

Phuong Nguyen

Applying HTTP Protocol of TCP
communication layer to build login
system by modern web technology

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology Degree Programme

Bachelor’s Thesis

25 October 2022

Abstract

Author: Phuong Nguyen

Title: Building Login System by Modern Web Technology

Number of Pages: 53 pages + 3 appendices

Date: 25 October 2022

Degree: Bachelor of Engineering

Degree Programme: Information Technology of the degree programme

Professional Major: Name of the professional major

Supervisors: Janne Salonen, Title (Head Degree)

This thesis introduces an overview of modern technology for website, and web

application to dive in deeper the knowledge of TCP network communication through

application layer, is called HTTP mechanism. A login system for web application is

presented as well. In this technology age, Cloud Computing is blooming, making

serverless database become more and more popular. MongoDB is one of the most

outstanding NoSQL databases of storing the persistent data. Node.js is used for

environment runtime from the server side, is combined with Express.js as a web server

builder as well as React acts as a simulated sever from client. It creates a perfect full

stack for developing web application in a fitted way with previous JavaScript on client-

side rendering, in reason to guarantee the web application can become smoother and

higher effective in NodeJS ecosystem.

MVC models is applied to keep the architecture of source code easily follow. The MVC

framework is combined with React to separate the Model, View, Controller in a clean

structure. As a result, MVC approach can separate concern of a software product into

three main logic tier architecture for scalability, availability, reusability, confidentiality

with strictly principles is applied.

Cloud Computing conveniently bring better performance and low cost-budget for every

firm from small to huge size. It is easily scalable, available without the physical harms.

In theory, the data is safe and convenient management by the cloud hosting company.

But API from the 3rd party, confidential data could be arisen security issues for the

customers who care the privacy. OAuth 2.0 protocol represents a delegation procedure

of using token to avoid universal password based on security issues, totally perfect for

3rd party APIs.

To sum up, this thesis is an analysis of instruction of building a web application by

JavaScript technology with its framework combination, and network package

examination of login system as an exemplar for TCP communication through HTTP

layer.

Keywords: login, modern web technology, OAuth 2.0, client-side rendering, server-

side programming language, JavaScript, MERN stack.

Tiivistelmä

Tekijä: Phuong Nguyen

Otsikko: Insinöörityön otsikko

Sivumäärä: 53 sivua + 3 liitettä

Aika: 25.10.2022

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Login systeemi

Ammatillinen pääaine: Phuong Nguyen

Ohjaajat: Janne Salonen

Tiivistelmän tekstiosuus kirjoitetaan niin, että se mahtuu sivulla käytössä
olevaan tilaan. Tekstiosuudessa käytetään Leipäteksti ilman välistystä -tyyliä.

Avainsanat: MERN, TCP, HTTP

Contents

1 Introduction 1

2 Technology Concepts 1

2.1 TCP Communication 2

2.2 HTTP Mechanism 3

2.3 JavaScript Innovation 8

3 MERN Stack 11

3.1 MongoDB 11

3.2 Express.js 12

3.3 React.js 14

3.4 Node.js 15

3.5 Security Issues 15

3.5.1 Authentication 16

3.5.2 Authorization 18

4 Building Login System 18

4.1 Client-Side Rendering 25

4.2 Server-Side Rendering 28

4.3 OAuth 2.0 protocol 34

4.4 Case study of a login module 36

4.4.1 Implement a Google sign-in button 37

4.4.2 Network transferring in a login system 39

5 Conclusion 44

References 45

Appendices 53

Appendix 1: MVC folder structure 53

Appendix 2: MERN stacks Boilerplate Template 54

Appendix 3: Google Sign in/Sign out Button 60

List of Abbreviations

MERN: Mongodb, Express, React, Node.js.

MVC: Model View Controller Architecture.

API: Application Programming Interface.

TCP/IP: Transmission Control Protocol/Internet Protocol

TCP: Transmission Control Protocol.

HTTP: Hypertext Transfer Protocol.

URL: Uniform Resource Location

CORS: Cross-Origin Resource Sharing

DOM: Document Object Model.

W3C: World Wide Web Consortium

AJAX: Asynchronous JavaScript and XML

CI: continuous integration

CD: continuous delivery

ACID: Atomicity, Consistency, Isolation, Durability

BASE: Basic Availability, Soft-state, Eventual consistency

DBMS: Database management system. Software for maintaining, querying,

and updating data and metadata in a database.

RAM: Random Access Memory

ODM: Object-Document Mapping

JSON: JavaScript Object Notation

BSON: Binary JSON

I/O: Input/Output

UI: User Interface

HTML: Hypertext Markup Language

XML: Extensible Markup Language

JWT: JSON Web Token

WebAuthn: Web Authentication API

DSL: Domain Specific Language

GUI: Graphical User Interface

WOFF: Web Open Font Format

CDN: Content Delivery Network

List of Figures

Figure 1. A conceptual model of TCP communication.

Figure 2. REST architecture and its application.

Figure 3. Six Constraints of RESTful system.

Figure 4. Uniform Resource Locator parts.

Figure 5. CORS support outside resource by HTTP header request.

Figure 6. The history from old to modern of web technology.

Figure 7. The diagram shows the handlers of HTTP request and response.

Figure 8. Sequential flow of processing data with form.

Figure 9. Three main properties of Web authentication.

Figure 10. Diagram displays a folder structure of MVC architecture style on

Github.

Figure 11. Picture shows a block of codes to connect front end side and back-

end side applied MERN stack.

Figure 12. Database is created from CDN (Content Delivery Network) of

MongoDB server.

Figure 13. The database connection is made from database deployment.

Figure 14. Browser on localhost displays connection from database.

Figure 15. The chart shows the popularity of client-side programming language.

Figure 16. Lists of server-side programming languages for website on W3Tech.

Figure 17. Market position of server-side programming language in reference to

popularity and traffic of the 5 most popular server-side scripting.

Figure 18. Statistic based on the questions of programming language from 2009

to 2022.

Figure 19. Statistic based on the questions of JavaScript frameworks from 2009

to 2022.

Figure 20. Percentage of questions received on stackoverflow community,

according to different types of frameworks of JavaScript, in 2022.

Figure 21. HTTP process in static file server and dynamic file server.

Figure 22. Workflow of three endpoints of OAuth 2.0 protocol processing.

Figure 23. OAuth client is allowed to permitted resource by token.

Figure 24. Form login of Pinterest application.

Figure 25. Client ID and client secret from Google.

Figure 26. Picture shows code folder structure for Google login/logout.

Figure 27. Sign in button from Google.

Figure 28. Sign out button from Google.

Figure 29. Login page of Pinterest in Canada.

Figure 30. XMLHttpRequest object which interact with the server have error.

Figure 31. Fetch/XHR data examines on Network tab of Developer tool.

Figure 32. JSON formatted file for defining metadata of Pinterest.

Figure 33. The Pinterest icon appears as application’s logo on home screen of

users’ devices.

List of Tables

Table 1. HTTP methods.

Table 2. HTTP status code.

Table 3. List of React top-level API.

Table 4. List of main features of JavaScript frameworks.

Table 5. List of the for and against of diverse programming languages.

1 Introduction

In Cloud Computing age, the development of web application is boosted by

different types of database and technology stacks. The organization from the

small size to huge size can select an advantage, beneficial approach to build a

web application easily based on specific needs and purpose. Client-side

rendering becomes powerful when JavaScript develops technology for web

development, by enormous and diverse frameworks.

