

Developing Kanban board backend by using

Django web framework

Janne Kavander

2022 Laurea

Laurea University of Applied Sciences

Developing Kanban board backend by using Django web

framework

 Janne Kavander

 Business Information Technology

 Thesis

 October 2022

Laurea University of Applied Sciences Abstract

Business Information Technology

Bachelor of Business Administration

Janne Kavander

Developing Kanban board backend by using Django web framework

Year 2022 Number of pages 51

The topic of this thesis was to develop a new Kanban board backend for the beneficiary

organization, Workfellow Oy. The objective was to develop a Kanban board using the Django

web framework, as requested by the beneficiary organization. Throughout the project, good

programming practices were applied. The new backend was designed and developed from

scratch with the requirements to reduce loading times, eliminate the legacy database, and

make the backend more scalable and maintainable.

The knowledge base of the thesis describes the most important topics related to the backend

implementation, such as what Kanban is, the good programming practices Workfellow

utilizes, and the main technologies used during the development. The implementation of the

thesis was split into two major phases: design and development. The design phase helped

highlight the old implementation’s possible issues while offering possible solutions. The

development phase explains in chronological order how the backend was done in steps by

using the Django web framework, with each step having a review session with working life

representatives. During both phases, Scrum was used as a development method to control the

development work efficiently.

The project met the objective and all the requirements ahead of schedule. The new backend

replaced the old backend, allowing the legacy database to be removed. The Django web

framework significantly reduced the codebase with good programming practices, making it

more maintainable, scalable, and optimized. During testing, the new backend was three to

five as performant compared with the old backend. The testing also revealed a potential

development suggestion to optimize the rendering of the frontend.

Keywords: backend, Django, Kanban, Python, software development

Contents

1 Introduction .. 5

1.1 Case company .. 5

1.2 Objective .. 6

1.3 Potential risks .. 6

2 Development methods .. 7

2.1 Scrum .. 7

2.2 Practices in Workfellow ... 8

3 Knowledge base ... 9

3.1 Kanban ... 9

3.2 Main technologies .. 10

3.2.1 Python .. 11

3.2.2 Django .. 12

3.2.3 SQL ... 14

3.3 Good programming practices ... 14

4 Implementation .. 16

4.1 Design phase .. 16

4.1.1 Current data model .. 18

4.1.2 New data model .. 21

4.2 Development phase .. 22

4.2.1 Initializing a new application ... 22

4.2.2 Creating the first models, endpoints, and views 25

4.2.3 Card functionality .. 28

4.2.4 Card movement within the Kanban board 34

4.2.5 Initializing the Kanban board ... 36

4.2.6 Activity feed and email notifications .. 39

4.2.7 Preparing for the final review .. 41

5 Analysis of results ... 42

6 Conclusions ... 43

References ... 45

Figures ... 51

 5

1 Introduction

The topic of this thesis is to develop a new backend for Workfellow Oy’s Kanban board which

is a tool for enhancing and streamlining the effectiveness of any work (Hietaniemi 2020). The

case company has noticed that the current backend is insufficient for their customers and

development team. Therefore, it has started to cause various problems that must be

addressed.

There are numerous reasons why this thesis work was carried on and how it provides value for

the case company. The biggest obstacles with the current backend implementation are that

the code has turned into legacy code utilizing technologies that the company no longer uses.

Due to its inability to scale well, the backend is starting to have unnecessarily long loading

times for the customers, negatively affecting customer experience. Also, it is increasingly

more complex and resource-intensive for new features to be developed on top of the existing

backend. Getting rid of the legacy code and technologies will also help simplify the current

infrastructure and DevOps pipelines and reduce the number of technologies developers need

to learn and upkeep. The new backend will be designed and developed from the ground up to

solve these issues.

1.1 Case company

The beneficiary organization that commissioned this thesis is Workfellow Oy. The author of

this thesis has been employed at Workfellow since March 2021 as a Software engineer.

Workfellow is an IT startup developing a work intelligence platform that analyzes business-

related work in real-time, which helps companies towards digital transformation and

improved automation and process development (Workfellow 2022a; Workfellow 2022b).

Simply put, the platform will help to understand the reality of work done in any organization,

increasing their competitiveness (Kivelä 2022).

Workfellow was founded in 2019 by two founders, Kustaa Kivelä and Henri Wiik (Finder 2022).

They founded the company together based on the idea that the current way of doing

knowledge work is broken. According to Zobell (2018), in 2018, companies were estimated to

invest $1.3 trillion in digital transformation projects, but 70% of the projects were expected

to fail entirely or at least partially. Therefore, the enormous missed potential inspired the

two founders to start their mission to change how people work. Over the last three years,

Workfellow has demonstrated its potential by growing fast from just being two employee

startup to employing roughly 20 employees and a few consultants (Workfellow 2022c). In

2021, Workfellow also raised $3.12 million in Series A funding, which will help accelerate the

company’s growth and digital transformation (Turdibayeva 2021).

 6

1.2 Objective

The objective of this thesis is to develop a new Kanban board backend by using the Django

web framework as the primary technology. The case company decided to use Django as a

primary technology for development. Throughout the project, good programming practices

will be applied. Once completed, the new backend will replace the case company’s existing

Kanban board backend. Timeframe for the entirety of the thesis work has been set as

beginning from May 2022 and completing by December 2022.

During the implementation, there will be numerous review stages where the case company

will analyze and iterate on how the project is ongoing and what could be improved. In the

end, there will be a more thorough final review where the results are analyzed and assessed

based on requirements set by the case company. The requirements are that the new backend

must reduce the unreasonable loading times, eliminate the legacy database in use, and make

the backend more scalable and maintainable for the development team. Once the final

review has been approved, and the requirements met, the thesis is considered done.

1.3 Potential risks

Since the planning of this thesis began, it has been precious to assess the risks that might be

encountered on the way during the implementation. Based on the initial assessment, the risks

could be divided into two main factors.

The most significant risks are associated with the schedule of the implementation of this

thesis. The schedule is challenging as the author wants to finish the thesis in less than half a

year while continuing his full-time job as a Software engineer at Workfellow. On top of that,

the schedule also brings difficulties because of the thesis advisor’s long summer holidays and

the fact that he will retire in January 2023. Hence, the thesis has a strict and challenging

schedule of when it needs to be finished, so proper planning is essential.

The other main risk factor comes from Workfellow being an IT startup with only a few

developers in the company. Startup environments are often hectic, and things change very

swiftly, so there are always disruptions to work being focused on. This not only makes it

harder to focus on the implementation but also restricts the available time that can be

allocated to the project. It is also vital to consider and anticipate what happens in the event

of the author getting sick or encountering difficulties in his personal life and not just in his

work life.

 7

2 Development methods

After defining the project’s objective, it is essential to consider what developing methods

should be used to achieve the set objective. The methods should be chosen carefully because

they significantly impact the execution of any successful software development project. It

will be advantageous to comprehend the underlying ideas that underpin and guide those

mechanics before we go any further into Scrum's mechanics and how it ties to the way of

development in Workfellow and the thesis implementation.

Generally, product development is not easily predictable, and Workfellow’s product

development is no different. In this case, the agile development method is often used to

minimize risks in product development. According to a report published by CollabNet and

VersionOne (2018, 8), adopting agile is beneficial for numerous reasons, most importantly,

the ability to manage changing priorities, project visibility, predictability, risk reduction,

business alignment, and IT alignment. Those are significant reasons why Workfellow has

adopted agile methods in software development.

2.1 Scrum

Scrum is a simple, agile framework that aids organizations, groups, and individuals in

producing value by coming up with innovative answers to challenging issues (Schwaber &

Sutherland 2020, 4). The framework was initially created in the early 1990s by Ken Schwaber

and Jeff Sutherland and is often used to develop cutting-edge services and products.

(Schwaber and Sutherland 2020, 2; Rubin 2013, chap. 1). As of 2017, it is still a widely

adopted method amongst agile organizations, with 70% using some form of Scrum and 14%

using a combination of multiple agile methods (CollabNet & VersionOne 2018, 9).

Figure 1: Example of Scrum process (Viastudy 2022)

 8

Figure 1 above shows an example of a visualized scrum process. The work for a difficult

challenge is put into a product backlog by a product owner, according to Scrum, which calls

for a Scrum Master to support that environment. During a sprint, the developers of the Scrum

team turn a portion of the work into an increase in value. The whole Scrum team, consisting

of developers, a product owner, and a Scrum master, then examines the outcomes with its

stakeholders and tries to make gradual improvements for the following sprints. This cycle is

then repeated. (Schwaber & Sutherland 2020, 4-6.) It is a very iterative process, and it

gradually tries to improve how the team functions during it continuously.

2.2 Practices in Workfellow

It is common for startups to have only partially functional processes because they tend to be

smaller and tighter on resources than more prominent companies. Workfellow used to be the

same until, as of early 2021, they slowly started to adopt the Scrum method into the software

development as the team grew slightly more prominent. There was a lot of trial and error to

see how the process would work ultimately, but eventually, after months, it finally started to

shape up. However, it is still far from the perfect way to develop software in sprints.

According to Schwaber and Sutherland (2020, 6), a Scrum team typically should consist of

equal or less than ten people to be more productive and improve communication between

team members. Currently, as of writing this, the Scrum team at Workfellow consists of one

product owner, one Scrum Master, and five developers. Although it is partially mixed, due to

insufficient resources, one developer must devote most of his work time to acting as a Scrum

Master because no dedicated person is hired.

The implementation phase of this thesis will be utilizing the Scrum method. The sprints are

made in one-week cycles, allowing swift and iterative decision-making. Typically, the

previous week’s sprint will be closed on Monday morning, and the Scrum team looks at the

burndown chart to see the team’s velocity. After the closing, a new sprint planning will

commence, where the developers will use Fibonacci numbers to vote complexity points for

each issue in the new sprint. The estimated complexity points are then used to measure the

team’s velocity and to shape the sprint into an accomplishable milestone. After the sprint has

been successfully planned and started, the last step usually will be a vote of confidence for

each developer to see how optimistic they feel about the amount of work within the sprint.

