

Securing container-based environments
with Anchore

Veera Laurikainen

Bachelor’s thesis

October 2022

Information and Communication Technologies

 Description

Laurikainen, Veera

Securing container-based environments with Anchore

Jyväskylä: JAMK University of Applied Sciences, October 2022, 85 pages.

Technology, Communication and Transport. Degree Programme in Information and Communication Tech-
nologies. Bachelor’s thesis.

Permission for web publication: Yes

Language of publication: English

Abstract

In software development third-party libraries and open-source components are being used even more. En-
tities created from these are called artifacts. Utilization of these pieces of software makes development
easier and faster for developers but not always safer. Making sure everything is done in a secure way and
the importance of security checks in CI/CD pipelines has been growing. Adding security scanners as part of
CI/CD pipeline can help mitigating security issues that arise during software development related to used
components. This reduces manual work of the team responsible for securing the system and gives more
time for reacting to threats.

Research and implementation were done for Qvantel Oy. The objective of the research was to get familiar
with the used technologies and deploying scanner tool that monitors security of artifacts as part of the cli-
ent’s QRP production environment. Required feature for scanner was easily readable results and possibility
to configure them. Created results are utilized by the security team. During research it was investigated if
deployed artifact scanning coverage is broad enough or if manual scanning is needed as well. Another tar-
get of evaluation was the most beneficial spot in the CI/CD pipeline for the scanner.

Implementation consisted of two parts: a local implementation that was done to test the used software,
compatibility, and to show parts of installing and configuring Jenkins CI/CD tool that could not be done in
the production environment due to permission restrictions. Local implementation worked as a basis for the
production environment implementation. Implementation consisted of an artifact scanner that is triggered
via Jenkins server and a Jenkins plugin that is part of a CI/CD pipeline. Artifact scanner is working on top of
Docker in an AWS instance in cloud environment.

Constructive research method was utilized to solve the thesis research problem and the result was a work-
ing Docker container image artifact scanning process as part of the existing QRP CI/CD pipeline. Artifact
scanning can be triggered from Jenkins CI/CD tool either manually or automatically. Manual version works
by giving image information as parameters and automatic version is triggered when new QRP “system-
spec” image is pushed into binary repository. Proposal for further development is comparing results of ex-
isting Xray scanner and the deployed Anchore Engine to get even broader view of the found vulnerabilities.
Anchore policy should be configured further making it more precise depending on what image is scanned.

Keywords/tags (subjects)

Cybersecurity, Anchore Engine, Container, Docker, Automation, Artifact, DevSecOps, Software develop-
ment, Software Composition Analysis, Jenkins

Miscellaneous (Confidential information)

 Kuvailulehti

Laurikainen, Veera

Konttipohjaisten ympäristöjen suojaaminen Anchoren avulla

Jyväskylä: Jyväskylän ammattikorkeakoulu, Lokakuu 2022, 85 sivua.

Tietojenkäsittely ja tietoliikenne. Tieto- ja viestintätekniikan tutkinto-ohjelma. Opinnäytetyö AMK.

Julkaisulupa avoimessa verkossa: Kyllä

Julkaisun kieli: englanti

Tiivistelmä

Ohjelmistotuotannossa käytetään kolmannen osapuolen kirjastoja ja avoimen lähdekoodin komponentteja
yhä enemmän. Näistä syntyviä kokonaisuuksia kutsutaan artefakteiksi. Näiden ohjelmiston palasten hyö-
dyntäminen tekee kehittämisestä helpompaa ja nopeampaa kehittäjille, mutta ei aina turvallisempaa. Tie-
toturvallisen kehittämisen varmistaminen ja turvallisuustarkastuksien tärkeys CI/CD-putkessa ovat kas-
vussa. Tietoturvaskannereiden lisääminen osaksi CI/CD-putkea voi auttaa pienentämään
tietoturvaongelmia, jotka nousevat ohjelmistokehityksen aikana liittyen käytettyihin komponentteihin.
Tämä pienentää tietoturvasta vastaavan tiimin manuaalista työtä ja antaa enemmän aikaa reagoida uhkiin.

Tutkimus ja toteutus tehtiin Qvantel Oy:lle. Tutkimuksen tavoitteena oli tutustua käytettäviin teknologioi-
hin ja ottaa käyttöön skannerityökalu artefaktien tietoturvan valvontaan osana toimeksiantajan QRP-
tuotantoympäristöä. Haluttu ominaisuus skannerille oli helposti luettavat tulokset ja mahdollisuus muokata
niitä. Tietoturvatiimi hyödyntää luodut tulokset. Työn aikana oli tutkittava, oliko käyttöön otetun artefaktis-
kannerin kattavuus tarpeeksi laaja vai tarvitaanko lisäksi manuaalista skannausta. Toinen arvioitava kohde
oli skannerin parhaiten hyötyä antava sijainti CI/CD-putkessa.

Toteutus koostui kahdesta osasta: lokaali toteutus, jolla pystyttiin testaamaan käytettävät ohjelmat, niiden
yhteensopivuus ja näyttämään osa Jenkins CI/CD-työkalun asennuksesta ja konfiguroinnista, jota ei käyttö-
oikeusrajoituksien takia pystytty tekemään tuotantototeutuksen osalta. Lokaali toteutus toimi pohjana tuo-
tantoympäristön toteutukselle. Toteutus koostui artefaktiskannerista, joka käynnistetään Jenkins serverin
ja Jenkins pluginin avulla toimien osana CI/CD-putkea. Artefaktiskanneri toimii Dockerin päällä AWS-
instanssissa pilviympäristössä.

Opinnäytetyön tutkimusongelman ratkaisuun käytettiin konstruktiivista tutkimusmenetelmää ja tuloksena
saatiin toimiva Docker konttien kuvien artefaktiskannaus prosessi osana olemassa olevaa QRP CI/CD-
putkea. Artefaktiskannaus voidaan käynnistää Jenkins CI/CD-työkalusta joko manuaalisesti tai automaatti-
sesti. Manuaalinen versio toimii antamalla kuvan tiedot parametreina ja automaattinen versio käynnistyy,
kun uusi QRP ”system-spec” kuva lisätään binaariseen säilytyspaikkaan. Jatkokehityksenä ehdotetaan ver-
tailemaan olemassa olevan Xray skannerin tuloksia käyttöön otetun Anchore Engine:n tuloksien kanssa,
jotta saataisiin vielä laajempi kuva löydetyistä haavoittuvuuksista. Anchore:n menettelytapaa pitäisi kehit-
tää pidemmälle, joka tekee siitä vielä tarkemman riippuen mitä kuvaa skannataan.

Avainsanat (asiasanat)

Tietoturva, Anchore Engine, Kontti, Docker, Automaatio, Artefakti, DevSecOps, Ohjelmistotuotanto, Ohjel-
misto kompositio analyysi, Jenkins

Muut tiedot (salassa pidettävät liitteet)

4

Contents

Abbreviations ……. 8

1 Introduction .. 9

1.1 Background and goals ... 9

1.2 Client ... 9

2 Research layout ... 10

2.1 Research problem and questions .. 10

2.2 Research methods ... 11

3 Theory ... 12

3.1 Software Engineering .. 13

3.1.1 DevOps ... 15

3.1.2 DevSecOps ... 17

3.1.3 Cloud Computing Platform .. 17

3.1.4 Version control .. 18

3.1.5 Concept of Binary repository manager ... 21

3.1.6 Continuous Integration, Delivery, and Deployment (CI/CD) 22

3.1.7 Concept of artifact in software development ... 23

3.1.8 Kubernetes - Container Orchestration System .. 24

3.1.9 Docker - Containerization Platform ... 25

3.1.10 Artifactory - Binary Repository Tool .. 27

3.1.11 Jenkins - CI/CD Tool ... 28

3.1.12 Anchore – Artifact Scanner Tool .. 29

4 Current process environment ... 34

4.1 Artifact Scanners as part of pipeline process .. 37

4.1.1 Different scanner types in software development life cycle and current market
situation………. .. 37

4.1.2 What is wanted to achieve with the artifact scanning? .. 41

4.1.3 Challenges with artifact scanning tools ... 41

5 Implementation ... 43

5.1 Local implementation ... 44

5.1.1 Installation of software .. 45

5.1.2 Configuration of environment and software ... 53

5.1.3 Use of implementation and configuring Anchore policy bundle 59

5.2 Production implementation .. 65

5.2.1 Installing required software .. 66

5

5.2.2 Workflow of implementation .. 67

5.2.3 QRP image policy bundle and results .. 68

6 Outcome ... 69

6.1 Research question one - How to deploy artifact scanning? ... 69

6.2 Research question two - Artifact scanning coverage? .. 71

6.3 Research question three - Most beneficial spot for Anchore? 71

7 Conclusion ... 72

7.1 Advantages, deficiencies, and challenges of the implementation 72

7.2 Ethicalness ... 74

7.3 Utilization of outcome... 75

7.4 Further Development .. 75

References .. 76

Appendices ... 82

Appendix 1. Anchore Engine default policy bundle JSON file. ... 82

Appendix 2. Modified Anchore Engine default policy bundle JSON file for local

implementation………. .. 84

Appendix 3. QRP policy bundle JSON file. .. 87

Figures

Figure 1. Common software engineering sectors and concepts. ... 13

Figure 2. DevOps lifecycle (Gunja 2021). .. 16

Figure 3. Centralized Version Control System (Chacon & Straub 2014, 10). 19

Figure 4. Distributed Version Control System (Chacon & Straub 2014, 11). 20

Figure 5. Binaries in DevOps loop (DevOps: 8 Reasons for DevOps to use a Binary Repository

Manager 2021). ... 22

Figure 6. Difference between container and VM (What is a Container? n.d). 27

Figure 7. JFrog Artifactory acting as single source for all artifacts moving in the DevOps pipeline

(Jfrog artifactory n.d). ... 28

Figure 8. Anchores analysis and policy check process (Anchore Engine Overview 2020). 30

Figure 9. Connecting to Anchore Engine via API or CLI (Accessing the Engine 2020). 31

Figure 10. Anchore image analysis and analyzer module process (Analyzing Images 2020). 32

Figure 11. Anchore image analysis status workflow (Image Analysis Process 2020). 32

Figure 12. Anchore policy evaluation workflow (Policy 2020). .. 33

Figure 13. Anchore as part of a CI/CD pipeline (CI / CD Integration 2020). 34

6

Figure 14. Current environment with numbered QRP pipeline phases. 36

Figure 15. Overview of the current market situation for security and compliance tools (CNCF Cloud

Native Interactive Landscape n.d). ... 40

Figure 16. Anchore scanning automatic and manual workflows. .. 44

Figure 17. Local implementation deployment diagram. .. 45

Figure 18. Installing “yum-utils” and setting up docker repository. ... 46

Figure 19. Installing Docker Engine, containerd, and Docker Compose. 46

Figure 20. Enabling and starting Docker service. .. 46

Figure 21. Starting Jenkins server container. .. 47

Figure 22. Checking Jenkins server container logs for Administrator password. 47

Figure 23. Starting initial configuration of the Jenkins server. ... 48

Figure 24. Jenkins initial plugin options and installation of plugins. .. 49

Figure 25. Creating Jenkins administrator account. ... 50

Figure 26. Checking Jenkins server container IP address and giving “Jenkins URL”................... 50

Figure 27. Fetching Docker Compose YAML and starting services. .. 51

Figure 28. Verifying system status of Anchore Engine services.. 51

Figure 29. Adding image to Anchore Engine. .. 52

Figure 30. Anchore Engine image vulnerability check. ... 52

Figure 31. Image policy evaluation check. .. 53

Figure 32. Checking Anchore Engine network name. ... 54

Figure 33. Connecting Jenkins server to “root_default” and disconnecting from “bridge” network.

 ... 54

Figure 34. Changing ”Jenkins URL” to new one. ... 55

Figure 35. Installing Anchore scanner plugin. ... 55

Figure 36. Configuring Anchore scanner plugin global settings. .. 56

Figure 37. Jenkins job “Execute shell” build step. .. 57

Figure 38. Jenkins job “Anchore Container Image Scanner” build step. 58

Figure 39. Jenkins job build results. .. 58

Figure 40. Jenkins build “Anchore Report” results. .. 59

Figure 41. “Anchore Report” summary for two wordpress images. .. 60

Figure 42. Filtering “Anchore Report” results with “Trigger Id”. .. 60

Figure 43. Accessing Anchore Engine container with “root” user and listing policies. 61

Figure 44. Fetching Anchore Engine default policy bundle to modify it. 61

Figure 45. Adding modified default policy bundle to Anchore Engine and activating it. 62

Figure 46. Empty policy bundle JSON. .. 62

7

Figure 47. New “Anchore Report” summary after modifications. ... 64

Figure 48. New “Anchore Report” results after modifications. .. 65

Figure 49. Production implementation deployment diagram. ... 66

Figure 50. Building Anchore job manually with parameters. ... 67

Figure 51. Parameterized Anchore echo command. .. 68

Figure 52. Default policy bundle evaluation against QRP system-spec image. 68

Figure 53. QRP policy bundle evaluation against QRP system-spec image. 69

8

Abbreviations

API Application Programming Interface
App Application
AWS Amazon Web Services
BSS Business Support System
CD Continuous Delivery, Continuous Deployment
CI Continuous Integration
CLI Command Line Interface
CSP Communication Service Provider
CTE Component Test Environment
CVSS Common Vulnerability Scoring System
DAST Dynamic application security testing
GB Gigabyte
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IaaS Infrastructure as a Service
IAST Interactive Application Security Testing
IP Internet Protocol
ITE Integration Test Environment
JSON JavaScript Object Notation
LDAP Lightweight Directory Access Protocol
OS Operating System
PaaS Platform as a Service
PTE Performance Test Environment
QRP Qvantel Reference Product
RAM Random Access Memory
REST Representational State Transfer
SaaS Software as a Service
SAST Static Application Security Testing
SCA Software Composition Analysis
SIT System Integration Test
SSO Single sign-on
URL Uniform Resource Locator
UTE Upgrade Test Environment
VM Virtual Machine
VCS Version Control System
YAML YAML Ain't Markup Language

9

1 Introduction

1.1 Background and goals

Nowadays more businesses and services work on the internet, this means there is a lot more in-

formation moving from one place to another including business secrets and other sensitive data.

New applications are created on a daily basis and the development needs to be fast and agile.

Modern applications are a combination of third-party and open-source components that consist of

different artifacts (Springett n.d). This means great amount of the applications functions are made

by someone else and there might not always be a clear view of what the origin is and what is in-

cluded.

It is common that the first phase of a network attack includes system scanning for vulnerabilities

that can be exploited. It is important to close security gaps related to these. As human errors are

prone to happen one way to reduce security risk is implementing a security scanner that finds vul-

nerabilities in used external components. (What Is a Vulnerability Scan, and Why Is It Important?

n.d.)

The purpose of this research is to deploy a new security scanner Anchore to the client’s Qvantel

Reference Product (QRP) development pipeline and configure it to show selected vulnerabilities

and results. There is a need to implement a new scanner with better features, Anchore will be

added to enhance the current security scanning and to give results in a more readable way. The

scope and functionality of the scanner will be estimated with pros and cons. The current environ-

ment will be used as a comparison.