The purpose of this thesis is focus on the grasp of how to build a website, or

web application by understand the necessities of web technologies via a real-

life login system. A login module is use widely, conveniently, frequently in any

web application. This idea is totally convenient for creating a reusable login

module by applying MERN (MongoDB, Express.js, React.js, Node.js) stack.

Especially, MVC (Model, View, Controller) concept is combined to keep the

structure of node modules more convenient manageably. APIs (Application

Programming Interface) from the 3rd parties have increased tremendously by

giant technology companies such as Google, Microsoft, Facebook, Twitter, et

cetera. It provides a favourable way to integrate interesting, time-saving

functionality and data from other sources to a specific source with various

features.

Modern web technology is growing faster and faster everyday thanks to open

source for contributors all over the world. Many frameworks of JavaScript are

created, is overwhelmed for those who cannot have a clear vision of the usage

of JavaScript stack. Therefore, this thesis is aiming to explain how to be

integrated mix and match technology with frameworks of JavaScript, is called

MERN stacks.

2 Technology Concepts

Firstly, a TCP/IP (Transmission Control Protocol/Internet Protocol) model can

be useful to show how a network system works on a web application through

HTTP (Hypertext Transfer Protocol) protocol of communication layer. Secondly,

a MERN stacks represents layers from identify stage to output process stage of

the outcome. Simply put, MERN is an engaged technology in modern web era

of connecting a NoSQL database, making routes of calling APIs data from the

user interface modules to the back-end server modules.

2.1 TCP Communication

The TCP (Transmission Control Protocol) is a communication standard to start

the process between initiator and receiver aka client and server. This protocol

helps master devices connect with end devices to transfer information package,

or data message.

Figure 1. A conceptual model of TCP communication.

In Figure 1, three-ways handshakes [1] within a connection time among terminals

to ensure the transferrable data.

To fathom the concept, TCP socket is considered as an operation of TCP/IP

application. The sockets from the client and server enables remote ports to

receive full data package. At the first stage, an establish connection from active

client to send SYN with seq = x to passive server. After SYN received seq = x,

the data transfer stage begins at server sends SYN ACK back to client with SYN

= y, ACK = x + 1 as well as starting at seq = y. At the close connection stage,

server receive a message of ACK = y + 1 means acknowledgement full data

package and stop the process with closed session.

2.2 HTTP Mechanism

As good definition of software architecture from Roy Fielding [2] about REST

architecture [3], stateless is a clarity, effective way of communicating.

The HTTP [4] works as client-server mechanism [5] of transferring data by

request and response process through pipeline of applications’ layers. To deep

dive the knowledge, we must understand clearly REST and RESTful API aka

REST API [6].

Figure 2. REST architecture and its application.

In figure 2, API is under control of REST architecture which enables transferred

data from server to client by HTTP mechanism. API can work as a key to

access the right resource which calls API endpoint, then send back the data

package in form of JSON files. Therefore, user can access data via APIs

communication. Thanks for APIs, data also can perform, interact, and integrated

information from database and API management system [7].

Figure 3. Six Constraints of RESTful system.

Figure 3 represents 6 constraints of REST architecture style [8]. And APIs is

applied RESTful system to generate a web service between client and server.

This architecture almost innovates an effective way of modern web by following

the loosely couple rule of software architecture. The terminals always be the

same, but the interfaces of terminals can change the past to create new future

by separating parts and apply rules of creativity: break, bend, blend. It is the

vital part of understanding software architecture styles and principles.

APIs is an application of REST architecture constraint. Therefore, stateless

request and response is applied to generate APIs endpoint [9].

Figure 4. Uniform Resource Locator parts.

To form a HTTP request to a server, client need URL (Uniform Resource

Location), method, list of headers, body.

Below are tables of HTTP methods, HTTP status code to form a URL for APIs

endpoint after user enables a request.

HTTP methods Description Method Properties

HEAD To send header data-

package.

Safe, idempotent,

cacheable.

TRACE To check-up connection

of server.

Safe, idempotent.

PUT To upload files into

server.

Idempotent.

PATCH To modify a part of

resource

No properties.

DELETE To eliminate files from

server.

Idempotent.

OPTION To describe selection of

method support and

return suitable error.

Safe, idempotent.

CONNECT To build a tunnel to the

server.

No properties.

POST To create or update

resource.

Only works for update

information.

Table 1. HTTP methods.

Status Code Number HTTP response status Description

100-199 Information response. Indication from server.

200-299 Successful responses. Request succeeded.

300-399 Redirection messages. URI changed.

400-499 Client error responses. Problems happen from

client connection.

500-599 Server error responses. Problems happen from

server connection.

Table 2. HTTP status code.

HTTP mechanism contains a set of HTTP request methods which are defined

as cacheable, idempotent, safe, and HTTP response status code.

To upgrade the security level [10], most CORS (cross-origin resource sharing)

becomes a crucial browser security feature to consider whether enable CORS

support. Because most of non-simple cross-origin HTTP request need

permission to access the resource from the different domains.

Simply put, starting with real-usage concept of fetching [11] can demonstrate

CORS [12] and HTTP origin header [13] vividly. Fetch API follows the rule of

same origin [14], meaning that different host, protocol, port brings failure access

of receiving data from different resources. Therefore, CORS is used to allow

cross-origin access. CORS could play a role in HTTP process which qualify

other outside hosts so that browser can have power of permission to load web

content without blocking policy of same origin.

Figure 5. CORS support outside resource by HTTP header request.

The process of how to detect security issues of CORS configuration base on

HTTP origin header. The figure 5 shows how a CORS work securely effectively

with header data values from HTTP header request. Understanding this

concept, we can work easily with the resources from the origin resource as well

as cross-origin resource sharing. Besides, the server guardian who has

responsibility of security can make a good configuration to protect API restricted

resources from client-side who can make a harmful access.

2.3 JavaScript Innovation

JavaScript is invented [15] as a concept of a lightweight, simple, easy-to-learn,

fast, powerful, popular, widely used [16] programming language which can work

productively from small to bigger web application by merging features of

functional programming and object-oriented programming. Moreover, the support

from most of browsers bring a big plus advantage for JavaScript. Hence, when

Nodejs was appeared, was changed the capability of the JavaScript technology

by expanding the ecosystem of JavaScript.

On very first day, web application is very simple start with HTML (HyperText

Markup Language), CSS (Cascading Style Sheets), JavaScript. DOM (Document

Object Oriented) has established by W3C (World Wide Web Consortium) since

1998 [17], has changed the way of industrial web development. DOM provides

an API of permission to access and update content, structure, style of web

documents. Due to the performance, DOM becomes hard to manipulate data by

cross-browser, web application era comes up with jQuery, AJAX (Asynchronous

JavaScript and XML). AJAX is a combination of XMLHttpRequest object and

DOM to render data on client-side [18].

Disadvantage of AJAX is implementation through different browsers. Therefore,

jQuery is a useful library of JavaScript can be a helpful support for AJAX. As a

result, JavaScript is more and more improvement, to become a beautiful

programming language by many supporting libraries and frameworks. Nowadays,

modern web technologies can work compatible with most of cross-platform.

JavaScript is still enhancing the performance by technology stack driven. MERN

stack [19] is one of the best selections of mix and match of modern web

technology. Moreover, machine learning is a wonderful concept [20] of this age.

