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Cities are becoming increasingly warm as a result of climate change and increasing population (Dimoudi et al., 
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island in Glasgow can approach approximately 4 °C under certain climatic circumstances (Krüger, Drach and 

Emmanuel, 2018). Such thermal variation in Glasgow demands more action; otherwise, rising UHI intensity may 

have disastrous impacts on inhabitants' health.  

In light of managing and controlling the outdoor environment to meet thermal comfort, this research developed 

a framework for predicting and simulating the thermal comfort proxies depending on the secondary and historical 

data. This framework will facilitate the decision-making process from a climatic perspective at the initial 
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thermal comfort.  
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by predicting LST for vacant lands in Glasgow. Three scenarios were considered to evaluate the impact of 
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The results from LST prediction depict the modest effects of urban greenery in decreasing heat stress at the 

surface level under a non-linear trend. The UTCI simulation in ENVI-met was applied in the framework to 
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comfort depending on the area's compactness and openness in Glasgow's central district. Heat mitigation 

measures at the level of lowering the surface temperature do not always meet human thermal comfort. The 

association between LST and MRT has made it clear that it is impossible to establish a direct connection between 

them. It is advantageous to provide such a tool that may be used by policymakers who are less proficient in 

climatology, to forecast changes in heat stress in urban environments swiftly. 
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CHAPTER 1: INTRODUCTION 

1.1. Problem Statement 

According to the United Nations, cities will accommodate almost two-thirds of the world's 

population by 2050 (United Nations, 2019). Densely populated areas push cities to grow 

either vertically or horizontally, causing greater heat generation, a wider blockage impact 

against urban air circulation, larger accumulation of solar radiation, and eventually a 

reduction in long-wave emission to the atmosphere due to building blockage and usage of 

artificial materials (Kleerekoper, Van Esch and Salcedo, 2012; Ashtiani, Mirzaei and Haghighat, 

2014; Mirzaei, 2015). The lack of greenery, the considerable use of impervious surfaces, the 

urban spatial structure absorbing solar radiation and the reduction in wind velocity, along 

with expanding anthropogenic activities, all contribute to the evolution of heat islands (Lee, 

Kim and Yun, 2016). According to Li et al. (2018), global warming and increased urbanization 

have dramatically aggravated UHI effects. Several challenges linked to UHIs have been 

identified, including increased air pollution, heavy precipitation, excessive energy 

consumption, rising energy prices, and increasing greenhouse gas emissions (Synnefa et al., 

2008), thermal discomfort, the heat stress, high fatality rate among the physically susceptible 

population (Alves and Lopes, 2017). Therefore, excessive heat makes the condition for human 

beings to experience thermal discomfort in outdoor spaces along with increasing 

environmental disasters, health-related issues.  

One of the major challenges in developing a realistic tool to address the effects of climate 

change and overheating on a city and its citizens is the lack of an appropriate simulation and 

prediction model of thermal stress as a result of city development (Parsaee et al., 2019). 

Massive volumes of data have been generated in cities due to the application of modern 

information technology (Gadgets, IoT, Sensors, and so on) (Koumetio Tekouabou et al., 

2022). Machine Learning algorithms can potentially deliver significant improvements in terms 

of both understanding and forecasting climate consequences. What makes machine learning 

so powerful tool is its ability to compute massive amounts of data, process data, and exhibit 

nonlinear behaviour (Koc and Acar, 2021). 

Cold spells and heat waves are occurring as a result of ongoing global warming (Seltenrich, 

2015). The impacts of increasing global temperature on people's lives, particularly during heat 

waves, vary across the UK. It is predicted that the UK would experience 50% more hot days in 

the decades ahead (Arnell et al., 2021). The statistical predictions in UKCP18 report made it 

clear that in the following years, there would be a greater risk of warmer, wetter winters and 
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hotter, drier summers with higher frequency and severity of anomalies across the UK and 

specifically Scotland (Met Office, 2019). According to a recent study by Krüger, Drach and 

Emmanuel (2018), the magnitude of heat island in Glasgow can approach approximately 4 °C 

under certain climatic circumstances. Such thermal variation in Glasgow demands more 

actions; otherwise, rising UHI intensity may have disastrous impacts on inhabitants' health. In 

this regard, it is expected that the urban population would become substantially vulnerable 

under the same trend shortly.  

In light of managing and controlling the outdoor environment to meet thermal comfort, the 

concern is to develop a prediction model to alert city planners and designers about the 

changes in increased temperature in outdoor spaces and their effects on thermal comfort in 

outdoor areas. Givoni et al. (2003) emphasized the importance of the given tool to assess the 

significance of altering the outdoor environment in a particular direction by specific design 

details. Additionally, moving toward climate-sensitive planning and designing approaches is 

hindered by the absence of climate expertise in planner and designer communities (Keith et 

al., 2021; Kelly Turner et al., 2022). Understanding the heat-related effect of project 

development requires intensive fieldwork and running microclimate simulations, which are 

costly and time-consuming, as well as a suitable, strong, and robust system design. The 

current study seeks to put cutting-edge machine learning algorithms into practice in the case 

of Glasgow by providing a precise, affordable, and user-friendly tool for policymakers and 

planners to find noble solutions for managing the extra heat released into the atmosphere.  

1.2.  Aim and Objectives 

The aim of the present study is to generate a machine learning-based model in terms of new 

urban development to facilitate the decision-making process at the initial planning stage from 

a climatic perspective. This model can forecast thermal comfort and heat stress changes in an 

urban setting. Urban morphology parameters of urban microclimate, land use and land cover, 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-Up Index (NDBI), 

Digital Elevation Model (DEM), Digital Surface Model (DSM), Vegetation Canopy of Digital 

Surface Model (CDSM), along with thermal comfort and heat island indices in case of Glasgow 

City will be employed to validate the climate-sensitive model. Thus, it is guided by the 

objectives listed below. 

1. Identify the contributing parameters to outdoor thermal comfort (OTC) and heat 

island derived from historical and secondary data at the spatial and quantitative 

levels. 
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2. Investigate the spatial distribution of outdoor thermal comfort indices and proxies in 

order to explore the linearity and non-linearity relationship with urban design 

features, air quality factors and remotely sensed derived (RSD) data. 

3. Train and evaluate the performance of various prediction models for outdoor thermal 

comfort indices to identify robust models and significant variables. 

4. Simulate scenarios on vacant lands (vacant and derelict) to evaluate the effect of 

predictors on outdoor thermal comfort. 

5. Proposing the holistic workflow and through the use of ArcGIS, MATLAB, and ENVI-

met to predict changes in thermal comfort based on secondary data for policymakers. 

Finally, the purpose of this research is to provide answers to the following critical questions: 

1. How well can LST and MRT be estimated by deploying the historical data on land cover, 

along with urban physical factors? 

2. To what extent can LST, the variable derived from remote sensing and historical data 

be considered as a proxy of the urban thermal comfort index? 

3. To what extent can the changes in urban design factors meet the goal of heat 

mitigation at the city scale and street canyon? 

1.3. Methodology Outline 

By utilizing a set of tools and software to measure and analyse the urban physical aspects to 

its thermal comfort levels, as well as to investigate statistical interactions between 

exploratory and response variables, this project opens up opportunities to estimate outdoor 

thermal comfort using open source and secondary data at the level of Glasgow city. ArcGIS 

Pro 2.8, MATLAB 2021b, QGIS 3.24.3, UMEP tool 3.20, SOLWEIG v2022a, SketchUp Pro 2022, 

ENVI-met 5.0.3, and ENVI-metINX are a handful of programmes that are considered essential 

for describing this procedure to policymakers. 

1.4. Structure of Report 

The present dissertation is organized into the following major sections: 

The first chapter begins with a concise introduction to the research, outlining the study's aim, 

objectives, and scope, followed by a review of the literature, with a critical evaluation of state 

of the art to shed light on the main drivers behind the topic. Chapters 2-3 mainly discuss the 

technical methods, data preparation and retrieval of the major indicators of the study in the 

City of Glasgow. Chapters 5 and 6 highlight that the primary analysis was resulting from the 
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critical parameters linked to thermal comfort using linear and nonlinear analysis. Chapter 7 

continues the discussion and analysis of the important topics from the investigated data. 

The closing chapter of this report discusses the key findings, limitations and directions for 

further study. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Global Warming and Increasing Temperature in Urban 
Settings 

It is estimated that global temperatures will exceed 1.5 °C within two decades under the 

current rate of global warming. It shows the importance of reducing GHG emissions 

immediately as well as limiting global warming rapidly; otherwise, managing the 2 °C would 

be unachievable (IPCC, 2021). IPCC analysis indicated that anthropogenic GHG emissions 

account for roughly 1.1 °C since the pre-industrial era. Climate change is expected to worsen 

in all locations over the next few decades, according to the research anticipation. There will 

be more heatwaves, longer warm seasons, and shorter cold seasons. On the other hand, cities 

are expected to accommodate roughly two-thirds of the global population within three 

decades (United Nations, 2019), exposing more people to the risk of global warming 

(Alexander and Arblaster, 2008). 

The higher temperature in urban areas compared to their surroundings, known as urban heat 

island (UHI) (Arnfield, 2003; Wilby, 2008), which is more prevalent throughout the night 

(Wilby, 2003; Memon, Leung and Liu, 2009), can aggravate the excessive heat caused by 

heatwaves for city dwellers and world’s cities (Patz et al., 2005; Watkins, Palmer and 

Kolokotroni, 2007; Zhao et al., 2018). Extreme weather events, heatwaves and cold spells, 

which are now recognized risks linked with increased mortality and morbidity, present 

seasonal threats to the health and well-being of vulnerable people (Seltenrich, 2015) with 

adverse effects on environmental quality and water supply (Zhao et al., 2018; Venter, Krog 

and Barton, 2020). Tan et al. (2010) explored that heat-related deaths have been 

demonstrated to be higher in urban areas than in the countryside. According to Emmanuel 

and Baker (2012), climate change is the most severe threat that modern humans have ever 

struggled with. Rising temperatures caused by climate change, heat waves, and the UHI effect 

necessitate immediate response; otherwise, future generations would suffer from the same 

repercussions as the current generation. 
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2.2. Urban Heat Island 

The term "urban heat islands" (UHI) refers to the extra heat generated in cities as a result of 

the density of buildings, automobiles, and impervious surfaces. UHI, as a micro-climatic 

phenomenon, is associated with larger air temperature variations in urban areas than rural 

regions (Oke, 1976, 1982). Kim (1992) characterized this regional climatic phenomenon with 

soil albedo and moisture availability playing crucial roles in total boundary forcing and its 

feedback consequences. Oke (1976) differentiated two forms of atmospheric heat islands: 

urban boundary layer (UBL) and urban canopy layer (UCL), shown in Figure 1. Stewart (2011) 

added two more categories to Oke's (1976) classification: surface heat island and subsurface 

heat island. The former exists at the surface, which is identified by the temperature 

differential between urban roads and buildings, whereas the subsurface lies beneath the city 

surface (Figure 2).  

The effect of UHI fluctuates according to changes in city size (Oke, 1973; Dan et al., 2010), 

urban vegetation (Tan, Lau and Ng, 2016; Leal Filho et al., 2021), surface material (Watkins, 

Palmer and Kolokotroni, 2007), land use and land cover (LULC) conversion (Jin, Kessomkiat 

and Pereira, 2011; Yang et al., 2017), urban spatial structure (Jusuf and Hien, 2009), street 

geometry (Oke et al., 1991), climatic conditions (Kim and Baik, 2002; Eastin et al., 2018), and 

anthropogenic activities (Lee, Kim and Yun, 2016) and time (Wilby, 2007; Memon, Leung and 

Liu, 2009).  

The morphological and climatic factors that cause UHI can be either (1) Controllable: human-

related activities or (2) Uncontrollable: fixed factors with the possibility of prediction 

(Memon, Leung and Chunho, 2008). Climatic parameters, meteorological variables, and 

geographical features are considered uncontrollable. In contrast, the other variables are 

related to urban planning and design, decision-making, building geometry, urban 

morphology, sky view factor, water bodies, urban vegetation, surface attributes and building 

Figure 1 A two-layer categorisation of thermal change in a schematic depiction of the urban environment 

(Oke, 1976) 
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material and transportation (Levermore et al., 2018; Parsaee et al., 2019). In this respect, the 

UHI is a direct outcome of urbanisation (Levermore et al., 2018). 