Daily 15-minute standups during the sprint will keep everyone in the loop on what is

happening that day and what has happened the previous day. On the last day of the sprint,

Friday, the next sprint’s issues are discussed and defined within the Scrum team, so the issues

are ready to be voted in Monday’s sprint planning. Retrospectives are also done monthly,

generally used to get more in-depth feedback on how the developers feel about the last four

sprints. Workfellow uses Jira for agile project management, IdeaBoardz for retrospectives,

and Slack to communicate to ensure sprints go smoothly.

 9

3 Knowledge base

When developing quality software, there are often multiple technological choices for various

purposes. The selection should be based on the needs, requirements, objectives, and

personal preferences of the developers working with the technology. The technologies used

during the thesis have been carefully selected based on the needs of the current development

team and their skills. Most of the developers at Workfellow are familiar with Django already,

and a significant part of other backend features are run in Django already, making it an ideal

choice as a primary technology. Therefore, the case company chose it as a primary

technology to develop the new Kanban board backend.

In the knowledge base, we will be going through more carefully the main concepts, including

Kanban, frontend and backend, Python, Django, and SQL, and lastly, what are good

programming practices. It is important to note that good programming practices can differ

between different organizations. Therefore, only the most essential practices will be

introduced.

3.1 Kanban

Kanban Method helps organizations, teams, and individuals visualize, manage, and balance

their work which helps to optimize the work in incremental steps to maximize efficiency.

Kanban consists of signal cards that represent pieces of work. The work amount for each card

should be kept relatively small to be accomplishable in a reasonable timeframe. Only a

specified number of cards can be circulated in the Kanban system at any time. This number

should be defined carefully because it limits work-in-progress. Kanban has a pull system,

where if the number of cards is equal to the number of maximum amounts in circulation, no

additional work can be started until some of the cards are completed, which will be removed

from circulation upon completion. Therefore, cards can only be put in circulation if there is

enough agreed capacity. It is not a Kanban system if there are no restrictions on work-in-

progress. (Anderson 2010, chap. 2.)

To utilize the Kanban Method effectively, it is recommended to use the Kanban board to

visualize the workflow. A Kanban board is made up of several columns that show how a

workflow's stages advance. Each column has a work-in-progress limit indicating the capacity

of cards allowed at that workflow’s stage. (Rehkopf 2022; Boos & Furlong 2016.) The

workflow visualization benefits often come from the fact that the visualization of the

workflow is usually understood differently by various employees within the organization. This

helps teams observe how the work-in-progress flows through the workflow while highlighting

potential critical issues. (Anderson 2010, chap. 2; Boos & Furlong 2016.)

 10

3.2 Main technologies

In web development, you might often hear the words frontend and backend. Frontend,

sometimes referred to as client side, means software features the user can see and interact

with as an interface. Quite the contrary, the software features the user cannot see or directly

interact with are called the backend or server side. (TechTerms 2020; GeeksForGeeks 2022.)

For example, a user scrolling through Amazon’s e-commercial website and clicking an order

button on their pay cart happens on the frontend. The event triggered after clicking the order

button is handled chiefly on the backend, where the user has no visibility.

Since the frontend and backend are separated, they need a reliable way of communicating

with each other. This is where Hypertext Transfer Protocol, famously known as HTTP, comes

in, which takes care of communication between the client and server (Gourley & Totty 2002,

chap. 1). To give a simplified example, a user’s client could send an HTTP request to the

server to get all users for a given website. After receiving the request, the server sends a

fetch request to get all stored users in the connected database that also exists in the

backend. After fetching the users from the database, the server could send the users as an

HTTP response for the client that can then be visualized for the user who initially requested

the data.

Figure 2: Simplified frontend and backend structure (based on Gourley & Totty 2002, chap. 1;

Codeacademy 2022)

Before HTTP requests can be sent from the client to the server, it needs to know where the

server is and the resource it wants to exist. The exact location of the resource is stored as a

uniform resource identifier (URI). One of the most common examples of URI is the uniform

resource locator (URL) that many people worldwide interact with daily on the internet using

their web browsers. (Gourley & Totty 2002, chap. 1.) An example of a URL is

https://www.google.com/ which tells the protocol to access the resource and its location

(Gourley & Totty 2002, chap. 2).

 11

All the HTTP requests also need a method so the server can understand what the request

wants to be done. The most common methods are GET, PUT, POST, and DELETE. GET is to

retrieve a resource from server to client, PUT is to replace or create a new resource on the

server, POST is to send resources from client to server, and DELETE is to delete the existing

resource on the server. When the server handles the HTTP request, it will be returned as an

HTTP response with a status code and, optionally, the requested resource from the server.

(Gourley & Totty 2002, chap. 3.)

3.2.1 Python

Python is a programming language that started to originate in the late 1980s. During that

time, a programmer named Guido Van Rossum used a programming language called ABC,

similar to Pascal or BASIC programming languages. Although he immensely enjoyed the

language, Van Rossum knew its flaws. He was not fond of the fact that ABC had significant

disadvantages, such as the monolithic structure and unstructured error handling. These things

made it increasingly difficult to debug and modify the code, which he believed would hinder

the language’s ability to become more popular over time. This partly motivated Van Rossum

to start implementing his programming language, Python. (Telles 2008, chap. 1.) He released

his first stable version of Python v0.9.1 in February 1991 (Van Rossum 1991; Python 2022a).

In 2022 Python has remained in programming language popularity during the decades.

According to a massive developer survey done in 2022 by Stack Overflow, Python is the fourth

most popular technology in a list of the most popular programming, scripting, and markup

languages, only falling behind JavaScript, HTML/CSS, and SQL. It is used by 43% of the

professional developers who answered the survey. (Stack Overflow 2022a.) During the four

decades, Python has seen stable releases frequently ranging from 6 to 18 months, with the

newest version as of writing being v3.10.4 which was released on 24 March 2022 (Python

2022b).

Many developers like to take Python as their first programming language to learn due to its

simplicity and consistent syntax (Python docs 2022a). Python is not only popular due to its

easiness of reading and writing the language but also because it is potent. The level of power

and maturity clearly shows because lots of companies are using Python for doing significant

projects using it as the programming language (Python docs 2022b).

One slightly controversial topic about Python is its loosely or strongly typed programming

language. When assigning a variable, you don’t need to specify what type of the variable is,

which takes less effort and time for development (Telles 2008, chap. 2). On the other hand,

type declarations reduce time spent on hard-to-debug problems and make the code easier to

understand, so ultimately it comes to personal preference whether to like it or not. Python

3.5v started to support optional type declarations run at runtime (Python docs 2022c).

 12

A Python project named pydantic has also gotten hugely popular, extending Python’s typing

to become even more potent, helping to validate the handled data and giving understandable

errors (Pydantic 2022).

3.2.2 Django

Web frameworks, like any other frameworks, are a great addition to programming because

they allow you to focus more on development without having to do everything from the

ground up. According to the official Django project’s website (Django Project 2022a),

Django’s high-level Python web framework supports swift development and streamlined,

practical design. Like many other frameworks, it helps to streamline, making web

applications more straightforward to implement without much of the hassle web development

typically has. Some of the biggest perks of using Django are its swiftness, security, scalability,

and versatility, and on top of that, it’s free to use. (Behrens 2012, chap. 1; Django Project

2022b.) Django takes care of much of the boring stuff underneath what typically happens in

web development. It allows the developers to bring much-needed shortcuts to focus more on

developing new features. However, there is sometimes a downside to taking shortcuts. During

the development, it is good to understand why those shortcuts exist in the first place and how

they work to avoid crucial mistakes.

To understand why Django was implemented in the first place, it is essential to understand

the real motivation behind it. The team that initially made Django in 2003 needed a way to

develop new features at an extreme pace, so they figured that developing their own

framework would solve that. The way they created Django ensured that the codebase would

be easily maintainable and performant. Django started to mature from that point on quickly,

and by July 2005, they released it to the public as an open-source project, and it has been in

active development to this day. (Behrens 2012.) According to Stack Overflow Survey (2022b),

Django is the most popular web framework amongst professional Python developers,

indicating it is a very mature framework. This is helpful because it demonstrates ample

support behind this framework, complementing the fact that Django’s documentation also

feels very comprehensive.

In software engineering, there is a well-known architectural design pattern called separation

of concerns, which helps to decouple different logic from each other (Natesan 2019). The

principle would be that when one piece of logic breaks, it will not affect the other pieces of

logic. The way the code is organized plays a significant role in this. Django does not enforce a

specific structure but has some default abstractions, like model, view, and template (Django

Project 2022c).

 13

Figure 3: Common Django project structure (based on Django Project 2022d; Django Project

2022e; Django Project 2022f)

As seen in figure 3 above, the model layer is an abstraction where you can design your data

models, which allows you to represent database structure. This allows the developer to use

Django’s very powerful Object-Relation Mapping (ORM) technique. ORM allows for features

like allowing the developer to automatically create changes in the database layer by running

simple migration commands and creating database queries without knowing how to write the

database queries in their programming languages, which can be very complicated, repetitive,

and hard to optimize. (Liang 2021; Django Project 2022f.)

After the model layer, there are the view layer and application logic. The view layer consists

of business logic to handle the user’s HTTP requests. After the request is received, it is

responsible for managing the HTTP requests and returning proper HTTP responses. (Django

Project 2022d.) Since that is the sole purpose of the view layer, it should not be mixed up

 14

with other application logic that is not responsible for returning server responses. That logic

should be put into a separate file from the view logic in the application logic.

Django templates are the last layer responsible for all the rendering and visuals of the

application to the user. The templates use Django’s implemented templating language. The

Django project can be implemented without any templates if needed. In that case, other

frontend technologies can be used with the Django backend. (Django Project 2022e.)

3.2.3 SQL

In today’s world, databases are necessary because they allow data to be stored in a

structured manner. Usually, the databases are hosted by computer systems to manage their

functionality. It needs software, a database management system, or DBMS for short, to

address that. (Oracle 2022.)

There are many different types of databases, probably the most common being non-relational

and relational databases. The relational databases date back to the year 1969 when Dr. Edgar

F. Codd came up with the design, which during later years was commercialized and became

very popular even to this date. The database reminds of Excel spreadsheets because the data

is stored in rows (records) and columns (fields) inside tables. In addition, tables should have a

maximum of one primary key, which is used as a unique identifier for each record, which

helps to join different tables’ data. (Shields 2019, chap. 1; Beaulieu 2020, chap. 1.) Non-

relational databases, on the other hand, do not consist of rows and columns. Instead, they

rely on a storage model tailored to the data’s specific needs (Microsoft 2022a).

