Figures

Figure 1: A basic virtual machine monitor (VMM) 6

Figure 2: Containerized applications 6

Figure 3: Docker architecture 7

Figure 4: Components of Kubernetes cluster 9

Figure 5: Running the container inside Kubernetes 10

Figure 6: Replica set created by deployment to manage pods 12

Figure 7: Exposing a service to external clients 14

Figure 8: Expose multiple services through single ingress 16

Figure 9: Continuity in Software Development Lifecycle 19

Figure 10: Frontend and backend pods 20

Figure 11: Parameters in a Jenkins pipeline 30

Figure 12: Graylog showing the message count 34

Figure 13: Graylog showing the system overview 35

Figure 14: WaveFront dashboard 35

Figure 15: WaveFront applications menu 36

List of Abbreviations

VMM Virtual Machine Monitor or a hypervisor

OS Operating System

PCF Pivotal Cloud Foundry

K8s Kubernetes

CLI Command-Line Interpreter

PaaS Platform as a Service

TAS Tanzu Application Service

1 (41)

1 Introduction

The case company has an insurance-related application deployed in the Pivotal

cloud foundry environment. Pivotal Cloud Foundry (PCF) is a platform as a ser-

vice (PaaS) environment used to build, deploy, run, and scale the applications

and services on the cloud [1]. PCF is an enterprise version of the open-source

cloud foundry developed and supported by the cloud foundry foundation mem-

bers Pivotal, Dell EMC, IBM, VMWare, and many others. Pivotal cloud foundry is

now called the Tanzu Application Service [13] after it is acquired by VMWare.

To increase the deployment flexibility and to decrease licensing costs, the case

company decided to migrate the application from the cloud foundry to the Tanzu

Kubernetes application platform from VMWare. Kubernetes is an open-source

cloud platform that is originated from Google’s Project Borg. It is sponsored by

the Cloud Native Computing Foundation members AWS, Azure, Intel, IBM,

RedHat, Pivotal, and many others. Kubernetes is a container runtime used to

manage the lifecycle of applications across environments [2].

Cloud Foundry offers a higher-level abstraction for deploying applications so that

developers can mainly concentrate on application development and deployment.

In contrast, Kubernetes, on the other hand, offers developers a resilient distrib-

uted framework that automatically scales clusters and applications and takes

care of failovers. Kubernetes makes a good option for developers who require

the flexibility of deploying applications on cloud infrastructures [3].

With the increased flexibility in Kubernetes comes more responsibility on devel-

opers since they need to write and maintain the configuration required for the

deployment and scalability. The deployment descriptors used for Kubernetes

have multiple parameters to configure the environment. Understanding manifests

and the architecture for a beginner needs a great learning curve. This thesis briefs

about the migration journey of the application from PCF to Kubernetes. The scope

2 (41)

of the content is mainly on the things a developer needs to know and do in a

Kubernetes environment.

This thesis is divided into six sections. The first section introduces the problem

statement and the objective of the thesis. The second section gives a brief de-

scription of the application specification. The third section explains the tools and

software used for migration, like docker, Kubernetes, vault, and Jenkins. The

fourth section explains the implementation details of the migration. The fifth sec-

tion concerns how to improve the deployment manifests in the future develop-

ment. The last section is about the conclusion on how the migration went in dif-

ferent environments.

3 (41)

2 Project Specifications

The case company has an insurance related application. The application has two

projects. The backend is a spring boot project. The backend uses a MySQL da-

tabase. The frontend is a standalone react application that makes API calls to the

backend. The backend is integrated into some other applications also. Both these

projects were running in a cloud foundry environment. In cloud foundry, the cf tool

is used as a CLI to interact with the server. Cloud foundry application will have a

manifest file that contains metadata about the application. Below is a sample

manifest of how it looks like:

- domain: app.net
 path: ./app/
 name: app
 space: app-prod
 organization: org1
 buildpack: java-buildpack-openjdk-v4-49-1
 memory: '1024M'

To deploy an application to cloud foundry, cf push command is used. In PCF,

developers do not need to provide any descriptor about the dependencies re-

quired for the application to run in the cloud environment. For example, a java

application needs java run time to run the application. Cloud Foundry automati-

cally identifies all the necessary runtime tools needed for the application and

packages the application uses to build packs. Build packs are a set of tools

needed for the application to run. When running cf push command, cloud foundry

identifies the necessary build packs for the application and downloads them au-

tomatically. Then the application is packaged and deployed in the cloud. When

migrating to Kubernetes, it is the developer's responsibility to provide the de-

scriptor needed to package the application in the docker file. The details about

the docker file will be explained in the coming chapters.

In cloud foundry, it is a single command cf push that takes care of packaging and

deploying. Whereas in Kubernetes, multiple descriptors are needed to be

4 (41)

provided by the developer. One descriptor is needed to specify the details on how

to package the application, one descriptor to provide the package that needs to

be deployed, and one descriptor about how to expose the application to the outer

world.

One more issue with the application is the configuration required for the applica-

tion, such as the database to be used and the external application URLs used

are all part of the application. This way, the exact copy of the package is not used

when deploying to different environments. When migrating to Kubernetes, the

application configuration must be moved out of the code using the configs and

vaults described in later sections.

To provide continuous integration and deployment, Jenkins is used. All the jobs

created in Jenkins are freestyle jobs. The entire configuration is a setup in Jenkins

itself. Even the Jenkins used for the application must be migrated during applica-

tion migration to run on the Kubernetes environment. The admin must manually

create all the configurations for the jobs in the new environment. To avoid the

manual creation of configurations in the freestyle Jenkins jobs, they are converted

into pipeline jobs where the configuration for the jobs is mentioned in the de-

scriptor files. This way, it is effortless when migrating the jobs.

5 (41)

3 Containerization and Kubernetes Concepts

This section introduces the various concepts used in the migration process. First,

it explains how the journey of virtualization happened from virtual machines to the

latest Kubernetes and then briefly introduces different Kubernetes concepts and

Jenkins.

3.1 Virtualization

Virtualization is the concept of abstraction of a physical machine into multiple

virtual machines (VMs). Before virtualization, it was the era of mostly running sin-

gle applications on one server due to incompatibility problems faced by running

different applications with the operating system. With the decrease in hardware

costs and advancements in memory and storage capacity over time, resources

were not utilized entirely by running a single application. Virtual machines help

reduce the budget on hardware, increase CPU and memory utilization, and re-

duce the physical maintenance of the machines.