Node.js has an API which called child process module [21], can streaming data

of python process with Node.js and displaying the output on the interface of end

user [22]. Digging deeper knowledge of MERN stack combination, the mingle of

infrastructure, and cloud computing technology is mind-blowing. Azure pipeline

[23] is an operation when CI (continuous integration) and CD (continuous

delivery) is mixed implementation. More amusement, Azure machine learning

[24] is one of the most astonishing tools, which can predictive analysis [25], in the

market.

Figure 6. The history from old to modern of web technology.

Figure 6 demonstrate a short introduction of the first day of web application. It

starts with HTML as a markup language [26] for website works with browser. It

could be boring because of plain text, simple images. CSS appears as a good

solution to sharpen, enhance the style [27] of web content [28] includes

paragraphs, video, image. JavaScript brings dynamic effects [29] to a website.

Since DOM has created, JavaScript is still a painful [30] programming language

because the different default setting of each browser. Until 2005, Ajax appeared

as a new style [31] for web application. From that time, asynchronous [32]

management and event handling are more popular with JavaScript language.

With the application of Ajax engine, scripts and style sheet just call once as well

as asynchronous request can be received merely necessity content. This

advantage is useful for time performance and server bandwidth. It sounds helpful

on performance perspective. On contradicting viewpoint, security issues [33]

within same origin policy, bring hardship for websites which work with Ajax. So

far, the perfection mingle between Ajax and jQuery has been used to load data

from the server as the real-time strategy of coding.

While the rapidly growing of client-rendering-framework such as React, Angular,

Svelte, Vue, etc; jQuery is still living with Ajax technology from client-side

application. That’s why favourable code implementation doesn’t mean it is the

best way to keep. To provide a clear vision of the reason, we can think

frameworks which is a craving of integrating functional compatibilities between

node modules. NodeJS bring packages together in a union application. The

problem happens at the compatibility levels, if not, the other problem is the

impact. In consequence, logic business must separate concerns in each tier

architecture, become modular design, to handle data in a pipeline which calls it a

name of microservices. As a hope of popular programming languages, JavaScript

is a non-stop improvement language through multi-purpose frameworks [34]

invented.

3 MERN Stack

The diversity of different technologies of JavaScript brings the dream of a full

stack development can become true. It is an impeccable practice, but it is quite

complicated to apply with novice. Hence, MERN stack is a good technology shelf

for implementation from front-end to back-end.

3.1 MongoDB

Distributed management is a good design [35] concept. Especially, data

management due to the scalability, flexibility, availability, and durability of a

workload. MongoDB is a practical application of distributed data management.

Compare with traditional relational database, MongoDB is called NoSQL [36]

database management system.

Dig deeper of the approach of DBMS (database management system), is the

concepts of a database which operates with the ACID (Atomicity, Consistency,

Isolation, Durability) properties, or with the BASE (Basic Availability, Soft-state,

Eventual consistency) properties.

ACID properties represent vulnerable transaction [37], which relates to stable and

consistent data. BASE data model known as aggregate stores [38], which is real-

time analytic, unstructured data with saving cost of Random Access Memory

(RAM) [39] due to the process of dynamically allocates and de-allocates RAM.

Based on different purposes, DBMS can be flexible usage of selection and

matching. MongoDB is a popular tool [40] of document database of NoSQL

database, is applied BASE properties.

To provide a direct solution of reusable code of validation, casting, business logic

[41] of MongoDB, Mongoose is an object modelling in NodeJS packages, is

created to work with data in asynchronous environment [42] by schema-based

solution. A NoSQL database like MongoDB can apply ODM (object document

mapper) as a tool to manipulate JavaScript objects. ODM use a JSON

(JavaScript Object Notation), BSON (Binary JSON) API to convert object notation

to document notation. Therefore, Mongoose is a good tool of ODM, has functions

to map [43] between object models and document databases, straight forward

method to perform operations with objects, and translate information into the

proper data query, schema types.

3.2 Express.js

ExpressJS [44] is one of a module of Node.js system, contains a huge library of

useful middleware, ranging from template engine to high performance-based of

HTTP mechanism.

Express can interact [45] with MongoDB through Mongoose schema. To work

with Mongoose schema, creating a model is a necessary task which is helpful for

generate the database collection. After model classes are defined, queries of

create, read, update, delete records can work with saved or retrieved data.

Moreover, there are more popular built-in middleware function [46] in Express

library such as express.json, express.Router, express.urlencoded, etc. Like

JavaScript, Express.js also use the diverse objects with different methods

combines with various properties to complete the process of handling events.

For example, the parameters [47] of callback function in Express application are

request object and response object. Request object blends with body, app,

cookies, path, query, xhr properties to performance specific task related in HTTP

request. And request object also provides many methods to execute operation

on the request body and header of HTTP.

Routes and controllers are main parts of Express middleware.

Figure 7. The diagram shows the handlers of HTTP request and response.

3.3 React.js

React is a modern technology of web application interaction. Although React is

client-side framework, it can work as a pseudo-server-side. React uses state,

props to render components when data is updated.

Thanks to the business logic of component-based [48], DOM of web application

aka API for HTML (Hyper Text Markup Language) or XML (Extensible Markup

Language) documents with a logical tree is replaced by a virtual DOM [49]. React

can enclose a private component in a capsule which own states to create

complex UIs (User Interfaces) by re-render technique [50].

Short introduction, React can load from a <script> tag to make the scope globally,

and import React from ‘react’ to start using the package in Node.js package

system. Below is the list of React top-level API [51] to render React applications.

Name Usage Description

Components React.Component

React.PureComponent

Modular design.

Elements React.createElement() Without JSX.

Fragments React.Fragment Without a wrapper.

Refs React.createRef

React.forwardRef

Access DOM nodes.

Suspense React.lazy

React.Suspense

Dynamic loading.

Transitions React.startTransition

React.useTransition

To mark up update as

changing shift.

Hooks Basic hooks, Additional

hooks, Library hooks.

Update state and React

features without create

class.

Table 3. List of React top-level API.

3.4 Node.js

NodeJS is an open source of cross platform of JavaScript run time environment,

runs on V8 engine. The purpose of NodeJS is a lightweight of non-blocking I/O

(Input/Output) model which focus on event driven of I/O web application. Hence,

outstanding features of NodeJS is fast execution, asynchronous, no buffering,

multitask approach based on supported library of single thread concurrency with

multiple components.

Node.js is a high effective performance tools of real time application for

scalability, faster, responsive. Due to the caching in Node.js application, the

performance boost to an impressive speed.

According to the experiment [52], from developer community of dev.to, node

memory-cache [53] helps request reduce time performance. With the explosion

of Cloud computing in modern era, Nodejs is a good mix and match high-tech in

implementation of web application as well as fetching data [54].

3.5 Security Issues

Focus on the data sending and receiving, HTML forms on a web application is

used to accumulate privacy and non-privacy information from users. Therefore,

many techniques of hacking can be exploited in this process with various

purposes. Hackers can use data package from input user to inject malicious

codes which is harmful for server, or attackers can utilize the secret data of users

for damage reasons. The input elements [55] is varying types of collected data,

with various attributes [56]. The art of working with form includes validation,

sanitization input data, event handlers, respond the state results.

Figure 8. Sequential flow of processing data with form.

Figure 8 shows how data process when a form is submitted. Normally, GET and

POST methods of HTTP create routes for validation, processing data in form.