Dr. Edgar F. Codd also suggested a query language that could be used to manage relational

databases, which later became known as SEQUEL, more commonly known as SQL. Although

four decades later, SQL has seen quite substantial changes, like becoming an ANSI/ISO

standard and a standard language that can also be used on non-relational databases.

(Beaulieu 2020.) During the decades, SQL has not gone away in popularity because the top

four of the most used database technologies amongst professional developers in order, as of

2022, are PostgreSQL, MySQL, SQLite, and Microsoft SQL Server, which are known as

relational database management systems (RDBMS) (Stack Overflow 2022c; Shields 2019, chap.

1). Some RDBMSs are more loved, hated, and preferred than others because they’re different

implementations of the SQL standard with its pros and cons.

3.3 Good programming practices

Numerous good programming practices exist for different purposes (McConnell 2004, chap 3;

Juric 2000). Some are generally approved best practices, and some are company-specific best

practices. Following good practices allows organizations and individuals to manage complexity

 15

and write maintainable code (Winters, Manshreck & Wright 2020, chap 3.) Workfellow’s

development team follows best practices set by themselves and the industry. Due to the

sheer number of different practices, all of those won’t be in detail in this thesis.

Robert C. Martin has written this fantastic book about clean code, which helps to take an

objective look into good programming practices that help produce cleaner code. According to

Martin (2009, chap. 1), if everyone on the team can easily comprehend the code, it is clean

code. Clean code is readable and extendable by developers besides the code’s original

author. If the code is clean and easily understandable, it helps the developers to read, edit

and maintain the codebase. To become a professional developer, clean code is a must.

Generally, it is wise that each member of the developer team should adhere to a coding

standard based on accepted industry practices (Martin 2009, chap. 17). It is not only an

individual effort but a collective team effort to follow those. These conventions will also help

keep the code consistent which is an important aspect. (Python Enhancement Proposals

2013). An example of a coding standard is Django’s folder structure that we saw previously,

which it does not enforce but recommends using. This helps keep separate concepts vertically

in the source code structure, which allows to separate and isolate concerns and features

(Martin 2009, chap. 5). It will enable the code to be defined closer where it is used by similar

grouping code vertically. That helps keep the code cleaner by making it easier to maintain

and preventing isolated concepts from breaking each other.

What separates a senior developer from a junior developer is not the code’s complexity being

higher but its simplicity. Therefore, it is good to keep complexity as little as you can (Martin

2009, chap. 12). There is even an abbreviation for this used; keep it stupid simple (KISS)

(Interaction Design Foundation 2022). One important to help keep the code simple is by

utilizing the functions correctly. Functions should be named appropriately, kept small, serve

only one purpose, and keep arguments to a bare minimum. Also, they shouldn’t cause side

effects (Martin 2009, chap. 3). The side effects should be avoided at all costs since they

might cause tough-to-debug problems that take a significant amount of time. Functions also

play a big role in reducing code duplication. Try to make reusable and precise functions, so

you don’t repeat yourself too much because it’s challenging to maintain duplicated code

existing in multiple places, and it becomes an easily error-prone endeavor (Martin 2009, chap.

3).

According to Fowler (2022, chap. 2) and Martin (2009, chap. 1), the significant benefits of

clean code are that it significantly lowers complexity and increases the developer team’s

performance. Therefore, it is not sufficient to develop good clean code if it’s left there

unattended to degrade gradually. To avoid degradation, the code needs active development,

such as refactoring. Refactoring is a modification made to software's underlying structure to

 16

make it simpler to comprehend and less expensive to develop without altering its discernible

behavior (Fowler 2019, chap. 2). Another good practice that some developers use is the

famous boy scout rule about leaving the campground cleaner than you found. Rather, instead

of the campground, they mean the code (Martin 2009, chap. 1).

4 Implementation

The implementation is split into two primary phases: design and development. The design

phase is supposed to help highlight the possible problems the case company and the

customers have encountered or possibly will encounter in the future. The development phase

is split into reasonable moderate-sized chunks of work, explaining why the work is done, the

essential steps on how it is made, how it works, and validating the results by frequent manual

tests and review sessions. After the development phase, there will be a final review to

validate that the results exceed expectations. Once the final review is approved, the new

backend will be moved to production, and the existing customers will be migrated to the new

Kanban board, which is not covered in the thesis.

Both phases’ implementation responsibility falls solely on the thesis author. The frequent

reviews are done with the help of Janne Sarja (Software Engineer at Workfellow) and Marcin

Michniewicz (Chief Technology Officer at Workfellow) to ensure the quality of the

implementation is up to the standards and expectations of Workfellow and following good

programming practices. The timeframes for the implementation phases have been split as

follows: one sprint for the design phase and two sprints for the development phase, totaling

three weeks of full-time work.

It is worth noting that this thesis’ scope is purely on the backend side. Therefore, no changes

will be made on the frontend side as part of the thesis. While the objective is that the

discernible behavior of the new backend should stay the same, the underlying behavior will

need to be significantly altered to achieve the best results.

4.1 Design phase

The objective of the design phase is to first understand on a high level why the Kanban board

is an essential part of Workfellow’s product. After that is easier to start analyzing the current

problems with the implementation and possibly anticipating future problems, this should

hopefully give some valuable insights on how the issues could be tackled. The duration of the

design phase is supposed to be a full one-week sprint.

Workfellow’s primary area of expertise is in the process and task mining industry (Workfellow

2022a). The customer needs a plug-in to connect their teams’ computers to Work API created

 17

by Workfellow. Work API collects large quantities of pertinent business data directly from

graphical user interfaces in an automated and secure manner. (Numminen 2022.) As of early

2022, this data used to be stored in the Microsoft SQL Server database, which used to hold

tens of millions of data rows. This raw data used to be aggregated and distributed amongst

205 tables and 256 views (virtual tables) within the database. It was quickly realized that this

kind of solution wouldn’t scale in the future very well, which is why there were some

significant changes to the Work API that now utilizes MongoDB as a data storage. As a result,

most of the relational database’s tables and views were obliterated: leaving only ten

remaining tables, which the current Kanban backend is utilizing. After the Work API’s data

has been collected, it is shown on a dashboard accessible to the customers. Customers get

actionable insights from the dashboard based on the visualized data, which they can start to

optimize. Based on the visualized data, users can then create cards on the Kanban view and

track how the business process optimization is ongoing. Workfellow wants to provide a good

Kanban board experience for the customers to maximize their dashboard usage and help track

ongoing business process optimizations more quickly than external Kanban board tools, such

as Jira, would allow.

Figure 4: Kanban board on Workfellow's product

The Kanban view backend is run on the Django application. Still, it does not utilize Django’s

valuable features like the Object-Relation Mapping (ORM) technique and many other useful

features. This means all the code is written in raw SQL sentences which has numerous

disadvantages over Django’s ORM. The biggest problems are that it is hard to maintain, poorly

 18

optimized, easily broken, and hard to understand. This makes further development on the

backend increasingly more challenging to implement, which means using more time and

money in the longer run. Moving most of the logic to utilize the ORM helps address all these

highlighted issues. The database can finally be obliterated by moving the last ten existing

tables to use ORM. This will also help simplify the existing infrastructure and reduce resources

like costs and time needed to upkeep it.

Despite using raw SQL to do queries to the database being the most significant obstacle

currently, there are other problems with the backend. However, the other issues are more or

less related to that. The backend is roughly over 2000 lines of code that are not following

many good programming practices making the code increasingly harder to maintain. For

example, much inefficient looping is happening on the code, making the backend response

times considerably higher than they should be. One action done on the Kanban view can have

a few seconds of delay due to poor performance. By initial testing, it seems to be increasing

almost exponentially to the number of cards on the Kanban view, which is a distressing sign.

It quickly affects the user experience massively once the company starts to have tens of cards

on the Kanban board, rendering the Kanban frustrating to use.

4.1.1 Current data model

To understand the known and unknown problems more in-depth from an engineering point of

view, it is sometimes helpful to visualize them. This often brings insights that are generally

challenging to conclude by looking at the code and how things work. For this purpose, there is

an excellent data modeling tool provided by SqlDBM, which provides an intuitive way to

visualize relational databases (SqlDBM 2022). By looking at the existing ten tables SQL tables

and their structure, it was a straightforward process to implement visually appealing looking

data models in SqlDBM no-code browser interface.

 19

Figure 5: Current data model

Figure 5 above shows the current data model's visual presentation, clearly showing how

different tables are connected, what kind of columns exist, and what data type they store.

Usually, a table has a unique primary key (PK) to identify a data row. Most commonly, the

primary key is an incremented integer value. Still, it is relatively common to use universal

 20

unique identifiers (UUID) as primary key, which are unique sequences of characters. Foreign

keys (FK) indicate how a specific table is connected to another table, referencing its primary

key. Looking back at the data types, most column data types are nvarchar, int, date,

or datetime. Nvarchar means a sequence of characters, and int represents an integer. It

can be specified the maximum length for nvarchar using a number within parenthesis. Date

and datetime differ because datetime has a combined time of the day as a 24-hour clock

to the date (Microsoft 2022b). Some data types can be empty, indicated by the null default

value.

When manually creating this visualization, it quickly helped to realize a bunch of problems

with the current implementation that wasn’t as noticeable. The biggest problem is that the

tables seem somewhat disconnected, although many data types should be relational. For

example, the Cards and Type tables are not connected, despite the Cards table having a

Type column. This means changes to the Type table won’t reflect in the Cards table

automatically because they’re disconnected from each other. The same observations can be

deducted from CompanyId and UserId columns. If there were changes to the user,

company, or type, they would not be reflected in the relevant tables unless manually updated

to each other. This can lead very quickly to increased maintenance and more error-prone

code.

It can also be seen that the column naming is not cohesive, and data types are contradictory

between those. A good example is that the DateTime type is expressed in four types:

nvarchar, datetime, datetime2, and date. This is confusing and hinders the ability to

do Python and Django operations efficiently if date time is only expressed as a sequence of

strings. On top of that, some of these columns are irrelevant nowadays and should be

removed. Overall, it can be noted that all the tables with their columns and datatypes need

further validation and improvements in the new implementation.

 21

4.1.2 New data model

Based on the thorough analysis of the current data model, multiple different data model

proposals could be made. The new proposed data model that passed the review stage, is

visualized in figure 6 below.