To achieve virtualization, software called a virtual machine monitor (VMM), or a

hypervisor is used. Gerald J. Popek and Robert P. Goldberg wrote the framework

that implements virtualization. According to Popek and Goldberg, a hypervisor is

supposed to have three properties, such as fidelity which means the environment

created for VM by VMM must be identical to the physical machine. The second

property is isolation or safety. That is, the VMM should be able to completely

control the machine's resources to share as needed with the VMs. The third prop-

erty is that the performance of the VMM should be almost the same as the actual

machine. The other uses of VMs are to provide high availability in case one server

is down, another VM can be created quickly, and high security since one appli-

cation cannot easily access another. In the below picture, each virtual machine

6 (41)

has its copy of the operating system, which makes the VM heavyweight.

Figure 1: A basic virtual machine monitor (VMM) [8]

3.2 Containerization

As mentioned earlier, virtual machines solved the problem of running multiple

applications on a machine without incompatibilities. However, there are still some

problems with VMs. Since each VM is packed with its copy of the operating sys-

tem, they are heavy and consume lots of resources. Each OS copy has its licens-

ing costs. Also, migrating VMs across hypervisors is slow. Containers solve these

problems.

Containers are lightweight compared to VMs as they do not need their copy of

the operating system. Containers running on a machine share host OS. Sharing

reduced the OS licensing costs. Portability also makes it easy to move containers

across machines. Since they are lightweight, it would take just a few seconds to

start a container, whereas VMs might take a few minutes to start.

 Figure 2: Containerized applications [9]

7 (41)

Docker software is used for building containers. Docker software is developed by

Docker Inc. company [14]. With the help of docker, the container can be built and

run on a machine. Docker Inc provides software called Docker Desktop for both

Windows and Mac. It can be installed to set up a docker environment locally on

a laptop for building or running containerized applications.

When docker software is installed on a laptop, it mainly contains two components,

a docker client and a docker engine. When docker commands are executed, the

docker client connects to the docker engine. The docker engine would take care

of building and running the container.

Docker images can have multiple layers. Multiple images can share these layers.

This way, the storage, and speed improve while pulling images. When docker

tries to modify a layer, it creates a new copy of the layer and writes on the new

copy. This way, the other containers sharing the layers are not affected.

Figure 3: Docker architecture [10]

The runc is responsible for creating the containers. The containerd is responsible

for managing the containers like starting, stopping, pausing, etc. To create a con-

tainer, docker needs a template called docker image. A Docker image is a pack-

age of an application and all its dependencies, such as libraries and configura-

tions. The instructions to create an image are provided to docker in the form of a

docker file. Other images can be added as needed dependencies in the docker

file when creating an image. The containerd component's responsibility is to pull

or download the dependent images from docker image repositories called docker

8 (41)

registries and create a new image for the application. Once the image is ready, it

can be pushed to a docker registry so that the image can be downloaded onto

any computer and can be run. This makes it easy to run the exact copy of code

across all the environments from development to production.

The Docker image name will have a repository name and its tag. A tag is used to

specify the version of the image. If there is no tag mentioned, it defaults to the

latest image, which is an image tagged with the name 'latest'.

3.3 Kubernetes

So far, docker has been used to create docker images and containers. If the

number of containers increases, it is difficult to manage them individually. Kuber-

netes comes as a rescue that provides a platform to run these containers. Kuber-

netes [15], also known as k8s, is a platform developed by Google to orchestrate

or manage containerized applications. Kubernetes can be deployed on a VM or

a physical machine. Some advantages of Kubernetes are that a developer or a

system admin does not need to choose where to run the application. Kubernetes

chooses the required resources and utilizes them at their best. Rollback to the

previous state is easy if there are any issues during deployment. Kubernetes pro-

vides services such as auto scaling the pods based on the workload, replacing

them if they go down, and monitoring them.

All the necessary descriptions to tell Kubernetes that an application has to be

deployed will be provided in the configuration files in JSON or YAML structure

format. These descriptions can be stored in the version control. This file includes

different properties such as which image is to be deployed, how many instances

to run, on which port the application is to be exposed etc.

3.3.1 Architecture

Coming to the Kubernetes architecture, the Kubernetes cluster is a set of hosts

called nodes. These nodes are divided into master and worker nodes. Each node

9 (41)

contains multiple pods. A pod is like a basic block in Kubernetes. Each pod has

multiple or single containers running on them. Each pod has its IP address. Mul-

tiple Containers in a pod do not span on multiple nodes.

Figure 4: Components of Kubernetes cluster [11]

The master node has different components such as API Server, scheduler, etcd,

and controller manager. All interactions with the Kubernetes cluster take place

through an API server that exposes the rest APIs. Kubernetes provides a CLI

called kubectl to interact with the API server. A scheduler is used to schedule

pods in the worker nodes. The etcd is like a distributed storage space that stores

all the configurations, secrets, etc. API server stores data in etcd. The controller

manager monitors the health of worker nodes. If any worker nodes go down, the

controller manager restarts them based on metadata configuration stored in etcd.

Each node has components called kubelet and Kubernetes proxy. Kubernetes

proxy acts as an abstract layer to communicate with the containers. Kubelet acts

as a representative of the node and manages the pods running in the nodes.

3.3.2 Pod Creation

A pod can be created by using the kubectl run command or by using the yaml

descriptor as shown below.

kubectl run kubia –image=luska/kubia –port=8080

The basic yaml descriptor used for creating a pod is shown below.

apiVersion: v1
kind: Pod

10 (41)

metadata:
 name: myapp
 namespace: default
 labels:
 app.kubernetes.io/name: myapp
 app.kubernetes.io/instance: myapp-1
 app.kubernetes.io/version: "1.0.0"
 spec:
 containers:
 - image: app:latest
 name: myapp
 ports:
 - containerPort: 8080
 protocol: TCP

The apiVersion parameter is used to provide the Kubernetes API version.

Metadata includes the pod details such as name, namespace, and additional tag

names called labels. Spec contains the details about the container running in the

pod. The container is created with the image specified in the image parameter.

The port parameter specifies which port container is running. Kubectl apply -f

descriptor.yaml is the command used to create the pod. Once the pod is created,

pods can be listed with the kubectl get pods

command.