1.2 Client

Qvantel Oy was founded in 2006 and the headquarters is in Helsinki. Revenue for Qvantel Oy in

December 2020 was 86 032 000 euros. (Qvantel Oy n.d.) There are around 501 to 1000 people

working for Qvantel Oy and there are office premises in over 20 places world-wide. Qvantel pro-

vides Digital Business Support System (BSS) for customers. Qvantel Flex BSS is a no-code and

cloud-native solution that helps communication service providers (CSPs) to accelerate their move-

ment to digital-first companies. End-to-End solutions contains mobile apps, product catalogs with

10

efficient management, configurable tool-suites for daily sales and customer care, Business-to-Busi-

ness sales customer relationship management, Qvantel Flex framework-based order management,

and billing management. Current customers include telecom groups, CSPs, mobile virtual network

enablers, mobile virtual network operators, and digital-first sub-brands. Qvantel delivers services

for over 230 million telecoms customers including mobile, fixed, and TV services. (Qvantel Flex BSS

n.d; Qvantel LinkedIn n.d.)

As Qvantel is providing tools and solutions for other customers it is important to ensure that the

products are created in a safe environment. Vulnerabilities should be caught early on before the

product goes to the customer's environment. Research is done to improve this process by adding

Anchore as an additional scanner.

2 Research layout

2.1 Research problem and questions

The thesis research problem consists of how to deploy Anchore security scanner to the current de-

velopment pipeline in a way it is convenient to use and does not hinder the current software de-

velopment lifecycle. Scanning is manually triggered or an automated process that is recurring. An-

other problem is that current scanner JFrogs Xray gives a large number of results making them

hard to analyze. Anchore should be configured so that results are easy to analyze. It will be ques-

tioned if Anchore gives enough information or if manual scanning is needed in addition. The best

position for Anchore will be considered with the thought that it will catch as many vulnerabilities

as possible, earliest as possible.

The objective of the thesis is to answer the following research questions, they are all created from

the presented research problems. Chosen questions to be answered:

1) How to deploy artifact scanning as a part of a CI/CD pipeline?

2) Is the artifact scanning coverage enough or is manual scanning needed?

3) What is the most beneficial spot for Anchore in a CI/CD pipeline?

11

There were functional requirements determined for the first research question. All these require-

ments were discussed with the representative of the security team. Chosen functional require-

ments are as follows:

FR1) Jenkins has access to Anchore Engine.

FR2) Anchore works via Jenkins Anchore plugin.

FR3) Anchore Engine can retrieve docker images from Artifactory.

FR4) Anchore policies can be configured.

FR5) Vulnerabilities can be whitelisted with Anchore.

FR6) Anchore gives scanning results as Anchore Report in Jenkins.

FR7) Anchore scanning can be started manually from Jenkins.

FR8) Anchore scanning is started automatically when a new image is pushed to Arti-

factory.

2.2 Research methods

In the thesis, the research method best suitable to answer the research questions will be chosen.

As Kananen (2015) describes, in some studies only one methodology is not sufficient and multi-

methodological methodologies need to be used. This group includes case study, design-based re-

search, and process-oriented research. These methods have elements from both qualitative and

quantitative research methods. (Kananen 2015, 75-79.) As the object of this research is to deploy a

security scanner to the client’s environment the most suitable multimethodological option was

constructive research method.

12

Constructive research methodology attempts to solve real life problems and provide contribution

this way. Main idea is to create construction that can be a software, a plan, or anything that can be

created and developed. By developing a construction something new is created. For example,

mathematical algorithms are a genuine example of a construction. Constructive research method

has five core traits which are the following: focuses on real life problem that is essential to fix, pro-

duces innovative construction that fixes the real-life problem and it can be tested in practice, in-

cludes close collaboration between client and researcher where experimental learning happens, is

connected to the theoretical base of the study, and reflects empirical findings back to the theoreti-

cal research. (Lukka 2001.)

Research is based on the Client’s need to deploy a new security scanner to the development pipe-

line. As Toikko and Rantanen (2009) explain, in design-based methodologies reliability aspect

means ultimately the feasibility of the end result. The collected information is not only reliable but

also needs to be useful. In terms of development results the feasibility means all things created

during research and utilizing those results. (Toikko & Rantanen 2009, 121-125.) In this case work-

ing security scanner in the client’s environment.

Theoretical research material was chosen to support development of the research and to give

background information about the environment where the implementation will be done. Material

includes used technologies and tools documentations and previously done research about security

scanners and how they function. The objective of the theoretical research is to gain extensive

knowledge about the technologies used in client’s environment and tools that are deployed. Prac-

tical research is done to improve safety in the client’s current development pipeline.

3 Theory

The theory section includes background for understanding what software development lifecycle

and CI/CD pipeline is and what concepts, technologies, and tools they include that are used in the

current project environment. It includes the scanner tool Anchore that will be implemented to the

environment and its current features. It explains types of scanners in different parts of the devel-

opment cycle including scanner type of Anchore and the ones that already exist in the environ-

ment.

13

3.1 Software Engineering

Software engineering is a concept that should be explained through the terms it includes to better

comprehend how it works. Software engineering is more complicated than it seems. Making soft-

ware engineering design for an application is not straightforward and usually takes time. To under-

stand how information system creation works, both engineering and software development

should be considered. A collection of code, documentation, triggers that perform a certain task,

and meets a given criterion is referred to as software. Engineering is the process of creating prod-

ucts and utilizing the most up-to-date techniques, principles, and methodologies. Combining these

two makes what software engineering is about as represented in Figure 1. (What is Software Engi-

neering? n.d.)

Figure 1. Common software engineering sectors and concepts.

Software engineering is an area that deals with software development. It follows a set of princi-

ples, best practices, and procedures that have been fine-tuned through time, evolving as software

and technology evolves. As a result, the created product is dependable, efficient, and effective.

(What is Software Engineering? n.d.)

The process starts when there is a need for a certain outcome or output from an application.

There is a request to create software and to make it work, requirements and steps to follow need

14

to be prepared. Software engineering tools can help here to make sure that the work is done as

required and best practices are being followed. Next a roadmap will be built to break the process

into smaller pieces. Making it easier for developers to keep up with the project. After planning has

been made it is time to start coding. In many cases, this is the most time-consuming element of

the process because the code must be compatible with existing systems and languages. Sadly,

these issues are sometimes not discovered until much later in the process, necessitating revision.

As the code is being created it should be constantly tested even after it is completed throughout

the life cycle. Continuous monitoring and testing can be done with software engineering tools.

(What is Software Engineering? n.d.)

Before the product is even created, the process of software engineering begins. The fundamentals

of software engineering state that it should continue long after the "task" has been accomplished.

This so-called sustainability can refer to a far larger range of issues, including economic, social, and

environmental sustainability. Most important is to understand what is required from the software,

what it does, in what kind of environment it must work and all security aspects that need to be re-

viewed. Security is one of the key elements of development because it is essential to all aspects.

Without the help of tools like software engineering it is easy to get lost. (Lago 2019, 61-64; What is

Software Engineering? n.d.)

The fundamentals of software engineering design entail writing computer and system instructions.

A lot of this will be done by professionals with extensive knowledge at the coding level. Process is

not always as linear as this, meaning it needs a lot of confirmation even after it is complete. Some

impacts emerge after the product is being used over time. (Lago 2019, 61-64; What is Software En-

gineering? n.d.)

Not everything needs software engineering but because of the high-risk information companies

store and the security concerns they pose, almost every company needs software engineering.

Software engineering aids in the development of tailored, individualized software that identifies

weaknesses and dangers before they occur. To accomplish this security should be implemented

from the very beginning. In a case where a system is created first and corrected after is not how

security should be handled. Even if the software engineering policy of safety are not needed, they

15

can assist in saving money and improve customer satisfaction. (El Rhaffari & Roudies 2013, 255;

What is Software Engineering? n.d.)

Software engineering is used at every stage of the software development process. It has different

levels, there is operational, transitional and maintenance software engineering. On operational

level focus is on how the software interacts with the system, what is the focus security, budget,

functionality, or some other aspect. Transitional level focuses on how it will respond when it is

moved from one environment to another. The development process usually necessitates some

scalability or flexibility. Recurrent software engineering referred to as maintenance verifies how

the software functions inside the existing system while being changed. (What is Software Engi-

neering? n.d.)

3.1.1 DevOps

History of DevOps

Software development lifecycle was originally invention in 1970’s by developers and is now called

Waterfall Methodology. Waterfall methodology uses separate phases, and each comes after an-

other starting from the beginning till the end of a project. There is no way to see how the product

will end up as there is no overlapping of working and no time to save on development. The

method was not structured to go back to a prior phase, problems were not discovered until late at

the end of the so-called waterfall and were highly expensive to fix. This way of working created

separate work effort and requires sharing information between teams and joint effort was not a

possibility. (Sharma 2018a; What is DevOps? Waterfall to DevOps 2.0 2018.)

As waterfall methodology could not support businesses needs and was inflexible and costly in

2001 Agile Manifesto was written. After that Agile became popularly used. Agile contains steps of

analyzing, developing, testing, implementing, and managing software through the lifecycle. Even

though the steps have not changed as much, it was important that teams were working more

closely together, and steps were no longer one way. Feedback loops were created that allowed

information to flow between different teams within the lifecycle. Nevertheless, the software test-

16

ing and operations teams, who continued to work in their original silos and with their own ap-

proaches, were not cooperating with the Agile development teams. (Sharma 2018b; What is

DevOps? Waterfall to DevOps 2.0 2018.)

DevOps

When practitioners began to consider how they could convert their businesses to a paradigm that

not only enabled but also encouraged strong collaboration between developers and operations

team, they came up with DevOps. DevOps is a set of cultural concepts, practices, and technologies

that improves businesses capacity to produce fast paced applications and services, allowing it to

evolve and improve products at a faster rate than traditional software development and infra-

structure management methods. Many firms were enticed to adopt a DevOps culture by the pro-

spect of drastically reduced cycle times. Cycle time refers to the time it takes for a concept to be

realized as software in a production environment. In DevOps model developers and operations

team are not as divided. These teams are combined into a single unit where the engineers work in

all parts of the software lifecycle, from development and testing to deployment and operations,

and develop a diverse set of abilities that are not limited to a particular role, as seen in Figure 2.

(Dörnenburg 2018, 73-74; What is DevOps? n.d.)

Figure 2. DevOps lifecycle (Gunja 2021).

17

3.1.2 DevSecOps

When comparing DevOps to DevSecOps in addition to development and operations also security is

added as a responsibility across the software development lifecycle hence the name DevSecOps.

Before the security role was handled by a separate security team and mostly done at the end of

the development cycle. As software development is getting more agile this is not a valid way of

handling security anymore. Instead, application and infrastructure security are seamlessly inte-

grated into DevOps processes and tools using DevSecOps. It takes care of security vulnerabilities

when they arise, when they are faster, easier, and cost less to repair, and before they are de-

ployed to production environment. (DevSecOps 2020; What is DevSecOps? 2018.)

DevSecOps' two key advantages are speed and security. Development teams produce proper,

more secure code in a prompt manner and hence at a lower cost. Securing software starts at the

beginning of the development lifecycle when cybersecurity processes are introduced. The soft-

ware code is checked, scanned, audited, and tested for security vulnerabilities throughout the

lifecycle. As scanning and patching is introduced to the development cycle the ability to find and

fix common vulnerabilities and chance of exposures to vulnerabilities is decreased. Furthermore,

increased collaboration across development, security, and operations teams enhances businesses

response time to incidents and problems. (DevSecOps 2020; What is DevSecOps? 2018.)

3.1.3 Cloud Computing Platform

Instead of having a physical data center and servers, cloud provides storage, databases, computing

power, networking, software, and analytics via the Internet. Using cloud, you only pay for re-

sources that have been used called pay-as-you-go pricing aiding with lowering operating costs. Re-

sources that cloud computing provides help with running environments more efficiently and with

flexible resources. (What is cloud computing? n.d.a; What is cloud computing? n.d.b.) There are

many cloud providers like Amazon Web Services, Microsoft Azure, and Google Cloud Platform. In

this project Amazon Web Services is used.

Most cloud computing can be incorporated into one of three main varieties: Infrastructure as a

Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS has the most

basic features of cloud computing. It provides servers, virtual or hardware machines, networking

18

features and storage. IaaS allows you to have the most freedom and control over the infrastruc-

ture. PaaS eliminates the need to handle the underlying infrastructure, supplying an on-demand

environment ready to be developed. This allows developers to be more productive focusing only

on deployment, testing, and managing the application. Developers do not have to think about re-

sourcing, capacity, patching, or any other time-consuming task that comes with maintaining an ap-

plication. SaaS means delivering software via the Internet on demand against a fee. Cloud provider

hosts and administers the software and infrastructure and handles upkeep including security

patching and upgrading software. Users must only consider how to use the software. (What is

cloud computing? n.d.a; What is cloud computing? n.d.b.)

3.1.4 Version control

Version control, which is also called source control, is a system that tracks and manages a file or

multiple files in the course of time so that it is possible to access older versions later. Version con-

trol helps developers work faster and more reliably. When developing code, it is important to keep

every version and modification, version control system helps with this. Code is saved to a chosen

database, and it allows you to turn back the time of selected files, taking them back to previous

state. It is even possible to revert an entire project like this or compare older changes to newer

ones. Systems like this help minimize disruption of other teammates and it can be seen who last

modified the code that might be the source of the problem and when this happened. Version con-

trol protects you from ruining the source code and losing files. (Chacon & Straub 2014, 8-11; What

is version control? n.d.)

There are three different types of version control, local, centralized, and distributed. The local ver-

sion control system works by copying files into another folder. System like this is very simple and is

easily exposed to errors. To help with these problems and improve revision control, developers

used a local VCS which means having a simple database storing all modifications to the files. (Cha-

con & Straub 2014, 8-11.)

Centralized Version Control Systems were developed when people started to encounter problems

on how they can collaborate using separate systems. Systems like these work on a single server

that stores all the versioned files and clients can take files from that centralized storage like repre-

sented in Figure 3. This version has a lot of advantages compared to local version control systems.

19

There is better knowledge of what everyone is doing on the project. Permissions can be added to

control what each person can do instead of having a database on each client locally. The downside

is that it has the possibility for a single point of failure if the server goes down nobody can collabo-

rate or save their current work. There is also risk of data corruption and if there is no backup all

the code will be lost excluding snapshots that people might have on their local systems. Local ver-

sion control system has the same problem since it has the project in one place. (Chacon & Straub

2014, 8-11; Version Control Software: An Overview n.d.)

Figure 3. Centralized Version Control System (Chacon & Straub 2014, 10).

With Distributed Version Control Systems, the whole code repository is copied to client machines

with the full history instead of checking out the latest snapshot of files as seen in Figure 4. Now if

the server breaks and collaboration was done via this server any of the client machines can restore

the repository back to the server. All the client machines have a full backup of the data. It is also

possible to collaborate on multiple groups and projects simultaneously since this version control

system works well with several remote repositories. Several workflows can be set that are not

possible in centralized systems, for instance hierarchical models. (Chacon & Straub 2014, 8-11;

Version Control Software: An Overview n.d.)

20

Figure 4. Distributed Version Control System (Chacon & Straub 2014, 11).

Version control has many benefits it gives to a project. As there are multiple people editing code it

is important to have insight into the history of the project and changes that have happened in

every file. It aids in finding bugs and conflicts between developers. It can help fixing problems in

older versions of the application or code can be reverted to previous version if the new one is not

working. Developers can work concurrently with the use of branches and merging. Branching

means keeping multiple streams of work separated from each other and with merging you can

bring things back together. Each branch can for example have one feature and by merging the fea-

tures can be brought back to the main working stream one by one. These properties make projects

very traceable and easy to follow. (Version Control Software: An Overview n.d; What is version

control? n.d.)