Figure 6: New proposed data model

At first glance, the new data model might look intimidating, but it is more relational now

than the current one. Tables utilize foreign keys to reference other tables considerably more.

This significantly reduces complexity and maintenance overhead. Most tables, column names,

and data types have seen massive changes. The naming convention is more cohesive, and

columns and data types are more unified. The column naming style has been changed

because, according to a study published by Sharif and Maletic (2010), underscore styling

requires less visual effort and saves time recognizing correct identifiers in a phrase compared

 22

to the previous camel-case styling. Apart from that, there were some columns and tables that

were removed. For example, a table named RecommendationStatus got obliterated since

the recommendations feature was not used anymore in the product. We will take a more in-

depth look into the modified tables during the development phase and how Django models

will be made based on this proposed data model.

4.2 Development phase

The design phase gives a great understanding of the direction the development phase should

take during the next two one-week sprints. The new data model will be highly beneficial

when creating new Django models that are heavily correlated to everything within the

backend.

The development phases have been split into seven moderated-sized chunks of work in

chronological order explaining why and how the development will be done. This order is well

thought out to ensure the development flow goes as smoothly as possible, which will help

with the periodic reviews and manual testing. Therefore, the chunks must be completed

individually and cannot be even partly skipped because they depend on each other.

4.2.1 Initializing a new application

It is finally time to start writing the new implementation. Django has excellent

documentation available, so beginning the project and initializing it is relatively

straightforward, even for a person new to Django’s world. The Workfellow’s dashboard

already utilizes Django as a backend, so the first part, creating a whole new project, can be

skipped altogether. Django was initially made for swift development, so it helps create a

proper folder structure using simple commands. According to the Django project’s (2022g)

documentation, a set of features should be separated into its application within the project.

This is precisely the wanted behavior. It can be achieved by using the command django-

admin startapp kanban, which automatically creates an app named kanban and its

folder structure (Django Project 2022h).

 23

Figure 7: New Django application folder structure

The module tests.py can be removed for now from the application because end-to-end testing

will be done manually, and frequent reviews will also occur. The most critical modules in

terms of implementation here are models.py, views.py, and urls.py. Models.py module

will contain the Django database models representing the new database structure according

to the latest data model. Views.py module contains the responsible logic for handling HTTP

requests and returning correct HTTP responses with the help of the urls.py module, which

contains all the endpoints that the client will use to communicate with the backend. Because

the views.py module should only handle the incoming and outgoing requests and not any

business logic, a new module logic.py needs to be manually created.

Figure 8: Configurated apps.py module

Now that the application and its modules have been created, it needs to be appropriately

configured. Opening the apps.py module makes it possible to name the application by

creating KanbanConfig class that inherits Django’s AppConfig. It is sufficient for this

project to have one variable there in the subclass. The name variable is an important field

because it allows referring to this application within Django’s other configuration modules.

This name variable needs to be added application registry and the project’s root level urls.py

module (Django Project 2022i; Django Project 2022g).

 24

Figure 9: The new application added to the application registry

Figure 10: The new application's urls.py module added to the project’s root

After the last configurations, the new Kanban application is set up entirely. One thing to

anticipate early enough: working with Django’s models might cause breaking changes to parts

of code or prevent the database from working. To prevent this, it is essential in development

to use a local database to avoid anything from breaking for the other developers working in

parallel in the same environments. Django allows the developers to easily integrate a local

database utilizing the settings module when needed. With just a few lines of code, Django

will help the developer set up a sqlite3 database, which is quite similar to Microsoft SQL

Server that is in use currently (Django Project 2022j).

Figure 11: Local database has been set up in the settings.py module

The development work on the backend can be started by running a simple command python

manage.py runserver 127.0.0.1:5000. This should start a lightweight development

web server and the local database that works on the local machine. The server started after

running the command, but now Django mentions that the database requires migrations. This

indicates that the database is empty. Django uses migrations to propagate model changes like

 25

creating, updating, or deleting Django models into the database schema automatically.

Although they are largely automated, you need to know when to perform migrations and

execute those. By writing python manage.py migrate, the migrations can be applied or

unapplied to the database.

4.2.2 Creating the first models, endpoints, and views

On the Kanban board, a list of users is essential. Generally, in this kind of board, all the cards

have some sort of an assignee and potential collaborators attached to the cards. As seen from

the previous visualization of the new data model, almost all tables are heavily connected to a

card and a user. Django has a built-in user authentication and authorization system in place

that the other features on the dashboard are currently using, so the logical step is to use the

existing User model for these new sets of features as well (Django Project 2022k). Utilizing

the model, it is possible to authenticate what kind of company the user belongs to, link the

user to specific data rows on tables, and check if they have enough permissions to perform

requested actions, like changing a card’s information or moving them around the Kanban

board.

Figure 12: Company and User models

The Django models, like blueprints, are based on the new data model. Due to security

reasons, most of these models’ properties have been hidden and won’t be discussed in detail.

Only the relevant fields are shown. As can be seen from the example of the models, the User

model has a foreign key relationship to the Company model. It is called a many-to-one

relationship, meaning a company can have multiple users. The foreign key linking also has an

argument on_delete which indicates what happens when the company record is removed

from the database. In this case, it will have a cascading effect, meaning that after the

deletion of the company record, all the users related to that will be removed automatically

by Django. (Django Project 2022l.) This cascading behavior will be standard for the other new

models created later.

 26

Now that the models have been defined, it makes sense to start with the first HTTP endpoint

required for the view. The endpoint is relatively simple, only returning a list of users and the

information attached to those users. This data can later be used on the client side to link

specific ids. As for the future endpoints, it is crucial to pay attention now that only certain

users are shown within the same company so that filtering will be required later.

Figure 13: Demonstration of two identical endpoints using distinct types of views

Within the urls.py module, all endpoints can be found that the client can use to contact the

server. The URL patterns help know which path accesses the resource wanted, what kind of

view Django should use to handle the HTTP request and response, and a name that usually

consists of the model and the action it utilizes. It is important to note that Django has two

ways of writing those view functions; the older function-based views are easier to learn

because they don’t contain as much hidden logic as the newer, class-based ones. The class-

based ones better use inheritance and mixins to let you organize your views and reuse code.

For most endpoints, class-based views will be used since Django recommends those, but

function-based views suit better in some scenarios where lots of custom logic is needed and

not reusable.

Figure 14: A class-based and function-based view side-by-side

 27

When the URL endpoint receives an HTTP GET request, these two views will respond with the

same data, listing all the users from the database. Python classes are objects with their

properties and methods, like a blueprint of how Python knows how to construct the object

(W3schools 2022). Classes can also inherit properties and methods from other classes, thus

making class-based views highly reusable. In the previous example, UsersListView class-

based view inherits properties and methods from generics.ListAPIView class that comes

from Django’s framework. When inheriting a class, it is possible to overwrite some of its

properties or methods, often the desired behavior. As seen from the example, the function-

based view has a decorator function that allows a list of HTTP methods, whereas the class-

based view inherits the list of HTTP methods allowed from ListAPIView.

After the correct request with the allowed HTTP method is received, the views will check the

permission classes granted to them. These permission classes control the authorization access

the user making the request has. If the user has no permission to view, the HTTP request will

fail with a status of the forbidden response, even before any code is executed (Django REST

framework 2022a). This is an excellent way to control which kind of users can edit the Kanban

cards, move cards around, add attachments to cards, etc. This functionality will be used in

many other views, but on this particular view, the permissions are not restricted so that every

user can request the user lists. Otherwise, the card’s assignees, collaborators, and Kanban

board filters would look empty without user data.

After the user’s permissions have been checked and granted authorization, a queryset is

defined. A queryset is a list of objects within the given model, like the User model in this

case. They’re powerful when used with Django’s ORM because it allows the creation of easy-

to-understand and well-optimized database queries that could be extremely complicated to

write in pure SQL. In the previous example, all users from the User model were fetched, but

it is possible to set filtering for which kind of users should be fetched from the database. In

the Kanban view, everything should be company-specific, so instead of fetching all the data,

it is essential only to fetch specific data. Also, removing Workfellow staff users by filtering

the user lists is a good idea. All of this can be done by chaining filtering to the queryset. The

user who made the initial HTTP request and their company and staff details can be obtained

from the HTTP request object and used in the filtering.

 28

Figure 15: Database queries improved by adding filtering and serialization

After the data has been queried from the database, the last step is to validate the data

through a serializer provided by Django. This allows the serializations of querysets and models

into Python native datatypes, which can easily be used in the HTTP response to send the data

back to the client. They also work the other way around by deserializing Python datatypes

into querysets or models. (Django REST framework 2022b.) Serializers are great for validating

the data precisely in the wanted format or, in this case, limiting the sent amount of user

details in the HTTP response. After the queried data has been running through the serializer,

only the user’s id and name will be sent to the data list. This is enough user data for this view

because we only need this information on the client side, and sending too much data would

be a bad practice. It is an excellent practice to keep the HTTP response data sizes as tiny as

possible, so only sending the essential data (An 2018). After some manual testing and review

approval, it can be concluded that the user listing endpoint is working correctly, so we can

delete the function-based view, which was only for demonstration purposes, and leave only

the class-based view in the views.py module. As the last step, the serializer needs to be

moved to its serializers.py module within the application.

4.2.3 Card functionality

The central parts of the new data model are the company, user, and card models. Now that

the user and company models have been defined, it makes sense to start by making the card

 29

model and its basic functionality, like card creation, updating, and deletion. And then, later

on, moving gradually to the advanced functionality that the cards have. Looking into what is

already in place on the client side gives a pretty good visual insight into what kind of

functionality is expected from the Kanban cards.

Figure 16: A Kanban card on Workfellow’s Kanban board

 30

This card example could be roughly split into two primary sets of functionalities. There is the

basic and more advanced functionality. By basic meaning, there is much functionality that is

just related to the card’s values, like being able to change the assignee, title, category,

description, annualized savings, and effort required to fix. The annualized business case is

just a subtraction from annualized savings and the effort required to fix it. Priority and

complexity are fields as well that are changeable. On top of updating the existing cards, new

cards can be created and deleted. The more advanced functionality refers mainly to the

card’s attachments, comments, collaborators, and likes. The users can download up to six

attachments per card, possibly renaming and deleting the attachments. Comments can be

created but not edited or deleted. Collaborators can be added and deleted. Users can like a

card on the Kanban board once or remove their existing like from a card. The activity feed

will be discussed later since it involves significant changes.