2.3. Land Surface Temperature 

Land surface temperature (LST) corresponds to surface energy flow as a thermodynamic state 

marker. One of the most empirical approaches for continually monitoring the thermal 

environment in an urban context is remote sensing LST derived from Thermal Infra-Red (TIR) 

spectral (Li and Meng, 2018; Michel et al., 2021). The prediction and modelling of land surface 

temperature (LST) result from an interaction between meteorological and geographical 

parameters from remote sensing datasets, which ultimately shed light on creating resilient 

and sustainable environments (Şahin et al., 2012; Afrakhteh et al., 2016). As one of the 

foremost factors for UHI magnitude, the capacity to track LULC modifications within a 

specified site makes LST a crucial technique in UHI investigations (Bokaie et al., 2016). 

One of the significant challenges of LST simulation in UHI mapping is the lack of continuous 

and heterogeneous data with appropriate resolution (Anderson et al., 2021); however, other 

parameters such as Mean Radiant Temperature (MRT), a proxy for human thermal 

experience, and air temperature can be simulated and investigated alongside LST (Kelly 

Turner et al., 2022). In addition, the land surface temperature calculated from satellite data 

does not accurately reflect how much heat people feel outside. Other elements like shade, 

wind velocity, and relative humidity also affect how much heat people are exposed to (Norton 

et al., 2015). UHI modelling has to be the most visually appealing way of identifying places 

most exposed to excessive heat risk, but it does not represent all the risk's intricacies. Hence, 

socio-economic factors and meteorological data should be included in simulation and 

prediction models (Keith, Meerow and Wagner, 2019).  

Figure 2 Graphic presentation of different UHI types (Oke et al., 2017) 
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2.4. Thermal Comfort in Outdoor Environment 

Several academics who specialise in the domains of climate studies, urban planning, and 

environmental sustainability have acquired an interest in the topic of outdoor thermal 

comfort as a result of the major detrimental effects that climate change has had on 

population health (Jamei et al., 2016; Aram et al., 2020). Thermal comfort is defined by the 

ASHRAE1 as a state of mind that displays satisfaction with the thermal environment (ASHRAE, 

2010), while The IUPS Thermal Commission2 described it as ‘subjective indifference to the 

thermal environment.’ In other words, integrating the build-up area and climate-sensitive 

solutions into the environment considers the activities that are expected to take place there. 

There are several indices taken into account in research on thermal comfort assessment. The 

air temperature of the reference condition, which causes the thermophysiological model to 

respond similarly, serves as the definition of the Universal Thermal Climate Index (UTCI). 

Frequently mentioned, the temperature derived from the collection of air temperature, wind 

speed, relative humidity, and radiation contributes to the calculation of the UTCI value 

(Blazejczyk et al., 2012; Krüger, 2021). In response to wind speed, humidity, and thermal 

radiation in hot and cold climates, Bröde et al. (2012a) described the UTCI as an index broadly 

relevant to areas of application of human biometeorology. The Physiological Equivalent 

Temperature (PET), another thermal comfort indicator, is generated from a heat-budget 

model of the human body that takes the skin's temperature variations in a complicated 

outdoor environment into account (Höppe, 1999). By assessing the intensities of the short- 

and long-wave radiation on the human body, the Mean Radiant Temperature (MRT) index 

was developed to measure the environment's thermal stress (Matzarakis, Rutz and Mayer, 

2007). MRT is characterized as "The temperature of an imaginary isothermal "black" 

enclosure in which a solid body or inhabitant would exchange the same amount of heat 

through radiation as in the actual non-uniform enclosure" by IUPS Thermal Commission 

(2001). Compared to other indices, UTCI better captures the temporal changes in 

temperature conditions at the human scale (Blazejczyk et al., 2012) and is computed by the 

following equation (Bröde et al., 2012a), where Ta is air temperature; Tr is MRT; va is wind 

velocity; pa is the water pressure and offset is a deviation from Ta. 

Eq. (1) UTCI (Ta; Tr ; va; pa)=Ta + Offset(Ta; Tr ; va; pa) 

                                                      

1 American Society of Heating, Refrigerating, and Air-Conditioning Engineers 
2 Commission for Thermal Physiology of the International Union of Physiological Sciences 
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Numerous methods have been created in order to make it simpler to assess the impacts of 

various urban design and planning approaches on microclimate and human thermal comfort, 

owing to the advantages of numerical simulations and the increasing processing power of 

computers (Nice, Coutts and Tapper, 2018; Guo et al., 2020). These programmes include 

ENVI-met, Rayman, and SOLWEIG, which can also calculate MRT and microclimate conditions 

(Gál and Kántor, 2020). SOLWEIG can simulate the SVF and MRT through horizontal 2-

dimensional simulations under shortwave and longwave global radiation data, giving it a 

substantial edge over rival tools while speeding up simulation times (Guo et al., 2020). 

2.5. Contributing Parameters Contributing to Outdoor thermal 
Comfort 

Four environmental aspects, together with two distinct characteristics can be used to sum up 

the remarkable parameters that influence how comfortable people are outside, such as air 

temperature, radiant temperature, humidity, air velocity, human activity, and clothing. There 

are significant changes in thermal conditions and, therefore, in how the human body 

regulates its internal temperature in dense urban environments due to the high number of 

commuters and vehicles as well as complex urban geometry (Lau et al., 2021). Such a compact 

urban shape minimises air velocity and shields solar radiation (Zhang et al., 2022). The 

contribution of urban geometry is for analysing the openness of urban spaces. Factors like 

SVF (Souza, Rodrigues and Mendes, 2003; He et al., 2015; Yan et al., 2022), H/W (Krüger, 

Minella and Rasia, 2011), building density and coverage ratios (Mehrotra, Bardhan and 

Ramamritham, 2020), floor area ratios (FARs), as well as vegetation density (Alavipanah et al., 

2015) and coverage ratios (Duarte et al., 2015) have been studying.  

Yilmaz et al. (2021) examined the effect of microclimate properties and urban form factors 

on air quality and thermal comfort in a cold climate in Turkey. It was observed that urban 

centres with high building density had recorded higher PET and air pollution owing to low 

wind velocity. The study by Lai and Cheng (2009) showed that increasing intensity of heat 

islands led to a higher level of air pollutants and severe UHI corresponded to greater 

quantities of PM2.5 and PM10 than weak UHIs did (P<0.05). Research conducted in Athena 

revealed that levels of PM10 and NO2 dramatically rose during a heatwave, which was 

accompanied by reduced thermal comfort due to the worsening of the air quality and greater 

concentrations of air pollutants (Papanastasiou, Melas and Kambezidis, 2015). Urban 

microclimatic features and urban pollution levels can have a substantial impact on human 

health during a heatwave. 
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2.6. Prediction Model of Outdoor Thermal Comfort 

The development and implementation of new methods and policies for monitoring the 

additional heat trapped in outdoor environments have been made easier by the capacity to 

predict the influence of heat stress factors on outdoor air temperatures (Mangal, Rajesh and 

Misra, 2020). While Machine Learning (ML) techniques have the potential to deliver 

significant advancements in terms of both explanation and prediction of climate 

repercussions (Koc and Acar, 2021), Big Data (BD) science has speeded up the related 

technological advancements and real-world application by the addition of a readily available, 

easily accessible, and quickly growing volume of data (Hassani, Huang and Silva, 2019). 

Several methods of prediction in the climate research context have been used, including trend 

and regression analysis (Kolokotroni and Giridharan, 2008; Liu et al., 2021); multiple 

regression (Lee, Kim and Yun, 2016; Levermore et al., 2018); neural network (Gobakis et al., 

2011; Ashtiani, Mirzaei and Haghighat, 2014; Lee, Kim and Yun, 2016; Equere et al., 2021; Liu 

et al., 2021); tree-regression (Pena Acosta et al., 2021); time-series analysis (Lee et al., 2020); 

long short-term memory-recurrent neural network (LSTM-RNN) (Koc and Acar, 2021); support 

vector regressor (SVR) (Mendez-Astudillo and Mendez-Astudillo, 2021). Figure 3 illustrates 

how ML approaches have been at the core of successful modelling of urban indices to help in 

planning processes that address present and future problems (Koumetio Tekouabou et al., 

2022). 

 

Figure 3 The illustration of the possible use of machine learning in urban form applications  (Koumetio 

Tekouabou et al., 2022) 
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2.7. Heat Stress Mitigation Strategies in Policy Making  

Overload of research on UHI mitigation measures has failed to offer valuable information at 

the level of human thermal comfort due to a focus on temperature differences between 

urban and suburban regions (Martilli, Krayenhoff and Nazarian, 2020). The main problem is 

that there is no clear definition of rural area (Martin-Vide, Sarricolea and Moreno-García, 

2015). Furthermore, the magnitude of UHI is greater at night, whereas thermal comfort and 

heat stress are greatest during the day (Martilli, Krayenhoff and Nazarian, 2020). 

In theory, lowering the urban heat is in light of reducing the net radiation. On this basis, plants 

and reflecting materials are extensively employed as passive techniques of heat mitigation in 

metropolitan areas (Taleghani, 2018). Another efficient method of reducing the excess heat 

trapped in an urban canyon, which lessens the level of thermal comfort for people, is to create 

shading through vegetation, buildings or urban furniture (Ketterer and Matzarakis, 2014; 

Emmanuel, 2021). From an urban design perspective, street orientation along with building 

density can be useful in considering MRT and thermal comfort as they affect the wind velocity 

and radiation angles on the surfaces and open areas (Thorsson et al., 2017). The strategies 

for heat mitigation can be summarised in Table 1.  

Table 1 Heat Stress Mitigation Strategies  

Strategies Scale Source 

Vegetation Park (Taleghani, 2018) 

Street Tree 

Green Roof 

Green Wall 

Material with high albedo White roof (Taleghani, 2018) 

Reflective Pavement 

Shading Effect Vegetation (Ketterer and Matzarakis, 2014) 

Building (shadow-
casting) 

(Ketterer and Matzarakis, 2014; Emmanuel, 2021) 

Urban furniture (Emmanuel, 2021) 

Urban Geometry Urban Orientation (Thorsson et al., 2017) 

Building density 

 

According to Pearsall (2017), green conversion of vacant lots has the potential to reduce 

imbalances in urban heating in the city's most vulnerable regions of Virginia in the United 

States; however, only a few studies have attempted to shed light on the role of vacant lands 

in managing and mitigating extra heat. 
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2.8. Research and Practice Gap: Climate Sensitive Decision 
Support Application 

Cities accommodate more than half of the world's population. Since cities are more prone to 

heat stress when the urban environment is heavily constructed and densely populated with 

a scarcity of green spaces (Leal Filho et al., 2021), specific considerations in planning policy 

should be provided to tackle several environmental issues as consequences of urbanization. 

Givoni et al. (2003) pointed out the value of using the specified tool to evaluate the impact of 

changing the environment in a certain way through specific design aspects. Numerous studies 

have been conducted to investigate the mitigation interventions to understand, simulate and 

minimize the negative impact of heat stress along with scoping the future of urban climate 

conditions with conservative scenarios; however, most of them have not been included in 

spatial planning guidelines owing to: 

1. Lack of a generalized multi-faceted model (Parsaee et al., 2019) to predict thermal 

comfort based on historical and secondary data  

2. Time-consuming and costly field studies of thermal comfort, specifically at an initial 

stage  

3. Lack of a tool for planners with less knowledge of climatology to apply in the decision-

making process (Keith et al., 2021; Kelly Turner et al., 2022) 

4. Lack of high-resolution remote sensing data (Anderson et al., 2021) and availability of 

easy-access data on air temperature (Oertel, Emmanuel and Drach, 2015) to evaluate 

the model with different contexts to find its reliability and validity  

The present research tries to eliminate the first three challenges that have been identified in 

order to outline the prediction model for three radical scenarios:  

1- Best-case scenario: the desirable vision based on the application of greenery in 

mitigation strategies 

2- Intermediate-case scenario: Combination of both best and worst scenarios by 

greening 50% of the land 

3- Worst-case scenario: fast-growing built-up strategies without consideration of urban 

vegetation.  
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CHAPTER 3: STUDY AREA 

3.1. City of Glasgow 

Glasgow, Scotland's most populous city (Britannica, 2022), is one of the financial capitals of 

the United Kingdom (Glasgow City Council, 2017b). In 2020, Glasgow City recorded a 

population of 635,640, with growth rates of 8.3% since 1998 (National Records of Scotland, 

2021). Glasgow’s official boundary (Figure 4) encompasses about 175 km2 with GPS 

coordinates of 55° 51' 39.2976'' N and 4° 15' 5.1588'' W (LatLong, 2022). 