21

It is good to understand that version control system is different from a hosting service such as Bit-

bucket or GitHub. The version control system is on your computer and the hosting service is a

place to store all the project source code in some server or cloud. These 3rd party hosting solu-

tions can offer extensions and other services. These extensions can help with task tracking and

documentation that are connected to the VCS hosting service. Performance can be tracked giving

insight to the speed and efficiency of the project development. Automation can be constructed

through these external integrations like automated builds and tests. (Version Control Software: An

Overview n.d.)

3.1.5 Concept of Binary repository manager

Binary repositories store binary artifacts and work similarly to source code repositories. A binary

repository can be represented as a library. One central place, a server that distributes, fetch, and

stores files, these files can be called artifacts. Artifacts can be thought of as binaries and depend-

encies and for instance, a code library can be called one type of artifact. (DevOps: 8 Reasons for

DevOps to use a Binary Repository Manager 2021; OBrien 2010.)

When creating software, you frequently rely on third-party libraries. The main work of a binary re-

pository manager is to retrieve and cache artifacts from third-party repositories. In a more intri-

cate program, there might be hundreds of libraries from external sources. When the library is used

it will be queried from the local repository manager and if it is not found it will be fetched from an

external source. Running an application is a combination of many binaries from many sources and

the quality of those binaries determines the quality of the end product that the client uses. As

seen from Figure 5 source code is important, but The DevOps cycle is focused on the binaries that

are built, tested, deployed, and run rather than on the code itself. Examples of binary repository

managers are JFrogs Artifactory and Sonatypes Nexus. (DevOps: 8 Reasons for DevOps to use a Bi-

nary Repository Manager 2021; OBrien 2010.)

22

Figure 5. Binaries in DevOps loop (DevOps: 8 Reasons for DevOps to use a Binary Repository

Manager 2021).

3.1.6 Continuous Integration, Delivery, and Deployment (CI/CD)

Continuous integration, delivery, and deployment are strategies that aim to minimize feedback

loops and automate repetitive operations to make the software release process faster. The agile

philosophy of continuously delivering valuable, properly functioning software to the end user is

made possible by these techniques. (Continuous Integration vs. Delivery vs. Deployment n.d.)

Changing from manual to highly automated development process can take a long time, neverthe-

less it almost always exceeds the challenges that arise on the way. It is important to make the so-

lution while keeping in mind the business goals that are unique for every situation. (Labouardy

2021, 111-121.) The finesse of constructing a CI/CD pipeline is that it can be represented in indi-

vidual steps, each building on the previous (Continuous Integration vs. Delivery vs. Deployment

n.d).

23

Continuous integration (CI) is the process of maintaining a centralized and shared code repository

and routing all modifications and features via a sophisticated pipeline that confirms the new

changes build correctly and passes all tests before leading them into the central repository. The

practical CI process is a combination of the use of source control, committing code on a regular

basis, building after every commit, and automating tests. Combining all of these gives regular relia-

ble feedback on the process of the code. (Continuous Integration vs. Delivery vs. Deployment n.d;

Labouardy 2021, 80-88.)

Continuous delivery (CD) is the next step from continuous integration. Each successful build that

passes through all phases and tests of your CI pipeline is deployed to your preproduction environ-

ment automatically. By utilizing CD there is no need to decide what will be deployed. At this stage

there can be additional tests done by security and QA team. Continuous deployment is the last

step of the pipeline and means the build has successfully passed all the previous steps of the pipe-

line and is deployed to the production environment. This means that any modification to the pro-

gram gets distributed to your end users promptly and only after it passes all tests. (Continuous In-

tegration vs. Delivery vs. Deployment n.d; Labouardy 2021, 99-106.)

3.1.7 Concept of artifact in software development

When building software, it is not only source code but also consists of a combination of different

artifacts. Fundamentally, artifacts are the skeleton of any piece of software. Artifacts related to

software development consist of source code, dependencies, documentation, container images,

the compiled application, and anything that is a by-product of a software. When thinking about

software development, artifacts have a broad meaning. Most software requires multiple artifacts

to be executed. Artifacts can be divided into ones that describe how the software is supposed to

work and ones that enable it to run. (DevOps: 8 Reasons for DevOps to use a Binary Repository

Manager 2021; What Is an Artifact? Everything You Need to Know 2020.)

The metadata you collect about your artifacts is critical for reusing code and enhancing your build

process. They aid other programmers in understanding the thought process that goes into creating

software. Furthermore, it helps programmers make decisions and comprehend what is the best

way to proceed. (Ben-Zvi 2021; What Is an Artifact? Everything You Need to Know 2020.)

24

Usually before starting the software development process, the team will be listing artifacts re-

quired by the software before any coding. Source code, risk assessment, blueprints, and use cases

are examples of these. From the beginning it is important aspects of the software development

life cycle to gather all artifacts. The development team can begin developing and constructing the

actual program once the basic artifacts have been gathered. Throughout the process artifacts

might be developed and pieces like end-user agreements come after the software is finished. Be-

fore compiling and sending the program to end users these artifacts can be added in. Typically,

software artifacts are kept in an artifact repository like JFrogs Artifactory. (Ben-Zvi 2021; What Is

an Artifact? Everything You Need to Know 2020.)

3.1.8 Kubernetes - Container Orchestration System

Kubernetes is an open-source container orchestration platform for managing configuration and

automation of containerized services and workloads. Kubernetes can automate various manual

processes that are part of deploying, administering, and scaling containerized applications. Kuber-

netes groups containers that as a combination make an application and organize them into com-

prehensible units for easier administering and discovery. (Kubernetes n.d; What is Kubernetes?

2020; What is Kubernetes? 2021.)

Containers in Kubernetes are placed into pods to be able to run them on nodes. Kubernetes nodes

are made of virtual or physical machines. Every node is administered by the control plane. Control

planes include services needed to run pods. (Nodes 2022.) Control plane is a container orchestra-

tion layer that controls the lifecycle of containers used via API and different interfaces (Glossary

2021).

Kubernetes cluster is made of nodes. Packaging applications with all dependencies and needed

services makes them lightweight and resilient compared to virtual machines. Kubernetes clusters

make it possible to develop, move, and administer applications with ease. Clusters can be run

across various environments like physical, virtual, and cloud based. Kubernetes clusters have one

master node and several worker nodes. Master node controls the state of the worker nodes, for

instance managing which applications are running and their equivalent container images. The mas-

ter node is responsible for all task assignments, for example, administering the state of the cluster,

25

scheduling applications, and implementing updates. For Kubernetes cluster to be operational at

least one master node and worked node is needed. (What is a Kubernetes cluster? n.d.)

Kubernetes is practical for managing containers and ensures there is no downtime. Starting and

stopping containers can be handled automatically via the system that Kubernetes provides. It han-

dles scaling and failover for your application, as well as providing deployment patterns and other

features. (What is Kubernetes? 2021.)

3.1.9 Docker - Containerization Platform

Docker is an open-source virtualization technology. Its main purpose is to make developing, shar-

ing and running applications easier and faster. It gives developers the ability to package applica-

tions and separate them from infrastructure, making delivering software effortless. All this is pos-

sible due to containers that are a combination of application source code with needed operating

system libraries and dependencies making a standard unit of software. Containers can be created

without Docker but using it as a toolkit enables developers to build, run and stop containers using

simple commands. Ultimately, time saving automation and easy to command through one

API. Nowadays app development entails far more than just creating code. Docker streamlines and

speeds up workflow from writing code to running it in a production environment. Developers have

the chance to use different architectures, languages, and frameworks unrestricted without fear

of causing problems in interfaces between applications and their lifecycle stage stays simpler. Use

of containers has risen enormously when moving towards cloud-native development. (Docker

2021; Why Docker? n.d.)

Docker containers and images

Containers are executable instances of images. A Docker container image is a lightweight,

standalone, read-only template with commands for forming a container. Images can be

based on other images, most used is taking a ready operating system image like Ubuntu and in-

stalling other needed components to run your application, for example a web server and suita-

ble configurations. Images can be created from the beginning or using published ones from a regis-

try. Registry is made for storing docker images. Docker Hub is a public registry provided by Docker,

but making a private registry is also an option. Docker images can be pulled and pushed to the reg-

26

istry making it easy to modify and share. (Docker overview n.d.) On runtime docker images be-

come docker containers, docker uses Docker Engine to do this. Docker Engine enables container-

ized apps to run consistently anywhere in any environment. (What is a Container? n.d.)

Dockerfile

Dockerfiles are used to create docker images. You create your own image by writing a Dock-

erfile with a simple syntax for outlining the procedures required to create and execute the image.

Each Dockerfile instruction forms a layer in the image. Only the layers that have changed are re-

built when you edit the Dockerfile and rebuild the image. When compared to other virtualization

technologies, this is part of what makes images so light, small, and quick. (Docker overview n.d.)

Difference between container and VM

Virtualization is the process of using software to create an abstraction layer on top of computer

hardware that enables using computers hardware to be divided into several virtual machines (Con-

tainers vs. Virtual Machines (VMs): What’s the Difference? 2021). Both containers and virtual ma-

chines can isolate resources and are good for allocating. The main difference is that containers vir-

tualize the operating system and VM’s virtualize hardware. (What is a Container? n.d.)

Containers work on the app layer packaging code and dependencies needed to run an application

or microservice. Containers do not use hypervisor which makes them faster, there is no need to

run an entire guest OS in every instance. This allows them to run effortlessly in almost any envi-

ronment. One machine can contain multiple running containers because operating systems kernel

can be shared, and each container can be executed as a separate process in user space. Docker

uses two Linux kernel technologies for separating processes and resources, namespaces for pro-

cesses and control groups for resource isolation. (What is a Container? n.d.)

When using virtual machines, it is possible to turn computers hardware into multiple servers. This

is possible by using hypervisor software which abstracts computer software from its hardware and

handles requests between virtual and physical resources. Virtual machines must virtualize the en-

tire operating system, taking up a lot of space. Instead of using minimum resources, virtual ma-

27

chines provide the whole runtime environment of the app. Figure 6 illustrates the difference be-

tween the abstraction of containers and VMs. (What is a Container? n.d; What is a Hypervisor?

n.d.)

Figure 6. Difference between container and VM (What is a Container? n.d).

3.1.10 Artifactory - Binary Repository Tool

JFrog Artifactory is an artifact repository providing end-to-end artifact lifecycle as seen in Figure 7

that improves maintaining consistency in your CI/CD workflow supporting various software pack-

age management systems, all notable CI/CD platforms, and DevOps tools. It is both a source for

artifacts needed for a build and a destination for artifacts generated during the build process. Arti-

factory comes with fully customizable CLI and REST APIs for the ecosystem. (Atzmony 2021a;

Masarwa 2021.)

28

Figure 7. JFrog Artifactory acting as single source for all artifacts moving in the DevOps pipeline

(Jfrog artifactory n.d).

Artifacts and third-party components from many sources are frequently used by multiple develop-

ers from various sites. This can result in testing issues, slowing down the pace of your releases. For

rational, effective software development, a DevOps artifact repository is essential. (Masarwa

2021.)

Artifactory gives multiple benefits for a project. Fully traceable builds that go through CI server

coupled with detailed build environment information recorded before deployment, resulting in

fully reproducible builds. Searching for artifacts is easy as Artifactory always keeps an eye on your

repository's current state. Artifactory lets you move, copy, and delete artifacts, and the accompa-

nying metadata descriptors are promptly and automatically updated to reflect these modifica-

tions, allowing sustaining linear and uniform repositories with package clients. (Masarwa 2021.)

3.1.11 Jenkins - CI/CD Tool

Jenkins is an open-source, self-contained, and Java-based automation server. Jenkins can be a triv-

ial CI server or used as a central center for project’s continuous delivery. By using Jenkins various

tasks related to building, static code analysis, testing, and delivering or deploying software can be

29

accelerated by automating it. Jenkins is a tool that manages and controls software delivery pro-

cesses across the whole lifecycle. Jenkins may be configured to monitor any code changes in ver-

sion control tools like Bitbucket and do an automatic build using build automation tools, for exam-

ple Gradle. (Jenkins n.d; Jenkins User Documentation n.d; What is Jenkins? n.d.) Jenkins helps

developers work in a smooth manner by discarding the pipeline when a problem occurs and that

way informing about errors and bugs at an early stage of the building (Kshitiz 2021).

Jenkins has hundreds of plugins which give it a wide range of environments to work in and can be

integrated with almost every tool that is used in continuous integration and continuous delivery

chain. It is also possible to code your own plugins and use them if no plugin is available. Jenkins is

a platform-independent application that runs on practically any operating system because it is

written in Java. Jenkins can be easily accessed and configured over a web interface. (Jenkins n.d;

Kshitiz 2021.) Container technologies like Docker can be utilized (What is Jenkins? n.d).

3.1.12 Anchore – Artifact Scanner Tool

Anchore Engine is a tool for scanning docker images including static analysis and policy-based

checks defined by the user automating inspection, analyzing and evaluation on the given rules. An-

chore ensures workload content fulfills the needed criteria, allowing for high trust in container de-

ployments. Policy evaluation checks each image and results in pass or fail depending on the poli-

cies defined. This works as an audit mechanism allowing container images properties and content

attributes to be evaluated at any chosen moment. (Anchore Engine Overview 2020.)

There are two options of versions of Anchore which are Anchore Engine and Anchore Enterprise.

Anchore Engine is an open-source project and Anchore Enterprise is a proprietary commercial

product and needs to be paid for. Main difference between these two is that Anchore Enterprise

adds more functionality to already existing Anchore Engine. Enterprise version provides graphical

user interface, authentication systems like SSO or LDAP, better vulnerability feed data, functions

to run Anchore without connection to Internet, reporting service, and integrations to workflow

tools like Jira. Anchore engine will be used in this project. (Frequently Asked Questions 2020.)

30

Anchore works by fetching an image, for instance from a repository, after fetching the image is ex-

tracted but not executed. Analyzing of the image starts by extracting as much metadata as possi-

ble and results are saved in the database. Policy evaluation is the next step, and this means check-

ing policies against the vulnerabilities found in the artifacts uncovered from the image. Image

analysis results and external data for policy evaluations are updated with the latest discoveries, if

any changes are found the user will be informed via notice. Updates are checked at designated in-

tervals and the user is informed about changes, ensuring the latest information and evaluations

are delivered. Result of the image analysis can be either pass, fail or a warning after all checks like

shown in Figure 8. (Anchore Engine Overview 2020.)

Figure 8. Anchores analysis and policy check process (Anchore Engine Overview 2020).

Anchore engine is available for use as a docker container, image is fetched from Docker Hub. An-

chore also requires a PostgreSQL database for analyzing operations, results, and unpacking im-

ages. Anchore is a combination of six micro-services and can be either used as a single container or

divided for handling bigger loads. (Anchore Engine Installation 2020.) Anchore Engine version 1.0.0

and newer is fully integrated with Grype for vulnerability scanning (Grype Integration 2021). For

developer to control Anchore Engine Anchore CLI or Anchore Engine REST API is used as seen in

Figure 9. With Anchore CLI commands you can pull images from registries, store them in database,

and perform scanning and policy evaluations. (Using the Anchore CLI 2020.) Using Anchore API or

CLI images can be downloaded from hosted registries like Docker Hub and on-premises registries

31

like JFrog Artifactory, if registry requires authentication credentials will have to be defined. Images

can be analyzed from any Docker V2 compatible registry. (Accessing Registries 2020.)

Figure 9. Connecting to Anchore Engine via API or CLI (Accessing the Engine 2020).