Figure 17: Category and Card models

Category and Card models have seen massive changes compared to the old

implementation. Previously, the word type was misleading for the customers, so it was

changed into a more understandable name category. The old data model also had confusing

 31

fields for legacy implementation that have now been cleaned up, adding an is_default

field to indicate the category shown to all other companies. In that case, the company’s

foreign key can be left null, meaning it has no foreign key to any company.

More interestingly, though, the card model has seen significant changes. Many fields have

been removed because they were not used or beneficial anymore. Deleted cards used to be

kept in the database but hidden from the Kanban view by utilizing an is_deleted field. This

quickly started to add complexity in many areas for a negligible benefit, so it was removed

from this implementation. Also, many data types have seen massive changes, like priority and

complexity, utilizing text choices, forcing the value to be either of three values: low,

medium, or high. One nice update to date time fields also uses auto_now_add and

auto_now parameters. When a card is created in the database, the field

created_date_time will get a date time and save it automatically. A similar thing happens

now with the latest_update_date_time field; when a card is updated, it will

automatically get the newest date time and save it along with the card changes. These

actions were previously done manually in the code, which was a bad idea because date times

can be a big headache to work with in software development. It has already been proven in

the past. To make it worse, it was not only just manual, but the field data types were just a

series of characters, removing any easy ability to work with date times.

Figure 18: URL patterns using RESTful principles

 32

Creating the endpoints before the actual views to handle the requests and responses gives

insight into how the views should be split. These are made mainly by following the best

practices set by RESTful principles and Django-related documentation. RESTful meaning

Representational State Transfer principles, initially introduced by Roy Fielding’s dissertation

(Fielding 2000). The URL patterns are split into logical resources within the application,

where each handles the appropriate HTTP GET, POST, PATCH, and DELETE methods. An

excellent example of categories endpoints is that the /categories endpoint accepts both

GET and POST methods, allowing retrieval of a list of all categories for the user’s company

and the default categories available for all companies. The mutation endpoint

/categories/<int:pk> accepts GET, PATCH, and DELETE methods which can be used to

retrieve the specific object, update it, or delete it. It is good to remember that the allowed

methods for each resource are defined on the view itself because it is a good practice to

avoid using verbs, and the resource should use a plural naming convention. (Sahni 2022.)

Lastly, the <int:pk> indicates that it accepts a zero or a positive integer as a primary key

which can then be used in the view to find the item from the database and do required

operations on it (Django Project 2022i).

Getting familiar with how to make good views with Django helped tremendously create the

first views for basic functionality. Class-based views excel for simple read, create, update,

and delete operations because they allow the views to inherit properties and methods from

other classes. The main points are that the querysets had to be defined and adequately

filtered, and serializers created for the views to ensure the data was in the correct format.

Due to class inheritance, having the primary key embedded into the URL, Django could easily

find the right resource. It is also important to note that these are the first views that start

creating or updating the data within the database. Hence, it is essential to remember to give

proper permission classes for each operation to restrict prohibited users from doing

operations. In the Kanban view, the users have three permission classes: observer,

editor, and admin. The observer is limited to only retrieving resources. Meanwhile, the

editor can edit those resources as well. Some small parts of the resources, like categories and

lane configurations, are only possible through the Kanban board’s admin panel, which is

restricted to admins only.

 33

Figure 19: Attachment, Comment, Collaborator, and Like models

Compared to the old implementation, the new data models are quite different with the

advanced functionality. Collaborators used to have different roles, likes used to be different

reactions and not just likes, and comments used to have two various date fields along with a

field indicating whether the comment was deleted. It is relatively straightforward that the

old implementation was overengineered, anticipating the future a bit too much with different

collaborator roles and reaction types. At this point, it was obvious that there were no

resources to implement such complex features now or in the future, so it was greatly

simplified in the new data model. Most models now look very similar, using cascading on

delete effects and similar fields with identical data fields, making it much easier to develop

the features. Collaborators and likes also have unique constraints to ensure that the same

user from the same company cannot appear twice on the same card as a collaborator or liked.

 34

Technically, the company’s foreign key is not required because the models already have a

reference to the card, which already has a connection to the company. It was added as a field

because it will be beneficial in some cases to optimize database access by creating

performant querysets (Django project 2022m). One use case could be to fetch all the

company’s resources easily before looping a list of cards instead of fetching the resources

individually at each iteration of the loop.

There was hardly any change for the attachments; most notably, the path was changed from

random series of integers into UUID to avoid name clashing possible with randomly generated

integers. In contrast, UUID is always a unique value (Sean 2021). Django provides a file upload

mechanism that could’ve been used within the attachments model, but it was decided that it

wouldn’t be utilized here (Django project 2022n). The reason is that we already have a good

file upload system available on Azure blob storage that is being used. This would mean

replacing that with Django’s file upload system; there would be many changes to the client

side logic of how file uploads are handled. Not only that, but it could impact current

infrastructure and automation. There aren’t enough resources to do that now.

Well-defined URL patterns and models using class-based views allow the endpoints for

advanced functionality to be created relatively smoothly. The more class-based views there

are – the more they can be reused, so it has a cascading effect on improving the code

reusability and, thus, quality. The new data models show their true strength by reducing old

code of a few hundred lines to just roughly 100 lines of efficient and clean code. The manual

testing of the new endpoints through the client side revealed lots of different errors that

were swiftly addressed and fixed. Initially, it also seems like the requests are considerably

faster than before, but those will be validated at the end.

4.2.4 Card movement within the Kanban board

Now that the cards have most of the needed functionality, the cards are still lacking the last

feature. Within the Kanban board, it is essential to save which lanes the cards are in and their

exact position within the lanes so they can be ordered based on priority or other preferences

the users want by dragging the cards. With even more initial implementation than the current

one, it has been proven that the card’s location should not be defined in the Card model

itself. Instead, it should be defined within its own models. This kind of separation of concerns

is a good idea because it makes it easier to do different operations on the client side when

mutating the data.

 35

Figure 20: Lane and OrderInLanes models

For the most part, OrderInLanes has been the same as the current implementation, only

having some minor enhancements. On the other hand, the Lane has seen at least two

significant improvements. One of the core principles of the Kanban was that the lanes should

only contain a predefined number of cards to limit the work-in-progress, which was not

possible previously because the lanes were not company specific. Some lanes also tended to

be special because they could’ve been complete or discard type lanes. The completed lane

was for completed cards, and the discarded lane was for cards that wouldn’t want to be

deleted but were still marked as something that won’t be worked on in the future. This

information was stored in two separate fields, which is hard to scale in case there would be a

need for more special lanes in the future. Therefore, the lanes’ type was separated to own

field with four possible values: default, normal, complete, and discard.

After the model creation and migrations, there is still one step to be done before moving into

card movement logic. Creating a card on the client side is not displayed anywhere because it

still misses the position and lane details. This logic needs to be added to the card-saving

endpoint done in the previous chapter. Having the lane type in the Lane model now is

beneficial because using queryset, it can be checked which one is the default lane that the

 36

card should be added to automatically. Using that information, it is possible to count how

many cards already exist within the default lane and add the new card at the bottom of the

lane. The movement of the cards when users drag those is slightly trickier and easy to get

wrong the first time. Card order within the lane is calculated as an incrementing integer

starting from zero, so if a lane has four cards, ordering those would be 0, 1, 2, and 3.

Figure 21: Request data from the client side when the card is moved

This request data is an example of what the server would receive from the client side

requesting data if a card is dragged from one lane to another. The lane_id indicates the

lane’s order, and case_index_in_lane references the exact card’s position within the

lane. In this case, the card should be moving from the first lane’s top position to the third

lane’s third top position, as seen from the request data’s source and destination.

When creating the functions to handle these card movement changes, it is a good idea to split

it into two major conditions: was the card dragged within the same lane it existed or dragged

to another lane? The reason is that moving the card to another lane might have blockers, like

the lane already being full of cards or extra logic is required. Regarding writing the code,

handling a card movement change within the same lane is quite straightforward because of

Django’s powerful queryset operators. When moving the card up or down, the other cards

within the same lane need to have their card order updated accordingly. This can be done

first by filtering the queryset, which can utilize powerful conditionals including greater than,

greater than or equal, lesser than, etc. All the filtered cards can then be updated in a bulk

with chaining .update(order_in_lane=F("order_in_lane") -/+ 1) at the end of

queryset filters. The operator at the end of the update depends on whether the other cards

should be moved more downwards or upwards in relation to the moved card. The card

movement from one lane to another is not as easy, but some bulk update logic can also be

used, although many more cards potentially need to be updated. Also, if the lane that the

card would be moved to is already full, the server will throw an error which will be indicated

to the user that the lane is already full.

4.2.5 Initializing the Kanban board

The last essential endpoint for the Kanban board is still missing. That endpoint’s purpose is to

initialize the whole Kanban board and its entities. Without it, there is nothing visible on the

client side. The endpoint’s view consists of three phases: initializing the Kanban, normalizing

 37

lanes, and normalizing cards. This is also the phase where the most optimization for the view

will happen, which is one of the main bottlenecks with the current implementation. That

causes the load times for the Kanban board to grow almost exponentially. However, it can

now be optimized and simplified dramatically because of the recent development with the

new data model changes.

As probably seen by now, the data being dealt with is highly relational to the new data

model. Although it is a good thing and reduces complexity, it might have the opposite effects

if done improperly. When data becomes highly relational or nested, it is more challenging to

ensure that data in the Kanban board is updated correctly when duplicated in multiple

places. This is one of the great things that data normalization helps with.

Figure 22: Response data with six normalized lanes

There are different ways of normalizing the data, but this is how a normalized state roughly

looks like what the client will utilize. By normalizing the lanes, they’re split into ids and

entities (Redux 2022). The array of ids contains all the entities’ keys, referencing the

primary keys. The array is also sorted based on the lane orders, so the client knows where the

lanes are located. Using the primary key as an id, it is possible to find the entity without

much effort from the object. Now, referencing the lanes all over the Kanban board and

elsewhere on the dashboard can be done by just referencing its id. If those entities are

 38

supposed to be mutated, they are easily found in one specific place rather than multiple

places. Before the lanes were normalized, every update required them to be updated in

numerous places, which increased complexity significantly on the client side.