Therefore, express’s middleware such as express-validator [57] module to

provide many functions with parameters related to the valid and sanity of data

before the data is sending to server.

To dig deeper, the security solution for most of safety issues are authentication

and authorization.

3.5.1 Authentication

The concept of authentication for identity is start with the web authentication API

[58] to enhance the vulnerabilities.

To keep the data is safe from the attack, authentication must strong enough for

users to avoid becoming targets of attackers. There are various styles develop

login and logout module. Most of the approaches is the concept of encrypting

user’s credentials [59] or using hash function to elude stored plain text

passwords.

For instance, JSON Web Token [60] aka JWT applied cryptographic algorithm to

guard package content and divided into 3 parts with a period, in a syntax:

header.payload.signature.

Another example is Web Authentication API. There are 2 methods create () and

get () to allow users sign up or sign in on web application with the public key [61]

option. Usually, most of passwords is not strong enough, although with the

validator input, malicious data, and sensitive data of organization such as bank,

social media, email, mobile applications still can be harmful to any user who have

to use the sceptical network. Therefore, Web Authentication API aka WebAuthn

[62] is a new way for alternating a credential confirmation instead of weak

information as encrypted password to avoid potential harmful on the internet.

Figure 9. Three main properties of Web authentication.

Strong

• storing private
key.

• cryptographic
operations.

Scoped

• key pair
registered.

• to avoid
mitigating to the
harmful
sources.

Attested

• offering
certificate of
authenticators.

• building trust.

Based on the technique of asymmetric cryptography, there are a public and a

private key for encrypting and decrypting process of messages, to secure

sensitive data from unauthorized access. Only the public key appears on the

server, that’s why hackers cannot decrypt the data with the private key is on the

user’s gadget. It is called multi-factors authentication to limit guessing password

of the brute force attack [63] which can become DDoS attack [64].

3.5.2 Authorization

Authorization is a closely associated process after the authenticated action. After

the verification of identity of an account, granting permission of token access can

restrict which data can be made operation by which users. To explore how

authorization implement and manage the data access, role-based access control

[65] is a common indispensable approach for most API developers who choose

MongoDB as a database stack. In other words, when a user makes a request,

Authentication business area make a confirm of identity for Authorization server

dispatch a token with the scope [66], to guide the actions’ accounts which

permissions’ levels of users’ roles have privilege.

Besides, there is another popular approach of authorization, is called attribute-

based access control [67], also used for NoSQL database such as MongoDB, but

not supported by MongoDB.

4 Building Login System

As a full stack project, every single module should be well-organized. It is a useful

approach to implement a fully web application from infrastructure, database,

front-end to back-end interfaces, rely on separation of concern principle [68].

Accordingly, MVC architectural pattern [69] provide a good technique for

arranging similar codes by functional based.

In a short introduction of web technology, back to the simplest approach of login

form in the past, plain JavaScript (aka vanilla JavaScript) combines with ajax

technique to read and write data through HTTP mechanism.

In the Node.js ecosystem, template engine is a wide range of handling fast

performance in both client side and server side to manage the static files and

dynamic content of views and layouts. Because there is no safe user input,

handling forms and validating data is a must-do approach. Middleware [70] works

as a pipeline to operate the streaming of every part of the application into every

single edge of the flow as the most suitable design purpose.

An anatomy of MERN stacks’ operation is similar of building a sandcastle. MERN

applied 3-tier architecture, is named MVC model. Firstly, a strong base is

constructed by dependencies of node modules in package.json file. Next, a stack

gathers related components together. In that case, Express plays a role of

pipeline for transferring data between middleware [71], to handle data between

the client-side and server-side.

For that reason, MERN stacks contains hundreds of boilerplates [72] to

implement web application, groove on design patterns to keep implemented

codes in neat organization, easily maintainable application. Subsequently, there

are real lines of codes is applied to replace the existed code in boilerplate. It

means occurred code must be removed by suitable codes to fit the expected

output.

Figure 10. Diagram displays a folder structure of MVC architecture style on

Github.

To push code on Git, developers need to have an account on Github. MVC

architecture style on Github had better followed by client and server folder.

README.md is a file for documenting the introduction of a software product.

Moreover, .gitignore file helps eliminate unnecessary files such as node modules,

dotenv module, which developers want to hide in production launch process.

While server folder is responsible for controller, model; client folder is designed

for view.

Because MVC architecture style chases up the approach of separation of concern

style for scalability, reusability code. Model, view, controller is implemented in

real-life is not easy to catch up. For instance, client folder contains what browser

renders such as package.json, configuration files such as babelrc.js, eslintrc.js,

public folder with index.html file, src folder includes self-sufficient files, or folders

such as specific name of module, reducers, actions, api, images, app.js, index.js,

index.css, et cetera. And server folder consists of package.json, index.js,

controllers folder, models folder, routes folder.

In MVC structure, view is involved in rendering layout, server acts the part of

controlling the routes based on database model. In Github, a distinct of real-life

application, MVC pattern is divided into client and server for code management.

On that account, client should contain components of view layers such as layout,

template. Furthermore, the view from client folder can be optimized by other

linked components, named reducers, constants, action, api, images for

independent tasks. Similarly, the controller from server folder defines properly

routes from the model of database’s part. That being the case of making

connection for database and web server, then focus on layers of rendering view

of UIs, establishing favourable data from request process.

In this below example, a simple MERN stack app is deployment to practice the

theory of client and server in MVC architecture. The tutorial [73] starts with 2

folders: one is for simple-node-server, the other one is for simple-react-app. To

start a React project, which is called single-page-application in React, npx create-

react-app [74] helps developers set up a ready-to-start environment with latest

JavaScript features. For a view, the application is rendered API, is data which is

controlled from the routes which made from models of database. For

dependencies set up in server, we must install necessity packages such as cors,

express, mongoose, body-parser.

Figure 11. Picture shows a block of codes to connect front end side and back-

end side applied MERN stack.

Figure 12. Database is created from CDN (Content Delivery Network) of

MongoDB server.

Figure 13. The database connection is made from database deployment.

From the figure 12, data in thesisDB.users database is connected to the web

application by the connection is made from figure 13.

Figure 14. Browser on localhost displays connection from database.

In figure 14, a final connection between the client and server which is connected

from cloud database of mongoDB. illustrates how user interface should appear.

4.1 Client-Side Rendering

To build a website or a web application, client-side frameworks is not the only

way to do; server-side rendering, a static site generator, a content management

system can do as well. In this part of the thesis, client-side techniques should be

focus on.

Because JavaScript is supported by most of browsers. Therefore, it is a big

advantage for diving into the client-side frameworks of JavaScript.

Figure 15. The chart shows the popularity of client-side programming language.

According to the statistic of the usage of client-side programming languages for

websites on W3Tech.com [75], on 15 October 2022, JavaScript owns a significant

number usage on client-side rendering. Consequently, many frameworks are

created, followed on the rules of DSL (Domain Specific Language) [76].

Accordingly, numerous features [77] of frameworks are utilized by the power of

JavaScript to streamline the data processing which builds UIs.

Name Description DSL types Framework

Application

2

98

1.40 0.10
0

20

40

60

80

100

120

Client-side programming language

None Javascript Flash Others

JSX

[https://jsx.github.io/]

JavaScript and

XML. HTML

combined

syntax.

Embedded DSL Vue.js, React.js

handlerbars Reusable

website

template,

resembles

HTML.

Builder DSL handlebars

Typescript Strictly syntax to

catch errors.