Anchore image analysis

During Anchore image analysis every package, library, and files are checked and stored in data-

base. Anchore has multiple analyzer modules that collect data from the image, including image

metadata, image layers, file data, python packages, and others as seen in Figure 10. (Analyzing Im-

ages 2020.) Image analysis is carried out as a separate, asynchronous, and scheduled process, with

analyzer workers polling queues on a regular basis. A minor state-machine is present in image re-

cordings, as seen in Figure 11. (Image Analysis Process 2020.) Tags can be added to Anchore En-

gine and repository's tagged items will be observed for updates (Analyzing Images 2020). When

new updates become available, they are automatically delivered to the analyzers to be inspected

via internal queue (Image and Tag Watchers 2020). It is also possible configure Anchore Engine to

emit webhooks when changes happen in images and tags. These are called subscriptions and can

be used to trigger when new tag analyze, image update, vulnerability update, or change in policy

status update happens. (Subscriptions 2020.)

32

Figure 10. Anchore image analysis and analyzer module process (Analyzing Images 2020).

Figure 11. Anchore image analysis status workflow (Image Analysis Process 2020).

33

Anchore policies

After an image has been examined and its content has been inspected, categorized, and pro-

cessed, the results can be compared to a user-defined set of criteria to determine a final pass/fail

judgment. Users describe which evaluation to run on certain images and how the findings should

be dealt with using Anchore Engine policies. A policy is represented as a policy bundle, which con-

sists of a set of rules that are used to evaluate a container image. Checks against an image can be

defined with rules like configuration file contents, security vulnerabilities, whitelists and blacklists,

exposed ports. The evaluation process is portrayed in Figure 12. These checks are described as

Gates that contain Triggers that run specific checks and emit matched outcomes, and they define

what the engine may analyze and deliver a judgment regarding automatically. (Policy 2020.) For

example, whitelisting can be used to ignore CVE matches that have been identified as false posi-

tives or ignore CVE matching on specified packages (Policy Bundles 2020). These rules can be en-

forced globally or tailored to specific images or application categories. Policy checks returns

passed or failed indicating if the image complies with defined policies or not. (Policy 2020.)

Figure 12. Anchore policy evaluation workflow (Policy 2020).

34

Anchore CI/CD integration

Anchore can be integrated into CI/CD pipelines like Jenkins to secure the pipeline by adding image

scanning including CVE based security scanning and policy scanning that makes it more compre-

hensive. Images are given to the Anchore Engine for processing as part of the CI/CD pipeline. The

build can be defined to fail if an image fails to pass the policy checks and if the image passes it can

be transferred to a registry. It may also be defined that when a build fails it gives a warning and

informs developers but is delivered to the registry. The process flow can be something like demon-

strated in Figure 13. For example, Jenkins supports a plugin that allows creating Pipeline jobs and

Freestyle jobs utilizing Anchore. Another way of using CI/CD systems is making API or CLI calls to

the engine, first delivering an image for analysis and then retrieving policy status. (CI / CD Integra-

tion 2020.)

Figure 13. Anchore as part of a CI/CD pipeline (CI / CD Integration 2020).

4 Current process environment

In this project Qvantel Reference Product (QRP) environment is utilized and its software develop-

ment lifecycle can be seen from Figure 14. QRP and Customer specific pipelines share same princi-

ples, but customer pipeline uses QRP release candidate as an input. The current situation and used

technologies will be explained from QRP pipeline’s perspective. Main goal of QRP and its processes

is to provide verified system releases on a regular interval, currently every second week, to cus-

tomer programs and support a maximum of two old releases with hot fixes. This environment is

running in AWS cloud and is following a strategy called AWS Well-Architected Framework by using

five pillars of operational excellence, security, reliability, performance efficiency, and cost optimi-

zation (AWS Well-Architected n.d). This assists in producing stable and efficient systems. Anchore

will be deployed into QRP pipeline.

35

Current software development lifecycle

Used technologies, such as Jenkins, Artifactory, Docker, and Kubernetes are included in different

phases of the pipeline. The first phase being QRP Component Development, the second QRP sys-

tem-spec development, and the third QRP System verification. These phases are marked with

numbers in Figure 14 making them easier to comprehend. In the first phase, before code and arti-

facts are pushed to Component Test Environment (CTE), the components are built, and unit tested

using Jenkins worker. Resulting docker image and artifacts are uploaded to Artifactory and

scanned for vulnerabilities. If the scan result is compliant with defined security policy, such as "no

critical vulnerabilities allowed", the docker image and other artifacts are tagged accordingly. After

that, the build process can continue to CTE phase. Components are then tested in CTE and after

successful results components are tagged and moved forward to the second phase. Kubernetes

manages the containers and clusters in all the different testing environments. Kubernetes fetches

the docker images from Artifactory during the deployment phase.

In the second phase, the system-spec, which describes the whole contents of the deployment, is

created. The contents of the new build include all new committed components that have passed

the tests in CTE system-spec building phase. This phase is executed using Jenkins. Static verifica-

tion is performed on the system-spec and the resulting docker image and artifacts are uploaded to

Artifactory and scanned for vulnerabilities. After successful results, the system-spec is tagged, and

the build process can move forward to phase three. System-spec is a versioned entity of the sys-

tem, and it lists, for example, included versions of the component and more.

Phase three of the build process includes various testing stages, starting with the Integration Test

Environment (ITE). The ITE includes integration and smoke tests on full system-spec. After success-

ful checks of the criteria, the tag is added, and the system-spec is moved to the System Integration

Test (SIT) environment. During SIT phase, the functional tests are run by using the use cases

against API and GUI. Finally, the Upgrade Test Environment (UTE) and Performance Test Environ-

ment (PTE) UTE verify the upgrades from the last released version to current release. The PTE runs

a set of dedicated performance tests to measure the system and component performance. Both

36

UTE and PTE give their own tags to the system-spec. The system-spec gets tagged from each envi-

ronment starting from the second phase. After success, the released version of the system is al-

lowed to be deployed to pre-production and production environments.

Figure 14. Current environment with numbered QRP pipeline phases.

Current security scanners in QRP pipeline

QRP pipeline includes multiple security scanners in different phases of the software development

lifecycle, see Figure 14 for numbered phases. First scans are executed by the developers with Syft

and Grype. This is done before they commit the new code. This gives them the ability to do prelim-

inary security checks of their work locally. Syft is a tool that creates Bill of Materials of the con-

tents of a Docker image and Grype is a vulnerability scanner. Both Syft and Grype are imple-

mented and provided by Anchore, Inc.

37

In the second phase of development, the Xray tool by Jfrog scans the chosen repositories in Arti-

factory. Xray has watches that check the given policies. These watches are set to alert for viola-

tions that are triggered by the chosen policies. The results are available from Xray’s GUI. Two sep-

arate policies are used. The first policy includes the Common Vulnerability Scoring System (CVSS)

vulnerabilities from range 7 to 8.9, and the second, CVSS from range 9 to 10. The main purpose of

Xray is to scan and identify the known vulnerabilities of all the artifacts in the selected reposito-

ries.

The third phase of vulnerability scans uses InsightVM by Rapid 7. The purpose of InsightVM is to

scan the known vulnerabilities through the whole environment. All the selected environments

contain a scan agent, which has the capability to check both the software and the operating sys-

tem environment. Scan type is credentialed scan, and the scanner agent is run inside the operating

system with elevated privileges. The agent can, for example, access and check the resources on

the OS level, such as services, ports, running applications, and OS utility programs. Every environ-

ment includes assets that are machines from where the information is being collected. Every asset

is scanned using the chosen scan profile. InsightVM creates reports from these scans that can be

seen from the GUI.

4.1 Artifact Scanners as part of pipeline process

Subdivisions of this chapter go through the meaning of artifact scanning in pipeline process. This

includes scanner types used in various phases of a development cycle. Purpose of artifact scanning

overall and in current environment. Finishing with challenges found in artifact scanning tools.

4.1.1 Different scanner types in software development life cycle and current market situation

In the past, security testing was mostly done in a separate team and at the end of the develop-

ment cycle, it was soon noticed that it was time consuming and costly. Today many organizations

take advantage of DevSecOps model, which considers security straight from the beginning of the

development cycle giving possibility to get feedback instantly enabling faster and cheaper fixes.

(Chen et al. 2022, 313-314; Sengupta 2021.)

38

It is recommended for software teams to have comprehensive visibility over the vulnerabilities

from the initial stages of pushing source code to repository given how complex modern applica-

tions are. Automated testing processes and tools are a huge help in this regard. Aside from assur-

ing security, automated security testing improves agility by detecting and resolving security vul-

nerabilities early. (Chen et al. 2022, 313-314; Sengupta 2021.)

One of the most widely advised best practices is to make sure that vulnerabilities found in applica-

tion are never overlooked during the development process. Organizations should consider vulner-

abilities in all stages of development and deployment even if the program is not yet available for

public use, to prevent sensitive data exposure and the risk of system breach. To achieve optimum

accuracy in identifying threats and vulnerabilities, a thorough application security testing proce-

dure can be performed through numerous mechanisms that target distinct phases of a software

development life cycle. (Chen et al. 2022, 313-314; Sengupta 2021.)

Software Composition Analysis (SCA) is a software-only subset of component analysis that has a

limited scope. These tools are used for inspecting open-source libraries and third-party compo-

nents. SCA scan can be done in the very beginning when code has been committed to confirm that

development has been done safely. Later in the testing phase SCA tool can keep developers up-

dated if vulnerabilities in the used code and artifacts appear and maintain track of a program's de-

pendencies and generate a warning if the application contains publicly reported vulnerabilities.

These scanners compare open-source components for creating risk profiles and offering patches

or other solutions to mitigate the risks. In this project Anchore will be used as a SCA scanner for

scanning docker images and included artifacts. Another example of a SCA scanner is JFrogs Xray.

(Chen et al. 2022, 314; Open Source Vulnerability Scanning: Methods and Top 5 Tools n.d;

Springett n.d.)

Static Application Security Testing (SAST) is like SCA as it happens in the beginning and testing

phase inspecting source code or compiled versions of the code. SAST entails examining source

code and speculating on security issues, as well as recognizing design and construction flaws that

could lead to a security risk. This type of scanner does not need the program to be run in produc-

tion and its value lies in detecting flaws during software development, providing developers with

39

real-time feedback as they write code. (Dynamic Application Security Testing (DAST) 2014;

Sengupta 2021; Wichers et al. n.d.)

Dynamic application security testing (DAST) is a method of evaluating an application while it is op-

erating in an environment. This type of testing is beneficial for meeting industry standards and

providing broad security measures for projects that are still in a development environment before

going to production. DAST scanning is meant for operational testing rather than looking into

source code or components that are included in the application. DAST is a black box testing

method that assesses the application's security posture from the perspective of an attacker. DAST

scanners look for security vulnerabilities like path traversal, insecure server configuration and

command injections. InsightVM is a DAST scanning tool and used in this project environment.

(Chen et al. 2022, 314; Dynamic Application Security Testing (DAST) 2014; Sengupta 2021; Vulnera-

bility Scanning Tools n.d.)

Another commonly mentioned testing method is Interactive Application Security Testing (IAST)

which is a combination of SAST and DAST. It allows security checks at different stages of develop-

ment and deployment. IAST tool scans code for security flaws when the app is being tested by an

automated test, manual tester, or any other activity that interacts with the application’s function-

ality. (Chen et al. 2022, 314; Sengupta 2021.)

Current market situation

There are currently a lot of security and compliance tools on the market as can be seen from Fig-

ure 15. Companies and tools presented in Figure 15 do not include every tool on the market but

gives a good overview of the number of options available. In this project SCA tool Anchore will be

implemented and there is DAST tool InsightVM in the environment so these two will be used as

examples. As an example, SCA tool providers are Snyk, WhiteSource, and Anchore. A few not rep-

resented in Figure 15 are JFrog Xray and Sonatype Nexus. For DAST tool providers there are Stack-

Hawk in Figure 15 and others for instance Veracode, Rapid7 InsightVM, Crashtest Security, and

Invicti.

40

Figure 15. Overview of the current market situation for security and compliance tools (CNCF Cloud

Native Interactive Landscape n.d).

As an example, for one type of SCA tool, Xray can find license violations and vulnerabilities in dec-

laration stage and stop builds that include security issues. It can detect artifacts and their depend-

encies with recursive scan for more precise scan including smaller binary components. Xray ana-

lyzes how different components affect others providing continuous impact analysis. Being natively

integrated with Frog Artifactory gives it direct access to metadata Artifactory stores. Xray has its

own vulnerability database from where it gets information. Xray is controlled through REST API

that allows customization of analysis for different components. Using Xray binary scan a specific

binary can be pointed out and scanned from a file system. (Atzmony 2021b.)

As an example, for one type of DAST tool, InsightVM has a feature for assigning agents that auto-

matically collect data from all available endpoints additionally checking remote workers and sensi-

tive assets which cannot be actively scanned. InsightVM has an active dashboard that can be inter-

acted with and can be customized. It also has a Real Risk Score view that collects information

about likeliness of a specific attack depending on the vulnerability including threat feeds and busi-

ness context, thread feeds also have their own view that shows the most relevant threats to the

current environment. Feature called Remediation Projects allows security teams to designate and

follow remediation duties in real time giving an opportunity to see how issues are fixed, this can

be integrated with a ticketing system. InsightVM can periodically scan the public internet to access

41

information about global exposure to generic vulnerabilities using Project Sonar. It can check con-

tainer images while they are in the build process. Security goals and common compliance require-

ments can be set with pre-built scan templates also Custom Policy Builder allows modifying cur-

rently active benchmarks or creating new ones. InsightVM gives the possibility to automate

patching by gathering key information, collecting fixes for detected vulnerabilities, and finally im-

plementing the patches and automating containment by applying provisional or permanent substi-

tute controls. (InsightVM Features n.d.)

4.1.2 What is wanted to achieve with the artifact scanning?

Software is a product of third-party components and open-source code. To deliver the needed

functionality, modern software is created utilizing open-source components in different ways inte-

grating with the original code. Using open source has many benefits giving required building blocks

for businesses to provide value, increase quality, minimize risk, and shorten time of delivering new

features. Problems can arise when nobody knows the security of these components and organiza-

tions take the risk by using code they did not develop. (Paine 2022; Springett n.d.) All these com-

ponents include pieces of artifacts that should be thoroughly scanned minimizing potential risks.

Artifact scanning should provide vulnerabilities found from components and evaluate risk by scor-

ing or taking information from a vulnerability database. The scanning process should be fully auto-

mated or launched manually using automated processes improving continuity and frequency done

against used artifact repository. Scanner tool can provide mitigation steps to fixing the found flaw.

Every environment is different, and it is important that the artifact scanner used can utilize policy

checks etc. For finding false positives excluding irrelevant vulnerabilities and finding the ones that

matter. Overall, the goal is to keep artifact repository safe from vulnerable components and catch-

ing possible flaws before they get to the production environment.

4.1.3 Challenges with artifact scanning tools

Understanding of actuals risks can be a harder task than it seems. Artifact scanning tools can pro-

duce an extensive list of vulnerabilities including insignificant ones which add to system noise and

postpone fixing. Manual results review is frequently required and consumes valuable time that

42

could be used to concentrate on the genuine issues. It is important to make practices that enhance

the review of results and apply policies that alert about relevant issues making assessment of the

findings simpler. (Berman 2021; Software Composition Analysis (SCA): What You Should Know

n.d.)

Technical debt and hindering development

Initial scans may reveal a significant amount of technical debt if you have a vast codebase, and ar-

tifact scanning has not been done before. Some of the technical debt will be accumulated by the

used open-source components and deprecated libraries. Development teams are usually responsi-

ble for addressing any defects, weaknesses, or vulnerabilities in the component. As a result, there

might be need to spend more time and effort fixing open-source libraries that are vital to your ap-

plications, or you may have to modify your apps to work without the deprecated or at-risk library.