In 2017, Glasgow City Development Plan versioned the solutions to beat the climate change 

severity under green strategies (adaptation and mitigation), including promoting green 

infrastructure, defining a greenbelt and redevelopment of vacant lands along with energy 

management (Glasgow City Council, 2017b). Its place-making strategy puts health and well-

being at the centre of aspiration. According to the strategic plan for 2017-2022, supporting 

the sustainable and low-carbon city was a long-term perspective with the prioritization of 

supporting climate resilience places (Glasgow City Council, 2017a). Upon the City Council's 

announcement of a climate emergency in 2019, Glasgow has undertaken the ambitious vision 

of being the UK's first carbon-neutral city by 2030 (Glasgow City Council, 2021a) 

3.2. Climate Profile of Glasgow 

Glasgow's climate is classified as marine temperate. Glasgow typically has moderate winters 

and cool summers, with high yearly precipitation (Met Office, 2016). The average maximum 

Figure 4 The Boundary of Case Study-Glasgow 
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temperature occurs in June, July, and August, while January is the year's coldest month 

summarised in Table 2 (Climate Data, 2022). 

Table 2 Annual Meteorological Factors in Glasgow (1991-2021) (Climate Data, 2022)  

 

3.3. Glasgow Critical Climate Events and Plans 

According to the Met Office, the hottest day of 2018 was June 28th, with a temperature of 

31.9 degrees Celsius, surpassing the previous record of 31.1 °C in 1950 (The Guardian, 2018). 

On the same day, BBC Scotland News tweeted proof that the Glasgow Science Centre roof 

had begun to melt due to the rising temperatures up to 31.9 °C (BBC Scotland News, 2018). 

In the summer of 2022, Glasgow and UK experienced more than three heatwaves in which 

the temperature reached almost 31 °C (Sandercock, 2022). 

According to the recent Glasgow climate adaptation plan 2022– 2030, Scotland's top ten 

hottest years have all happened since 1997, given the available records from 1884. The mean 

temperature in the recent decade was .68 °C, greater than the average from 1960 to 1997 

(Glasgow City Council, 2022). The statistical predictions in UKCP18 report made it clear that 

in the following years, there would be a greater risk of warmer, wetter winters and hotter, 

drier summers with higher frequency and severity of anomalies across the UK and specifically 

Scotland (Lowe et al., 2018; Met Office, 2019). 

Climate Emergency Implementation Plan (CEIP) study, along with Glasgow's Climate Plan, 

highlighted the role of the integrated network of green and open spaces to lessen the effect 

of urban heat island (Glasgow city council, 2020; Glasgow City Council, 2021b). The UHI effect 

was shown to be responsible for an increase in the average temperature of 4-6 degrees 

Celsius in 2021, which was recognized as the warmest summer since 1884 (Emmanuel et al., 

2021). 

Ja nua ry Fe brua ry Ma rc h April Ma y June July August Se pte mbe r Oc tobe r Nove mbe r De c e mbe r

3 °C 3.3 °C 4.6 °C 6.9 °C 9.9 °C 12.5 °C 14.2 °C 13.7 °C 11.9 °C 8.9 °C 5.5 °C 3.3 °C

(37.5) °F (37.9) °F (40.3) °F (44.5) °F (49.8) °F (54.5) °F (57.5) °F (56.6) °F (53.5) °F (47.9) °F (41.9) °F (37.9) °F

0.8 °C 0.6 °C 1.5 °C 3.2 °C 6 °C 9 °C 10.8 °C 10.4 °C 8.9 °C 6.1 °C 3 °C 0.9 °C

(33.4) °F (33) °F (34.7) °F (37.7) °F (42.8) °F (48.2) °F (51.4) °F (50.8) °F (48) °F (43) °F (37.4) °F (33.5) °F

5.3 °C 6 °C 7.7 °C 10.5 °C 13.4 °C 15.6 °C 17.3 °C 16.7 °C 14.8 °C 11.5 °C 7.8 °C 5.5 °C

(41.5) °F (42.7) °F (45.9) °F (50.9) °F (56.2) °F (60.1) °F (63.1) °F (62.1) °F (58.6) °F (52.7) °F (46) °F (41.9) °F

124 103 96 83 85 93 98 108 90 118 109 121

- 4 - 4 - 3 - 3 - 3 - 3 - 3 - 4 - 3 - 4 - 4 - 4

Humidity(%) 89% 85% 82% 78% 76% 78% 79% 82% 83% 86% 88% 89%

Rainy days (d) 13 11 11 11 11 11 12 13 11 12 12 11

avg. Sun hours (hours) 2.9 3.8 4.3 5.9 7.2 6.5 6.4 6 4.7 4 3.5 2.8

Avg. Temperature °C (°F)

Min. Temperature °C (°F)

Max. Temperature °C (°F)

Precipitation / Rainfall mm (in)
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3.4. Vacant Land Condition in Glasgow 

The high number of vacant lands in Glasgow, which covers more than 5 per cent of the whole 

city, is significant to be considered as the potential for future development and steps toward 

sustainability. About 667 vacant lots with a surface coverage of almost 9 square kilometres 

need policy makers’ attention for bringing the climate-sensitive strategies into practice as 

mentioned in Glasgow City Development Plan to be redeveloped. The vacant lands are divided 

into three main categories on the EDINA Digimap dataset vacant land, derelict land, and 

vacant with buildings (Table 3). 

Table 3 Vacant Land in Glasgow 

Category of Vacant Land Number Area (m2) 

Vacant Land 401 3,811,434 

Derelict Land 249 5,097,740 

Vacant land with buildings 17 120,438 

Glasgow Vacant Lands 667 9,029,612 
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CHAPTER 4: METHOD AND METHODOLOGY 

4.1. Research Philosophy, Approach and Framework  

4.1.1. Research Philosophy 

According to the literature review section, minor changes in microclimate properties, urban 

form characteristics, LULC, and air quality parameters might adversely affect the thermal 

comfort balance in outdoor spaces. The pragmatic research philosophy was employed to 

achieve the project's principal aim of developing a holistic model for decision makers since it 

emphasizes addressing challenges within a real-world situation (Salkind, 2010). 

4.1.2. Research Approach for Theory Development 

Under the abduction approach, data is utilised to analyse, identify themes, and explain 

patterns in order to generate a new/modify a current theory, which is then assessed, typically 

by further data collection (also referred to as retroduction) (Saunders, Lewis and Thornhill, 

2018). Thermal comfort proxies retrieved from secondary data will be investigated in this 

study to understand the patterns underlying the outdoor thermal comfort concept. 

4.1.3. Methodological choice 

Quantitative research design, which is typically connected with a deductive method 

(Saunders, Lewis and Thornhill, 2018), is used to generate and utilize various numerical 

models (linear and nonlinear regression) for the simulation and prediction process.  

4.1.4. Strategies 

Analysis methods relying on numerical models (linear and nonlinear regression) were 

identified based on a quantitative research design to uncover the underlying relationship 

between urban form characteristics, LULC, and air quality parameters and thermal comfort 

proxies in the case of Glasgow using GIS-based analysis methods and spatial statistical tools. 
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4.1.5. Time Perspective 

Since UTCI is tightly correlated to time, this study investigates human thermal comfort 

variability for different scenarios based on the hottest day during a heatwave. In this sense, 

the simulation and prediction are based on the significant climate elements to cover 24 hours 

of a heatwave. However, the data used in this study were collected from the available dataset 

from the last five years.  

4.2. Methodology Framework 

According to the background literature, urban morphology at both scales of 2D and 3D, urban 

land use and land cover, along with air quality, all appeared to be related to the land surface 

temperature and thermal comfort. In light of this knowledge, Figure 5 depicts the framework 

that has been taken into consideration.  

There are five main steps in the entire procedure, which begin with reviewing of the literature 

and data gathering. To create the foundational dataset for the prediction models, data pre-

processing and processing were put into account. Linear-based regressions and ANN models 

were employed to shed light relationship between predictors and response variables. 

Following that, the trained ANN model was used to estimate LST for quick scenarios 

Figure 5 Thesis Framework 
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throughout the planning process. Eventually, the microclimate simulation was run to evaluate 

the performance of ANN.  

By recognising these elements, the analysis essentially provides the key methodological steps 

to accomplish its stated goals: 

- Identification and description of 3D and 2D urban forms along with vegetation indices, 

RSD data as independent variables or predictors 

- Investigate the spatial distribution of land surface temperature and mean radiant 

temperature as proxies of human thermal comfort 

- Analysing the connections between the predictors and response variable under linear 

and nonlinear regression techniques both spatially and statistically in order to 

compare the performance of various prediction models for outdoor thermal comfort  

-  Simulate scenarios on available lands (vacant and derelict) to evaluate the effect of 

predictors on outdoor thermal comfort  

- Outline a predictive model and framework through the use of ArcGIS and MATLAB to 

develop a predictive thermal comfort tool based on secondary data   

4.3. Data Sourcing  

Digimap Edina and Ordnance Survey, as the national mapping agencies, offer a plethora of 

freely available spatial data on a wide range of environmental and geographical topics. These 

platforms provide data at the scale of cities, blocks, and buildings in various geospatial 

geodatabase formats. Glasgow’s LiDAR datasets gathered for 2021, which is published by 

Scotland’s catalogue of spatial data Metadata Portal3 with free access for the public. Urban 

Atlas has provided land use and land cover characteristic for 2018 with the update from 2020 

under the Copernicus programmes of the European Environment Agency (EEA). All the data 

needed to deliver the aim of this project is classified in Table 4. 

Table 4 Data Sourcing 

Data Source Year Format Application 

Landsat 8 OLI and TIRS United States Geological Survey (USGS) 
(USGS, 2018) 

2018 GeoTIFF LST, NDVI, 
NDBI 

Land Use and Land Cover  VERISK Collection DIGIMAP 
(Digimap Edina, 2022b) 

2022 SHP LULC 

Copernicus Land Monitoring Service - Urban 
Atlas (EEA) 
(EEA, 2020) 

2018-
2020 

GPKG 

LiDAR: DEM, DSMb, CDSM, 
SVF 

Scottish Government 
(Scottish Government, 2021a) 

2021 LAZ 
GeoTIFF 

3D model 

                                                      

3 SpatialData.gov.scot 
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Meteorological data 

 Air temperature 

 Relative Humidity 

 Wind speed 

 Incoming 
short/longwave 
radiation 

ERA5–ECMWF (Shiny Weather Data) 
(Shiny Weather Data, 2018) 

2018 EPW Tmrt 

Weather Underground 
(Weather Underground, 2018) 

2018 XLSX Tmrt 
UTCI 

Building Height and 
Footprint 

OS Collection DIGIMAP  
(Digimap Edina, 2020) 

2020 GDB DSMb 

Boundary and Network OS Collection DIGIMAP 
(Digimap Edina, 2022a) 

2022 SHP Boundary 

Air Pollution  Scottish Air Quality  
(Scottish Government, 2019) 

2019 XLSX NOx, PM10  

 

Two satellite images of Glasgow from the summers of 2018 and 2019 were taken into 

consideration. The dates were picked based on cloud coverage of less than 10%, with records 

of the highest temperature during the heatwave. Table 5 lists the features of the Landsat 

images that were utilised to create the model. 