Figure 5: Running the container inside Kubernetes [11]

By running the kubectl command or kubectl apply command, the request is sent

to the API server. There are different resources listening to the requests received

11 (41)

by the API server, such as the deployment controller, scheduler, and replication

controller. Since the yaml corresponds to the pod creation request, the scheduler

reacts to this. The scheduler creates a new pod and assigns the created pod to

one of the worker nodes. The Kubelet identifies that a pod is scheduled and asks

the docker to pull the image from the registry if the image is not available already.

After the image is downloaded, docker starts the container.

3.3.3 Deployment

One of the main advantages of Kubernetes is to make sure the deployment of

the application is up and restarted automatically in case of any failures. This is

achieved by creating a deployment resource instead of creating the pods directly.

This is done by submitting a deployment request to the API server. It is similar to

the above pod descriptor, but the kind changes to ‘Deployment’ is shown below.

apiVersion: v1
kind: Deployment
metadata:
 name: myapp
 namespace: default
 labels:
 app.kubernetes.io/name: myapp
 app.kubernetes.io/instance: myapp-1
 app.kubernetes.io/version: "1.0.0"
 spec:
 replicas: 2
 strategy:
 type: RollingUpdate
 selector:
 matchLabels:
 app: app1
 containers:
 - image: app:latest
 name: myapp
 ports:
 - containerPort: 8080
 protocol: TCP
 readinessProbe:
 periodSeconds: 2
 exec:
 command:
 - ls
 - /var/ready

12 (41)

Here in the deployment, replicas indicate how many pods are to be created.

When a deployment request is sent, the deployment controller creates a replica

set. The replication controller will check the number of replicas needed and cre-

ates those needed pod replicas.

Figure 6: Replica set created by deployment to manage pods [11]

The replication controller always makes sure that the same number of pods are

running as mentioned in the descriptor using the replica set. If any nodes fail, a

new node automatically takes over the failed node. Kubernetes can monitor and

automatically scale the number of nodes based on usage. It also helps the app

to discover other required services so that a developer does not need to imple-

ment methods to choose the master that delegates the requests to other services.

After the application is running in Kubernetes, and in case a new version is to be

deployed again, specific strategies for deploying the new version. It is specified

in the strategy parameter in the descriptor. RollingUpdate is the default strategy.

After receiving a new deployment request, one of the old pods is removed, and a

new pod is created with a new version of the app. This way, deployment is done

step by step so that there will not be any downtime. Another strategy is Recreate,

where first all the old pods are removed, and then new pods are created. Here

there will be some downtime for the application.

Sometimes, as soon as the pod is created, it may not be ready to accept the

requests from the client. There might be some configuration to be loaded. The

readiness probe parameter specified under the container is used to tell whether

the pod is ready or not. A readiness probe can be a get URL or a process that

notifies that the pod is ready or not to take the requests. The PeriodSeconds

13 (41)

parameter above specifies the delay between calling the readiness URL again.

Until the pod is ready, it will not receive any requests. This helps to make sure

that client is always connected to a healthy pod [7].

3.3.4 Labels and Annotations

When there are hundreds of pods, it would be difficult to quickly identify which

pod belongs to which application. Labels can fix this. In the above yaml de-

scriptor, labels are used to group pods in an abstract way so that it is easy to

identify what the pod is related to. A label is like a key-value pair. A pod can have

multiple labels. Pods can be filtered by using the labels in different ways, such

as listing pods that match or doesn’t match a certain label key. The label can be

added or updated after the creation of a pod also. Labels can also be used to tell

Kubernetes that certain pods are to be created on certain nodes. For example,

the below descriptor tells that the pod must be created on nodes that have the

label gpu with value true.

spec:
 nodeSelector:
 gpu: "true"

Like labels, annotations can also provide additional information about the pods,

like created by whom, about the version, etc. However, they cannot be used to

filter the pods. Usually, the label has a small value, whereas annotation can con-

tain more information.

Another type of grouping is by using a namespace. A namespace is used to pre-

vent the overlapping of different groups of pods. Resource names inside a

namespace should be unique, and the same name can be used in a different

namespace. Kubernetes has a default namespace. All pods will be created under

the default namespace if no namespace is provided. These namespaces organ-

ize pods of different applications within the same cluster.

apiVersion: v1
kind: Namespace
metadata:
name: app1-namespace

14 (41)

The above descriptor can be used to create a namespace with the command

kubectl create -f namespace.yaml. A namespace can be used to filter the pods.

Pods can be deleted using labels or namespaces. When a pod is deleted, the

container inside it will be stopped. To delete a pod, its replica set object should

also be deleted. Otherwise, as soon as the pod is deleted, the replica set thinks

that the number of pods does not match the descriptor and immediately creates

a new pod.

Pod labels are used by the replica set to make sure the same number of pods

exist, as mentioned in the description. So, when a label is renamed, the pod goes

out of scope from the replica set. Since the replica count is mismatched, the rep-

lica set creates a new pod.

3.3.5 Services

Now the application is running in a container inside a pod in a worker node. The

next step is accessing the application. As said before, each pod has an IP ad-

dress. If the pod is accessed with this address, in case the pod is recreated or

moved, the new pod gets a new address. So, another abstraction layer, Service,

is created to make the access. Service will have a fixed IP address as long as it

exits. All the pods related to a service can be accessed with the same address.

Service determines the pod to send a request

based on the pod selector.

Figure 7: Exposing a service to external clients [11]

15 (41)

The below descriptor shows how to create a service that exposes the applica-

tion outside the cluster using NodePort type.

 apiVersion: v1
kind: Service
metadata:
 name: app1
 spec:
 type: NodePort
 sessionAffinity: ClientIP
 ports:
 - name: http
 port: 80
 targetPort: 8080
 nodePort: 30123
 - name: https
 port: 443
 targetPort: 8443
 nodePort: 30124
 selector:
 app: app1

Service randomly selects one of its pods and sends the client request. To always

forward the request to the same pod from the same client, the sessionAffinity

parameter as ClientIP is used. By default, its value is none. Each service can be

exposed on multiple ports.

There are three kinds of services. The first one is ClusterIP which is the default

service type. This type is not accessible from outside the cluster. ClusterIP ser-

vice is more suitable when an external client does not access the service and is

just used internally by other pods. The second one is NodePort. This service type

is used to expose nodes to the external world through one of the ports in the

range 30000-32768. With the above descriptor, Kubernetes would reserve ports

30123 and 30124 on all the nodes. It makes the service be accessed from outside

the cluster. NodePort type requires the port to be opened in the firewall rules.