In future this slowing process can be relieved by educating the development team on the signifi-

cance of researching open-source components before use. (Berman 2021; Software Composition

Analysis (SCA): What You Should Know n.d.)

Scanning should be performed in a way that it does not slow software development lifecycle. In-

stead of placing an unnecessary amount of security checks in different phases planning should be

done carefully. Responsibility of security could be moved partly to the development teams to min-

imize interruption of workflows. (Berman 2021; Software Composition Analysis (SCA): What You

Should Know n.d.)

Data accuracy and scanning coverage

It is possible that artifact scanners will not find all open-source components from chosen target or

repository. The majority of artifact scanning tools keep databases of known open-source code and

security vulnerabilities. Maintaining the accuracy of the data is a constant task that has a direct im-

pact on the security of the deployed software. Scanner tool vulnerability databases may also be

missing information on specific libraries purchased from smaller dealers or not well known open-

source projects. Artifact scanning tool providers are under constant pressure to keep up with the

increasing number of package managers, programming languages, and build systems. For most

43

cases, some amount of manual discovery or tracking is needed. Artifact scanning does not replace

all forms of application security testing and is there only to complement the big picture. (Overview

of SCA Tools: Core Features and Benefits of Deployment 2021; Software Composition Analysis

(SCA): What You Should Know n.d.)

5 Implementation

In this project two implementations were created, one in a local environment and the second one

in the production environment. The reason for this was to ensure that the components in use are

compatible with each other as many of the examples found were two to three years old using

older versions of Anchore Engine. Another reason was because I could not do all the setting up in

the production environment because of the permissions and those changes were made through

requests. On the local implementation it can be seen how all the components of the implementa-

tion can be set although taking into account that the local setup is not as complex as the produc-

tion environment and is done on one virtual machine. Setting up that I could not do in the produc-

tion environment was creating the AWS instance, Jenkins configurations except the Anchore job

configurations, networking, and port openings.

The first step of the implementation was to research different types of implementation possibili-

ties and choose the most suitable one. In the end the official Anchore Jenkins plugin was chosen as

it could be easily set up as part of the existing QRP pipeline. The implementation works in the fol-

lowing way. Anchore Engine is running in a docker container waiting for requests to analyze an im-

age. Anchore Jenkins plugin is set up in a Jenkins job in the Jenkins server and is sending requests

to add and analyze image(s) to Anchore Engine via Anchore CLI commands. Jenkins build is started

manually or automatically after a commit has been pushed to repository. Anchore Engine fetches,

analyzes, saves results, evaluates image(s), and sends evaluation results to Jenkins and finally Jen-

kins job creates “Anchore Report” that contains all the results from the image evaluation. Jenkins

job build is either “pass” or “fail” depending on the result of the Anchore policy evaluation and if

wanted this can affect the whole pipeline or can be set as a separate check, see sequence dia-

grams (Figure 16) about the workflows.

44

Figure 16. Anchore scanning automatic and manual workflows.

5.1 Local implementation

Local implementation was set up on a single virtual machine using Oracle VM VirtualBox see de-

ployment diagram Figure 17. Anchore’s documentation has instructions on what is required to set

up a stand-alone installation and those were followed. This virtual machine had 4GB of RAM and

enough disk space to handle larger container images, in this case 30GB was sufficient. To make the

45

machine as similar as the production instance it was given 2 processors and the OS used was Cen-

tOS 7. All the installing and configuring was done as root user. This implementation was set so that

the Anchore scanning is manually triggered by starting the Jenkins job build (Figure 16).

Figure 17. Local implementation deployment diagram.

5.1.1 Installation of software

In addition to system requirements Anchore Engine is working from a docker container and build

with docker compose as it is a set of micro-services. Docker Engine is installed for this purpose and

to make the networking simpler also Jenkins server was installed as a container. The whole setup

was run on top of docker as containers.

Docker installation

First “yum-utils” package that includes “yum-config-manager” needs to be installed to be able to

set up the docker repository as seen in Figure 18. Command “yum-config-manager” enables add-

ing, enabling, and disabling repositories.

46

Figure 18. Installing “yum-utils” and setting up docker repository.

The last step is to install Docker Engine, containerd, and Docker Compose (Figure 19). After in-

stalling docker needs to be started and optionally added to start on boot. Docker can be started

and enabled on boot by using “systemctl” command that controls service manager (Figure 20).

Now Docker is ready, and the actual software can be installed on top of it.

Figure 19. Installing Docker Engine, containerd, and Docker Compose.

Figure 20. Enabling and starting Docker service.

Jenkins server installation

Jenkins server will be run as a Docker container, and the image is taken from Docker Hub. Chosen

image is from Docker repository “jenkins”, image name is “jenkins”, and tag “lts-jdk11” meaning it

47

is long-term supported and uses version 11 of Java SE Platform. This image will be updated with

each LTS release and can change over time. Jenkins container will be started with various argu-

ments as seen in Figure 21. Argument “-d” indicates that the container is started in detached

mode and will not be attached to terminal but will be running in the background. Argument “-p”

will be mapping local port to a port that Docker container exposes. The first port number is the lo-

cal port and after colon the container port. Port 8080 is for the webserver and enables opening

Jenkins on local machine Docker also directs traffic for the server that is in the container. Port

50000 is for the Jenkins agent. Argument “-v” is for creating volumes in this case volume called

“jenkins_home” is created if it does not already exist and mounted under the path given after co-

lon “/var/jenkins_home” in the container.

Figure 21. Starting Jenkins server container.

To check that Jenkins server is up running docker containers can be listed with “docker ps”. Con-

tainer logs should also contain line “Jenkins is fully up and running” indicating the server is ready.

This text can be found with the “docker logs <container id>” command and the Administrator

password can also be found from the logs that is needed to proceed with the installation as seen

in Figure 22. The Administrator password can be optionally retrieved from location “/var/jen-

kins_home/secrets/initialAdminPassword”.

Figure 22. Checking Jenkins server container logs for Administrator password.

48

Browsing to URL “http://localhost:8080” will open the Jenkins server GUI. The server needs to be

configured when it is taken into use for the first time. Getting started screen will be opened to un-

lock Jenkins. Administrator password is given here to get started with the initial configuration as

seen in Figure 23.

Figure 23. Starting initial configuration of the Jenkins server.

To ease the initial set up “Install suggested plugins” is selected as it includes a list of common

plugins that are generally useful. Installing the plugins will take a few minutes. Plugin options and

installation can be seen from Figure 24.

49

Figure 24. Jenkins initial plugin options and installation of plugins.

Next step is to create the first admin user, Jenkins administrator account. Give credentials and

click “Save and Continue” (Figure 25). The final step in the initial setup is to provide the “Jenkins

URL” and this can be the IP of the Jenkins server. Docker container IP address can be checked with

“docker inspect <container id>” command and found from the network section. Checking IP ad-

dress and giving “Jenkins URL” can be seen from Figure 26. The “Jenkins URL” can be later changed

from the Jenkins global settings. Jenkins is now ready, and everything has been configured. Click

“Start using Jenkins”. Jenkins server can be found with URL “http://localhost:8080” or “<container-

ip-address>:port” on the host machine.

http://localhost:8080/

50

Figure 25. Creating Jenkins administrator account.

Figure 26. Checking Jenkins server container IP address and giving “Jenkins URL”.

Anchore Engine installation

Anchore Engine Docker Compose YAML file is fetched that includes all micro-services needed to

run it. When fetch is done services are started with “docker compose” command in detached

mode see Figure 27. After a few seconds Anchore Engine should be up and running, this can be

51

checked with “docker compose ps” command that lists running containers. Included services are

engine API, engine catalog, engine simpleq, policy engine, engine analyzer, and database. System

status of Anchore Engine services can be verified via “docker compose exec” and Anchore CLI com-

mand (Figure 28). Anchore Engine is now ready for use.

Figure 27. Fetching Docker Compose YAML and starting services.

Figure 28. Verifying system status of Anchore Engine services.

When Anchore Engine is first started it will take some time for it to synchronize all vulnerability

data to the engine. Status of the feed sync can be checked by using the Anchore CLI “docker com-

pose exec api anchore-cli system feeds list”. Listing shows “RecordCount” for different vulnerabil-

ity groups as soon as none is 0 the sync should be ready.

Docker images can be scanned via the Anchore Engine by adding an image (Figure 29). In this ex-

ample Debian 7 image from Docker Hub is used. Status of the analysis and waiting for the analysis

to be completed can be done with command “docker compose exec api anchore-cli image wait

docker.io/library/debian:7”. When the analysis is done vulnerability scan results for the image can

be checked. Anchore-engine will list vulnerability ID, package name, severity, fix if there is one,

52

CVE reference, URL with more details about the vulnerability, type of the artifact, and feed group

as seen in Figure 30.

Figure 29. Adding image to Anchore Engine.

Figure 30. Anchore Engine image vulnerability check.

The last step is checking policy evaluation against the analyzed image (Figure 31). With these de-

fault policies the result was “pass” and in a real-life case the image could have been passed for-

ward in the development lifecycle. If the evaluation result had been “fail” the image would have

been sent back for fixing.

53

Figure 31. Image policy evaluation check.

5.1.2 Configuration of environment and software

In this chapter networks and Jenkins are configured so images can be scanned. Installation process

and configuration of Jenkins plugin is shown. Jenkins job is created and configured for triggering

the Anchore scanning on specific image(s).

Starting Jenkins in same network as Anchore Engine

Jenkins server container will be connected to the same network as Anchore Engine for Jenkins to

be able to access the engine. Network of Anchore containers can be checked with “docker inspect

<container id>” command from the “Networks” section. All the Anchore Engine services are in the

same network by default, and the network name is checked from the root-api-1 container (Figure

32). When using Docker Compose, network name will be created based on the name of the folder

it is started from, and in this case compose file in root home folder will give the network name

“root_default” (Networking in Compose n.d).

54

Figure 32. Checking Anchore Engine network name.

As for Jenkins container it will be connected to the “bridge” network by default. It needs to be

connected to “root_default” and it is good to disconnect the container from the “bridge” network,

so the Jenkins container does not have multiple networks see Figure 33. Container id for Jenkins

begins with “1e35” and that is used in the commands. Now both Anchore Engine and Jenkins

server are in network “172.18.0.X”.

Figure 33. Connecting Jenkins server to “root_default” and disconnecting from “bridge” network.

Jenkins server in “root_default” network has a new IP address. Jenkins webserver will now be

found behind the new IP address URL in port 8080. “Jenkins URL” will be updated with the new

one, as it was first set in the initial configuration. Changes can be done in the global settings of

Jenkins. The path to changing “Jenkins URL” is the following: Open “Manage Jenkins” there is

“Configure System” and find “Jenkins Location” section header. URL is changed to contain current

IP address as seen in Figure 34.

55

Figure 34. Changing ”Jenkins URL” to new one.

Installation of Jenkins Anchore plugin

To scan images with Anchore Engine via Jenkins, plugin called “Anchore Container Image Scanner”

needs to be installed. In “Plugin Manager” searching for “anchore” in available plugins will give the

latest version as seen in Figure 35. “Install without restart” option is chosen. “Plugin Manager” can

be found from under “Manage Jenkins” that includes various configurations. The version of the

plugin in this local environment is 1.0.24.

Figure 35. Installing Anchore scanner plugin.

56

After installing plugin, Jenkins global settings need to be configured so that our Jenkins server can

connect and send requests to the Anchore Engine. Global settings can be found from under “Man-

age Jenkins” then “Configure System” and finding header of section “Anchore Container Image

Scanner”. “Engine URL” is the Anchore Engine API URL http://<root-api-1-container-ip>:8228/v1.

Anchore Engine by default is behind port 8228 if not changed in the compose file. Username and

password as default are “admin” and “foobar” it is highly recommended to change at least the

password but in this local test they are kept as default, see Figure 36.

Figure 36. Configuring Anchore scanner plugin global settings.

Creating Jenkins job for Anchore

Jenkins “Freestyle project” is selected and configured to create the Anchore Jenkins job. Two build

steps are needed for the Anchore scanning. First “Execute shell” step is for giving path to the

wanted images for Anchore Engine and second “Anchore Container Image Scanner” step is the ac-

tual command for Anchore Engine to scan the given images. In this example image(s) will be taken

from Docker Hub and path is echoed to Jenkins job workspace file called “anchore_images”. From

this file Anchore Engine will retrieve the information of images to be scanned. “Execute shell” step

can be seen from Figure 37 and full command used is ‘echo “docker.io/library/wordpress:6.0” >

anchore_images’ with this “wordpress” image with tag “6.0” will be scanned.

57

Figure 37. Jenkins job “Execute shell” build step.

Continuing to the scanning step where Anchore plugin will direct Anchore Engine on what to ana-

lyze. “Image list file” tells what file includes list of images to be analyzed, in this case ‘anchore_im-

ages’ file. As default it is chosen to fail the Jenkins build if policy evaluation results in “FAIL”. All the

settings can be left as default, and nothing was changed as seen in Figure 38. During build Anchore

will constantly poll status of the analysis until it is finished or if the “Anchore Engine operation re-

tries” value is hit. If this happens the build results in fail. In the “Anchore Container Image Scan-

ner” build step it is also possible to override global configurations, but this is not necessary as the

details were already set in the global settings.

58

Figure 38. Jenkins job “Anchore Container Image Scanner” build step.

When running build and scanning WordPress image, as result four JSON files are created including

used Anchore gates, security, evaluation, and found vulnerabilities. To see things in a clearer for-

mat “Anchore Report” can be opened which the Anchore Jenkins build creates as seen in Figure

39.

Figure 39. Jenkins job build results.

59

When opening the Anchore Report, the first header is a summary of found vulnerabilities and se-

verities. Under summary, policy evaluation report lists found vulnerabilities with more details see

Figure 40. From the report can be seen the image id, repository tag, what vulnerability triggered

this action, used gate, trigger type that is package, vulnerability severity and link to see more de-

tails of the vulnerability, gate action, is this vulnerability whitelisted or not, and used policy id. Our

Jenkins build resulted as fail as it was configured in the “Anchore Container Image Scanner” build

step that the build will fail if the policy evaluation results as fail. This is because the WordPress im-

age contained critical or high vulnerabilities. The result of the evaluation can be changed by con-

figuring Anchore Engine policy bundle or by whitelisting vulnerabilities in the policy bundle.

Figure 40. Jenkins build “Anchore Report” results.

5.1.3 Use of implementation and configuring Anchore policy bundle

In this example Anchore Engine policy bundle will be configured to alter Jenkins job “Anchore Re-

port” results. “Execute Shell” build step is modified to take two images. More than one image will

be used so policy mapping can be utilized. Mapping will force policy evaluation on any image that

matches the given criterion. Images added to Anchore scanning job are “wordpress:6.0” and

“wordpress:php8.1”. Image paths must be echoed as multiple lines into “anchore_images” file.

“Execute Shell” step is changed to be as follows: ‘echo “docker.io/library/word-

press:6.0\ndocker.io/library/wordpress:php8.1" > anchore_images’. Multiple images can be

60

scanned with this method. After running the configured job, the following results can be seen (Fig-

ure 41). Both images have the same amount of stop and warn actions.

Figure 41. “Anchore Report” summary for two wordpress images.

Results can be filtered with “Trigger Id”, this will be used to find same CVE from both images so it

can be whitelisted from the other image. As seen in Figure 42, both images have same triggering

factor “CVE-2021-30474+libaom0” this will be taken as an example and whitelisted from the other

image removing gate action “STOP”.