Type-safe DSL

for filtering

syntax

typescript

Component model Writing module. Functional DSL React.js,

Ember.js,

Angular.js,

Vue.js

Properties/props External data of a

rendered

component.

Monadic DSL React.js

State State handling

mechanism.

Monadic DSL React.js

Events Respond. internal DSL N/A

Styling components Style module. Embedded DSL Sass, Less,

PostCSS

Handling

dependencies

JavaScript

module system.

Builder DSL Node.js, babel,

webpack,

Require.js,

Common.js

Components in

components

Component

composes

together.

internal DSL React.js

Dependency

injection

Nested levels in a

component to

Functional DSL Vue.js, React.js,

Ember.js

pass data

through layers.

Lifecycle Stage collection Builder DSL React.js

Rendering elements Virtual DOM Embedded DSL Vue.js, React.js

Routing Client-side

routing,

navigation of

view/layout.

Monadic DSL React.js,

Angular.js

Testing Tools for

JavaScript

environments.

Testing DSL Testing library

Table 4. List of main features of JavaScript frameworks.

The problems can easily happen due to the mingles of features. The priorities to

make a complex application which satisfy users’ expectations seems to be fast,

convenient, and simple by the combination of JavaScript modules, or JavaScript

technology stacks. However, the ignorance of HTML-based can make

applications become inaccessible, or applications lose the coherence. For this

reason, modern application makers should prioritize the purpose with far sight to

arrange the performance of capacity of tech-stacks to make sure the adaptability,

then the user experience takes.

Thanks to innovation of V8 engine, NodeJS become a competitive ecosystem

which have multipurpose frameworks of JavaScript can support render tasks,

update data from client-side as well as server-side.

In other words, server renders JSON object through RESTful API by React

components with MVC frameworks. Technology applications from client side

must handle sensitive data well. It means data must well organized in protected

state, not stored.

4.2 Server-Side Rendering

Building a dynamic website/web application to deliver data from the interaction

between users’ devices and database server is complicated. On top of the

security issues, the management and control sensitive data grow into the art of

handling data. Being on the case, performance is another hard challenge need

to be skip at first. Many server-side frameworks of JavaScript offer countless

methods to make data is secured.

Every website or web application always need a web server to host the

application. And developers need GUIs (Graphical User Interface) as tools to

have eyesight what is happening in implementation codes, such as APIs,

middleware, uploading files to server, querying database.

To start understanding what technology can integrated with HTML, CSS,

JavaScript on browsers, which means client-side rendering, we have a brief

introduction of server-side frameworks. A website may use more than one

programming language on server-side rendering.

Figure 16. Lists of server-side programming languages for website on W3Tech

[78].

77,4 %

7,6 % 5,7 % 4,5 % 2,7 % 2,2 % 1,8 % 1,4 % 0,3 % 0,1 % 0,1 %
0,0 %

10,0 %

20,0 %

30,0 %

40,0 %

50,0 %

60,0 %

70,0 %

80,0 %

90,0 %

Scripting language

PHP ASP.NET Ruby Java Scala JavaScript

static files Python ColdFusion Perl Erlang

In figure 16, PHP is the most popular programming language. On the other hand,

JavaScript is the most popular client-side programming. Having insight thought

on business, we could inspect the report of market position of server-side

programming, on W3Tech to have a big picture before having ideas of doing

software products.

Figure 17. Market position of server-side programming language in reference to

popularity and traffic of the 5 most popular server-side scripting.

Source: https://w3techs.com/technologies/market/programming_language

The diagram illustrates technology of Java, Ruby, ASP.NET, is deployed by fewer

sites, but highly traffic, and PHP is used by many sites but lower traffic sites, in

reverse. This data shows us an acknowledge of the popularity is not on the

performance, neither on security issues.

For instance, Scala [79] is a programming language with object-oriented features

mixed seamlessly with functional programming features. Scala is exploited by top

technology companies [80] such as Linkedin, Twitter, Netflix, AirBnB, Tumblrb,

etc. In this part of the thesis, we can find deep analysis of different scripting

languages on server-side technology.

Programming language Advantage Disadvantage

PHP Platform-independent,

flexibility, easy

management, stability.

Poor quality of secure

data, error-handling,

debugging tools.

Java Secure language,

object-oriented,

platform-independent,

stable, multi-threaded.

Slow performance,

require memory space,

verbose and complex

codes, automatic

garbage collection.

Ruby Ruby on Rails web

application framework.

Slow processing, lower

flexibility.

Python Interpreted language

[81], clear and readable

syntax, diverse libraries,

multi-purpose

programming language,

asynchronous

development, high

compatible with multiple

programming

languages.

Low speed, memory

consumption, database

access, runtime error.

ASP.NET Modular support, web UI

and web APIs, hosting,

fast and open-source,

cross platform,

dependency injection

support, minimize

version conflict of

software development.

Lack of 3rd party library

support, workflow

service, WCF services

implementation.

Scala Scalability, highly

functional paradigm,

inherently immutable

objects, IDE support.

Hybrid paradigm, small

community.

NodeJS (JavaScript) Real time application,

scalability, caching,

cross platform, large

community.

Unstable API,

asynchronous

programming model,

poorly supported

libraries.

Table 5. List of the for and against of diverse programming languages.

Server-side technology is still developing, despite the drawbacks of compatibility,

support, security, and community as well as overwhelming of emerging

frameworks, libraries, dependencies. In that event, we have a look at

stackoverflow community to understand which popular programming languages,

popular frameworks of JavaScript, developer choose to work with.

Figure 18. Statistic based on the questions of programming language from 2009

to 2022.

Source: https://insights.stackoverflow.com/trends

Figure 19. Statistic based on the questions of JavaScript frameworks from 2009

to 2022.

Source: https://insights.stackoverflow.com/trends

Figure 20. Percentage of questions received on stackoverflow community,

according to different types of frameworks of JavaScript, in 2022.

Regardless of using frameworks, pure [82] Node.js can build static files server by

it own. To configure server properly, media type of content must be described by

MIME types [83] to avoid violating the HTTP process.

JavaScript frameworks

Vue.js meteor backbone.js redux ember.js

knowout.js jQuery Reactjs Angularjs Angular

Figure 21. HTTP process in static file server and dynamic file server.

In figure 21, to boost the performance of data handling, static file server is created

to generate HTML template, and combine its templates with requested data

contains URL encoding, GET/POST data, cookies in middleware’s web

application. After that operation, HTTP response will send executed codes in

HTML files to browser.

4.3 OAuth 2.0 protocol

OAuth 2.0 is a protocol for authentication and authorization of Google APIs [84].

Application developers retrieve OAuth 2.0 credentials from the Google API

platform, with an access token from the Google Authorization server. Then, level

of permission will be granted to individual user by inspecting scope of access.

And there are distinct role models based on the access token which direct request

to an API which storing suitable data.

Figure 22. Workflow of three endpoints of OAuth 2.0 protocol processing.

Figure 22 shows the business flow of authorization process of OAuth 2.0 protocol.

At the end, client can receive a redirection which return data. After the authorized

server taking grant access, it sends the token access to support OAuth client get

the requested data from resource owner of resource server. Therefore, API

represents URL string of HTTP with the specific address.

Figure 23. OAuth client is allowed to permitted resource by token.

In figure 23, after building OAuth client, a token was sent from authorized server

for OAuth client usage at protected resource of resource server. There are

many options of parameters for designing APIs. Different scope brings

divergent results to provide an API service in validating scope selections of the

role for authorization procedure.