The third one is the Load Balancer type. A Load balancer is created externally,

which connects to the pods and redirects the traffic. The load balancer’s IP

16 (41)

address is used to access the application. If there are multiple load balancer ser-

vices, each service will have a separate IP address.

A pod can find the IP address of the service by using the environment variables

which are prefixed by service name with names SERVICE_NAME_SER-

VICE_HOST and SERVICE_NAME_SERVICE_PORT. Another way is by using

the internal DNS lookup. The DNS name will be in the format of service-

name.namespace.svc.cluster.local, where svc.cluster.local is a cluster suffix.

3.3.6 Ingress

Ingress is a way to access the service outside the cluster. As seen above with

Nodeport, the firewall is to be updated. With the load balancer, each service re-

quires a separate IP address. Whereas with ingress, a single IP address is

enough to access any service. The service to which the request is to be forwarded

is determined by the service name present in the request URL.

Figure 8: Expose multiple services through single ingress [11]

To use ingress, Kubernetes should have an ingress controller. For example,

Nginx server can be deployed to provide this functionality.

3.3.7 Config Maps and Secrets

Usually, all the configuration related data will be stored in a file in the form of key

value properties, and it will be packaged into the application code. So, when an

image is created, all this data goes into the image, and whoever downloads the

image can see the configuration data. Also, if some of the configurations need to

be modified, then the whole image must be recreated. This is not a good idea.

17 (41)

So, this configuration should be stored outside the image and needs to be sup-

plied to the container as arguments. One option to pass the configuration is

through environment variables in the pod descriptor to the container.

kind: Pod
spec:
containers:
 - image: app1:latest
 env:
 - name: database_name
 value: "mydb"

However, the problem with this is that separate pod descriptors must be created

for each environment in case different values are to be passed in the environment

variables. To solve this problem, ConfigMap is used. A config map is a list of key-

value pairs, and the config map name can be set in the pod descriptor. Different

environments can have different config maps with same name. To create config

map, the below command is used.

kubectl create -f configmap.yaml

To set the created config map in the pod,

apiVersion: v1
kind: Pod
metadata:
 name: app1
spec:
 containers:
 - image: app1:latest
env:
- name: db_name
 valueFrom:
 configMapKeyRef:
 name: db-config
 key: db_name

The config map db-config has a property with the name db_name. This property

is passed to the container. The data in the config map is stored as plain text. So,

it should not include any sensitive information.

There is another Kubernetes object called Secret to store sensitive information.

It is a key value pair with value encrypted. This secret file can be passed as a

parameter in the container section of the pod descriptor, like a config map.

18 (41)

env:
- name: db_password
 valueFrom:
 secretKeyRef:
 name: appsecret
 key: db_password

appsecret is the secret created using the command kubectl create -f appse-

cret.yaml. This secret is passed to the container.

3.4 Continuous Integration

Continuous Integration helps to ensure the code builds correctly without any test

failures. When multiple developers work on the same application by creating fea-

ture branches, it would be good to know if there are any build failures or test

failures whenever the developer pushes the code to the code repository like GIT

or BitBucket. Jenkins is one such tool for the build management system. Jenkins

is an open-source java application. It can be customized with 1000’s of plugin

tools that can be integrated easily with many of the development related software

like GIT, docker, Kubernetes, etc.

In a development life cycle, a developer creates a feature branch first from the

main branch when making changes to the application code so that the code is

not broken. When Jenkins is integrated with the code repository, it builds the

code whenever there is a new feature branch or new merge request, runs the unit

and integration tests and runs other validations such as code style, PMD and

SonarQube. Build fails if any of these validations fail. This continuous process

that enables multiple developers to work in parallel that ensures there are no build

failures is called continuous integration. This helps to maintain software quality.

Once the feature branch is tested, the branch is merged with the main branch.

When new changes are added to the main branch, a Jenkins job is triggered,

which creates a docker image and pushes it to the docker registry. This is called

continuous delivery. With this, the code is already ready to be deployed to a pro-

duction environment.

19 (41)

If Jenkins is integrated with Kubernetes, whenever a docker image is ready with

new changes, a Jenkins job can deploy the new image to Kubernetes develop-

ment environment. This is called continuous deployment. With this, any deploy-

ment issues that might arise when application goes to production can be caught

early and fixed.

Figure 9: Continuity in Software Development Lifecycle [12]

Coming to creating jobs in Jenkins, there are mainly free-style and pipeline jobs.

In free style jobs, all the configuration for the job will be created using the Jenkins

GUI. If the job is to be migrated to new Jenkins, then this configuration needs to

be recreated again manually. Another style is pipeline job. Here all the configu-

ration is written in a file called Jenkins file and this file can be stored in the code

repository. So, this way, migration to another Jenkins is quite easy. Also, its better

suitable in case the configurations are complex and better to track the changes.

20 (41)

4 Migration Implementation

This section gives an overview of the frontend and backend pods of the applica-

tion. Then describes the different manifests created for containerization and de-

ployment like docker file, service yaml, deployment yaml, and ingress yaml. Then

explains the Jenkins pipelines created to push the application image to the image

repository and another pipeline for the application deployment.

4.1 Pod Structure

Backend and frontend containers are not deployed into the same pod because

both can have their scaling requirements. It is easy to scale horizontally when

both components are in different pods. Also, since pod creation takes very a short

time, having separate pods is not an overhead.

Figure 10: Frontend and backend pods [11]

4.2 Dockerfile

The first step is creating a docker image. An image is a layered file system. An

image is like a template for creating a container. An image contains multiple lay-

ers. An image is immutable. It cannot be updated once created. It can only be

21 (41)

deleted. To create an image using docker, a Dockerfile is created. A Dockerfile

is a text file with instructions on how to create an image.

Below is a docker file for a java spring application. This is a multi-stage docker

build.

FROM maven:3.8.3-openjdk-8 AS build

COPY /src /src

COPY pom.xml .

RUN mvn -f pom.xml clean package

build package

FROM openjdk:8

COPY --from=build target/application-service.jar /application-service.jar

EXPOSE 8080

CMD ["java", "-jar", "application-service.jar"]

In a multi-stage docker build, there will be multiple FROM statements. In the first

stage, the maven image is used as a base docker image. Maven build is exe-

cuted, and the application jar file is generated. In the next stage, java image is

the base docker image. The jar generated in the previous image is copied to the

docker image. The last statement tells what command to run inside the container.