Figure 42. Filtering “Anchore Report” results with “Trigger Id”.

61

All actions from here on are happening inside the “root-api-1” container. To fetch Anchore Engine

policy bundle “root-api-1” container is accessed with “docker exec” command and policies are

listed with Anchore CLI command as seen in Figure 43. Container will be accessed as “root” user

because the default Anchore user will not have permissions to download the policy bundle. The

policies can be created from scratch, but in this case the default policy will be modified.

Figure 43. Accessing Anchore Engine container with “root” user and listing policies.

The default policy bundle is downloaded as JSON with Anchore CLI command so that it can be

modified (Figure 44). Default policy’s “mappings”, “policies” and “whitelists” sections are modi-

fied, and new ones created to set the vulnerability “CVE-2021-30474+libaom0” whitelisted only for

the “wordpress:php8.1” image. Modified policy bundle JSON will be uploaded back to the Anchore

Engine, when listing policies, the policy is not yet active. To activate the policy Anchore CLI policy

activation command is used, see Figure 45.

Figure 44. Fetching Anchore Engine default policy bundle to modify it.

62

Figure 45. Adding modified default policy bundle to Anchore Engine and activating it.

Anchore Engine default policy bundle (Appendix 1) was modified in the following way: Two differ-

ent “mappings” for both images, two different “whitelists” for both images, and new policy for

“wordpress6.0” and other images as default policy was modified for “wordpress:php8.1” image.

All configurations in the policy bundle JSON are expressed as “key: value” pairs. Each policy bundle

must contain the following sections see Figure 46 at least “comment”, “whitelisted_images”, and

“blacklisted_images” can be left as empty.

Figure 46. Empty policy bundle JSON.

“Mappings” array needs to have at least the following values: Registry, Repository, policy id,

whitelist id and image detail that is matched with “type” and “value”. With this information the

mapping rule will know which registries, what repository names, and what images it applies to. In

63

addition, mappings have defined policies and whitelists that apply to matched images. As “map-

pings” are evaluated in order causes it to halt on the first matching rule, this means the order of

the “mappings” is important and will affect the report results. As “mappings” were created for

“wordpress:php8.1” and other images, type “tag” was selected and value for it “php8.1”. Other

images mapping was left to include all other images with type “tag” and value “*” asterisk repre-

senting wildcard character. The order here is important as the first mapping will catch “word-

press:php8.1” image and other images will be checked with the latter mapping rule. Both “map-

pings” have an asterisk on the registry URL and repository name as only image tag is important in

this case and Docker Hub registry was used in both cases. For “php8.1” image “policy_id” and

“whitelist_ids” are kept as default, but the content is modified. For other images a new policy and

whitelist was created. To distinguish which mapping is for which image, “php.8.1” image mapping

name was left as “default” and other images mapping was named “testmapping” see Appendix 2.

Whitelists are created to offer a way to overrule policy-rule matches. It is a named group of exclu-

sion criteria that match trigger outputs. Whitelist has the following values defined: “id”, “name”,

“comment”, “version”, “items”. Items also include the following values: “gate”, “trigger_id”, “id”.

“Gate” is the triggering factor vulnerabilities, packages etc. “Trigger_id” is specified trigger result

match, triggers may have different “trigger_id” format. “Id” is a unique identifier for the whitelist

object rule. “Items” array can also be left as empty, this means there are no whitelist rules. In this

case for “php8.1” image whitelisting rule for "CVE-2021-30474+*" was created as was decided in

the beginning and whitelists id was left as default. For other images a new whitelist was created,

and the “items” list is left as empty, thus nothing is whitelisted. “Php8.1” image whitelist id is

“37fd763e-1765-11e8-add4-3b16c029ac5c” and other images “whitelist6.0”. These same id’s can

be seen applied in the “mappings” arrays (Appendix 2).

Policies are JSON objects within the policy bundle. Policy consists of rules and each rule deter-

mines a specific check against the image resulting in an action if matched. Policy must have “id”,

“name”, and “rules” defined. As “rules” holds one or more rule each one defines “action”, “gate”,

“id”, “parameters”, and “trigger”. Each rule can have multiple parameters and they are passed as

name, value pairs. Rule determines if matched result causes image evaluation stop, go, or warn

action. Parameters are specific to selected gate and trigger, for example from gate “vulnerabili-

ties” trigger “package” can be selected and then parameter “severity” can be selected and given

64

value “high”. This rule would mean only package vulnerabilities with severity high result in defined

action. The default policy was untouched and used for “php8.1” image. New policy was created for

other images and there was only one rule defined to cause “STOP” action if there are any packages

with vulnerabilities higher than severity “medium”. Both policy id’s can be seen defined in the

“mappings” arrays this way they are applied on the chosen images. For “php8.1” image, used pol-

icy was with id “48e6f7d6-1765-11e8-b5f9-8b6f228548b6” and for other images “policytest”. All

modifications can be seen from Appendix 2.

If comparing old summary (Figure 41) and new resulting summary (Figure 47), instead of 18 stop

actions, there are only 17 stop actions for “wordpress:php8.1” image resulting from the whitelist-

ing. It can also be seen that because none “WARN” action rules were set in the “policytest” policy

which was for all other images than “php8.1” the result for those is “0” for “wordpress:6.0” image.

Figure 47. New “Anchore Report” summary after modifications.

Checking the new report results (Figure 48), for “wordpress:php8.1” the gate action for vulnerabil-

ity “CVE-2021-30474+libaom0” is “go” and for “wordpress:6.0” image “stop”, this is caused by the

whitelisting. From the last column can be seen that the images use different policies that were ap-

plied before in the policy bundle “mappings”. “wordpress:6.0” is using the created “policytest”

policy and “wordpress:php8.1” is using the default policy “48e6f7d6-1765-11e8-b5f9-

8b6f228548b6”.

65

Figure 48. New “Anchore Report” results after modifications.

5.2 Production implementation

Instance for Anchore was created into AWS cloud and instance type is Amazon EC2 T2 instance

“t2.medium”. It has 2 vCPU's and 4GB RAM, which is sufficient for Anchore. (Amazon EC2 T2 In-

stances n.d.) System OS used in this project is “Rocky Linux 8.6.” Anchore requires PostgreSQL ver-

sion “9.6.” or newer to provide storage for images, policies and data created during analysis.

Around 2GB RAM should be enough for operating in a steady state. Access to registry is needed in

this case Artifactory is used. Anchore needs to be able to synchronize feed data from Anchore

Cloud Service that is collecting latest data on vulnerabilities, one end point is needed for this,

“host: ancho.re TCP port: 443”. (Requirements 2020.) The stand-alone version of Anchore Engine

should have at least 4GB of RAM and between 5GB to 10GB of disk space to be able to support

larger docker images that are analyzed (Quickstart 2021). After testing setup mentioned above,

instance type “t2.medium” was not sufficient for this environment and it was changed to type

“t2.large” that has 8GB RAM (Amazon EC2 T2 Instances n.d). Anchore Engine documentation men-

tions in their page that they recommend a minimum of 8GB for each service for production envi-

ronments (Requirements 2020). AWS instance has the following default ports open: 22, 80, 443,

and additionally port 8228, this was not necessary for the Jenkins server after adding Jenkins agent

66

on top of Docker. This would enable instructing Anchore Engine to add images from Workstations

though.

5.2.1 Installing required software

In this implementation there was no need to install Jenkins server as it already existed. In the case

of Docker and Anchore Engine they were installed the same way as in the local implementation

chapter 5.1.1. Anchore compose YAML resides in root home folder, and everything was done as

root user. Anchore Container Image Scanner plugin was installed to Jenkins server and used in a

Jenkins job. The version of the plugin was "1.0.23" as the older version of Jenkins server did not

work with the newest version "1.0.24". Similar global configuration as in chapter 5.1.2 was set for

the plugin with AWS instance IP address, port 8228 pointing to Anchore Engine's service API. Jen-

kins server could not access Anchore Engine and Jenkins agent needed to be installed on the AWS

Instance on top of docker as a container to access the same “root_default” network as the An-

chore Engine compose set is in. Jenkins master is connecting to Jenkins agent via SSH connection.

Jenkins user was created to AWS instance for this purpose. Jenkins master executes shell script

and connects to Anchore AWS Instance via SSH starting the Jenkins agent inside the container. See

Figure 49 for the deployment diagram of this implementation.

Figure 49. Production implementation deployment diagram.

67

5.2.2 Workflow of implementation

New Jenkins job was created to Jenkins server for Anchore analyzing. This was connected to the

QRP pipeline in a way that when new QRP system-spec image is pushed to Artifactory, another

Jenkins job gives the new image path to Anchore job as parameters and image is then pulled, ana-

lyzed, and evaluated by Anchore Engine. This way Anchore jobs build result "PASS" or "FAIL" is not

currently intercepting the CI/CD workflow but gives analyze results on the side automatically, that

the security team can go and check in the form of "Anchore Report". This implementation can be

also triggered manually by giving image repository and tag as parameters "Build with Parameters"

(Figure 50). Parameterization of Jenkins job was done in the job configurations "General" section

by checking "This project is parameterized" and adding two string parameters. Parameters are

used in the echo command that was first introduced in the local implementation chapter 5.1.2 see

Figure 51. These parameters are used in both manual and automatically triggered build. Other-

wise, this "Freestyle Project" based Jenkins job has similar settings to the local implementation

and "Anchore Container Image Scanner" build step configurations are identical.

Figure 50. Building Anchore job manually with parameters.

68

Figure 51. Parameterized Anchore echo command.

5.2.3 QRP image policy bundle and results

QRP policy bundle (Appendix 3) was created based on the requirements of representative of the

security team and following requirements were discussed on: Policy id name shown in “Anchore

Report” needs to be obvious, stop action for critical and high package vulnerabilities, warn actions

for exposed port 22, stale feed data, and if vulnerability data is unavailable for some found issue.

QRP policy bundle was compared with the default policy bundle (Appendix 1) and same image was

evaluated with both. Empty “policybundle-qrp.json” file was created and modified for QRP policy

bundle. After that it was added and activated the same way to the Anchore Engine as in the local

implementation chapter 5.1.3 connecting to container as root user. “Anchore Report” results can

be compared by seeing Figure 52 and Figure 53. QRP policy bundle report has a lot less “warn” ac-

tions and “Policy Id” is clear and indicative.

Figure 52. Default policy bundle evaluation against QRP system-spec image.

69

Figure 53. QRP policy bundle evaluation against QRP system-spec image.

6 Outcome

There were three research questions defined in the research layout. This thesis was able answer to

all these questions:

1) How to deploy artifact scanning as a part of a CI/CD pipeline?

2) Is the artifact scanning coverage enough or is manual scanning needed?

3) What is the most beneficial spot for Anchore in a CI/CD pipeline?

6.1 Research question one - How to deploy artifact scanning?

The first research question had functional requirements defined and all of those were fulfilled. Re-

quirements can be seen from chapter two referred to as “FR1-FR8”. A few requirements for An-

chore Engine QRP policy bundle were set and accomplished accordingly.

Two implementations were created in this project, intention was that the local implementation

works as a basis for the production implementation and gives insight on how to install applications

70

from scratch due to stricter permission restrictions in the production environment. Another pur-

pose for the local implementation was to check that all the software and versions work together

without issues. Two ways of deploying artifact scanning as part of CI/CD pipeline were presented,

also proving that this way of implementing is versatile and works in different type of environ-

ments. Implementation was to be deployed in a way that it does not hinder the current software

development lifecycle, and this was achieved by adding the Anchore analyzing as a side job that

gets input from the current QRP CI/CD pipeline. Results can be read from “Anchore Report” in Jen-

kins and final analyzing of the results is done by the security team. If there is something to be fixed

this can be initiated by the security team, thus it will not affect the workflow.

The final version of this implementation operates through Jenkins server meaning Jenkins has ac-

cess to Anchore Engine and there is no need to manually do things via command line referring to

first functional requirement (FR1). The second requirement (FR2) was achieved by using the Jen-

kins Anchore plugin and that was selected as the best option. Third requirement (FR3) succeeded

by adding Anchore Engine to the same environment as the Artifactory is residing in. FR4 was car-

ried out in two ways, local implementation included modifying of the default policy bundle and in

production environment new policy bundle was created. FR5 was tested in local implementation

and the same vulnerability was whitelisted from one image and left to the other. This same fea-

ture could have been applied in the production environment if required by the representative of

the security team. FR6 was the result of using Jenkins Anchore plugin, as the plugin creates “An-

chore Report” from the results Anchore Engine returns to Jenkins. FR7, which required the ability

to manually start Anchore analyzing on chosen image(s) from Jenkins succeeded in both imple-

mentations. Last requirement (FR8) demanded automatic analyzing of new QRP images when

pushed to Artifactory, this was achieved in the production environment and updated QRP system-

spec image information is given through another Jenkins job to Anchore analyze Jenkins job which

then proceeds with analyzing those images.

QRP policy bundle used in the production environment had requirements that were decided with

the representative of the security team. There were total of 5 requirements, one was obvious pol-

icy id name to help with readability and rest of the requirements were related to “stop” and

“warn” actions in the policy adjusting the results of the “Anchore Report”. This policy bundle was

71

created to exclude unnecessary results and leave only the important ones. All the applied require-

ments can be seen from QRP policy bundle JSON file (Appendix 3). The original default policy bun-

dle gave 15 “stop” actions and 174 “warn” actions and with the QRP policy bundle there were only

“15” stop actions leaving out 174 unwanted warnings. This makes analyzing the results more ef-

fective.

6.2 Research question two - Artifact scanning coverage?

The second question was related to coverage of the implemented artifact scanning. Regarding im-

age artifact scanning Anchore Engine is very versatile and configurations can be done in various

ways making it suitable for different environments. Nevertheless, there was only one scanner im-

plemented and Anchore is scanning only docker images, which means it is not as broad and con-

centrates on images. If there are some other artifacts in the Artifactory not included in the image

this means Anchore Engine will not scan those and that needs be done with another means or

manually. There is also a higher possibility to get false-positives and not necessarily all vulnerabili-

ties are found if there is only one scanner. There are different artifact scanners available and many

of them have their own vulnerability databases, meaning other scanners might reveal vulnerabili-

ties that Anchore does not include. The conclusion is that Anchore does not cover everything, re-

sults are directional and there is always room for improvement. Almost every day new vulnerabili-

ties are found, which means scanners need to be maintained to keep data up to date, as well as

adjustment of the configurations is recommended from time to time.

6.3 Research question three - Most beneficial spot for Anchore?

For the third question, the most beneficial spot for Anchore was investigated. To make the process

cheaper and get faster feedback Anchore should be applied in the earliest stage of the CI/CD pipe-

line as possible, as it is a SCA scanner. In the case of the implemented Anchore Engine the image

analysis happens as soon as updated QRP system-spec image is pushed to Artifactory, giving possi-

bility to catch vulnerabilities early on and initiate mitigation operations. This method of develop-

ment enables cheaper and faster repairs.

72

7 Conclusion

Constructive research method was chosen for this thesis and was based on the client’s need for a

new security scanner. It was carried out by solving a real-life problem and creating something that

can be utilized by the client. There was also a lot of collaboration between researcher and client

which produced suitable solution and configurations.

The aim of this bachelor’s thesis was to deploy artifact security scanner to client’s environment.

Resulting implementation is a manually or automatically started Anchore scanning job that works

via Jenkins that is part of QRP development lifecycle. Results can be read and analyzed by the se-

curity team. This implementation gives direct input of the frequently updated QRP system-spec

images enhancing the current security testing. Results are given in the form of “Anchore Report”

that can be checked from Jenkins.