OAuth 2.0 have main 2 endpoints [85] oauth/token and /authorize with disparate

request parameters [86]. OAuth is only a delegation mechanism, a provision

tool for creating the access token after authorizing users’ roles of each login

account.

4.4 Case study of a login module

To understand how OAuth 2.0 works, the login module of entertainment

application, is named Pinterest, is used for a case study.

Pinterest has 3 methods to login, including login with Facebook, login with

Google, login with Pinterest account. After the account is verified, user can be

redirected to the existed account’s workspace, or leads to admin page based on

admin role of authorization system to modify which fields user wants to follow,

setting account preferences, and protect account with two-factor authentication.

Figure 24. Form login of Pinterest application.

4.4.1 Implement a Google sign-in button

To deployment code [87] for 3rd party login from Google, we need to create

credentials in Google API platform, to take Client ID from Google.

Figure 25. Client ID and Client secret from Google.

Figure 26. Picture shows code folder structure for Google login/logout.

In index.js, DOM of React can render the UI with the modify from .css file, code

of hook like useEffect in App.js is using client ID from Google as the main

responsibility for making authorization with Google account by token.

Figure 27. Sign in button from Google.

Figure 28. Sign out button from Google.

After sign in successful by Google account, user is sent into a link, with the log

out function inside the page.

4.4.2 Network transferring in a login system

For educational purposes, in this thesis, the network traffic analysis [88] is only

applied in a small area to understand the performance of 3rd party API through

TCP communication.

After signing in as username of Google or Facebook or Pinterest account,

Hypertext transfer protocol is used to access the data already have on the world

wide web (WWW). The network package is transferred online through the TCP

protocol [89] with unordered data, error control, flow control, data segments

retransmitted. Then, the URL redirects to a precise address on HTTP link.

For example, after login, Pinterest access to the https://fi.pinterest.com/ link, with

the status code is 200. If there are any problems with the authorization, the

package network will try to notice with the status code 401 [90].

Figure 29. Login page of Pinterest in Canada.

Figure 30. XMLHttpRequest object which interact with the server have error.

In figure 17, URL has been replaced by https://www.pinterest.ca, because the

authorization cannot be completed, the server continues looping request and

response to the server until it can be verified. If the browser starts non-stop iterate

the process, end-user can clear his/her cookies, caching in history of the browser.

When authorization process is finished, we can examine the network package

send and receive data in Pinterest web application. HTTP request and response

objects made of body and header. When headers [91] play a role of a bridge to

helps client and server pass authenticated mandatory information, body holds the

data package [92] of HTML and JSON.

Figure 31. Fetch/XHR data examines on Network tab of Developer tool.

On Network tab of developer tool, Fetch/XHR events shows 2 types of data: xhr

[93] and fetch [94] with status code is 200. Especially, string_usage/, hf_refresh/,

browser_extension/ has status code 204 [95], it means the request has

succeeded with POST/PUT [96] request payload, and there are no content at the

current page.

With Initiator tab, there are full stack trace information of asynchronous callback

process. Timing tab show TCP connection open in browser queue request with

detail time. Cookies tab contains value of _routing_id, csrftoken, _auth,

pinterest_sess, _b, cm_sub.

Getting more attention on JS files, Pinterest use radar.js as origin policy,

recapcha_en.js as strict-origin-when-cross-origin as well as origin. Pinterest also

have scripts for some events such as QuickSave button, SendShareLink button,

and mjs [97] for embedded API; stylesheet for elements’ styles such as icon,

buttons, background, fonts, text, container, even special font language including

Cyrillic, Greek, Hebrew, Latin, Vietnamese. Special font language [98] is

supported external font files by WOFF (Web Open Font Format), and Pinterest

implements WOFF 2.0 for byte-level compression by the recommendation of

W3C.

Because Pinterest is famous for picture sharing platform, the challenge is

handling image data, <div> tag with class need to store images in jpeg form to

keep the neat style. The last but not the least, is manifest.json [99] file, is used to

state metadata of the application.

Figure 32. JSON formatted file for defining metadata of Pinterest.

In figure 20, Pinterest’s manifest file is in JSON format. With the name of android

package means Pinterest started the application with Android [100] first, with the

background colour [101] is white to enhance the general colour contrast. Next,

display mode is minimal-ui [102] means the application’s elements display in

differ by browser. Default orientation is on [103] vertically fit with the devices, with

the icon as in figure 21.

Figure 33. The Pinterest icon appears as application’s logo on home screen of

users’ devices.

Source: https://s.pinimg.com/images/favicon_red_192.png

And the last one is url_handlers [104], using the prefix and suffix of the root link,

being on https://*.pinterest.com, then its convert into 21 origin links: .com, .info,

.at, .com.au, .ca, .ch, .cl, .de, .dk, .es, .fr, .co.uk, .ie, .it, .jp, .co.kr, .com.mx, .nz,

.se, .ph, .pt, .ru and so much more combination generates from the root url with

* symbol such as https://no.pinterest.com, https://fi.pinterest.com, et cetera.

That’s all for the basic surfing network package to acknowledge what a web

application needs to take care of in real-life. The gauge of making a web

application should focus on merging the UI modules, data handling, embedded

DSL, 3rd party API, encryption in particular HTTPS [105], supported libraries and

the mingle of multi programming languages for optimizing the performance of

time speed, memory leaks and memory consumption in web applications.

5 Conclusion

If an adequate preparation in knowledge is made, the logic approach of a good

understanding of information technology knowledge in interaction of web

applications directly influences the way of programming mindset. Since newbie

of developers’ world, can hook what is fashionable modern technology, based on

knowledge of software design, they utterly can create brand-new frameworks, or

programming language in the future. Via case study of Pinterest application, a

login module mingles local login with 3rd party login from Google strategy,

Facebook strategy, network packages are analysed to supply an awareness of

the inner style of how HTTP mechanism works. The topic also strives to

decontaminate redundant pieces of ambiguous parts of programming language

which leads to an excessively deep, overwhelming side of enormous size of

JavaScript frameworks.

In this thesis, there is a merely guide to start a passion in expanding experience

of self-contained a website, web application from a novice level, especially in

JavaScript. Therefore, the knowledge is conveyed in a simplest, shortest way

which enough to understand how an interface from user can interact with

database’s connection from a web server. It called modern technology of this era

where people are not only read information but also work with data.

Consequently, security issues are a vast sector which this thesis cannot mention

deeply.

In future, a login feature can be used as an integrated module to combine with

others multi-purposed application such as e-commerce, education, entrepreneur

companies, organizations. JavaScript is still developing days after days thanks to

open sources and SOLID principles [106] of software design [107]. The security

levels soon will be better and better by middleware package addition in every day

of development. JavaScript at first day is only a client-side rendering, and

nowadays, JavaScript is evolved into a server-side rendering, the JavaScript

security frameworks will be invented likewise.