The advantage of multiple stage builds is that the files not necessarily needed

from the previous stage can be discarded in the next stage. So here, maven im-

age will not be added to the docker image as it is not needed to run the application

and only the jar file is copied to the image.

Once Dockerfile is ready, image can be built by using the command,

docker build -t application-service -f Dockerfile

-t will be the image name and tag and -f will be the location of the dockerfile. This

way, image can be built. It can be pushed to a docker registry. A docker registry

is a repository for the images. It can be private or public repository. There are

multiple package management systems available like GitHub, DockerHub,

22 (41)

Proget [16] etc. Once the image is pushed into the repository, it can be pulled

again from any of the environments for deployment.

4.3 Deployment Files

Once the docker image is ready, it can be deployed to a Kubernetes environment.

For development purposes locally, docker desktop is used. It has an option to set

up Kubernetes cluster on the local environment.

Kubectl is a command line tool that comes when installing Kubernetes. This in-

ternally calls the Kubernetes API server to execute the commands. To deploy an

application, we need to describe the configuration details to create the pods in

the form of yaml descriptor files. On a high level, yaml file contains three sections

pod metadata, pod spec which contains details about the pods, containers and

volumes details and status of the pods and containers. Three descriptor files ser-

vice, deployment, and Ingress are needed.

4.3.1 Service

Frontend will have one service so that the client can access all the frontend re-

lated pods with single IP address. Similarly, backend will have a service so that

frontend can connect to the backend and whenever backend pods are relocated

in a cluster, frontend need not be reconfigured.

The service yaml descriptor looks like this.

apiVersion: v1
kind: Service
metadata:
 name: app-service
 namespace: "demo"
 labels:
 app: app-service
spec:
 type: ClusterIP
 ports:
 - port: 8080
 targetPort: 8080
 selector:
 app: app-service

23 (41)

The apiVersion specifies the version of the Kubernetes api used. v1 is the first

stable version released. Kind specifies what kind of resource are created. Label

is used to group the pods with a tag. Pods can be filtered with a label selector.

Namespace ‘demo’ is used to group resources without overlapping. Without

namespace, resource will be added to default namespace. Port specifies the port

internally used and target port is the port used to send requests to the container.

On receiving request on port 8080, service redirects the request to one of the

pods. The pods are identified by using the label selector mentioned in the service

descriptor. Type clusterIP means the pod is accessible only within the cluster.

4.3.2 Deployment

Deployments make sure that applications remain available by keeping the de-

sired number of pods running and replacing unhealthy pods with new ones.

apiVersion: apps/v1

kind: Deployment

metadata:
 name: app-service
 namespace: "demo"
spec:
 replicas: 2
 selector:
 matchLabels:
 app: app-service
 template:
 metadata:
 annotations:
 vault.security.banzaicloud.io/vault-addr:
 vault.security.banzaicloud.io/vault-path:
 vault.security.banzaicloud.io/vault-role: vault-webhook
 labels:
 app: app-service
 spec:
 containers:
 - image: app-service:latest
 imagePullPolicy: IfNotPresent
 env:
 - name: DB_USERNAME
 value: vault:app-service/#datasource.username
 resources:

24 (41)

 limits:
 cpu: 2
 memory: 1Gi
 requests:
 cpu: 100m
 memory: 64Mi
 livenessProbe:
 failureThreshold: 10
 httpGet:
 path: /actuator/health
 port: 8080
 initialDelaySeconds: 60
 periodSeconds: 60
 successThreshold: 1
 timeoutSeconds: 240
 ports:
 - name: http
 containerPort: 8080
 protocol: TCP
 volumeMounts:
 serviceAccountName: default

Replicas specify the number of replicas of pods to be created by the replica set.

The replica set gets the count of pods based on the label selectors and tries to

match it with the number of replicas. If there are less or more pods, replica set

creates or deletes the pods. Annotations are name value pairs like labels that can

be used to group resources, but they are mostly used to describe larger infor-

mation. They are mostly used by the tools or developers to provide more infor-

mation about the application running. Here there are some annotations related to

vault that will be discussed in the later section in detail.

Under spec parameter, details about the container that needs to be run inside the

pod will be specified. The image pull policy is ‘IfNotPresent’. This means kubelet

does not pull the image every time a new pod is created. if there is an image with

the same name and tag already available, it will be used. Another pull policy

available is ‘Always’ which means the image should be downloaded every time.

All the other environment variables that should be passed to the container will be

set in the spec container parameter. The data source name is obtained from the

vault and is injected into the process running in the container.

25 (41)

It is possible to specify the required CPU and memory for the container using

resource limits and requests parameters under spec container parameters.

These requests are used by the scheduler and creates the pods under the nodes

which could satisfy the requirement. Pods can request additional resources if

needed than the amount specified in the requests parameter. In case the appli-

cation uses more memory than the limit, additional memory is not granted and

out of memory error is thrown. Monitoring tools can be used to see the live and

peak resource usages of the application and can adjust the limits accordingly. It

is a good practice to specify the limits so that the pods with unhealthy behaviour

do not disrupt the healthy pods by consuming all the resources [5].

Liveness probe settings are used to monitor if the container is up or not. Kubelet

will invoke the url formed by using the IP address of the container and the path

and the port specified in the liveness probe parameter at regular intervals to

check if the process is running or not. If the http status code returned by the url

is >=200 and <400, it is considered as success. If the url does not return the

success code, the container is restarted automatically. It is possible to set an

initial delay when the probing must start after the container is started using ini-

tialDelaySeconds. PeriodSeconds specify how frequently the probing must hap-

pen. FailureThreshold parameter is used to specify how many failures can hap-

pen before the container gets restarted. Here in the above file, after 10 continuous

failures, the container is restarted [7].

Then there is the volume mount parameter. It is used to specify and storage

location that can be shared with other containers. Since this app does not use

any external storage, there is no specific information. There are still many more

parameters that can be set to customize the deployments as per the require-

ments.

26 (41)

4.3.3 Ingress

A Kubernetes Ingress is a robust way to expose services outside the cluster. It

lets one consolidate routing rules to a single resource and gives powerful options

for configuring these rules.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: app-service
 namespace: "demo"
 labels:
 app: app-service
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - host: hostname
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: app-service
 port:
 name: http

In the above ingress yaml, single rule is defined under the spec rules. When there

is an incoming request, ingress matches the host and path and identifies the ser-

vice and the port to which the request is to be redirected to.