Table 5 Specification of Landsat 8 images used in this study 

Date/Time of 
Acquisition 

Sensor 
Identifier 

Spatial 
Resolution 

Path/Row Number 
of Bands 

Land Cloud 
Cover (%)  

Radiometric 
Resolution 

UTM 
Zone/Datum 

25-Jun-2018 
11:14:55 

OLI_TIRS 30 m 205/21 10 0.27 16-bit 30/WGS84 

28-Jun-2019 
11:15:48 

OLI_TIRS 30 m 205/21 10 0.49 16-bit 30/WGS84 

4.4. Data Pre-processing 

The first step is to create a single coordinate system, the OSGB36 National Grid, also known 

as the National Grid coordinate system, to get reliable findings given the numerous data 

origins. Then after, the spatial factors were clipped to the area of interest (Glasgow City 

Boundary) and cleaned the data to deal with noise, missing data, and outliers. To combine 

the data with a different format, vector and raster-based data, the zonal statistics were used 

to compute and summarize the individual pixels of raster data (LST, DEM and other variables) 

into a grid of 30 m as a sense of division of urban areas to be considered as a block.  

4.5. Data Processing 

The predictive model takes advantage of the correlation between one or more features and 

the response variable's value. By preserving the characteristics that deliver the best values, 

feature selection aims to improve the model. Additionally, the final model will be easier to 

understand and more computationally effective (Figure 6).  
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4.5.1. Independent Variables (Predictors) 

In the current study, urban characteristics were used in order to create a prediction model. 

These components were intended to play a leading role in outdoor thermal comfort, as seen 

in Table 6, was collected from open-source datasets. 

Table 6 Classification by data source  

Categories based on source of dataset Predictors 

Remotely sensed derived (RSD): Landsat 8 NDVI, NDBI  

Urban morphology: LiDAR DEM, DSM, CDSM, SVF 

LULC RAR, VSF 

Vector-based at level of building footprint BSF, Mean Height 

Air quality factors PM10, NOx 

 

4.5.1.1 Remotely sensed derived (RSD): Landsat 8 

The first category belongs to the derived variables from remotely sensed derived (RSD) such 

as LANDSAT 8 image: 

 NDBI 

NDBI is calculated using band 5 (NIR) and 6 (MIR), which indicate the reflectance of the near-

infrared band and the reflectance of the short-wave infrared (Zheng, Tang and Wang, 2021). 

The NDBI values varied between -1 and 1. According to studies, positive NDBI values reflect 

urban built-up areas, whereas negative NDBI values imply non-urban land regions, including 

water bodies and non-urban land areas (Zha, Gao and Ni, 2003). Figure 7 displays the spatial 

distribution of NDBI obtained from Landsat 8. 

Eq. (2) NDBI =MIR - NIR / MIR + NIR 

 NDVI 

Tracking environmental changes has been becoming a global concern, which makes it possible 

to better understand the effect of humans’ activities on the environment. The Normalized 

Difference Vegetation Index (NDVI) is considered a useful tool to monitor the ecological 

changes and effects of climatic disasters. One of its critical points is converting vegetation 

directly into the local climate and microclimate condition (Pettorelli et al., 2005). In the 

Landsat-8 satellite image, the NDVI is calculated using band 5 (NIR) and 4 (RED), which 

Figure 6 The workflow of pre-processing and processing steps 
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indicate the reflectance of the near-infrared band and the reflectance of the red band. 

(Portelaa et al., 2020; Taloor, Manhas and Kothyari, 2021). Figure 8 displays the spatial 

distribution of NDVI obtained from Landsat 8.  

Eq. (3) NDVI =NIR - RED / NIR + RED 

 

4.5.1.2. Urban 3D data: LiDAR  

 DEM (Digital Elevation Model) 

From the LiDAR point clouds, a Digital Elevation Model (DEM) was produced (Figure 9). 

 DSM (Building and ground model) 

The DSM generating tool in the UMEP plugin (QGIS) was used to construct the digital surface 

model of the building, which combines the DEM model with the raster surface of the 3D 

building elements (Figure 10). 

  

Figure 7 Spatial distribution of NDBI retrieved from Landsat 8 (2018) 
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Figure 8 Spatial distribution of NDVI retrieved from Landsat 8 (2018) 

Figure 9 Spatial distribution of DEM 
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 CDSM 

Canopy DSM is the vegetation surface layer of vegetation identified by Lindberg et al. (2022) 

for microclimate simulation. Due to the low-resolution LiDAR dataset (4 ppm), vegetation 

classification was done through the classification of ground, building, and water bodies, in 

which an unassigned class was considered as vegetation coverage (Figure 11). 

 Sky View Factor 

Sky view factor (SVF), a parameter in the analysis of the urban micro-climate, energy balance, 

local air circulation, and outdoor thermal comfort, quantify the characteristics of surface 

structures with the ratio of the radiation received by a planar surface (Souza, Rodrigues and 

Mendes, 2003; He et al., 2015). Scholars have offered a variety of approaches for calculating 

SVF, including fisheye lens photography, computation of continuous SVF using three types of 

data: photographs; raster format (DSM and DEM); as well as vector format (LiDAR point 

clouds: building and tree data) (Heo et al., 2021). In the current study, SVF assessment was 

performed using continuous SVF methods introduced by Lindberg and Grimmond (2010). The 

given method uses a shadow-casting algorithm for computation from high-resolution urban 

DEM, DSM, and CDSM. The SVF values varied between -1 and 1(Figure 12). 

4.5.1.3. Land Use and Land Cover 

The third category is prepared from the available land use and land cover dataset to 

demonstrate the landscape metrics along with the other urban morphology factors. 

The Urban Atlas prepared the map of LU/LC for Glasgow city employing supervised machine 

learning methods based on the Copernicus Sentinel-2 time series (2012-2018). Under this 

classification, there are 22 categories were considered for mapping the LULC (Figure 13). 

 Road Area Ratio (RAR)/ Impervious Surfaces Fraction  

RAR covers the location of impervious surfaces that are responsible for an area's surface heat 

(Figure 14). The overall surface is calculated by counting the fast transit roads, railways, and 

other roads with their associated lands (Mehrotra, Bardhan and Ramamritham, 2020).  

 Vegetation Surface Fraction (VSF) 

The percentage of vegetation surface (i.e., bare soil, vegetation, farmlands) to total plan area 

is referred to as vegetation as part of the pervious surface fraction mentioned by Chen, Zheng 

and Hu (2020). The LULC classifications for this parameter consist of arable lands, forests, 

green urban areas, herbaceous vegetation associations, and pastures from the LULC map of 

Urban Atlas used to retrieve the surface fraction (Figure 15). 
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Figure 10 Spatial distribution of DSM 

Figure 11 Spatial distribution of CDSM 
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Figure 12 Spatial distribution of SVF 

Figure 13 Spatial distribution of LULC  
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Figure 14 Spatial distribution of Road Area Ratio  

Figure 15 Spatial distribution of Vegetation Surface Fraction  
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4.5.1.4. Vector-based variables at the level of building footprint 

The fourth category illustrates the 2D and 3D aspects of urban settings, which are derived 

from the vector-based data of Glasgow. 

 Building Height  

The building height was derived from DIGIMAP-Verisk upon the availability of vector-based 

data. The highest building stands 77 metres tall (Figure 16).  

 Built Surface Fraction (BSF) 

BSF is a frequently used measure of building morphology for determining the thermal pattern 

at the level of the urban canopies shown in Figure 17 (Mehrotra, Bardhan and Ramamritham, 

2020).  

 

 

 

Figure 16 Spatial distribution of Building Height  
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4.5.1.5. Air quality factors 

Last but not least category is created using historical air quality data for the entire of Scotland 

at a spatial resolution of 1 km. Ricardo Energy & Environment and the Scottish Air Quality 

Database (SAQD) project deliver plotted pollution levels for Scotland. The most recent maps, 

which show the spatial patterns of ambient and roadside annual mean concentrations, are 

PM10, N2O and NOx. The availability of the Glasgow PM2.5 map is currently under 

assessment as additional PM2.5 observation stations are added to the SAQD. In Scotland, 

roadway emissions are recorded for urban main road connections, and ambient quantities 

are mapped at a spatial resolution of one square kilometre (Scottish Government, 2021b). 

The annual data of 2019 has been considered in this study due to the highest emission rates 

compared to the most recent years (impact of COVID and low concertation of pollution 

particles). The geo-statistical interpolation technique known as the Empirical Bayesian Kriging 

(EBK) was applied to accurately predict non-stationary data with a resolution of 1 km (Figure 

18). The logic behind the semivariogram parameters of power in EBK was to use the restricted 

Figure 17 Spatial distribution of Building Surface Fraction 
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maximum likelihood (REML) as a secure option balancing the performance and accuracy of 

the interpolation process  (ESRI, 2022b).  

 

To prevent any data loss during the data resampling procedure, all the data mentioned above 

were generated at the highest resolution of 2 meters, excluding Landsat-based variables of 

NDVI, NDBI and LST. The mean statistics for higher resolution data were used to compute and 

summarise the individual pixels of raster data into a grid of 30 m. 

 

4.5.1.6. Normalized Distribution of Predictors 

Due to the varying numeric ranges of the variables with different units and magnitudes, biases 

are avoided by normalising all the variables using the scaling technique of normalisation (Eq. 

4). Figure 19 shows the distribution of predictors.  

Eq. (4)  xnorm = x - xmin / xmax - xmin 

Figure 19 Distribution of Predictors (Left: before normalisation; Right: after normalisation) 

Figure 18 Left: NOx Right: PM10 
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4.5.2. Dependent Variables (Response Variables) 

4.5.2.1. Land Surface Temperature Retrieval 

The LST was calculated using Landsat-8, band-10 (Thermal infrared) (Portelaa et al., 2020; 

Taloor, Manhas and Kothyari, 2021). The LST retrieval was run on 25th June 2018 during the 

heatwave 2018. The highest temperature reached 31.9 Celsius on 28th June, and due to a 16-

day temporal resolution of Landsat 8, the closest day to the peak heatwave day was 

considered with the cloud coverage of below 10 per cent. LST was calculated for June 2019 

(Appendix I), but the highest LST range was seen in 2018. 

There are 6 steps  (shown in Figure 20) to retrieve the LST out of Landsat 8 (Made 4 Geek, 

2018). 

Step 1 conversion to Top of Atmospheric (TOA) spectral radiance  

The following equation will be used to compute the sensor radiance for the thermal infrared 

band (10) of Landsat 8, where Lλ = TOA spectral radiance, ML= Band-specific multiplicative 

rescaling factor extracted from the metadata = 0.0003342, AL=Band-specific additive 

rescaling factor extracted from the metadata = 0.10000, and Qcal = Quantized and calibrated 

standard product pixel values = band 10 image 

Eq. (5)  Lλ=ML*Qcal+AL 

Step 2 Conversion of Radiance to at-Sensor Temperature (in °C): BT= for deriving the 

temperature values the following equation will be considered, where Lλ= TOA spectral 

radiance, K1= K1 constant band (No.) = 774.8853 and K2= K2 constant band (No.) = 1321.0789.  

Eq. (6) TB= (K2/ln ((K1/ Lλ)+1))-273.15 

 

Figure 20 Procedure of LST retrieval  
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Step 3 NDVI Extraction: Considering the band 5 and 4 which are indicating the reflectance of 

the near infrared band, the reflectance of the red band, the NDVI will be calculated from the 

following equation (Portelaa et al., 2020; Taloor, Manhas and Kothyari, 2021). 

Eq. (7)  NDVI = NIR - RED / NIR + RED 

 

Step 4 Calculation of Vegetation Fraction (pν):  

Eq. (8) [(NDVI -NDVImin)/(NDVImax -NDVImin)]^2 

Step 5 Ground emissivity  

Eq. (9) εOLI = 0.004 × pν + 0.986481 

Step 6 LST Computation (Figure 21) 

Where C2=h*c/s=14388, h=planck’s constant=6.626*10^-34, s=Boltzmann 

constant=1.38*10^-23, and c= velocity of light= 2.998 * 10^8 m/s.  