7.1 Advantages, deficiencies, and challenges of the implementation

After looking at different implementation possibilities for Anchore it was decided to go with the

official Anchore Jenkins plugin. This way Anchore analyze could be added as part of the current

QRP development lifecycle via Jenkins. Good side of this plugin implementation is that it is fast to

set up even in an environment that does not have much done beforehand. It can be integrated to

various environments that have Jenkins as part of CI/CD pipeline and makes it versatile. As the

plugin is set as a build step in a Jenkins job it is possible to include Anchore analyzing as an individ-

ual separate job or include it as part of already existing job and workflow. If Anchore analyzing is

integrated to already existing workflow that is done via Jenkins it works automatically as is, but if it

is created as a separate job, it can be manually started or configured to be automatically triggered

by some wanted action.

On the other hand, there are some restrictions that come with the plugin as it is a ready-made

package. Every Jenkins build gives “Anchore Report” as result of the analysis and this report can-

not be modified. This means there can be unnecessary information shown that can hinder the ana-

lyzing of the report, it would be good to have the possibility to modify the appearance of the re-

port and information it includes. Another thing that can be time-consuming is when moving to

more advanced configuring or if the policy bundle needs to be updated frequently. Policy bundles

73

need to be fetched from the Anchore Engine if not saved anywhere, and after modification the

new policy bundle needs to be added and activated in Anchore Engine to take it into use. One so-

lution would be creating a script that automatically adds and activates the modified policy bundle.

Another more expensive solution would be upgrading to Anchore Enterprise, the commercial ver-

sion of Anchore that offers GUI. In the GUI it is possible to upload and download the policies and

store them as JSON files in the system, policies can be modified via the GUI which makes it more

effortless and faster (Anchore Enterprise Architecture 2022).

As mentioned in chapter 6.2 only one scanner was deployed and Anchore only analyzes docker im-

ages, this could be counted as restriction, even though Anchore Engine is a very good tool for

docker image artifact analyzing with its versatile configuration options.

There were also problems related to the production environment deployment, such as networking

issues, problems with the AWS instance resources, and placement of the Jenkins agent. Jenkins

agent was first installed into the Anchore AWS instance. “java-8-openjdk“ package was installed

into the instance for Jenkins agent to work properly. It was residing in the same machine but in a

different network than the Anchore Engine, which is on top of docker. This did not work, and net-

work errors appeared in Jenkins build logs about connection timeout towards the Anchore Engine

API: "Failed to add image(s) to anchore-engine due to an unexpected error

org.apache.http.conn.HttpHostConnectException: Connect to 172.18.0.6:8228 [/172.18.0.6] failed:

Connection timed out (Connection timed out)". After this it was attempted to add Anchore con-

tainers on the docker host network which means sharing networking namespace with the host, in

this case the AWS instance. Network mode “host” was added to “docker-compose.yaml” file to

each Anchore service. This option did not work as the containers did not get any IP addresses. Fi-

nal solution was adding Jenkins agent as a container on top of docker and adding the container to

the same “root_default” network as Anchore Engine is in. Installing java packages separately was

not needed in this case. Even after this the connection timeout error did not disappear and it was

caused by AWS instance resources. After the instance was changed from “t2.medium” to

“t2.large” with more RAM from 4GB to 8GB, analyzing was possible and Jenkins builds were suc-

cessful.

74

AWS instance had 500GB of disk space, but it was soon noticed that it was filled up. The reason for

this was Jenkins agent container that was using up all the space by collecting logs. This was fixed

by adding log rotation for the container logs. Every Anchore micro service container logging was

also changed from “100m” to “10m” to save more space.

A few problems were encountered while creating policy bundles. Policy bundle needs to include

mandatory JSON arrays or else it will not be accepted by the Anchore Engine and gives error. Same

with the JSON objects inside the arrays if some mandatory key value pair is missing. For all the

JSON arrays and objects Anchore documentation did not seem to mention which ones are manda-

tory and which ones are not, this required some testing. Some misconfigurations may go through

unnoticed to Anchore Engine but will at the latest show in the “Anchore Report” as unwanted re-

sults.

One thing that was hindering problem solving was that Anchore does not have as much infor-

mation and guides on the internet as it is a newer software. The best source of information is An-

chore’s own documentation, which is different for the Anchore Engine and commercial product

Anchore Enterprise. Many guides related to the Jenkins Anchore plugin were two to three years

old and partly outdated. A lot of problems needed to be solved by trial and error. In that way this

research could be used as an updated guide for creating a similar implementation. It is also good

to notice that Anchore Engine is strict about HTTP protocol and HTTPS protocol did not work with

the API calls.

7.2 Ethicalness

Ethically it is good to point out that because of the permission restrictions in the production imple-

mentation, I could not do everything on my own. Tickets were created but someone else carried

out the changes needed. These were mostly related to AWS instance creation, networking, port

openings, and Jenkins server configurations. The only thing that I could do in Jenkins was configure

the Jenkins Anchore job itself. Global configurations and Jenkins agent setting were done by some-

one else. All implementation related functional requirements and requirements related to QRP

policy bundle was agreed with the representative of the security team and not decided only by

one person.

75

7.3 Utilization of outcome

Anchore scanner is currently used in the client’s production environment and results can be

checked by the security team. Feedback was given from the security team that the implementa-

tion is useful. The implementation will be used in the future and configured more.

7.4 Further Development

With the current implementation policy bundle will have to be manually edited, added, and acti-

vated for the Anchore Engine. As a further development this could be partly automated by adding

a shell script that does the commands automatically. Or even more automated by adding policy

JSON to version control and after change has been made a trigger would execute the shell script

and updated policy bundle would be taken into use automatically. Most expensive option would

be moving to commercial version of Anchore Engine, Anchore Enterprise that offers a GUI, which

enables adding and editing policy bundles.

Quite minimal configurations were done for the QRP policy bundle as it was the first version. As a

further development policy bundle could be modified to be even more precise and removing

known false positives from the “Anchore Report” results. Expiration dates can be set for specific

whitelist items, this could be utilized to reduce unnecessary results for a given period. “Anchore

Report” results output itself cannot be modified but one improvement object could be moving

“Anchore Report” results to different location or send results as an email so that the results do not

have to be always checked from Jenkins server.

As Anchore is analyzing only docker images it could be a good idea to implement another scanner

that scans other artifacts to get broader coverage or use existing Xray for this. As only one scanner

was deployed it would be good to create some way of comparing Xray results to Anchore Engine

results to get a better overview. Using multiple security scanners would enhance the rate of find-

ing vulnerabilities as scanner vulnerability databases are not identical.

76

References

Accessing Registries. 2020. Anchore webpage. Accessed on 26 March 2022. Retrieved from
https://engine.anchore.io/docs/general/concepts/registries/.

Accessing the Engine. 2020. Anchore webpage. Accessed on 26 March 2022. Retrieved from
https://engine.anchore.io/docs/general/concepts/accessing_engine/.

Amazon EC2 T2 Instances. N.d. Amazon Web Services webpage. Accessed on 11 August 2022. Re-
trieved from https://aws.amazon.com/ec2/instance-types/t2/.

Analyzing Images. 2020. Anchore webpage. Accessed on 26 March 2022. Retrieved from
https://engine.anchore.io/docs/general/concepts/images/.

Anchore Engine Installation. 2020. Anchore webpage. Accessed on 26 March 2022. Retrieved from
https://engine.anchore.io/docs/install/.

Anchore Engine Overview. 2020. Anchore webpage. Accessed on 26 March 2022. Retrieved from
https://engine.anchore.io/docs/general/.

Anchore Enterprise Architecture. 2022. Anchore webpage. Accessed on 17 September 2022. Re-
trieved from https://docs.anchore.com/current/docs/overview/architecture/.

Atzmony, A. 2021a. JFrog Artifactory. JFrog webpage. Accessed on 4 March 2022. Retrieved from
https://www.jfrog.com/confluence/display/JFROG/JFrog+Artifactory.

Atzmony, A. 2021b. JFrog Xray. JFrog webpage. Accessed on 2 April 2022. Retrieved from
https://www.jfrog.com/confluence/display/JFROG/JFrog+Xray.

AWS Well-Architected. N.d. Amazon Web Services webpage. Accessed on 6 May 2022. Retrieved
from https://aws.amazon.com/architecture/well-architected/.

Ben-Zvi, S. 2021. What is a software artifact?. JFrog webpage. Accessed on 19 March 2022. Re-
trieved from https://jfrog.com/knowledge-base/what-is-a-software-artifact/.

Berman, D. 2021. Guide to Software Composition Analysis (SCA). Snyk webpage. Accessed on 29
April 2022. Retrieved from https://snyk.io/blog/what-is-software-composition-analysis-sca-and-
does-my-company-need-it/.

Chacon, S. & Straub, B. 2014. Pro git: Everything you need to know about Git. Second edition.
Apress. Accessed on 18 February 2022. Retrieved from https://git-scm.com/book/en/v2.

Chen, S. -J., Pan, Y. -C., Ma Y. -W. & Chiang C. -M. 2022. The Impact of the Practical Security Test
during the Software Development Lifecycle. 2022 24th International Conference on Advanced
Communication Technology (ICACT), pp. 313-316, doi: 10.23919/ICACT53585.2022.9728868. Ac-
cessed on 2 April 2022. Retrieved from https://janet.finna.fi, IEEE Xplore Digital Library.

https://engine.anchore.io/docs/general/concepts/registries/
https://engine.anchore.io/docs/general/concepts/accessing_engine/
https://aws.amazon.com/ec2/instance-types/t2/
https://engine.anchore.io/docs/general/concepts/images/
https://engine.anchore.io/docs/install/
https://engine.anchore.io/docs/general/
https://docs.anchore.com/current/docs/overview/architecture/
https://www.jfrog.com/confluence/display/JFROG/JFrog+Artifactory
https://www.jfrog.com/confluence/display/JFROG/JFrog+Xray
https://aws.amazon.com/architecture/well-architected/
https://jfrog.com/knowledge-base/what-is-a-software-artifact/
https://snyk.io/blog/what-is-software-composition-analysis-sca-and-does-my-company-need-it/
https://snyk.io/blog/what-is-software-composition-analysis-sca-and-does-my-company-need-it/
https://git-scm.com/book/en/v2
https://janet.finna.fi/

77

CI / CD Integration. 2020. Anchore webpage. Accessed on 26 March 2022. Retrieved from
https://engine.anchore.io/docs/general/concepts/integrations/ci_cd/.

CNCF Cloud Native Interactive Landscape. N.d. Cloud Native Computing Foundation webpage. Ac-
cessed on 8 April 2022. Retrieved from https://landscape.cncf.io/.

Containers vs. Virtual Machines (VMs): What’s the Difference?. 2021. IBM webpage. Accessed on 8
December 2021. Retrieved from
https://www.ibm.com/cloud/blog/containers-vs-vms.

Continuous Integration vs. Delivery vs. Deployment. N.d. JetBrains webpage. Accessed on 11
March 2022. Retrieved from https://www.jetbrains.com/teamcity/ci-cd-guide/continuous-integra-
tion-vs-delivery-vs-deployment/.

DevOps: 8 Reasons for DevOps to use a Binary Repository Manager. 2021. JFrog webpage. Ac-
cessed on 18 March 2022. Retrieved from https://jfrog.com/whitepaper/devops-8-reasons-for-
devops-to-use-a-binary-repository-manager/.

DevSecOps. 2020. IBM webpage. Accessed on 11 March 2022. Retrieved from
https://www.ibm.com/cloud/learn/devsecops.

Docker overview. N.d. Docker documentation webpage. Accessed on 11 November 2021. Re-
trieved from
https://docs.docker.com/get-started/overview/.

Docker. 2021. IBM webpage. Accessed on 3 November 2021. Retrieved from
https://www.ibm.com/cloud/learn/docker.

Dörnenburg, E. 2018. The Path to DevOps. IEEE Software, vol. 35, no. 5, pp. 71-75, doi:
10.1109/MS.2018.290110337. Accessed on 11 March 2022. Retrieved from https://janet.finna.fi,
IEEE Xplore Digital Library.

Dynamic Application Security Testing (DAST). 2014. Techopedia webpage. Accessed on 2 April
2022. Retrieved from https://www.techopedia.com/definition/30958/dynamic-application-secu-
rity-testing-dast.

El Rhaffari, I. & Roudies, O. 2013. Reducing the gap between security audit and software engineer-
ing methods. 2013 Science and Information Conference, pp. 255-262. Accessed on 15 February
2022. Retrieved from https://janet.finna.fi, IEEE Xplore Digital Library.

Frequently Asked Questions. 2020. Anchore webpage. Accessed on 26 March 2022. Retrieved
from https://docs.anchore.com/3.0/docs/faq/.

Glossary. 2021. Kubernetes webpage. Accessed on 5 March 2022. Retrieved from https://kuber-
netes.io/docs/reference/glossary/.

https://engine.anchore.io/docs/general/concepts/integrations/ci_cd/
https://landscape.cncf.io/
https://www.ibm.com/cloud/blog/containers-vs-vms
https://www.jetbrains.com/teamcity/ci-cd-guide/continuous-integration-vs-delivery-vs-deployment/
https://www.jetbrains.com/teamcity/ci-cd-guide/continuous-integration-vs-delivery-vs-deployment/
https://jfrog.com/whitepaper/devops-8-reasons-for-devops-to-use-a-binary-repository-manager/
https://jfrog.com/whitepaper/devops-8-reasons-for-devops-to-use-a-binary-repository-manager/
https://www.ibm.com/cloud/learn/devsecops
https://docs.docker.com/get-started/overview/
https://www.ibm.com/cloud/learn/docker
https://janet.finna.fi/
https://www.techopedia.com/definition/30958/dynamic-application-security-testing-dast
https://www.techopedia.com/definition/30958/dynamic-application-security-testing-dast
https://janet.finna.fi/
https://docs.anchore.com/3.0/docs/faq/
https://kubernetes.io/docs/reference/glossary/
https://kubernetes.io/docs/reference/glossary/

78

Grype Integration. 2021. Anchore webpage. Accessed on 26 March 2022. Retrieved from
https://engine.anchore.io/docs/grype/.

Gunja, S. 2021. What is DevOps? Unpacking the rise of an IT cultural revolution. Dynatrace
webpage. Accessed on 11 March 2022. Retrieved from https://www.dyna-
trace.com/news/blog/what-is-devops/.

Image Analysis Process. 2020. Anchore webpage. Accessed on 26 March 2022. Retrieved from
https://engine.anchore.io/docs/general/concepts/images/analysis/.

Image and Tag Watchers. 2020. Anchore webpage. Accessed on 26 March 2022. Retrieved from
https://engine.anchore.io/docs/general/concepts/images/watchers/.

InsightVM Features. N.d. Rapid7 webpage. Accessed on 2 April 2022. Retrieved from
https://www.rapid7.com/products/insightvm/features/.

Jenkins User Documentation. N.d. Jenkins webpage. Accessed on 4 March 2022. Retrieved from
https://www.jenkins.io/doc/.

Jenkins. N.d. Jenkins webpage. Accessed on 4 March 2022. Retrieved from https://www.jen-
kins.io/.

Jfrog artifactory. N.d. JFrog webpage. Accessed on 19 March 2022. Retrieved from
https://jfrog.com/artifactory/.

Kananen, J. 2015. Opinnäytetyön kirjoittajan opas: näin kirjoitan opinnäytetyön tai pro gradun
alusta loppuun. Jyväskylä: Jyväskylän ammattikorkeakoulu, Liiketoimintayksikkö.