4.4 Migrate Secrets to Vault

Kubernetes provides secrets object to store sensitive information such as pass-

words needed for the application, and these secrets can be passed in the pod

descriptor so that containers can use them. They are made available to container

by injecting them through environment variables or by storing in a file and sharing

it with the container. Problems with these secrets are that they are just base 64

encoded and not encrypted. So, they can be easily decoded. Another issue is

that these secrets are available inside the pod. If anyone can get into the pod for

example, with ssh, they could get the passwords with environmental variables.

27 (41)

Secrets are stored in Kubernetes database etcd without encryption. So, anyone

who has access to this etcd can know the secrets.

To solve above problems, vault webhook is used. It is like an event notification

mechanism that listens to events such as creating or updating pods. When a

pod is created or updated, Kubernetes api makes a call to the webhook. Webhook

details are specified in the deployment descriptor through annotations. Webhook

authenticates to the secret management system such as HashiCorp Vault and

fetches the passwords and inject them as secrets directly into the container run-

ning in the pod. Using this mechanism, passwords are not stored in etcd or on

any file and are not available through environment variables inside the pods [4].

The webhook details are provided with annotations as shown below in pod de-

scriptor.

 template:
 metadata:
 annotations:
 vault.security.banzaicloud.io/vault-addr: https://vault-address
 vault.security.banzaicloud.io/vault-path: app1
 vault.security.banzaicloud.io/vault-role:

vault-addr is used to specify the vault url. Vault-path specifies the path where the

secrets are created in the vault. Vault-role specifies what role is used to access

the secrets. Now to inject the secrets into the container, the secrets are accessed

this way:

env:
 - name: DB_PASSWORD
 value: vault:app-service#datasource.password

Here the password stored in the vault is injected as environment variable

DB_PASSWORD into the container process. Another advantage is, the applica-

tion configuration is moved out of the code and so when the configuration is mod-

ified, there is no need to create the docker image again.

28 (41)

4.5 Jenkins Pipelines

So far, all the deployment related configurations in Kubernetes are described.

Even the Jenkins is also migrated to Kubernetes. So, the Jenkins configuration

from old Jenkins is to be moved to new Jenkins. All the free style jobs in old

Jenkins are converted to pipeline jobs in the new Jenkins. The configuration is

moved into the application code so that it is useful to migrate in the future and

easy to maintain.

Jenkins has a master and slave architecture. Jobs are run on the slave nodes or

worker nodes. Jenkins can be configured so that the slave nodes run on the

worker nodes in Kubernetes. The worker pod is removed once the job completes.

This way even when multiple jobs are run on Jenkins, it does not go down due to

heavy load. To run the job on worker node in Kubernetes, a template is to be

defined how to create the pod. This will also be part of the Jenkins pipeline.

4.5.1 Jenkins Build Application Image Pipeline

Below is a pipeline script that contains the pod template and multiple stages to

build the application and push to the docker registry.

pipeline {
 agent {
 kubernetes {
 yaml """

apiVersion: v1
kind: Pod
spec:
 containers:
 -
 command:
 - cat
 image: "maven:3.8.3-openjdk-8"
 name: maven
 tty: true
 -
 name: kaniko
 imagePullPolicy: IfNotPresent
 image: "gcr.io/kaniko-project/executor:v1.7.0-debug"
 command: ['/busybox/cat']
 tty: true"""
 }

29 (41)

 }

The pod template is defined inside the Kubernetes block. The pod will have 2

containers. One container is to build the application. Since the application is on

java, maven tool is used to build the application. The next container is to run

kaniko. Kaniko is a tool from Google which is used to build images from a docker

file similar to docker. Kaniko is used inside a container or in a Kubernetes cluster.

Here the image is created inside a Jenkins worker pod. If docker is used, then

docker is to be run inside another docker. This is called DinD approach. There is

no need to build image because docker needs root level access to create an

image and therefore DinD approach is not secure. Kaniko does not need any root

access and it runs within the user space [6].

After defining the pod template, different stages in the Jenkins pipeline are de-

fined. First stage is defining the parameters for the job. Below job has the git

branch name parameter that can be used to check out and create image for that

branch. Using parameter, job can be customized to run for any working branch

and image can be created.

stages {
 stage('Setup parameters') {
 steps {
 script {
 properties([
 parameters([
 string(defaultValue: 'master',
 description: 'GIT Branch Name',
 name: 'BRANCH_NAME')
])
])
 }
 }
 }

30 (41)

Figure 11: Parameters in a Jenkins pipeline

Second stage is checking out the application from git.

 stage ('checkout') {
 steps {
 checkout([
 $class: 'GitSCM',
 branches: [[name: '*/${BRANCH_NAME}']],
 doGenerateSubmoduleConfigurations: false,
 extensions: [[$class: 'RelativeTargetDirectory', relativeTargetDir:
'demo']],
 submoduleCfg: [],
 userRemoteConfigs:[[credentialsId:'',url: 'git@gitlab.local:url ']]])
 }
 }

Third stage is building the application using maven tool. The application depends

on dependencies that reside in a private maven repository. So, to pull those de-

pendencies when creating a maven package, first there should be authentication

process to the remote maven repository. These credentials are stored in the Jen-

kins credentials repository, and they are pulled by using the credential name 'ma-

ven-key'. After authentication, application jar is built by running the maven pack-

age command.

stage ('maven') {
 steps {
 container('maven') {
 withCredentials([usernamePassword(credentialsId: 'maven-key',
username
 Variable: 'USER_NAME', passwordVariable: 'PASS_WORD')])
 {
 sh 'mvn -f app-code/pom.xml clean package -s settings.xml
 -Dusername=${'USER_NAME } -Dpassword=${PASS_WORD}'

31 (41)

 }
 }
 }
 }

After building the application jar, the image is built using Kaniko tool and pushed

to the private docker registry repository. In order to use the private docker regis-

try, first the credentials ‘registry_cred’ are fetched from the Jenkins credentials

and they are used for authentication.

stage('Build & push image') {
 steps {
 withCredentials([usernameColonPassword(credentialsId: 'registry_cred', vari
 able: 'registry_credentials')]) {
 container(name: 'kaniko', shell: '/busybox/sh') {
 sh """
 #!/busybox/sh
 mkdir -p /kaniko/.docker
 cat << EOF > /kaniko/.docker/config.json
 {
 "auths": {
 "${DOCKER_REGISTRY}": {
 "auth": "`echo -n "${docker_credentials}" | base64`"
 }
 }
 }
 EOF
 """

After the image is built using the docker file present in the application code, image

is pushed to the registry. The path to push is specified in the destination param-

eter.

 sh """
#!/busybox/sh
/kaniko/executor --dockerfile `pwd`/Dockerfile --context `pwd` --cache=true --
destination=dockerhub.net/docker/app-service:latest

 """
 }
 }
}
}

32 (41)

4.5.2 Jenkins Deploy Application Pipeline

Now the Jenkins job has finished that pushes the image to the image registry.