References

1 TCP 3-Way Handshake Process. Web document accessed 25.06.2022.
https://www.geeksforgeeks.org/tcp-3-way-handshake-process/

2 Roy T. Fielding: Understanding the REST Style. Web document accessed
25.06.2022.
https://www.computer.org/csdl/magazine/co/2015/06/mco2015060007/13r
RUx0xPA5

3 REST Architecture. Web document accessed 25.06.2022.
https://www.redhat.com/en/blog/rest-architecture

4 Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. Web
document accessed 25.06.2022.
https://datatracker.ietf.org/doc/html/rfc7231

5 Steps toward the glory of REST. Web document accessed 25.06.2022.
https://martinfowler.com/articles/richardsonMaturityModel.html

6 What is a REST API? Web document accessed 25.06.2022.
https://www.redhat.com/en/topics/api/what-is-a-rest-api

7 What is an API? Web document accessed 25.06.2022.
https://www.redhat.com/en/topics/api/what-are-application-programming-
interfaces

8 REST Architectural Constraints. Web document accessed 25.06.2022.
https://restfulapi.net/rest-architectural-constraints/

9 What Is an API Endpoint? Web document accessed 26.06.2022.
https://blog.hubspot.com/website/api-endpoint

10 Top 50 Cybersecurity Statistics, Figures and Facts. Web document
accessed 26.06.2022.
https://connect.comptia.org/blog/cyber-security-stats-facts

11 Fetch API. Web document accessed 26.06.2022.
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

12 Cross-Origin Resource Sharing (CORS). Web document accessed
26.06.2022. https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

13 Origin. Web document accessed 26.06.2022.
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin

14 Basics of CORS (Cross-Origin Resource Sharing). Web document
accessed 26.06.2022.
https://dzone.com/articles/basics-of-cors

15 JavaScript: The Good Parts, Douglas Crockford, 2008.

16 Usage statistics of client-side programming languages for websites. Web
document accessed 27.06.2022.
https://w3techs.com/technologies/overview/client_side_language

17 Document Object Model Specification. Web document accessed
03.07.2022.
https://www.w3.org/TR/1998/WD-DOM-19980416/

18 AJAX Introduction. Web document accessed 03.07.2022.
https://www.w3schools.com/xml/ajax_intro.asp

19 Performance Optimization using MERN stack on Web Application. Web
document accessed 04.07.2022.

https://www.ijert.org/research/performance-optimization-using-mern-stack-
on-web-application-IJERTV10IS060239.pdf

20 Quora Question Pairing system. Web document accessed 04.07.2022.
https://github.com/kashaudhan/questionPairing

21 Node.js v18.4.0 documentation. Web document accessed 04.07.2022.
https://nodejs.org/api/child_process.html

22 The Elements of User Experience, Second Edition: User-Centered Design
for the Web and Beyond, Jesse James Garrett, 2010.

23 What is Azure Pipelines? Web document accessed 04.07.2022.
https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/what-
is-azure-pipelines

24 What is Azure Machine Learning? Web document accessed 04.07.2022.
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-
is-azure-machine-learning

25 Full Stack Machine Learning on Azure. Web document accessed
04.07.2022.
https://towardsdatascience.com/full-stack-machine-learning-on-azure-
f0f6b77be07e

26 HTML Tutorial. Web document accessed 04.07.2022.
https://www.w3schools.com/html

27 CSS Tutorial. Web document accessed 04.07.2022.
https://www.w3schools.com/css

28 Web Content. Web document accessed 04.07.2022.
https://www.techopedia.com/definition/23885/web-content

29 Using dynamic styling information. Web document accessed 04.07.2022.
https://developer.mozilla.org/en-
US/docs/Web/API/CSS_Object_Model/Using_dynamic_styling_information

30 Painful JavaScript syntax features. Web document accessed 04.07.2022.
https://ofstack.com/javascript/4507/painful-javascript-syntax-features.html

31 Asynchronous. Web document accessed 04.07.2022.
https://developer.mozilla.org/en-US/docs/Glossary/Asynchronous

32 Ajax: A New Approach to Web Applications. Web document accessed
04.07.2022.
https://immagic.com/eLibrary/ARCHIVES/GENERAL/ADTVPATH/A05021
8G.pdf

33 Ajax Security Issues. Web document accessed 04.07.2022.
https://resources.infosecinstitute.com/topic/ajax-security-issues

34 The Most Popular JavaScript Frameworks – 2011/2021. Web document
accessed 04.07.2022.
https://statisticsanddata.org/data/the-most-popular-javascript-frameworks-
2011-2021

35 Distributed Systems Concepts and Design Fifth Edition, George Coulouris,
Jean Dollimore, Tim Kindberg, Gordon Blair, 2012.

36 NoSQL Databases: An Overview. Web document accessed 31.07.2022.
https://www.thoughtworks.com/insights/blog/nosql-databases-overview

37 ACIDRain: concurrency-related attacks on database backed web
applications. Web document accessed 31.07.2022.
https://blog.acolyer.org/2017/08/07/acidrain-concurrency-related-attacks-
on-database-backed-web-applications/

38 NoSQL Databases: Aggregated DBs. Web document accessed
31.07.2022.
http://www.diag.uniroma1.it//~rosati/dmds-1617/aggregated-databases.pdf

39 In-Memory Databases Explained. Web document accessed 31.07.2022.
https://www.mongodb.com/databases/in-memory-database

40 Introduction to MongoDB. Web document accessed 31.07.2022.
https://www.mongodb.com/docs/manual/introduction/

41 Elegant mongodb object modeling for node.js. Web document accessed
31.07.2022.
https://mongoosejs.com/

42 Express Tutorial Part 3: Using a Database (with Mongoose). Web
document accessed 31.07.2022.
https://developer.mozilla.org/en-US/docs/Learn/Server-
side/Express_Nodejs/mongoose

43 Getting Started with MongoDB & Mongoose. Web document accessed
31.07.2022.
https://www.mongodb.com/developer/languages/javascript/getting-started-
with-mongodb-and-mongoose/

44 Express. Web document accessed 25.10.2022.
https://www.npmjs.com/package/express

45 Express Tutorial Part 3: Using a Database (with Mongoose). Web
document accessed 25.10.2022.
https://developer.mozilla.org/en-US/docs/Learn/Server-
side/Express_Nodejs/mongoose

46 Express API reference. Web document accessed 25.10.2022.
https://expressjs.com/en/4x/api.html

47 ExpressJS Request & Response. Web document accessed 25.10.2022.
https://www.pabbly.com/tutorials/express-js-request-response/

48 React JS. Web document accessed 25.10.2022.
https://reactjs.org/

49 Managing DOM components with ReactDOM. Web document accessed
25.10.2022.
https://blog.logrocket.com/managing-dom-components-reactdom/

50 How and when to force a React component to re-render. Web document
accessed 25.10.2022.
https://blog.logrocket.com/how-when-to-force-react-component-re-render/

51 React Top-Level API. Web document accessed 25.10.2022.
https://reactjs.org/docs/react-api.html

52 Simple in-memory cache in Node.js. Web document accessed
25.10.2022.
https://dev.to/franciscomendes10866/simple-in-memory-cache-in-node-js-
gl4

53 Caching In Node.js Applications. Web document accessed 25.10.2022.
https://www.honeybadger.io/blog/nodejs-caching/

54 Fasten your Node JS Application with a Powerful Caching Mechanism
using Redis. Web document accessed 25.10.2022.
https://medium.com/geekculture/fasten-your-node-js-application-with-a-
powerful-caching-mechanism-using-redis-fd76b8aa482f

55 The Input element from Form Input. Web document accessed 25.10.2022.
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

56 HTML Living Standard. Web document accessed 25.10.2022.
https://html.spec.whatwg.org/multipage/input.html

57 Validator and sanitizer functions of express.js middlewares. Web
document accessed 25.10.2022.
https://express-validator.github.io/docs/