Eq. (10) T=TB/(1+((10.8*TB/14388)*ln(E ))) 

 

Figure 21 Spatial distribution of Land Surface Temperature retrieved from Landsat 2018  
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4.5.2.2. Mean Radiant Temperature (MRT/ Tmrt) 

The SOlar and LongWave Environmental Irradiance Geometry (SOLWEIG) model calculates 

the Tmrt as one of the most important climatic factors affecting human energy balance and 

thermal comfort in this study. The computation is based on angular components such as 

shortwave and longwave radiation fluxes in six directions. The inputs of the model are 

geographic data, air temperature, relative humidity, urban geometry, and global shortwave 

radiation with the incorporation of a vegetation scheme (Figure 22) (Lindberg, Holmer and 

Thorsson, 2008; Lindberg et al., 2022). 

 

 

Figure 22 Flowchart of SOLWEIG model (Lindberg et al., 2022) 

Figure 23 Spatial distribution of Mean Daytime MRT(5:00-21:00) 
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Figure 24 Spatial distribution of MRT at 13:00 (peak) 

Figure 25 Spatial distribution of MRT at 16:00  
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As MRT is dependent on solar radiation (Lai, Maing and Ng, 2017; Thorsson et al., 2017), it 

fluctuates during the day, and the mean daily map (from 5:00 AM to 21:00) shown in Figure 

23, 13:00 (Figure 24), and 16:00 (Figure 25) for the 28th June have been considered. The 16:00 

MRT has been considered in the following processing analysis to avoid the dramatic difference 

between RS-LST collection time and the clustering effect of the hot spot and cold spot effect 

(13:00 was the peak temperature). 

4.5.3. Standardisation of Dependent Variable 

The z_score function in MATLAB transforms the independent variables, which returns new 

values for each observation across all variables to have a standard deviation of 1 and are 

centred on having a mean of 0. To standardise the measurement scales of the network input, 

the following formula is used where x is the observed dependent variable, μ is the mean, and 

σ is the standard deviation (Olden and Jackson, 2002).  

Eq. (11) z = (x-μ)/σ 

4.6. Microclimate Modelling  

SOLWEIG and ENVI-met microclimate models were utilised to analyse the impacts of changes 

in urban design factors on human thermal comfort. Both models simulate the microclimate 

in a specific period by integrating urban design factors with thermodynamics elements, 

including wind direction and velocity, air temperature, relative humidity, and solar radiation. 

In this study, UTCI and MRT were calculated via BioMet (ENVI-met tool) and SOLWEIG (UMEP 

processing tool), respectively. In this study, the UTCI assessment scale (Table 7) in terms of 

thermal stress (TS) by Błazejczyk et al. (2013) was followed. 

Table 7 Thermal Stress Categories (Błazejczyk et al., 2013)  

Heat Stress UTCI 

Extreme heat stress Above +46 

Very strong heat stress +38 to +46 

Strong heat stress +32 to +38 

Moderate heat stress +26 to +32 

No thermal stress +9 to +26 

Slight cold stress 0 to +9 

Moderate cold stress -13 to 0 

Strong cold stress -27 to -13 

Very strong cold stress -40 to -27 

Extreme cold stress Below -40 
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4.6.1. ENVI-met  

Table 8 presents the details on ENVI-met models and the inputs for different scenarios.  

Table 8 ENVI-met models’ settings 

 Parameters Model layout 

Main model 

 Grid Size 5m x 5m x 3m  
Domain_Site 1: 77x75x23 
 

  
Domain _Site_2: 50x52x14 
 

Date 28th June 2018 

Simulation period 30 h 

Model starting time 27th June 2018  
18:00 

Model level Simple forcing (Appendix II) 

Model rotation 0 

Wind speed 9 m/s 

Wind direction 141.75  

Roughness length 0.01 

Min-Max Temp 13-31 C 

Min-Max RH 29%-94% 

Soil type Asphalt road 
Sandy Loam 
Loamy soil 

Material Building: default 
Pavement: asphalt 

Vegetation Trees 
Hanging Birch(middle):15 m 
Acer Campestre: 12 m 
 

Grass 25 cm 

Site 1 Nesting grid 3 

 Best Case 30 Birch tree 
12 Acer tree 
 
 

 

 Intermediate Case 15 Birch tree 
7 Acer tree 
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 Worst Case No Birch tree 
No Acer tree 

 

Site 2 Nesting grid 15 

 Best Case 12 Birch tree 
6 Acer tree 

 

 Intermediate Case 6 Birch tree 
3 Acer tree 

 

 Worst Case No Birch tree 
No Acer tree 

 

For intermediate scenarios, 50% of the land was randomly assigned to a vegetated region by 

dividing along an axis perpendicular to the nearby main street. In order to avoid the effects 

of attributes that were not included in the chosen predictors, tree orientation was also done 

randomly for all green cases. 

4.6.2. SOLWEIG 

Table 9 shows the details of the SOLWEIG model and the inputs for retrieving the mean 

radiant temperature at the scale of Glasgow city. The meteorological data, which was 
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considered for simulating MRT from ERA5 reanalysed climate data, was summarised in 

Appendix III. 

 

Table 9 SOLWEIG settings  

Main model parameters Grid Size 9 grids of 3501*3000 m2 

Date 28th June 2018 

UTC offset 0 

Simulation period 24 h 

Model starting time 28th June 2018 00:00 

Environmental parameters Albedo (walls) 0.20 

Albedo (ground) 0.15 

Emissivity (wall) 0.90 

Emissivity (ground) 0.95 

Tmrt parameters Absorption of shortwave radiation 0.70 

Absorption of longwave radiation 0.95 

Body posture standing 

 

One base case model was run with SOLWEIG calculations on ENVI-met to validate the MRT 

calculation since the meteorological data for ENVI-met and SOLWEIG models were derived 

from two different sources. The comparison of the two base cases is available in Appendix IV. 

4.7. Regression-based Prediction Models  

To reach the goal of the project to develop the prediction model, the following non-linear and 

linear statistical models were considered to find the relation between the predictors and the 

response variables, MRT and LST, which have been taken into account as proxies of outdoor 

thermal comfort.  

4.7.1. Pearson Correlation Coefficient 

The scale-less covariance, which stands for Pearson's correlation coefficient, is a metric used 

to determine the linear dependence of the chosen variables. The correlation coefficient, 

which assesses the strength and direction of the association between two continuous 

variables, ranges in value from -1 to +1. The positive number demonstrates that as one 

variable increases, the other rises. Regardless of the correlation's power, it cannot establish 

causality (Brown and Hambley, 2002; Frost, 2019).  

Eq. (12) r= Σ(xi – xmean)(yi – ymean) / Sqrt (Σ(xi – xmean) 2 Σ (yi – ymean)2) 
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4.7.2. Linear-based Regression Model 

4.7.2.1. Generalized Linear Regression and Exploratory Linear Regression 

The GeoAnalytics toolset of ArcGIS Pro- generalized linear regression (GLR) and Exploratory 

Regression were used to make predictions of dependent variables depending on their 

connection to a collection of explanatory factors (ESRI, 2022a). Based on the nature of input 

data, the Ordinary Least Squares (OLS) approach for GLR delivers appropriate regression 

analysis findings. 

4.7.2.2. Spatial Autocorrelation  

Spatial autocorrelation develops as geography is fundamental (Griffith and Chun, 2018). 

Spatial autocorrelation statistics, which quantify the similarity of neighbouring observations, 

are frequently used to measure spatial linkage or spatial dependency. The positive spatial 

autocorrelation happens when the significant value of an attribute seems to be clustered 

together in some portions of the study and the low value of other attributes are clustered 

together in other parts. On the contrary, the proximity of low and high values in clusters 

displays a negative autocorrelation. Furthermore, if no relationship is discovered between the 

high and low attributes, zero spatial autocorrelation will result. The logic behind spatial 

autocorrelation statistics can be summarised in the concept of proximity and spatial 

weighting (Fotheringham, Brunsdon and Charlton, 2002). 

4.7.2.3. Geographically Weighted Regression (GWR) 

The GWR, as a spatial regression method, emphasises non-stationary data. One of the main 

facts in GWR studies is the determination of zones during the regression analysis. It is crucial 

to finely divide the area where the relationships between the explanatory and dependent 

variables will be analysed. Most spatial processes are continuous and do not have distinct and 

frequently arbitrary borders. These zones may be those where data is collected, 

independently chosen locations within the area used as a foundation for additional mapping, 

or even the combination of both methods (Fotheringham, Brunsdon and Charlton, 2002). The 

spatial distribution of the local coefficient of determination that follows GWR analysis tends 

to elicit extensive discussions of the patterns identified (Páez, Farber and Wheeler, 2011). The 

lower AICc value provides a better fit to the observed data, while the higher value for R-

Squared is a measure of goodness of fit (ESRI, 2018).  
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4.8. Nonlinear Regression Model: Artificial Neural Network 
(ANN) 

A collection of interconnected units or nodes resembling a biological brain's neurons. Each 

processor is in charge of processing data, and all parts cooperate to create a network and 

carry out simultaneous interactions (Yegnanarayana, 2005). Each network will calculate the 

required output as a result of the interaction between the input values (Lee, Kim and Yun, 

2016). To avoid overfitting, the model's complexity should be determined, the validation 

dataset should be considered, and the model should be regularized. In this regard, the data 

is divided into three main categories: training, validation, and test data. The training dataset 

helps build the model, whereas the validation data guides the model selection, parameter 

optimisation and any iterative pre-processing steps. Test data finally evaluates how the model 

performs based on unseen data for the first time. Splitting a subset of data for final testing as 

well as using validation to prevent a selected model that over-fits or under-fits. Due to the 

large dataset, the validation method chosen for the fitting model is hold-out by considering 

15 per cent of the training data, which is considered 80 per cent of the whole data. The 

remaining data belongs to the test data test (Table 10). In order words, the training, 

validation, and test dataset consist of 70%, 15% and 15% of all data, respectively. Although 

cross-validation would perform better by dividing each set of learning for training and 

validation, the processing time would be time-consuming (Josse and Husson, 2012). For the 

given reason, it was not considered in this study. The method used for dividing datasets was 

random. 

Table 10 Data Partitioning 

Training (80%) Test (20%) 

Train Validation Test 

70% 15% 15% 

4.8.1. The Architecture of the ANN network 

The input layer (corresponding variables or predictors), output layer (independent or 

response variable), and a hidden layer or layers make up the ANN's architecture. The LST 

value, as a proxy for outdoor thermal comfort in the current study, along with the MRT, is the 

output layers in two separate networks. The ANN models were optimised to yield the fewest 

errors between anticipated and actual values. This was accomplished by adjusting the number 

of neurons within the hidden layer according to Eq. (13) (Chan and Chau, 2019). Where Ni is 

the number of input variables (12), No is the number of output(1), and; Nh shows the number 
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of neurons in the hidden layer. This way, the number of neurons in hidden layers should be 

between 6 and 25. 

Eq. (13)  2 × √Ni + No ≤  Nh  ≤ 2 × Ni + 1 

In machine learning the hyperparameter is critical in optimising the model's accuracy. 

Hyperparameters are employed to manage the learning process under the external 

configuration. Levenberg-Marquardt algorithm (trainlm in MATLAB) as the most effective 

method for training moderate-sized feedforward networks has been considered in this study 

(Liu, 2010). Appendix V summarises the training parameters and hyperparameters applied in 

ANN. 

4.8.2. Factor Characterisation and Sensitivity Analysis 

ANN, as a black box predictive model, does not reveal the information about how the 

variables are connected to one another to arrive at a final prediction (Olden and Jackson, 

2002). There are a few statistical techniques (sensitivity analysis, Neural Interpretation 

Diagram, Garson’s algorithm) to uncover the significance of independent variables. In the 

current study, the model will be considered for analysing the effect of each variable (focusing 

mostly on the impact of greenery and built-up) by excluding one predictor in each round of 

training (sensitivity analysis) and comparing their performance through different error 

metrics. 

4.9. Evaluation of Models’ Performance 

The regression-based prediction model quantifies the relationship between predictors and 

the dependent variable, and the following metrics (Naser and Alavi, 2021) are taken into 

account to determine how well a model fits in order to assess how effectively the model is 

adapting to new data.  The objective is to identify the "best" model—one that can produce 

predictions that are most closely related to the true number values from the dataset—with 

the lowest RMSE value (Botchkarev, 2018).  