Now it can be used inside the Kubernetes for deployment. To deploy the applica-

tion to Kubernetes, there is a separate Jenkins pipeline job.

pipeline {
 agent {
 kubernetes {
 yaml """

apiVersion: v1
kind: Pod
spec:
 containers:
 -
 command:
 - cat
 image: "alpine/k8s:1.20.7"
 name: kubectl
 tty: true
 -
 command:
 - cat
 image: "centos:8"
 name: curl
 tty: true
"""
 }
 }

Next in the environment block, the service token is obtained from the Jenkins

credentials. This will be used to deploy to Kubernetes.

environment {
 API_TOKEN = credentials("${API_TOKEN}")
}

Next the different stages in the pipeline are specified. First one is deploying the

app to Kubernetes. The deployment descriptors present in the application code

is passed in the kubectl apply command. Kubeconfig parameter will point to the

descriptor which contains the Kubernetes server location where the application

is to be deployed. It is stored in the Jenkins credentials.

 stage ('deploy to env') {
 steps {

33 (41)

 container('kubectl') {
 withCredentials([file(credentialsId: "${CREDENTIAL_ID}", variable:
'config')]) {
 sh 'kubectl apply -f deployment.yaml --token=${API_TOKEN} --kubecon-
fig=${config}'
 }
 }

The next stage is to check if the deployment is successful. This is verified by

checking if the application health URL is returning http status code 200.

stage ('Service up') {
 steps {
 container('curl') {
 timeout (time: 10, unit: 'MINUTES') {
 script {
 waitUntil {
 try {
 sh 'curl -s --head --request GET "http://app.com/actuator/health" |
 grep "200"'
 return true
 } catch (Exception e) {
 return false
 }
}

Above pipelines are for the backend application. Similar pipelines are created to

deploy frontend project also. Jenkins needs Kubernetes plugin to run the above

pipelines. In the Kubernetes plugin, the Kubernetes server where the worker

nodes are to be run the above jobs needs to be configured. This is the task done

by the operations team.

4.6 Results

The application needs to be run in four different environments development, qual-

ity assurance, customer test and production. So, there will be four different

namespaces created in the Kubernetes cluster to deploy the application into dif-

ferent environments. During the migration process, the descriptors are created

and tested in the local environment setup using the docker desktop. It provides

both docker and Kubernetes, so it is easy to test the descriptors. After the

34 (41)

development, the application is deployed to the development environment. Even

the database is to be migrated to the Kubernetes environment. But it is taken care

by the admin team responsible for the databases. The secrets used by the appli-

cation are created in the HashiCorp vault. Once the migration is completed for

both backend and frontend projects in the development environment, there were

some network issues in accessing the app from other applications. So, network

team did the firewall rule changes. After successful migration in development,

similar migration happened in QA environment, customer test and production en-

vironments. There were two separate Jenkins to deploy, one for development

and QA and one for test and production. There were several challenges in gaining

access to different systems and in connecting to different networks. But finally,

the migration went successfully.

4.7 Logging

Application logging is very crucial to identify the different issues when accessing

the application. There are different tools available to log the data. Graylog is used

for the current application. The logs of different applications deployed in all the

namespaces will be logging to the same graylog. There will be different filtering

options to filter logs based on the time and based on namespaces.

Figure 12: Graylog showing the message count

Above graph shows number of messages received in a certain time frame. These

metrics are useful to analyze the traffic of the application and helps to evaluate

the peak loads. There is also network information logged like number of open

connections and port information and helps to view the global configuration of the

system. It helps to see the node and load balancer state if its running or not.

35 (41)

Figure 13: Graylog showing the system overview

Above pictures gives an overview of the graylog system state. Journal is a place-

holder for the incoming log messages before they are processed by graylog. Pic-

ture shows about the different plugins installed on graylog.

4.8 Monitoring(wavefront)

Tanzu Kubernetes provides a wavefront tool to monitor the applications. There

are different dashboards to view the metrics such as CPU, memory, number of

requests, metrics related to the health of different pods and clusters.

 Figure 14: WaveFront dashboard menu

36 (41)

 Figure 15: WaveFront applications menu

The dashboards can also be customized so that the necessary columns need

can be configured for the statistic reports.

It is possible to different types of graphs related to the restart rates of different

pods, bytes transferred rate, network errors, file system usage per pod, number

of threads. all these metrics can be viewed at cluster level, namespace level,

node level or at the pod level. This helps to find out if there is any unusual activity

in the system. When there is any sudden downtime of the application, these met-

rics are helpful to get find out the root cause. In case if the application is behaving

slow, the thread rate and latency rate related metrics could be useful. As per the

metrics, if the developer wants to allocate more resources for the application, the

deployment descriptor can be modified, and Kubernetes will move the pods to

new machines that satisfy the new requirements. It is possible to export these

metrics in different formats like csv, histogram, pie graph etc. The application

errors are also shown based on different severity levels like critical, warnings, info

etc.

4.8 Future Development

When migration to Kubernetes, the major work was creating different descriptor

files like service, deployment, and ingress. The configuration also looks compli-

cated. These configuration files also need to be created separately for each

37 (41)

application. This increases a lot of duplication. Sometimes if the production de-

scriptor file is modified directly and the changes are not done in the git repository,

there will be a mismatch between the copy saved and the configuration that is in

production. To solve this problem, there is a configuration package manager

called Helm. In helm, there will be a template descriptor that can be used by

various applications and different applications can inject their own values to the

template. This way duplication of the descriptors can be reduced. The company

has created a helm template so that it can be used across different applications

and each application do not need to create its own copy of descriptors. In the next

development cycle, it is planned to understand more about helm and use it in the

future.