58 Web Authentication API. Web document accessed 25.10.2022.
https://developer.mozilla.org/en-
US/docs/Web/API/Web_Authentication_API

59 Credential Management. Web document accessed 25.10.2022.
https://www.w3.org/TR/credential-management-1/

60 Introduction to JSON Web Tokens. Web document accessed 25.10.2022.
https://jwt.io/introduction

61 Web Authentication: An API for accessing Public Key Credentials. Web
document accessed 25.10.2022.
https://www.w3.org/TR/webauthn-2/

62 About WebAuthn. Web document accessed 25.10.2022.
https://webauthn.guide/

63 Blocking Brute Force Attacks. Web document accessed 25.10.2022.
https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks

64 Understanding Denial of Service and Brute Force Attacks. Web document
accessed 25.10.2022.
https://blog.sucuri.net/2014/03/understanding-denial-of-service-and-brute-
force-attacks-wordpress-joomla-drupal-vbulletin.html

65 Role-Based Access Control. Web document accessed 25.10.2022.
https://www.mongodb.com/docs/manual/core/authorization/

66 Access Token Scope of OAuth 2.0 protocol. Web document accessed
25.10.2022.
https://www.rfc-editor.org/rfc/rfc6749#section-3.3

67 Eeshan Gupta, Jaideep Vaidya, Shamik Sura, Vijayalakshmi Atluri, 2021.
Attribute-Based Access Control for NoSQL Databases. Web document
accessed 25.10.2022.
https://dl.acm.org/doi/pdf/10.1145/3422337.3450323

68 David Farley, 2021. Modern Software Engineering: Doing What Works to
Build Better Software Faster.

69 The Model View Controller Pattern – MVC Architecture and Frameworks
Explained. Web document accessed 25.10.2022.
https://www.freecodecamp.org/news/the-model-view-controller-pattern-
mvc-architecture-and-frameworks-explained/

70 Middleware Definition. Web document accessed 25.10.2022.
https://www.techtarget.com/searchapparchitecture/definition/middleware

71 Using middleware. Web document accessed 25.10.2022.
https://expressjs.com/en/guide/using-middleware.html

72 A highly scalable, professional boilerplate for building fast, robust, and
adaptable mern web apps. Web document accessed 25.10.2022.
https://github.com/getspooky/cookiescript

73 Creating a Simple MERN Fullstack Application. Web document accessed
25.10.2022.
https://niruhan.medium.com/creating-a-simple-mern-fullstack-application-
2cbcfbdf3940

74 Popular React toolchains: Create a New React App. Web document
accessed 25.10.2022. https://reactjs.org/docs/create-a-new-react-app.html

75 Usage statistics of client-side programming languages for websites. Web
document accessed 25.10.2022.
https://w3techs.com/technologies/overview/client_side_language

76 Gabor Karsa, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, Steven Völkel, 2009. Design Guidelines for Domain Specific
Languages. Web document accessed 25.10.2022.
https://www.se-rwth.de/publications/Design-Guidelines-for-Domain-
Specific-Languages.pdf

77 Framework main features. Web document accessed 25.10.2022.
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-
side_JavaScript_frameworks/Main_features

78 Usage statistics of server-side programming languages for websites. Web
document accessed 25.10.2022.
https://w3techs.com/technologies/overview/programming_language

79 The Scala Programming Language. Web document accessed 25.10.2022.
https://www.scala-lang.org/

80 How Tech Giants Use Scala. Web document accessed 25.10.2022.
https://sysgears.com/articles/how-tech-giants-use-scala/

81 Interpreted vs Compiled Programming Languages: What's the Difference?.
Web document accessed 25.10.2022.
https://www.freecodecamp.org/news/compiled-versus-interpreted-
languages/

82 Node.js server without a framework. Web document accessed 25.10.2022.
https://developer.mozilla.org/en-US/docs/Learn/Server-
side/Node_server_without_framework

83 Properly configuring server MIME types. Web document accessed
25.10.2022.
https://developer.mozilla.org/en-US/docs/Learn/Server-
side/Configuring_server_MIME_types

84 Using OAuth 2.0 to Access Google APIs. Web document accessed
25.10.2022.
https://developers.google.com/identity/protocols/oauth2

85 OAuth 2.0 Authorization Framework. Web document accessed
25.10.2022. https://auth0.com/docs/authenticate/protocols/oauth

86 Antonio Sanso and Justin Richer, 2017. OAuth 2 in Action.

87 Thecoopercodes, 2022. Google Identity Services Login with React (2022
React Google Login)
https://www.youtube.com/watch?v=roxC8SMs7HU

88 Network traffic analysis for IR: Data collection and monitoring. Web
document accessed 25.10.2022.
https://resources.infosecinstitute.com/topic/network-traffic-analysis-for-ir-
data-collection-and-monitoring/

89 Examples of TCP and UDP in Real Life. Web document accessed
25.10.2022.
https://www.geeksforgeeks.org/examples-of-tcp-and-udp-in-real-life/

90 HTTP status of Unauthorized. Web document accessed 25.10.2022.
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/401

91 HTTP headers. Web document accessed 25.10.2022.
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

92 HTTP Messages. Web document accessed 25.10.2022.
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

93 XHR (XMLHttpRequest). Web document accessed 25.10.2022.
https://developer.mozilla.org/en-
US/docs/Glossary/XHR_(XMLHttpRequest)

94 Introduction to fetch data. Web document accessed 25.10.2022.
https://web.dev/introduction-to-fetch/

95 The HTTP 204 No Content. Web document accessed 25.10.2022.
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/204

96 The HTTP PUT request method. Web document accessed 25.10.2022.
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PUT

97 A new approach to embedded scripting. Web document accessed
25.10.2022.
https://mongoose-os.com/blog/mjs-a-new-approach-to-embedded-
scripting/

98 The Web Open Font Format (WOFF). Web document accessed
25.10.2022. https://developer.mozilla.org/en-US/docs/Web/Guide/WOFF

99 Using manifest.json. Web document accessed 25.10.2022.
https://developer.mozilla.org/en-US/docs/Mozilla/Add-
ons/WebExtensions/manifest.json

100 Pinterest releases new iPad and Android apps. Web document accessed
25.10.2022. https://edition.cnn.com/2012/08/15/tech/mobile/pinterest-
mobile-apps-android-ipad/index.html

101 Why You Should Never Use Pure Black for Text or Backgrounds. Web
document accessed 25.10.2022.
https://uxmovement.com/content/why-you-should-never-use-pure-black-
for-text-or-backgrounds/

102 The display mode of media feature. Web document accessed 25.10.2022.
https://developer.mozilla.org/en-US/docs/Web/Manifest/display

103 ScreenOrientation in Android Application. Web document accessed
25.10.2022.
https://developer.android.com/reference/androidx/browser/trusted/Screen
Orientation

104 URL Handler usage. Web document accessed 25.10.2022.
https://wcm.io/handler/url/usage.html

105 Introduction to HTTPS. Web document accessed 25.10.2022.
https://https.cio.gov/faq/

106 Gary McLean Hall, 2017. Adaptive code: Agile coding with design patterns
and SOLID principle Second Edition.

107 Richard F.Schmidt, 2013. Software Engineering: Architecture-Driven
Software Development.

Appendices

Appendix 1: MVC folder structure

Appendix 2: MERN stacks Boilerplate Template

Appendix 3: Google Sign in/Sign out Button