Figure 23: Response data with three normalized cards

Normalizing cards used to be the weakest point of the current implementation, but after the

new changes, the card entities are much more precise than previously. The entity has lost

roughly half of the data it used to contain, which is a direction for the better. For example,

likes, collaborators, comments, and assignees are now pointing to just a user id instead of the

whole user with all the related information. The card entities no longer need to be updated if

some users have applied changes. Maintaining this data type is a breeze, but it is not the only

 39

significant improvement here. Previously when normalizing this type of card data, there used

to be loops within loops that were accessing the database with complex queries multiple

times. This made it so that the looping started taking multiple seconds for just ten to twenty

cards, and there were no good workarounds. The old data model could not be optimized

much further than that. But now, with the new data model generating this normalized card

data is significantly faster. The latest data model and Django removed complexity massively,

which helped optimize the loops and database querying, removing resource-straining looping

within loops.

Figure 24: Response data with initialized Kanban board

The last thing that the endpoint needed to do after normalizing the lanes and cards was to

initialize the Kanban board view. The normalization strategy works wonders here since the

object only needs to have lane ids ordered as object keys. The object values reference the

card ids they contain within that lane. The card ids are not set randomly within the arrays but

are initialized in the correct order that they should be placed within the lanes. This kanban

object would look vastly different if the lanes and cards were not normalized, and the

complete data would be contained in this object, leading to much-increased complexity on

the Kanban board and other areas.

Combining these three response data as a single HTTP response allowed the Kanban board to

become finally visible on the client side. This allowed easier manual testing and reviewing of

all the functionality made so far, making the results more concrete. The review also revealed

mistakes with the database optimization and bugs swiftly tackled before moving on to the

next phase.

4.2.6 Activity feed and email notifications

At this point, all the required features of the Kanban board are in place, fully functional, and

manually tested. As the last finishing enhancement to the views, activity feed support needs

to be added. When a user does an action on the Kanban board, it should be saved as an

activity to the card’s activity feed. This helps the users see the card’s history, for example,

when it was created, last modified, or any other significant changes they might be interested

 40

in. Creating an Activity model and a reusable function with a few parameters allows those

activity logs to be saved to the database. After every successful user action on the backend,

that function can be called.

Figure 25: Activity model

The model is almost identical to before, mostly with field improvements to naming and data

types. Instead, the fetch activities’ endpoint is quite different from before. Earlier, there was

a need to fetch all the activities to display those as a card feed on the dashboard’s front

page. The massive activity feed was supposed to make users feel more engaged in using the

dashboard for extended periods but was later removed. However, there was a downside to

keeping the massive activity feed up to date. When users did some actions, it needed to be

updated and fetched from the server every time, leading to long response times after every

user interaction. As there was no longer a need to fetch a massive activity feed, it was

possible to move the activity feed functionality to an endpoint that only fetched one card’s

activities based on the card’s id. In terms of overall performance, this is a vast improvement.

A minor problem regarding the activity feed is ensuring that the card’s assignee and

collaborators know when a card has changed. Email notifications are a helpful solution for

this. The previous implementation had some significant flaws because the email notifications

logic was triggered from the client instead of the server side. On top of that, the email sent

to the recipient list was looped instead of bulked together, resulting in poor performance

because the email client had to be connected multiple times instead of once. For email

notifications, Django provides a mail-sending interface, making email notifications relatively

easy to implement (Django Project 2022o). For the emails, it is possible to define what kind

of templates they use to make them dynamic and style them accordingly. Email notification

logic can be added just like the user activity saving logic, purely on the server side, by

separating its logic into its reusable function and calling it after certain user events have

been completed. The function will create an email recipient list of all the card collaborators

and card assignees and update the dynamic email templates with the correct data. After

 41

updating the email templates accordingly, the emails will be sent in bulk to the recipient list

defined earlier. However, the user has no feature to disable or update the card’s email

notifications. Users need to change the assignee or collaborator on the card to get rid of the

email notifications.

4.2.7 Preparing for the final review

Although all the functionality now exists in the new backend, it does not precisely tell if it

was done using good programming practices. To help with that, the development work was

split into reasonable chunks of work, with each having a review stage before moving to the

next. This type of review was very insightful and helpful, but it does not reflect the whole

backend because it has constantly been evolving. Now that the backend parts have been

connected, it makes sense to do the last polishing touches to the code before it moves to the

final review.

One easy way to improve code quality is to use a code formatter. It makes the code more

universal for the developers and saves their time doing menial stuff. The backend is now

globally using yapf auto-formatter to format the Python code, but during the development,

it was noted that it was probably not the best to use with Django. In their documentation,

Django advises using black auto-formatter (Django Project 2022p). After making some

comparisons, it felt like black did a better job formatting the code, which was kept for all the

other features on the backend. The auto-formatter, on the other hand, does not sort the

module imports on top of the modules, so Django recommends installing isort and

configuring it to make it work alongside the black auto-formatter (Django Project 2022p).

Now, suppose the module being edited is saved or the formatter is run with the help of the

command line. In that case, every module will be automatically formatted and sorted using

strict guidelines set by the developers. Some configurations, like line length, were overridden

because the developers liked it to be higher than the official guidelines dictate.

On the other hand, auto-formatters don’t automatically make the codebase perfect or obey

all the good programming practices. They are a tool to make it easier, but not an ultimate

replacement. One crucial topic covered before was the folder structure and how different

modules within the application have other responsibilities. Now is a great time to manually

review that all the code is on par with the quality set initially and that they’re in the correct

modules. One of the flaws of the previous implementation was the messy module structure

which hindered the development.

Meanwhile, manually reviewing and adding missing comments to pieces of code is also highly

valuable in certain situations. Generally, you would want the code to speak for itself,

reducing the number of comments needed to a bare minimum. This isn’t easy to achieve in

 42

certain situations, however. It is slightly easier to achieve that situation now because the new

code uses python type hints everywhere possible. It means all the functions’ parameters have

been typed, indicating their data types.

Finally, it is time to make a pull request after feeling confident with the new backend. Pull

request through GitHub helps the other reviewers make comments and review the code

changes before they are moved into the development environment (GitHub Docs 2022). Once

the changes have been merged into the development environment, more testing generally

takes place to ensure all the functionality is working correctly before it is moved to

production for the customers. This might be caused by differences between local

environments and other environments hosted elsewhere than a local machine.

5 Analysis of results

Requirements for the new Kanban board backend set by the case company were to reduce the

unreasonable loading times, eliminate the legacy database in use, and make the backend

more scalable and maintainable for the developers. The new backend was designed to

address this with the help of the Django web framework and good programming practices.

Since the new backend is utilizing Django extensively, one of the requirements to eliminate

the legacy database can be done now. The legacy database can be obliterated, simplifying

current infrastructure and DevOps pipelines.

Further manual testing and review must be done to validate whether the new backend

achieves the other requirements. To do proper testing and compare the current and the new

backend, both must be run locally on the developer’s local computer. This ensures that the

measurements are not affected by Azure’s cloud services, where the backend is hosted after

the deployment. The testing is split into two parts where the backends are compared: regular

and heavy load testing.

The comparison testing reveals lots of positive results under regular and heavier loads.

Accessing the Kanban board is at least thrice as fast as before because the GET requests have

seen massive performance improvements. The most important request that initializes the

whole Kanban board also had a 70% reduction in response size, ensuring better loading times

with poor internet connectivity. Even more significant improvements were observed when

testing all the operations in the Kanban board, like creating new cards, editing cards, moving

cards around, editing attachments, etc. Those operations were massively simplified and three

to five times more performant in terms of performance.

 43

The case company also evaluated the results from their perspective. According to the working

life representatives, the thesis exceeded the objective and the requirements. The results

provided were better than initially anticipated. Apart from the results mentioned above, it

was not expected that the security of the new backend would be improved this much.

Another interesting observation was eliminating the need for risky operations such as

manually syncing database schemas between environments. On top of that, the development

work also provided previously unknown expertise that the team required. This expertise is

already being utilized massively on other parts of the backend that are not part of this thesis

work.

6 Conclusions

The objective of the thesis was to develop a new Kanban board backend using the Django web

framework as the primary technology. The requirements for the development work were that

the new backend must reduce the unreasonable loading times, eliminate the legacy database

in use, and make the backend more scalable and maintainable for the development team.

From the beginning, it was clear that the new backend must be designed and developed from

the ground up to solve those issues.

The project met the objective and all the requirements ahead of schedule by utilizing and

following Django’s comprehensive documentation and best practices. The old database was

finally obliterated, allowing the new backend to start using many of Django’s powerful

features. Using those valuable features while utilizing good programming practices, the

codebase could be reduced to less than half what it used to be, becoming much more

optimized, scalable, and maintainable. Comparing the old and the new backend side by side

revealed excellent results in terms of loading times. Under vigorous testing with regular and

heavy loads, the new backend proved three to five times as performant compared to the old

one, with still some room for future optimizations. The case company also evaluated that the

results exceeded their initial expectations. The results provided previously unknown expertise

that the team required that is being utilized now in other areas of their product.

During the development, most of the potential risks introduced in the beginning were

realized. The thesis work had to be halted multiple times due to many sudden critical tasks

needing immediate action. The author also had to take many sick leave days. Despite the

challenges encountered, the project was completed two months ahead of schedule with

excellent results.

The new backend was released for the customers after all the parties involved were happy

with the results. The analysis of the results revealed that if further improvements for the

 44

Kanban board are needed, it should not be on the backend side anymore but instead on the

frontend side. Specifically, the frontend’s rendering optimization would make the board even

smoother for the customers to use.

 45

References

Electronic

An, D. 2018. Find out how you stack up to new industry benchmarks for mobile page speed.

Accessed 14 September 2022. https://www.thinkwithgoogle.com/marketing-strategies/app-

and-mobile/mobile-page-speed-new-industry-benchmarks/

Anderson, D. J. 2010. Kanban: Successful Evolutionary Change for Your Technology Business.

E-book.

Beaulieu, A. 2020. Learning SQL: Generate, Manipulate, and Retrieve Data. E-book.