Error (Residual-R): indicate the difference between the predicted and observed values.  

Eq. (14) R= (yp – yo) 

MSE (Mean Squared Error): It determines the square root of the errors' mean. 

Eq. (15) MSE= Σ(yp – yo)2 / n 
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RMSE (Root Mean Squared Error): It displays the errors' standard deviation, which illustrates 

how dispersed the residuals are. 

Eq. (16) RMSE= Sqrt (Σ(yp – yo)2 / n) 

R2: R-squared is understood as the proportion of the response variable's variance that the 

model can faithfully predict. (Where yo is observe; yp is predicted and ym is the mean value 

of observed data) 

Eq. (17) R2= 1- (Σ(yp – yo)2 / Σ(yp – ym)2 

MAE (Mean Absolute Error): It calculates the mean error in a range of forecasts without 

taking into account the direction (positive/negative) of the mistakes. 

Eq. (18) MAE= Σ |yp – yo| / n 

4.10. Validation of Final Model: Scenarios for Vacant Lands 

According to the current situation, there are around 5% of vacant lands in the city have the 

potential to be developed in the future. Through the use of a trained ANN model and ENVI-

microclimate met's simulation, the current study aims to completely eliminate the possibility 

of climate-related risk to future development in such lands. 

1. Best case scenario: the desirable vision based on increased greenery (100%) 

2. Intermediate scenario: Combination of both greenery and built-up (50-50 %) 

3. Worst case scenario: All the lands converted for the building construction  

All the cells with vacant land surface fractions are selected to develop the scenarios. All the 

predictors, excluding pollution factors, DEM, CDSM, and DSM will take the new values for 

each scenario randomly by following similar trained cells.  

For example, in the best scenario, each cell will take the new values for MeanHeight(0), 

BSF(0), VSF(1), and RAR(0), while in the case of NDVI(), NDBI(), and SVF(), the new values will 

be randomly chosen based on the same configuration of cells with MeanHeight (0), BSF(0), 

VSF(1), and RAR(0) values from training dataset. 

In the intermediate scenario, BSF(.5) and VSF(.5) will be constant for the vacant lands, while 

MeanHeight(), RAR(), NDVI(), NDBI(), and SVF() will take values randomly considering the 

trained dataset.  
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In the worst scenario, the cell will take the new values for BSF(1), VSF(0), SVF(1) will be 

considered consistent and only MeanHeight(), RAR(), NDVI(), and NDBI() will be chosen 

randomly.  
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CHAPTER 5: RESULTS AND ANALYSIS- PART I 
 

Chapter 5 is divided into three sections. The relationship between the LST and its chosen 

predictors was first investigated. Then, in order to identify the specifically suited model, the 

regression prediction models were conducted. Regression-based approaches were 

compared, the most significant contributing factors were determined, and the LST best-fit 

prediction model was validated. 

5.1. LST: A Proxy for Human Thermal Comfort? 

5.1.1. Correlation Matrix: LST 

The Pearson correlation technique was used to calculate the correlation values in Figure 26. 

The coefficient correlation employed in multiple regression analysis reveals that the 

association between NDVI and NDBI, and LST are the strongest, while Road Ratio and SVF are 

the least correlated ones. Additionally, among all the predictors, NDVI, VSF, CDSM, DEM, and 

DSM showed a negative correlation (Table 11).  

  

Figure 26 Pearson Correlation between Predictors and LST 
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Table 11 Pearson Correlation between Predictors and LST 

Pearson CC DEM DSMb CDSM SVF NDVI NDBI BSF MeanHeight RAR VSF PM10 NOx 

LST  -0.344 -0.316 -0.262 0.175 -0.637 0.696 0.423 0.473 0.199 -0.618 0.456 0.467 

5.1.2. Generalized Linear Regression and Exploratory Regression Results 

The results from Generalized Linear Regression (GLR) model in Table 12 express that all 

variables are statistically associated with LST in linear regression. The variance inflation (VIF) 

of each predictor ranges from 1.20 to 528.99, demonstrating the impact of multicollinearity 

and redundancy among independent variables. In this case, DEM and DSM are the 

independent variables that are highly collinear with the other variables in the model. 

 

The Exploratory Regression Global Summary explains that 80.37% of the criteria calculated 

based on 12 predictors got the passing mark in the case of LST to be considered as a robust 

model for prediction with a minimum Adjusted R-squared of above .5 (Table 13). The Global 

Moran’s I test was the next step to quantify how values are similar to their neighbours.  

Table 13 LST Criteria Passed  

Table 12 Summary of GLR Result-LST 
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5.1.3. Summary of Variables Significance 

The significance of exploratory variables in LST is summarised in Table 14. The strongest 

predictors are NDBI, MeanHeight, CDSM, BSF, and PM10 for their consistent significance and 

stable relationship with LST. However, all the recorded scores are above 93 per cent, and all 

the predictors are significant to be considered in the models. Among all significant exploratory 

variables in the LST set, the NDVI and NOx are the inconsistent ones for their both negative 

and positive relationship.  

5.1.4. Spatial Autocorrelation (Global Moran's I) Test 

ArcGIS Pro's Global Moran's I is used to test the spatial autocorrelation theory. The outcome 

is displayed in Table 15. Given the z-score of 486.186243 and Moran’s Index of .77, there is a 

probability of spatial autocorrelation and spatial clustering, in which geographically weighted 

regression would shed light on this.  

Table 15 Global Moran's I Summary  

 Moran's Index Expected Index Variance z-score p-value 

LST 0.775091 -5E-06 0.000003 486.186243 0.000000 

5.1.5. Geographically Weighted Regression (GWR) 

Given the multicollinearity and redundancy between variables, utilising the GWR with all 

variables was not feasible for the regression-based prediction. Here are the individual GWR 

models and a few combined models to better understand the spatial non-stationarity in their 

relationship. The GWR technique was considered under the optimisation of Distance Band to 

produce a robust model.  

Table 14 LST Variables Significance 
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5.2.5.1. GWR and DEM 

The local R2 from considering the DEM variable ranged between 0 and .97, and the results 

explain 75-100% variation between DEM and LST for only 19.08 per cent of the whole data 

(Figure 27).  

 

5.2.5.2. GWR and DSM 

The local R2 of DSM varied between 0 and .97, and the results depict that the GWR model 

could explain 75-100% of the variation between DSM and LST for only 17.83 per cent of the 

whole data (Figure 28).  

 

5.2.5.2. GWR and CDSM 

The local R2 altered between 0 and .94, and the GWR result shows that the regression model 

has the ability to explain 75-100% of the variation between CDSM and LST for only 17.68 per 

cent of the whole data (Figure 29). 

Local R2  

0-0.25 9.20 

0.25-0.50 26.41 

0.50-0.75 45.31 

0.75-1.00 19.08 

 

Figure 27 DEM and LST in GWR 

Local R2 % 

0-0.25 9.72 

0.25-0.50 26.96 

0.50-0.75 45.49 

0.75-1.00 17.83 

 

Figure 28 DSM and LST in GWR 
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5.2.5.4. GWR and SVF 

The local R2 results came out between 0 and .94, which demonstrates that the GWR model 

can predict 75-100% of the variation between SVF and LST for only 16.57 per cent of the whole 

data (Figure 30).  

5.2.5.5. GWR and NDVI 

The local R2 varied between 0 and .94, and the results show that the GWR model can explain 

75-100% of the variation between NDVI and LST for only 21.36 per cent of the whole city 

(Figure 31). 

 

Local R2  

0-0.25 7.83 

0.25-0.50 26.18 

0.50-0.75 48.31 

0.75-1.00 17.68 

 

Figure 29 CDSM and LST in GWR 

Local R2  

0-0.25 8.33 

0.25-0.50 26.23 

0.50-0.75 48.87 

0.75-1.00 16.57 

 

Figure 30 SVF and LST in GWR 
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5.2.5.6. GWR and NDBI 

The local R2 ranges between 0 and .93, and the result demonstrates that the GWR model is 

able to explain 75-100% of the variation between NDBI and LST for only 22.01 per cent of all 

data (Figure 32).  

5.2.5.7. GWR and NOx 

The local R2 fluctuates between 0 and .97, and the results depict that the GWR model could 

explain 75-100% of the variation between NOx and LST for only 16.09 per cent of the whole 

Glasgow (Figure 33). 

Local R2  

0-0.25 5.8 

0.25-0.50 21.88 

0.50-0.75 50.96 

0.75-1.00 21.36 

 

Figure 31 NDVI and LST in GWR 

Local R2  

0-0.25 5.56 

0.25-0.50 21.15 

0.50-0.75 51.28 

0.75-1.00 22.01 

 

Figure 32 NDBI and LST in GWR 

Local R2  

0-0.25 11.88 

0.25-0.50 29.65 

0.50-0.75 42.38 

0.75-1.00 16.09 

 

Figure 33 NOx and LST in GWR 
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5.2.5.8. GWR and PM10 

The local R2 spans between 0 and 0.97, and the results express that the GWR model has the 

ability to explain 75-100% of the variation between PM10 and LST for only 15.80 per cent of 

the whole data (Figure 34). 

The combined GWR models express the impact of spatial factors in a group of 5(6)-

predictors on LST changes. For two chosen models with 5–6 predictors, the GWR results are 

compared together in Table 16. 

5.2.5.8. GWR and DEM_SVF_NDVI_NOX_PM10 

The local R2 fluctuates between 0 and 0.97, and the results illustrate that the GWR model can 

explain 75-100% of the variation between DEM and LST for only 45.32 per cent of the whole 

data (Figure 35). 

 

Local R2  

0-0.25 9.72 

0.25-0.50 29.75 

0.50-0.75 42.53 

0.75-1.00 15.80 

 

Figure 34 PM10 and LST in GWR 

Local R2 % 

0-0.25 1.60 

0.25-0.50 10.49 

0.50-0.75 42.59 

0.75-1.00 45.32 

 

Figure 35 Group of DEM_SVF_NDVI_NOX_PM10 and LST in GWR 
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5.2.5.9. GWR and DEM_SVF_NDVI_NDBI_NOX_PM10 

The local R2 ranges between 0 and 0.98, and the results show that the GWR model is able to 

explain 75-100% of the variation between DEM and LST for only 60.84 per cent of the whole 

data (Figure 36). 

 

 

The comparison of combined GWR models shows the significance of NDBI in prediction, which 

revealed better performance as a non-stationary predictor for LST. The improvement was 

reflected in increasing the local coefficient of determination from 45.32 to 60.84, explaining 

the 75-100% variation.  

Table 16 Combined GWR models 

Model Type Predictors R-Squared Adjusted 
R-Squared 

Akaike's Information 
Criterion (AICc) 

GWR: DEM_SVF_NDVI_NOX_PM10 5 Predictors 0.9404 0.9379 389854.9805 

GWR: DEM_SVF_NDVI_NDBI_NOX_PM10 6 Predictors 0.9620 0.9591 310199.1428 

 

5.2. Non-linearity by Neural Network 

5.2.1. Architecture of LST prediction model 

The ANN model was optimised to yield the fewest errors between anticipated and real values. 

This was accomplished by adjusting the number of neurons within the hidden layer between 

6 and 25. The optimum number of 22 was selected due to the low error value for all three 

portions of the training dataset (70, 15, and 15 for training, validation, and testing) aside from 

the 20 per cent of the whole data assigned for testing. Figure 37 illustrates the optimum 

Local R2 % 

0-0.25 0.07 

0.25-0.50 5.30 

0.50-0.75 33.79 

0.75-1.00 60.84 

 

Figure 36 Group of DEM_SVF_NDVI_NDBI_NOX_PM10 and LST in GWR 
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number of neurons (22) for the prediction, which causes the least MSE without causing 

overfitting and underfitting. 

 

 

To avoid the complication of NN architecture for generalizing the prediction process, the 

Neural Network model is made of three main layers: input layer, hidden layer and an output 

layer as seen in Figure 38. 

5.2.2. LST NN Model Performance  

The error histogram for the trained NN model illustrates the normality distribution in the 

majority of errors falling within the range of +1 and -1, indicating that LST models have 

reasonable predictability. In addition, the zero-error line crossed the error bar with the 

highest instances (Figure 39).  