Kshitiz, S. 2021. Installing and configuring Jenkins in Linux. Red Hat webpage. Accessed on 4 March
2022. Retrieved from https://www.redhat.com/sysadmin/install-jenkins-rhel8.

Kubernetes. N.d. Kubernetes webpage. Accessed on 5 March 2022. Retrieved from https://kuber-
netes.io/.

Labouardy, M. 2021. Pipeline as Code. Manning Publications. Accessed on 11 March 2022. Re-
trieved from https://livebook.manning.com/book/pipeline-as-code/.

Lago, P. 2019. Architecture Design Decision Maps for Software Sustainability. 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS), pp.
61-64, doi: 10.1109/ICSE-SEIS.2019.00015. Accessed on 14 February 2022. Retrieved from
https://janet.finna.fi, IEEE Xplore Digital Library.

Lukka, K. 2001. Konstruktiivinen tutkimusote. Metodix webpage. Accessed on 20 May 2022. Re-
trieved from https://metodix.fi/2014/05/19/lukka-konstruktiivinen-tutkimusote/.

Masarwa, M. 2021. What is an artifact repository?. JFrog webpage. Accessed on 4 March 2022. Re-
trieved from https://jfrog.com/knowledge-base/what-is-an-artifact-repository/.

https://engine.anchore.io/docs/grype/
https://www.dynatrace.com/news/blog/what-is-devops/
https://www.dynatrace.com/news/blog/what-is-devops/
https://engine.anchore.io/docs/general/concepts/images/analysis/
https://engine.anchore.io/docs/general/concepts/images/watchers/
https://www.rapid7.com/products/insightvm/features/
https://www.jenkins.io/doc/
https://www.jenkins.io/
https://www.jenkins.io/
https://jfrog.com/artifactory/
https://www.redhat.com/sysadmin/install-jenkins-rhel8
https://kubernetes.io/
https://kubernetes.io/
https://livebook.manning.com/book/pipeline-as-code/
https://janet.finna.fi/
https://metodix.fi/2014/05/19/lukka-konstruktiivinen-tutkimusote/
https://jfrog.com/knowledge-base/what-is-an-artifact-repository/

79

Networking in Compose. N.d. Docker documentation webpage. Accessed on 19 August 2022. Re-
trieved from https://docs.docker.com/compose/networking/.

Nodes. 2022. Kubernetes webpage. Accessed on 5 March 2022. Retrieved from https://kuber-
netes.io/docs/concepts/architecture/nodes/.

OBrien, T. 2010. "Why Nexus?" for the Non-Programmer. Sonatype webpage. Accessed on 18
March 2022. Retrieved from https://blog.sonatype.com/2010/04/why-nexus-for-the-non-pro-
grammer/.

Open Source Vulnerability Scanning: Methods and Top 5 Tools. N.d. Aqua Security webpage. Ac-
cessed on 2 April 2022. Retrieved from https://www.aquasec.com/cloud-native-academy/vulnera-
bility-management/open-source-vulnerability-scanning/.

Overview of SCA Tools: Core Features and Benefits of Deployment. 2021. Debricked webpage. Ac-
cessed on 29 April 2022. Retrieved from https://debricked.com/blog/sca-tools-overview/.

Paine, L. 2022. DAST, IAST, SCA: Deeper coverage in a single scan. Invicti webpage. Accessed on 29
April 2022. Retrieved from https://www.invicti.com/blog/web-security/dast-iast-sca-deeper-cov-
erage-single-scan/.

Policy Bundles. 2020. Anchore webpage. Accessed on 26 March 2022. Retrieved from https://en-
gine.anchore.io/docs/general/concepts/policy/bundles/.

Policy. 2020. Anchore webpage. Accessed on 26 March 2022. Retrieved from https://engine.an-
chore.io/docs/general/concepts/policy/.

Quickstart. 2021. Anchore webpage. Accessed on 11 August 2022. Retrieved from https://en-
gine.anchore.io/docs/quickstart/.

Qvantel Flex BSS. N.d. Qvantel webpage. Accessed on 19 May 2022. Retrieved from
https://www.qvantel.com/flex-bss.

Qvantel LinkedIn. N.d. Qvantels LinkedIn page. Accessed on 19 May 2022. Retrieved from
https://www.linkedin.com/company/qvantel/about/.

Qvantel Oy. N.d. Kauppalehti webpage. Accessed on 19 May 2022. Retrieved from
https://www.kauppalehti.fi/yritykset/yritys/qvantel+oy/20580807.

Requirements. 2020. Anchore webpage. Accessed on 11 August 2022. Retrieved from https://en-
gine.anchore.io/docs/install/requirements/.

Sengupta, S. 2021. SAST, DAST, IAST, RASP: alphabet soup explained. Crashtest Security webpage.
Accessed on 2 April 2022. Retrieved from https://crashtest-security.com/sast-dast-iast-rasp/.

Sharma, A. 2018a. A Brief History of DevOps, Part I: Waterfall. CircleCI webpage. Accessed on 27
April 2022. Retrieved from https://circleci.com/blog/a-brief-history-of-devops-part-i-waterfall/.

https://docs.docker.com/compose/networking/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://blog.sonatype.com/2010/04/why-nexus-for-the-non-programmer/
https://blog.sonatype.com/2010/04/why-nexus-for-the-non-programmer/
https://www.aquasec.com/cloud-native-academy/vulnerability-management/open-source-vulnerability-scanning/
https://www.aquasec.com/cloud-native-academy/vulnerability-management/open-source-vulnerability-scanning/
https://debricked.com/blog/sca-tools-overview/
https://www.invicti.com/blog/web-security/dast-iast-sca-deeper-coverage-single-scan/
https://www.invicti.com/blog/web-security/dast-iast-sca-deeper-coverage-single-scan/
https://engine.anchore.io/docs/general/concepts/policy/bundles/
https://engine.anchore.io/docs/general/concepts/policy/bundles/
https://engine.anchore.io/docs/general/concepts/policy/
https://engine.anchore.io/docs/general/concepts/policy/
https://engine.anchore.io/docs/quickstart/
https://engine.anchore.io/docs/quickstart/
https://www.qvantel.com/flex-bss
https://www.linkedin.com/company/qvantel/about/
https://www.kauppalehti.fi/yritykset/yritys/qvantel+oy/20580807
https://engine.anchore.io/docs/install/requirements/
https://engine.anchore.io/docs/install/requirements/
https://crashtest-security.com/sast-dast-iast-rasp/
https://circleci.com/blog/a-brief-history-of-devops-part-i-waterfall/

80

Sharma, A. 2018b. A Brief History of DevOps, Part II: Agile Development. CircleCI webpage. Ac-
cessed on 27 April 2022. Retrieved from https://circleci.com/blog/a-brief-history-of-devops-part-
ii-agile-development/.

Software Composition Analysis (SCA): What You Should Know. N.d. Aqua Security webpage. Ac-
cessed on 29 April 2022. Retrieved from https://www.aquasec.com/cloud-native-acad-
emy/devsecops/software-composition-analysis-sca/.

Springett, S. N.d. Component Analysis. OWASP Foundation webpage. Accessed on 2 April 2022.
Retrieved from https://owasp.org/www-community/Component_Analysis.

Subscriptions. 2020. Anchore webpage. Accessed on 26 March 2022. Retrieved from https://en-
gine.anchore.io/docs/general/concepts/subscriptions/.

Toikko, T. & Rantanen, T. 2009. Tutkimuksellinen kehittämistoiminta. Näkökulmia kehittämispro-
sessiin, osallistamiseen ja tiedontuotantoon. Tampere: Tampere University Press.
https://trepo.tuni.fi/bitstream/handle/10024/100802/Toikko_Rantanen_Tutkimuksellinen_kehit-
tamistoiminta.pdf.

Using the Anchore CLI. 2020. Anchore webpage. Accessed on 26 March 2022. Retrieved from
https://engine.anchore.io/docs/usage/cli_usage/.

Version Control Software: An Overview. N.d. Bitbucket webpage. Accessed on 18 February 2022.
Retrieved from https://bitbucket.org/product/version-control-software.

Vulnerability Scanning Tools. N.d. OWASP Foundation webpage. Accessed on 2 April 2022. Re-
trieved from https://owasp.org/www-community/Vulnerability_Scanning_Tools.

What is a Container?. N.d. Docker webpage. Accessed on 11 November 2021. Retrieved from
https://www.docker.com/resources/what-container.

What is a Hypervisor?. N.d. VMware webpage. Accessed on 8 December 2021. Retrieved from
https://www.vmware.com/topics/glossary/content/hypervisor.

What is a Kubernetes cluster?. N.d. VMware webpage. Accessed on 5 March 2022. Retrieved from
https://www.vmware.com/topics/glossary/content/kubernetes-cluster.html.

What Is a Vulnerability Scan, and Why Is It Important?. N.d. NETdepot webpage Accessed on 19
May 2022. Retrieved from https://www.netdepot.com/blog/what-is-a-vulnerability-scan-and-why-
is-it-important.

What Is an Artifact? Everything You Need to Know. 2020. Artifacts webpage. Accessed on 19
March 2022. Retrieved from https://artifacts.ai/what-is-an-artifact/.

What is cloud computing?. N.d.a. Amazon Web Services webpage. Accessed on 17 March 2022.
Retrieved from https://aws.amazon.com/what-is-cloud-computing/.

https://circleci.com/blog/a-brief-history-of-devops-part-ii-agile-development/
https://circleci.com/blog/a-brief-history-of-devops-part-ii-agile-development/
https://www.aquasec.com/cloud-native-academy/devsecops/software-composition-analysis-sca/
https://www.aquasec.com/cloud-native-academy/devsecops/software-composition-analysis-sca/
https://owasp.org/www-community/Component_Analysis
https://engine.anchore.io/docs/general/concepts/subscriptions/
https://engine.anchore.io/docs/general/concepts/subscriptions/
https://trepo.tuni.fi/bitstream/handle/10024/100802/Toikko_Rantanen_Tutkimuksellinen_kehittamistoiminta.pdf
https://trepo.tuni.fi/bitstream/handle/10024/100802/Toikko_Rantanen_Tutkimuksellinen_kehittamistoiminta.pdf
https://engine.anchore.io/docs/usage/cli_usage/
https://bitbucket.org/product/version-control-software
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://www.docker.com/resources/what-container
https://www.vmware.com/topics/glossary/content/hypervisor
https://www.vmware.com/topics/glossary/content/kubernetes-cluster.html
https://www.netdepot.com/blog/what-is-a-vulnerability-scan-and-why-is-it-important
https://www.netdepot.com/blog/what-is-a-vulnerability-scan-and-why-is-it-important
https://artifacts.ai/what-is-an-artifact/
https://aws.amazon.com/what-is-cloud-computing/

81

What is cloud computing?. N.d.b. Microsoft Azure webpage. Accessed on 17 March 2022. Re-
trieved from https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/.

What is DevOps? Waterfall to DevOps 2.0. 2018. Astadia webpage. Accessed on 27 April 2022. Re-
trieved from https://www.astadia.com/blog/what-is-devops-a-complete-history-waterfall-to-
devops-2-0.

What is DevOps?. N.d. Amazon Web Services webpage. Accessed on 11 March 2022. Retrieved
from https://aws.amazon.com/devops/what-is-devops/.

What is DevSecOps?. 2018. Red Hat webpage. Accessed on 11 March 2022. Retrieved from
https://www.redhat.com/en/topics/devops/what-is-devsecops.

What is Jenkins?. N.d. CloudBees webpage. Accessed on 4 March 2022. Retrieved from
https://www.cloudbees.com/jenkins/what-is-jenkins.

What is Kubernetes?. 2020. Red Hat webpage. Accessed on 5 March 2022. Retrieved from
https://www.redhat.com/en/topics/containers/what-is-kubernetes.

What is Kubernetes?. 2021. Kubernetes webpage. Accessed on 5 March 2022. Retrieved from
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

What is Software Engineering?. N.d. Cast software webpage. Accessed on 4 February 2022. Re-
trieved from https://www.castsoftware.com/glossary/what-is-software-engineering-definition-
types-of-basics-introduction.

What is version control?. N.d. Atlassian webpage. Accessed on 18 February 2022. Retrieved from
https://www.atlassian.com/git/tutorials/what-is-version-control.

Why Docker?. N.d. Docker webpage. Accessed on 3 November 2021. Retrieved from
https://www.docker.com/why-docker.

Wichers, D., itamarlavender, will-obrien, Worcel, E., Subramanian, P., kingthorin, coadaflorin,
hblankenship, GovorovViva64, pfhorman, GouveaHeitor, Gibler, C., DSotnikov, Abraham, A.,
Rathaus, N. & Jang, M. N.d. Source Code Analysis Tools. OWASP Foundation webpage. Accessed
on 2 April 2022. Retrieved from https://owasp.org/www-community/Source_Code_Analy-
sis_Tools.

https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
https://www.astadia.com/blog/what-is-devops-a-complete-history-waterfall-to-devops-2-0
https://www.astadia.com/blog/what-is-devops-a-complete-history-waterfall-to-devops-2-0
https://aws.amazon.com/devops/what-is-devops/
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://www.cloudbees.com/jenkins/what-is-jenkins
https://www.redhat.com/en/topics/containers/what-is-kubernetes
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.castsoftware.com/glossary/what-is-software-engineering-definition-types-of-basics-introduction
https://www.castsoftware.com/glossary/what-is-software-engineering-definition-types-of-basics-introduction
https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.docker.com/why-docker
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools

82

Appendices

Appendix 1. Anchore Engine default policy bundle JSON file.

83

84

Appendix 2. Modified Anchore Engine default policy bundle JSON file for local
implementation.

85

86

87

Appendix 3. QRP policy bundle JSON file.

88

	1 Introduction
	1.1 Background and goals
	1.2 Client

	2 Research layout
	2.1 Research problem and questions
	2.2 Research methods

	3 Theory
	3.1 Software Engineering
	3.1.1 DevOps
	3.1.2 DevSecOps
	3.1.3 Cloud Computing Platform
	3.1.4 Version control
	3.1.5 Concept of Binary repository manager
	3.1.6 Continuous Integration, Delivery, and Deployment (CI/CD)
	3.1.7 Concept of artifact in software development
	3.1.8 Kubernetes - Container Orchestration System
	3.1.9 Docker - Containerization Platform
	3.1.10 Artifactory - Binary Repository Tool
	3.1.11 Jenkins - CI/CD Tool
	3.1.12 Anchore – Artifact Scanner Tool

	4 Current process environment
	4.1 Artifact Scanners as part of pipeline process
	4.1.1 Different scanner types in software development life cycle and current market situation
	4.1.2 What is wanted to achieve with the artifact scanning?
	4.1.3 Challenges with artifact scanning tools

	5 Implementation
	5.1 Local implementation
	5.1.1 Installation of software
	5.1.2 Configuration of environment and software
	5.1.3 Use of implementation and configuring Anchore policy bundle

	5.2 Production implementation
	5.2.1 Installing required software
	5.2.2 Workflow of implementation
	5.2.3 QRP image policy bundle and results

	6 Outcome
	6.1 Research question one - How to deploy artifact scanning?
	6.2 Research question two - Artifact scanning coverage?
	6.3 Research question three - Most beneficial spot for Anchore?

	7 Conclusion
	7.1 Advantages, deficiencies, and challenges of the implementation
	7.2 Ethicalness
	7.3 Utilization of outcome
	7.4 Further Development

	References
	Appendices
	Appendix 1. Anchore Engine default policy bundle JSON file.
	Appendix 2. Modified Anchore Engine default policy bundle JSON file for local implementation.
	Appendix 3. QRP policy bundle JSON file.