Behrens, M. 2012. Chapter 1: Introduction to Django. Accessed 20 July 2022. https://django-

book.readthedocs.io/en/latest/chapter01.html

Boos, P. & Furlong, K. 2016. What is Kanban? Accessed 23 September 2022.

https://www.excella.com/insights/what-is-

kanban#:~:text=To%20begin%2C%20Kanban%20(capital%20K,and%20the%20Toyota%20Productio

n%20System.

Codeacademy 2022. Back-End Web Architecture. Accessed 7 July 2022.

https://www.codecademy.com/article/back-end-architecture

CollabNet & VersionOne 2018. 12th annual state of agile report. Accessed 17 July 2022.

https://www.qagile.pl/wp-content/uploads/2018/04/versionone-12th-annual-state-of-agile-

report.pdf

Django Project 2022a. Meet Django. Accessed 20 July 2022. https://www.djangoproject.com/

Django Project 2022b. Why Django? Accessed 20 July 2022.

https://www.djangoproject.com/start/overview/

Django Project 2022c. Django documentation. Accessed 20 July 2022.

https://docs.djangoproject.com/en/4.0/

Django Project 2022d. Writing views. Accessed 20 July 2022.

https://docs.djangoproject.com/en/4.0/topics/http/views/

Django Project 2022e. Templates. Accessed 20 July 2022.

https://docs.djangoproject.com/en/4.0/topics/templates/

https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://django-book.readthedocs.io/en/latest/chapter01.html
https://django-book.readthedocs.io/en/latest/chapter01.html
https://www.excella.com/insights/what-is-kanban%23:~:text=To%20begin%2C%20Kanban%20(capital%20K,and%20the%20Toyota%20Production%20System.
https://www.excella.com/insights/what-is-kanban%23:~:text=To%20begin%2C%20Kanban%20(capital%20K,and%20the%20Toyota%20Production%20System.
https://www.excella.com/insights/what-is-kanban%23:~:text=To%20begin%2C%20Kanban%20(capital%20K,and%20the%20Toyota%20Production%20System.
https://www.codecademy.com/article/back-end-architecture
https://www.qagile.pl/wp-content/uploads/2018/04/versionone-12th-annual-state-of-agile-report.pdf
https://www.qagile.pl/wp-content/uploads/2018/04/versionone-12th-annual-state-of-agile-report.pdf
https://www.djangoproject.com/
https://www.djangoproject.com/start/overview/
https://docs.djangoproject.com/en/4.0/
https://docs.djangoproject.com/en/4.0/topics/http/views/
https://docs.djangoproject.com/en/4.0/topics/templates/

 46

Django Project 2022f. Models. Accessed 20 July 2022.

https://docs.djangoproject.com/en/4.0/topics/db/models/

Django Project 2022g. Applications. Accessed 31 August 2022.

https://docs.djangoproject.com/en/4.1/ref/applications/

Django Project 2022h. Writing your first Django app, part 1. Accessed 31 August 2022.

https://docs.djangoproject.com/en/4.1/intro/tutorial01/

Django Project 2022i. URL dispatcher. Accessed 2 September 2022.

https://docs.djangoproject.com/en/4.1/topics/http/urls/

Django Project 2022j. Databases. Accessed 2 September 2022.

https://docs.djangoproject.com/en/4.1/ref/databases/

Django Project 2022k. User authentication in Django. Accessed 5 September 2022.

https://docs.djangoproject.com/en/4.1/topics/auth/

Django Project 2022l. Model field reference. Accessed 6 September 2022.

https://docs.djangoproject.com/en/4.1/ref/models/fields/

Django Project 2022m. Database access optimization. Accessed 13 September 2022.

https://docs.djangoproject.com/en/4.1/topics/db/optimization/

Django Project 2022n. File Uploads. Accessed 14 September 2022.

https://docs.djangoproject.com/en/4.1/topics/http/file-uploads/

Django Project 2022o. Sending email. Accessed 19 September 2022.

https://docs.djangoproject.com/en/4.1/topics/email/

Django Project 2022p. Coding style. Accessed 19 September 2022.

https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/

Django REST framework 2022a. Permissions. Accessed 11 September 2022.

https://www.django-rest-framework.org/api-guide/permissions/

Django REST framework 2022b. Serializers. Accessed 11 September 2022.

https://www.django-rest-framework.org/api-guide/serializers/

Fielding, R. T. 2000. Architectural Styles and the Design of Network-based Software

Architectures. Doctoral dissertation. PhD. University of California. Accessed 3 September

2022. https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

https://docs.djangoproject.com/en/4.0/topics/db/models
https://docs.djangoproject.com/en/4.1/ref/applications/
https://docs.djangoproject.com/en/4.1/intro/tutorial01/
https://docs.djangoproject.com/en/4.1/topics/http/urls/
https://docs.djangoproject.com/en/4.1/ref/databases/
https://docs.djangoproject.com/en/4.1/topics/auth/
https://docs.djangoproject.com/en/4.1/ref/models/fields/
https://docs.djangoproject.com/en/4.1/topics/db/optimization/
https://docs.djangoproject.com/en/4.1/topics/http/file-uploads/
https://docs.djangoproject.com/en/4.1/topics/email/
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/
https://www.django-rest-framework.org/api-guide/permissions/
https://www.django-rest-framework.org/api-guide/serializers/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

 47

Finder 2022. Workfellow Oy. Accessed 28 June 2022. https://www.finder.fi/IT-

konsultointi+IT-

palvelut/Workfellow+Oy/Helsinki/yhteystiedot/3347152#:~:text=Workfellow%20Oy%20%2D%20

Y%2Dtunnus%3A,%2C%20taloustiedot%2C%20p%C3%A4%C3%A4tt%C3%A4j%C3%A4t%20%26%20halli

tuksen%20j%C3%A4senet

Fowler, M. 2022. Refactoring lowers the cost of enhancements. Accessed 6 July 2022.

https://refactoring.com/

Fowler, M. 2019. Refactoring: Improving the Design of Existing Code. E-book.

GeeksForGeeks, 2022. Frontend vs Backend. Accessed 30 July 2022.

https://www.geeksforgeeks.org/frontend-vs-backend/

GitHub Docs 2022. About pull requests. Accessed 19 September 2022.

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-

changes-to-your-work-with-pull-requests/about-pull-requests

Gourley, D. & Totty, B. 2002. HTTP: The Definitive Guide. E-book.

Hietaniemi, J. 2020. Mikä on Kanban? Accessed 02 July 2022. https://gofore.com/mika-on-

kanban/

Interaction Design Foundation 2022. Keep It Simple, Stupid (KISS). Accessed 2 August 2022.

https://www.interaction-design.org/literature/article/kiss-keep-it-simple-stupid-a-design-

principle

Juric, R. 2000. Extreme programming and its development practices. 22nd International

Conference on Information Technology Interfaces. July 2000. University of South East Norway.

Accessed 3 October 2022.

https://www.researchgate.net/publication/3893585_Extreme_programming_and_its_develop

ment_practices

Kivelä, K. 2022. Perfectly optimized enterprise. Why does Workfellow what it does? Accessed

28 June 2022. https://www.workfellow.ai/blog/perfectly-optimized-enterprise-why-

workfellow-does-what-it-does

Liang, M. 2021. Understanding Object-Relational Mapping: Pros, Cons, and Types. Accessed 20

July 2022. https://www.altexsoft.com/blog/object-relational-mapping/

Martin, R. C. 2009. Clean Code: A Handbook of Agile Software Craftsmanship. E-book.

McConnell, S. 2004. Code Complete. E-book.

https://www.finder.fi/IT-konsultointi+IT-palvelut/Workfellow+Oy/Helsinki/yhteystiedot/3347152#:~:text=Workfellow%20Oy%20%2D%20Y%2Dtunnus%3A,%2C%20taloustiedot%2C%20p%C3%A4%C3%A4tt%C3%A4j%C3%A4t%20%26%20hallituksen%20j%C3%A4senet
https://www.finder.fi/IT-konsultointi+IT-palvelut/Workfellow+Oy/Helsinki/yhteystiedot/3347152#:~:text=Workfellow%20Oy%20%2D%20Y%2Dtunnus%3A,%2C%20taloustiedot%2C%20p%C3%A4%C3%A4tt%C3%A4j%C3%A4t%20%26%20hallituksen%20j%C3%A4senet
https://www.finder.fi/IT-konsultointi+IT-palvelut/Workfellow+Oy/Helsinki/yhteystiedot/3347152#:~:text=Workfellow%20Oy%20%2D%20Y%2Dtunnus%3A,%2C%20taloustiedot%2C%20p%C3%A4%C3%A4tt%C3%A4j%C3%A4t%20%26%20hallituksen%20j%C3%A4senet
https://www.finder.fi/IT-konsultointi+IT-palvelut/Workfellow+Oy/Helsinki/yhteystiedot/3347152#:~:text=Workfellow%20Oy%20%2D%20Y%2Dtunnus%3A,%2C%20taloustiedot%2C%20p%C3%A4%C3%A4tt%C3%A4j%C3%A4t%20%26%20hallituksen%20j%C3%A4senet
https://www.finder.fi/IT-konsultointi+IT-palvelut/Workfellow+Oy/Helsinki/yhteystiedot/3347152#:~:text=Workfellow%20Oy%20%2D%20Y%2Dtunnus%3A,%2C%20taloustiedot%2C%20p%C3%A4%C3%A4tt%C3%A4j%C3%A4t%20%26%20hallituksen%20j%C3%A4senet
https://refactoring.com/
https://www.geeksforgeeks.org/frontend-vs-backend/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://gofore.com/mika-on-kanban/
https://gofore.com/mika-on-kanban/
https://www.interaction-design.org/literature/article/kiss-keep-it-simple-stupid-a-design-principle
https://www.interaction-design.org/literature/article/kiss-keep-it-simple-stupid-a-design-principle
https://www.researchgate.net/publication/3893585_Extreme_programming_and_its_development_practices
https://www.researchgate.net/publication/3893585_Extreme_programming_and_its_development_practices
https://www.workfellow.ai/blog/perfectly-optimized-enterprise-why-workfellow-does-what-it-does
https://www.workfellow.ai/blog/perfectly-optimized-enterprise-why-workfellow-does-what-it-does
https://www.altexsoft.com/blog/object-relational-mapping/

 48

Microsoft 2022a. Non-relational data and NoSQL. Accessed 24 July 2022.

https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-

data

Microsoft 2022b. datetime2 (Transact-SQL). Accessed 29 August 2022.