The residual plots for three partitions of the trained model in Figure 40 show the best-fit 

correlation lines, which are almost close to a 45-degree angle. The overall residual plot 

demonstrates the remarkable correlation between observed (true) values and predicted 

values. Additionally, the coefficient of determination computed for the model provides 

Figure 38 Architecture of Neural Network  

Figure 37 Optimisation of Hyperparameters (The Number of Neurons in Hidden Layer)  
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details on the model’s ability to predict 80 per cent of the variance (the R-value of .88-.89) in 

LST with the selected predictors.  

 

 

Figure 39 left: Error histogram  

Figure 40 Residual plots for the NN based LST model  
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The 2D histogram shown in Figure 41 clarifies that the highest proportion of observed values 

are located on the 45-degree fit-line. The bias could be found for the outliers, which have the 

lowest number of incidents for the training process. To avoid the influence of outliers, two 

models trained through oversampling (the outliers) and undersampling (the observation with 

the highest instances) techniques and results were acceptable in the training process but 

weak performance in predicting the test dataset. 

5.2.3. Sensitivity Analysis 

The result of sensitivity analysis illustrates the following key points based on the importance 

of the predictor through the elimination of each predictor from the training process and the 

elimination of predictors from one data source (Appendix VI). NDBI has the highest 

significance among the predictors due to the greatest difference in coefficient of 

determination. The essential elements in forecasting the LST based on secondary data are 

NDVI, DEM, DSM, SVF, BSF, and pollution variables. Landsat 8 is the most influential dataset 

for predicting LST using non-linear regression of Neural Network, followed by the LiDAR 

dataset, pollution, LULC, and vector-based data. Figure 42 exhibits the importance of all 

predictors in predicting over 90% of the LST. Furthermore, sensitivity analysis suggested that 

the most significant dataset for LST prediction was the RSD dataset. 

Figure 41 Distribution of biased prediction in the LST model 
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5.3. Validation of NN models: LST Prediction and Human 
Thermal Comfort 

The scenarios listed below are taken into account for validating the trained ANN prediction 

model (Figure 43). 

Best Case: All the vacant lands are becoming fully vegetated areas in which all the contributing 

predictors (vegetation, built-up area, urban form) will take new data due to the land 

modification. 

Worst Case: All the lands converted into built-up areas. 

Intermediate Case: Due to the changes in almost all predictors, vegetation, built-up area, and 

urban form factors are getting new values (50-50 vegetation and built-up). 

Table 17 demonstrates the impact of outliers in prediction as in all cases; the model had weak 

performance in the prediction of minimum and maximum LST.  

Table 17 Comparison of Scenarios and RS-LS 

 Min LST Max LST 

LST 2018 13.42 35.67 

Best Scenario 18.33 31.13 

Intermediate Scenario 18.10 31.65 

Worst Scenario 18.51 31.19 

Figure 42 Feature Significance in LST Prediction Model  from sensitivity analysis  
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Figure 43 a: Best Scenario b: Intermediate Scenario c: Worst Scenario  

a 

b 

c 
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To make the difference clear in the scenarios, Figure 44 provides the higher resolution of 

three scenarios for a few vacant lands in the city centre area. The ANN model results provide 

valuable information about changes in LST based on different scenarios. It is seen that the 

vegetation proposed for the vacant lands in the denser part of the city was able to decrease 

the temperate at the level of the surface layer. At the same time, the worst scenario increased 

the temperature of the vacant land by increasing the built-up area. In addition, combining the 

given scenarios, the intermediate provides predictable results (Site A). The results from the 

prediction for Site B were more challenging. 

 

  

Si. A 

Si. B 

Site A: Left to Right: Worst Case, Intermediate Case, and Best Case 

Site B: Left to Right: Worst Case, Intermediate Case, and Best Case 

Figure 44 Predicted LST for two sites in the city centre  
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Figure 45 demonstrates the LST fluctuation in detail to provide how the trained ANN model 

works for each grid pixel in Site A. LST fluctuation plot is a great tool to find how the model 

works specifically in case of comparison with the LST retrieved from the remote-sensing data. 

The worst-case behaviour shows the highest predicted value for LST, while the Best and Inter 

scenarios are equivocal due to high variation in comparison with the RS-LST. The fluctuation 

ranged from -1.76 to 1.38 for the best-case scenario, -1.33 to .88 for the intermediate 

situation, and .51 to 2.62 for the worst case compared to RS-LST. 

 

Table 18 represents the average predicted values for Site A. The best scenario resulted in the 

reduction of RS-LST of .177 °C and was recorded as the lowest temperature, followed by 

intermediate and worst cases. The intermediate scenario also reduced .133 °C, while the 

worst scenario revealed an increase in LST by 1.289 °C.  

Table 18 Comparison of LST predictions on selected scenarios  

 

 

For Site B, the LST projected under each scenario showed a reduction in RS-LST. The best-case 

scenario was predicted to have the highest values for LST in contrast to the worst-case and 

intermediate scenarios. The notable point about Site B is that the outcome was dissimilar 

to what was seen at Site A. The fluctuation ranged from -1.22 to 1.44 for the best-case 

scenario, -1.57 to 1.53 for the intermediate situation, and -1.39 to 1.44 for the worst case 

compared to RS-LST (Figure 46). All in all, the reduction of LST was observed as a result of all 

scenarios. 

Best Inter Worst RS-LST 

26.39183 26.43581 27.85728 26.568 

Figure 45 LST Fluctuation of predicted for the proposed Scenarios Site A 
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Table 19 illustrates the average predicted values for Site B, where the best scenario reduced 

RS-LST by .054 °C while intermediate and worst cases resulted in a reduction of .281 °C and 

.217 °C, respectively. Additionally, the LST was lower for the scenario with 50% vegetation 

than for the scenario with 100% built-up land. 

Table 19 Comparison of LST predictions on selected scenarios 

 

 

5.3.1. Predicted LST and Human Thermal Comfort 

The results from LST prediction depict the modest impact of urban greenery in decreasing the 

heat stress at the surface level under a non-linear trend. In order to clarify the impacts of LST 

changes, the UTCI and MRT simulation were considered for the two selected sites to compare 

the impacts of heat mitigation strategies on human thermal comfort.  

5.3.1.1. ENVI-met microclimate simulation 

 UTCI Simulation 

The outcome of the UTCI simulation for both locations shows that the UTCI index can be 

classified into four main categories: No-TS4, Moderate-TS5, Strong-TS6, and Very Strong-TS7. 

For the first location, the highest proportion (over 43%) belonged to the Moderate-TS, while 

the lowest was recorded as the Very Strong-TS (less than 0.5%), which was seen in 

intermediate and worst-case scenarios as well. In the best scenario, the Very Strong-TS was 

                                                      

4 No Thermal Stress 
5 Moderate Thermal Stress 
6 Strong Thermal Stress 
7 Very Strong Thermal Stress 

Best Inter Worst RS-LST 

28.06529 27.83872 27.90251 28.11971 

Figure 46 LST Fluctuation of predicted for the proposed Scenarios Site B 
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not observed at all. The increasing built-up areas had an increasing impact on both No-TS 

areas and Strong-TS due to the shading effect of nearby high-rise buildings and increasing 

surfaces with higher albedo respectively (Figure 47). 

The absolute difference of the UTCI index (with base case) in Figure 48 expresses the 

favourable impact of vegetation in reducing the UTCI effect in an open space by more than 

3K. The new buildings’ shading also influences the UTCI at the street canyon. Where the 

shading effect of buildings was not strong, the UTCI increased up to 6K.  

 

In the second site, more areas were simulated under the Very Strong-TS category, and a 

higher proportion of sites were simulated as Very Strong-TS for all scenarios in comparison to 

Site A. The Very Strong-TS class has been observed in every scenario. As observed in all 

scenarios with green spaces, the suggested vegetated area in the vacant land was able to 

maintain the open space under Moderate-TS conditions (Figure 49).  

Figure 47 Site A UTCI index 

Left: Best Scenario Mid: Intermediate Scenario Right: 

Worst Scenario 

No thermal stress 

No thermal stress 

No thermal stress 

Moderate thermal stress 

Strong thermal stress 

Very strong thermal stress 

Figure 48 Site A UTCI absolute difference 

Left: Best Scenario Mid: Intermediate Scenario Right: Worst Scenario 
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The absolute difference of the UTCI index in Figure 50 demonstrates the beneficial impact of 

vegetation in reducing the UTCI at the street canyon by more than 3.39K; however, the worst 

scenario caused an increasing UTCI up to 4.61K at street level.  

 

Table 20 presents insight into how thermal stress alters through different scenarios areas rose 

while the areas subject to strong and very strong classification reduced (UTCI index of 

between +26 and +32). Due to the increase in built-up areas that ENVI-met does not include 

in its simulation of thermal stress, the overall area of the thermal stress zone decreased. 

Figure 49 Site B UTCI index 

Left: Best Scenario Mid: Intermediate Scenario Right: 

Worst Scenario 

No thermal stress 

No thermal stress 

No thermal stress 

Moderate thermal stress 

Strong thermal stress 

Very strong thermal stress 

Figure 50 Site B UTCI absolute difference 

Left: Best Scenario Mid: Intermediate Scenario Right: Worst Scenario 
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Table 20 UTCI area changes through georeferenced simulated scenarios  

 

 MRT Simulation 

The simulated MRT showed the same pattern as UTCI in the positive effect of shading in Site 

B and positive impacts of vegetation in Site A (Figure 51-52).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Site Min-Max 
UTCI °C 

No TS 
% 

Moderate TS 
% 

Strong 
TS 
% 

Very 
strong TS 
% 

Cumulative TS 
% 

Built-up 

1 

Best 22.37-
37.96 

1.35 57.78 15.56 0 73.34 25.31 

Intermediate 22.15-
38.11 

1.94 50.94 
 

16.07 0.17 67.13 30.93 

Worst 22.95-
38.11 

2.45 43.01 17.77 0.17 60.95 36.60 

2 

Best 25.73-
38.41 

0.85 33.25 36.61 0.68 60.54 28.61 

Intermediate 25.75-
38.43 

0.85 29.03 36.87 0.85 66.75 32.40 

Worst 25.79-
38.49 

0.68 23.87 36.93 0.85 61.65 37.67 

Figure 52 Site B MRT 

Left: Best Scenario Mid: Intermediate Scenario Right: Worst Scenario 

Figure 51 Site A MRT 

Left: Best Scenario Mid: Intermediate Scenario Right: Worst Scenario 
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The comparison of the three scenarios shows that when more lands are developed through 

construction, the overall UTCI index will rise. In other words, the surrounding area will 

experience more severe heat stress following physical development unless their shading 

effect appears strong.  

 LST Simulation 

The simulated LST from ENVI-met for two sites is shown in Figure 53. The overall simulated 

LST was recorded higher than the predicted LST and RS-LST. The vegetation affected the LST 

to keep the surface cooler than the surrounding. In Site A, the shading effect helped the 

surface to keep cool, while for Site B, the surface for the worst scenario simulated over 46.65 

°C.  

Changes in simulated LST compared to the base case for each scenario are shown in Figure 

54. It details about the positive effect of increasing built-up surface on simulated LST in dense 

and compact contexts. However, the worst scenario in Site B had recorded the increasing 

surface temperature of up to 11K in some parts of the street canyon. Vegetation showed 

positive impact in less compact urban areas with higher spatial openness. 

For the best scenario in Site A, the LST increased 3-5K in vegetated lands. For the second 

location, avoiding the built-up surfaces, the worst scenario caused the increasing rate of LST, 

while in the intermediate scenario, the increasing temperature at the level of the surface was 

Figure 53 Simulated Surface Temperature Top: Site A Bottom: Site B  

Left: Best Scenario Mid: Intermediate Scenario Right: Worst Scenario 
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not as severe as the worst scenario (the opposite of predicted LST). The removal of temporary 

structures from the land in the Best and Intermediate scenarios (Site B) resulted in the large 

absolute difference from Base Case, increased LST above 13K in several parts. 