38 (41)

5 Conclusion

The thesis is based on the problem faced by the case company with high licens-

ing costs to run the insurance-related application in Cloud Foundry. It was de-

cided to move the application from Cloud Foundry to the Kubernetes cluster.

Since the application was already based on a microservices pattern, there was

not much change needed in the application code. However, deployment mani-

fests were needed to deploy to the Kubernetes environment.

This thesis explained how Kubernetes provides so much flexibility in configuring

the application deployment with many parameters. Before, the application could

be deployed only in a specific cloud foundry environment. However, it is now

ready to be deployed in any of the cloud providers such as AWS, GCP, etc. This

made it easy to auto-scale the application based on the request load. Also, it is

easy to migrate the application without downtime using the Kubernetes rolling

update strategy.

This thesis explains the different steps taken as part of the migration. First, the

application is containerized. To containerize the application, a docker file mani-

fest was created that contains information on how to create the docker image.

Then deployment files were created to deploy the containerized application to the

Kubernetes environment. A service file and ingress file were created to expose

the application to the outer world. All the application-related passwords were mi-

grated to the Hashicorp vault so that the exact copy of the application code is

ready to be deployed to different environments. Then the free-style Jenkins jobs

of the application were converted to pipeline jobs by moving all the configurations

to the file and stored in the version control.

The main challenge faced during the migration was a huge learning curve in-

volved in understanding Kubernetes concepts for creating the manifests. There

were a few challenges in getting access to connect to the Kubernetes cluster and

Jenkins in the development environment to validate the created manifests. For

the application to be accessed from other external applications, it needed a

39 (41)

firewall and network changes. All the network-related issues were solved by the

network team, and the application database migration to the Kubernetes environ-

ment was taken care of by the database team.

Once all the access-related, network, and database-related issues were re-

solved, the application was migrated successfully in the development environ-

ment. Next, the application was migrated successfully into the other quality, cus-

tomer test, and production environments. After the migration was done in all the

environments, the old environments related to the PCF were decommissioned.

As part of future development, the helm package is to be explored to obtain the

advantage of replacing the separate deployment files in different environments

by creating a helm template and injecting different values related to each envi-

ronment. This migration process has taught a lot about the Kubernetes architec-

ture and deployment procedures and how the Jenkins pipelines can be utilized to

provide continuous delivery and deployment.

40 (41)

6 References

1. Farmer R, Jain R, Wu D. Cloud Foundry for Developers. Packt Publish-

ing Ltd; 2017.

2. Shopen O. Comparing Kubernetes to Pivotal Cloud Foundry — A Devel-

oper’s Perspective [Internet]. Medium. 2019 [cited 2022 Sep 18]. Availa-

ble from: https://medium.com/@odedia/comparing-kubernetes-to-pivotal-cloud-

foundry-a-developers-perspective-6d40a911f257

3. Arun R. CloudTweaks | Cloud Foundry vs Kubernetes: Which One is Bet-

ter? [Internet]. CloudTweaks. 2022 [cited 2022 Oct 18]. Available from:

https://cloudtweaks.com/2022/03/cloud-foundry-vs-kubernetes-which-

one-is-better/

4. Mutating Webhook · Banzai Cloud [Internet]. banzaicloud.com. [cited

2022 Oct 18]. Available from: https://banzaicloud.com/docs/bank-

vaults/mutating-webhook/

5. Resource Management for Pods and Containers [Internet]. Kubernetes

[cited 2022 Oct 18]. Available from: https://kubernetes.io/docs/con-

cepts/configuration/manage-resources-containers/

6. Baeldung. An Introduction to Kaniko | Baeldung [Internet].

www.baeldung.com. 2020 [cited 2022 Oct 18]. Available from:

https://www.baeldung.com/ops/kaniko

7. Configure Liveness, Readiness and Startup Probes [Internet]. Ku-

bernetes. [cited 2022 Oct 18]. Available from: https://kuber-

netes.io/docs/tasks/configure-pod-container/configure-liveness-

readiness-startup-probes/

8. Portnoy M. Virtualization: essentials. 2016.

9. Lessing M. Containers vs VMs: Key Differences [Internet]. SDxCentral.

[cited 2022 Oct 18]. Available from: https://www.sdxcen-

tral.com/cloud/containers/definitions/containers-vs-vms/

10. Poulton N. Docker deep dive: zero to Docker in a single book. Germany:

Nigel Poulton; 2020.

11. Luksa M. Kubernetes in Action. Simon and Schuster; 2017.

https://medium.com/@odedia/comparing-kubernetes-to-pivotal-cloud-foundry-a-developers-perspective-6d40a911f257
https://medium.com/@odedia/comparing-kubernetes-to-pivotal-cloud-foundry-a-developers-perspective-6d40a911f257
https://medium.com/@odedia/comparing-kubernetes-to-pivotal-cloud-foundry-a-developers-perspective-6d40a911f257
https://cloudtweaks.com/2022/03/cloud-foundry-vs-kubernetes-which-one-is-better/
https://cloudtweaks.com/2022/03/cloud-foundry-vs-kubernetes-which-one-is-better/
https://banzaicloud.com/docs/bank-vaults/mutating-webhook/
https://banzaicloud.com/docs/bank-vaults/mutating-webhook/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://www.baeldung.com/ops/kaniko
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://www.sdxcentral.com/cloud/containers/definitions/containers-vs-vms/
https://www.sdxcentral.com/cloud/containers/definitions/containers-vs-vms/

41 (41)

12. Sander Rossel. Continuous Integration, Delivery And Deployment. S.L.:

Packt Publishing Limited; 2017.

13. VMware Tanzu Application Service [Internet]. Vmware.com.

VMware, Inc. or its affiliates; 2020 [Accessed 2022 Oct 18]. Avail-

able from: https://tanzu.vmware.com/application-service

14. Docker. Enterprise Application Container Platform | Docker [Internet].

Docker. 2018 [Accessed 2022 Oct 18]. Available from:

https://www.docker.com/

15. Kubernetes. Production-Grade Container Orchestration [Internet]. Kuber-

netes.io. 2019 [Accessed 2022 Oct 18]. Available from: https://kuber-

netes.io/

16. ProGet | Package your Applications and Components – Inedo [Internet].

inedo.com. [cited 2022 Oct 18]. Available from: https://inedo.com/proget

https://tanzu.vmware.com/application-service
https://www.docker.com/
https://kubernetes.io/
https://kubernetes.io/
https://inedo.com/proget