https://docs.microsoft.com/en-us/sql/t-sql/data-types/datetime2-transact-sql?view=sql-

server-ver16

Natesan, N. 2019. How to implement Design Pattern - Seperation of concerns. Accessed 20

July 2022. https://www.castsoftware.com/blog/how-to-implement-design-pattern-

separation-of-concerns

Numminen, L. 2022. What is Work API and how is it different from process mining and task

mining?. Accessed 27 August 2022. https://www.workfellow.ai/blog/what-is-work-api

Oracle 2022. What Is a Database? Accessed 24 July 2022.

https://www.oracle.com/database/what-is-database/

Pydantic 2022. Overview. Accessed 30 July 2022. https://pydantic-docs.helpmanual.io/

Python 2022a. How stable is Python? Accessed 15 July 2022.

https://docs.python.org/3/faq/general.html#how-stable-is-python

Python 2022b. Python Documentation by Version. Accessed 15 July 2022.

https://www.python.org/doc/versions/

Python docs 2022a. Is Python a good language for beginning programmers? Accessed 15 July

2022. https://docs.python.org/3/faq/general.html#is-python-a-good-language-for-beginning-

programmers

Python docs 2022b. Have any significant projects been done in Python? Accessed 15 July 2022.

https://docs.python.org/3/faq/general.html#have-any-significant-projects-been-done-in-

python

Python docs 2022c. Typing — Support for type hints. Accessed 30 July 2022.

https://docs.python.org/3/library/typing.html

Redux 2022. Normalizing State Shape. Accessed 19 September 2022.

https://redux.js.org/usage/structuring-reducers/normalizing-state-shape

Rehkopf, M. 2022. What is a kanban board? Accessed 23 September 2022.

https://www.atlassian.com/agile/kanban/boards

https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data
https://docs.microsoft.com/en-us/sql/t-sql/data-types/datetime2-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/t-sql/data-types/datetime2-transact-sql?view=sql-server-ver16
https://www.castsoftware.com/blog/how-to-implement-design-pattern-separation-of-concerns
https://www.castsoftware.com/blog/how-to-implement-design-pattern-separation-of-concerns
https://www.workfellow.ai/blog/what-is-work-api
https://www.oracle.com/database/what-is-database/
https://pydantic-docs.helpmanual.io/
https://docs.python.org/3/faq/general.html#how-stable-is-python
https://www.python.org/doc/versions/
https://docs.python.org/3/faq/general.html#is-python-a-good-language-for-beginning-programmers
https://docs.python.org/3/faq/general.html#is-python-a-good-language-for-beginning-programmers
https://docs.python.org/3/faq/general.html#is-python-a-good-language-for-beginning-programmers
https://docs.python.org/3/faq/general.html#is-python-a-good-language-for-beginning-programmers
https://docs.python.org/3/library/typing.html
https://redux.js.org/usage/structuring-reducers/normalizing-state-shape
https://www.atlassian.com/agile/kanban/boards

 49

Rubin, K. S., 2013. Essential Scrum: A Practical Guide To The Most Popular Agile Process. E-

book.

Sahni, V. 2022. Best Practices for Designing a Pragmatic RESTful API. Accessed 13 September.

https://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api

Schwaber, K. & Sutherland, J. 2020. The Scrum Guide: The Definitive Guide to Scrum: The

Rules of the Game. Accessed 17 July 2022.

https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf

Sean, R. 2021. What is a UUID? Accessed 14 September.

https://www.mparticle.com/blog/what-is-a-uuid/

Sharif, B. & Maletic, J. I. 2010. An Eye Tracking Study on camelCase and under_score

Identifier Styles. 18th IEEE International Conference on Program Comprehension July 2010.

Kent State University. Accessed 27 September 2010.

http://www.cs.kent.edu/~jmaletic/papers/ICPC2010-CamelCaseUnderScoreClouds.pdf

Shields, W. 2019. SQL QuickStart Guide: The Simplified Beginner's Guide to Managing,

Analyzing, and Manipulating Data With SQL. E-book.

SqlDBM 2022. DB-Developers. Accessed 28 August 2022. https://sqldbm.com/DB-Developers/

Stack Overflow 2022a. Programming, scripting, and markup languages. Accessed 15 July 2022.

https://survey.stackoverflow.co/2022/#section-most-popular-technologies-programming-

scripting-and-markup-languages

Stack Overflow 2022b. Web frameworks and technologies. Accessed 20 July 2022.

https://survey.stackoverflow.co/2022/#section-most-popular-technologies-web-frameworks-

and-technologies

Stack Overflow 2022c. Databases. Accessed 24 July 2022.

https://survey.stackoverflow.co/2022/#section-most-popular-technologies-databases

TechTerms, 2020. Backend. Accessed 30 July 2022.

https://techterms.com/definition/backend

Telles, M. 2008. Python Power!: The Comprehensive Guide. E-book.

Turdibayeva, K. 2021. Workfellow raises $3.12 million in Series A funding round. Accessed 28

June 2022. https://www.workfellow.ai/blog/workfellow-raises-3-12-million-in-series-a-

funding-round

https://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://www.mparticle.com/blog/what-is-a-uuid/
http://www.cs.kent.edu/~jmaletic/papers/ICPC2010-CamelCaseUnderScoreClouds.pdf
https://sqldbm.com/DB-Developers/
https://survey.stackoverflow.co/2022/%23section-most-popular-technologies-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/%23section-most-popular-technologies-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/%23section-most-popular-technologies-web-frameworks-and-technologies
https://survey.stackoverflow.co/2022/%23section-most-popular-technologies-web-frameworks-and-technologies
https://survey.stackoverflow.co/2022/%23section-most-popular-technologies-databases
https://techterms.com/definition/backend
https://www.workfellow.ai/blog/workfellow-raises-3-12-million-in-series-a-funding-round
https://www.workfellow.ai/blog/workfellow-raises-3-12-million-in-series-a-funding-round

 50

Van Rossum, G. 1991. Python 0.9.1 part 01/21. Accessed 15 July 2022.

https://www.tuhs.org/Usenet/alt.sources/1991-February/001749.html

Viastudy 2022. What Is Agile Scrum Methodology? Accessed 09 August 2022.

https://www.viastudy.com/2021/06/what-is-agile-scrum-methodology.html

Winters, T., Manshreck, T. & Wright, H. 2020. Software Engineering at Google. E-book.

Workfellow 2022a. Process intelligence software for enterprise. Accessed 28 June 2022.

https://www.workfellow.ai/

Workfellow 2022b. Digital Transformation with Workfellow. Accessed 28 June 2022.

https://www.workfellow.ai/use-cases/digital-transformation

Workfellow 2022c. Company. Linked in. Accessed 2 July 2022.

https://www.linkedin.com/company/workfellow-ai/people/

W3schools 2022. Python Classes and Objects. Accessed 10 September 2022.

https://www.w3schools.com/python/python_classes.asp

Zobell, S. 2018. Why Digital Transformations Fail: Closing The $900 Billion Hole In Enterprise

Strategy. Accessed 28 June 2022.

https://www.forbes.com/sites/forbestechcouncil/2018/03/13/why-digital-transformations-

fail-closing-the-900-billion-hole-in-enterprise-strategy/?sh=5d25b6987b8b

https://www.tuhs.org/Usenet/alt.sources/1991-February/001749.html
https://www.viastudy.com/2021/06/what-is-agile-scrum-methodology.html
https://www.workfellow.ai/
https://www.workfellow.ai/use-cases/digital-transformation
https://www.linkedin.com/company/workfellow-ai/people/
https://www.w3schools.com/python/python_classes.asp
https://www.forbes.com/sites/forbestechcouncil/2018/03/13/why-digital-transformations-fail-closing-the-900-billion-hole-in-enterprise-strategy/?sh=5d25b6987b8b
https://www.forbes.com/sites/forbestechcouncil/2018/03/13/why-digital-transformations-fail-closing-the-900-billion-hole-in-enterprise-strategy/?sh=5d25b6987b8b

 51

Figures

Figure 1: Example of Scrum process (Viastudy 2022) .. 7

Figure 2: Simplified frontend and backend structure (based on Gourley & Totty 2002, chap. 1;

Codeacademy 2022) .. 10

Figure 3: Common Django project structure (based on Django Project 2022d; Django Project

2022e; Django Project 2022f) ... 13

Figure 4: Kanban board on Workfellow’s product .. 17

Figure 5: Current data model ... 19

Figure 6: New proposed data model ... 21

Figure 7: New Django application folder structure .. 23

Figure 8: Configurated apps.py module ... 23

Figure 9: The new application added to the application registry 24

Figure 10: The new application's urls.py module added to the project’s root 24

Figure 11: Local database has been set up in the settings.py module 24

Figure 12: Company and User models ... 25

Figure 13: Demonstration of two identical endpoints using different types of views 26

Figure 14: A class-based and function-based view side-by-side 26

Figure 15: Database queries improved by adding filtering and serialization 28

Figure 16: A Kanban card on Workfellow’s Kanban board .. 29

Figure 17: Category and Card models ... 30

Figure 18: URL patterns using RESTful principles .. 31

Figure 19: Attachment, Comment, Collaborator, and Like models 33

Figure 20: Lane and OrderInLanes models .. 35

Figure 21: Request data from the client side when the card is moved 36

Figure 22: Response data with six normalized lanes .. 37

Figure 23: Response data with three normalized cards ... 38

Figure 24: Response data with initialized Kanban board.. 39

Figure 25: Activity model .. 40

	1 Introduction
	1.1 Case company
	1.2 Objective
	1.3 Potential risks

	2 Development methods
	2.1 Scrum
	2.2 Practices in Workfellow

	3 Knowledge base
	3.1 Kanban
	3.2 Main technologies
	3.2.1 Python
	3.2.2 Django
	3.2.3 SQL

	3.3 Good programming practices

	4 Implementation
	4.1 Design phase
	4.1.1 Current data model
	4.1.2 New data model

	4.2 Development phase
	4.2.1 Initializing a new application
	4.2.2 Creating the first models, endpoints, and views
	4.2.3 Card functionality
	4.2.4 Card movement within the Kanban board
	4.2.5 Initializing the Kanban board
	4.2.6 Activity feed and email notifications
	4.2.7 Preparing for the final review

	5 Analysis of results
	6 Conclusions
	References
	Figures