 

The predicted LST based on the Neural Network model showed the stark variation between 

the worst and the best scenarios observed in the simulation of LST in microclimate modelling 

for site A. Besides, the fluctuation between intermediate and worst scenarios was similar to 

the comparison of best and intermediate scenarios. For Site B, under vegetated areas, the LST 

decreased, while for the other areas, LST increased, which was stronger in the worst scenario.  

  

Figure 54 LST absolute difference Top: Site A Bottom: Site B 

Left: Best Scenario Mid: Intermediate Scenario Right: Worst Scenarios 
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CHAPTER 6: RESULTS AND ANALYSIS- PART II 
 

The second section of the result chapter describes how the MRT may be predicted by LST-

based predictors. 

6.1. MRT and Human Thermal Comfort? 

6.1.1. Correlation Matrix: MRT 

The Pearson correlation values are displayed in Figure 55. The coefficient correlation 

employed in multiple regression analysis reveals the association between SVF and MRT is the 

strongest, while DEM is the least correlated factor. Additionally, among all the predictors, 

NDVI, VSF, CDSM, DEM, and DSM showed a negative correlation, as was observed in the LST 

correlation. The comparison between the MRT correlations with predictors at two separate 

times of the day depicts the clear difference for VSF, RAR, DSM and SVF predictors (Table 21).  

 

Table 21 Pearson Correlation between Predictors and MRT 

Pearson CC DEM DSMb CDSM SVF NDVI NDBI BSF MeanHeight RAR VSF PM10 NOx 

MRT 16:00  -0.001 0.036 -0.495 0.782 -0.306 0.316 0.412 0.166 -0.036 -0.150 0.093 0.102 

MRT 13:00 -0.141 -0.123 -0.516 0.328 -0.378 0.417 0.273 0.320 0.092 -0.400 0.194 0.176 

Figure 55 Pearson Correlation between Predictors and MRT 
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6.1.2. LST and MRT Correlation 

The linear regression between simulated MRT and derived LST shows a weak relationship 

between the two response variables, where only 8 percent of LST can be estimated by MRT 

(13:00) summarised in Table 22. 

  

6.1.3. Generalized Linear Regression and Exploratory Regression results 

The results from Generalized Linear Regression (GLR) model in Table 23 express that all 

variables are statistically associated with MRT in linear regression. The variance inflation (VIF) 

of each predictor ranges from 1.20 to 528.99, demonstrating the impact of multicollinearity 

and redundancy among independent variables.  

 

The Exploratory Regression Global Summary in the case of MRT explains that none of the 

models calculated based on 12 predictors got the passing mark to be considered as a robust 

model for prediction (Table 24). This could be due to the outliers, spatial autocorrelation, and 

non-linearity relationship between variables and response variables owing to the Jarque-Bera 

(JB) test result. The Global Moran’s I test is the next step to diagnosing the cause of model 

failure as a result of spatial autocorrelation.  

Table 22 Correlation between MRT and LST 

  Variable Coefficient [a] StdError t-Statistic Probability [b] Robust_SE   Robust_t Robust_Pr [b]    VIF [c] 

 Intercept       54.172613 0.197838  273.823474       0.000000*  0.203082 266.752179     0.000000*   -------- 

       DEM        0.253701 0.006746   37.608729       0.000000*  0.004872  52.070876     0.000000* 528.990332 

      DSMB       -0.259885 0.006742  -38.549047       0.000000*  0.004891 -53.130531     0.000000* 515.631618 

      CDSM       -1.132185 0.006649 -170.288116       0.000000*  0.014693 -77.053733     0.000000*   2.119121 

       SVF       -0.480820 0.103517   -4.644825       0.000005*  0.164391  -2.924853     0.003455*   3.026691 

      NDVI        5.616758 0.183986   30.528151       0.000000*  0.165394  33.959964     0.000000*   8.638775 

      NDBI        7.559429 0.247976   30.484498       0.000000*  0.249076  30.349912     0.000000*   8.353480 

       BSF        3.136801 0.101963   30.764144       0.000000*  0.069523  45.118961     0.000000*   4.628908 

MEAN_HEIGH        0.172041 0.002507   68.617612       0.000000*  0.002293  75.036465     0.000000*   3.001814 

ROAD_RATIO        0.404105 0.048934    8.258247       0.000000*  0.037288  10.837438     0.000000*   1.200761 

VEGE_RATIO       -1.852686 0.031782  -58.292848       0.000000*  0.038296 -48.378291     0.000000*   2.243475 

      PM10        0.376931 0.023108   16.311961       0.000000*  0.022479  16.768191     0.000000*   6.305819 

       NOX       -0.011272 0.003541   -3.183068       0.001473*  0.002956  -3.812642     0.000149*   6.964888 

Table 23 Summary of GLR Result-MRT 
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6.1.4. Summary of Variables Significance 

The significance of exploratory variables in MRT models is summarised in Table 25. CDSM, 

NDBI, MeanHeight, VSF and PM10 are among the highest significance variables. However, all 

the recorded scores are above 88 per cent, and all the predictors are significant to be 

considered in the models. Inconsistent relationships have also been seen in the MRT model 

for NDVI, SVF, DEM, and NOx. 

6.1.5. Spatial Autocorrelation (Global Moran's I) Test 

ArcGIS Pro's Global Moran's I is used to test the spatial autocorrelation theory. The outcome 

is displayed in Table 26. Given the z-score of 367.38, there is a less than 1% likelihood that 

this clustered pattern could result from random chance. Global Moran's I spatial 

autocorrelation test for MRT showed a lower value for both z-score and Moran's Index, in 

which the MRT prediction is not statistically and spatially significant compared to LST. 

Table 26 Global Moran's I Summary  

 Moran's 
Index 

Expected Index Variance z-score p-value 

MRT 0.585688 5E-06 0.000003 367.379920 0.000000 

 

Table 24 MRT Criteria Passed 

Table 25 MRT Variables Significance  
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6.2. Non-linearity by Neural Network: MRT 

6.2.1. Architecture of MRT prediction model 

The same model configuration was considered in case of MRT (mentioned in Chapter 5).  

6.2.2. MRT NN Model Performance  

The error histogram (Figure 56) for the trained NN-based MRT model demonstrates the 

normal distribution, where the majority of errors fall within the range of +1 and -1. The broad 

range of errors in the model indicates that MRT has a poor predictive capacity, and the zero-

error line crossed the error bar with the greatest occurrences with errors ranging from 0 to 

0.1298 (on a scale of normalized data).  

 

On the other hand, the residual plots for three partitions of the trained model in Figure 57 

indicate the best-fit correlation line, which is almost close to a 35-degree angle. In other 

terms, the overall residual plot demonstrates the poor correlation between observed (true) 

values and predicted values due to the high error rate and residual. 

Figure 56 left: Error histogram 
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The 2D histogram shown in Figure 58 clarifies that the highest proportion of observed values 

is located on the 45-degree fit line; however, the bias could be found for the outliers where 

the model underestimates and overestimates the MRT for the highest (above 50) and lowest 

(below 40) range temperature observed.  

6.2.3. Sensitivity Analysis 

The result of sensitivity analysis shows the following key points based on the importance of 

the predictor through the elimination of each predictor from the training process and the 

elimination of predictors from one data source (Appendix VII). SVF has the highest significance 

among the predictors due to the greatest difference in coefficient of determination. The 

essential elements in forecasting the LST based on secondary data are NDBI, NDVI and RAR. 

The other noteworthy point is that excluding CDSM and DSM from the forecast improved 

MRT prediction. Figure 59 displays the importance of SVF, NDVI, NDBI, and RAR in predicting 

Figure 57 Residual plots for the NN based MRT model  
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over 70% of the MRT. Additionally, sensitivity analysis revealed that the LiDAR dataset, LULC, 

and air pollution variables were the most notable datasets for MRT prediction. 

   

 

 
 

 
 

Figure 59 Feature Significance in MRT Prediction Model  from sensitivity analysis  

Figure 58 Distribution of biased prediction in MRT model 
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CHAPTER 7: DISCUSSION AND REFLECTION 
 

This chapter covers further interpretation and comments on the simulation and prediction 

model findings in order to investigate the significance of discoveries to answer the project's 

main questions concerning what was previously known. In response to the critical questions 

of the current study, this chapter was set up to demonstrate how secondary data on thermal 

comfort proxies and urban design elements can be used to make predictions. 

7.1. LST and MRT Prediction depending on Secondary Data 

The rising popularity and demand for remote sensing data, along with geo-processing 

approaches in decision-making, are mostly due to a shortage of reliable data at the fine scale 

and an expensive data collection procedure (Do Nascimento et al., 2022). The effective use of 

such readily available datasets might create opportunities for addressing environmental 

concerns by policymakers. 

7.1.1. How Regression models work in the case of MRT and LST 

The GLR results demonstrate the value of R2 (.64) which is not significant to be considered a 

reliable and robust linear model in the prediction of LST, while in the case of MRT, the low 

value of R2 (.37) shows other factors might be needed to be considered in finding a good fit 

model with the significant contribution (Table 27). The MRT’s poor performance could be a 

result of its strong dependency on radiation and meteorological factors in computation (Guo 

et al., 2020). In addition, non-linear regression could be a better fit for the chosen predictors. 

Overall, the GLR model had less explanatory power than the ANN model since it had a lower 

capability of predicting data with higher levels of variance; nevertheless, the predicted LST 

range for the scenarios was significantly closer to the RS-LST. In all conditions and cases, 

relying on R-squared in model performance was owing to its scale less value spanning from 0 

to 1. The high score was only given if the models could predict a larger fraction of the variation 

in the response variable (Chicco, Warrens and Jurman, 2021). Other error metrics, including 

MAE, MSE, and RMSE, were attributed to finding the better model under the same settings 

(e.g., for all LST NN models). 

Table 27 Comparison of GLR in LST and MRT models  

Model 
No. 

Model Type Predictors R-Squared Adjusted R-
Squared 

Akaike's 
Information 
Criterion (AICc) 

Probabilit
y 
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1. LST GLR(Gaussian/OLS) 12 Predictors 0.642756 0.642734 732447.003358s 0.000000 

2. MRT GLR(Gaussian/OLS) 12 Predictors 0.376488    0.376450 1108792.066108 0.000000 

 

Additionally, the GWR model used in the LST scenario performed better when several 

predictors were taken into account. The model with 12 predictors failed to develop due to 

the redundancy and correlation between the input variables. To avoid redundancy, working 

on a larger grid size might be helpful as the importance of different resolutions in GWR studies 

was examined by Zhao, Ren and Tan (2018) and Luo and Peng (2016). The grid of 90 m was 

used in this study to see the difference, although the outcomes were biased. GWR was not 

applicable for MRT because of the lower value of Moran’s I. It is worth mentioning that MRT 

mostly relies on radiation, and geographically close predictor values may not anticipate its 

variation. 

Overall, GWR Regression performed as a powerful prediction model based on each 

independent and the response variable (LST). Due to the high volume of grids (193810 cells), 

ignoring the redundancy and multicollinearity between the independent variable made it 

impossible to develop one generalised model based on all the predictors. A few models were 

run by bringing 5-6 predictors, resulting in over 90% of total data can be predicted with 

satisfactory accuracy. Luo and Peng (2016) also evaluated the output of combined GWR with 

reasonable accuracy. 

Both LST and MRT were investigated using the same optimised ANN model. The models above 

indicated that LST is more likely to be predicted than MRT using the identified 12 independent 

parameters. Approximately 80% of the variance in LST could be predicted using an ANN model 

with a Mean Absolute Error of 1.1750 °C. The MRT model estimated 65% of untrained data 

with a Mean Absolute Error of 1.5144 °C (Table 28). 

Table 28 Comparison of error metrics in MRT and LST prediction models  

Model No. Model 
Type 

Predictors Error Metrics 

RMSE MSE MAE R-squared 

1. LST ANN 12 Predictors 1.5157 2.2974 1.1750 0.8004 

2. MRT (16:00) ANN 12 Predictors 2.2227  4.9405 1.5144 0.6597 

 

The weak performance of the MRT model in both linear and non-linear regressions could be 

the lack of significant predictors to provide a robust prediction. It is expected that including 

fine-resolution meteorological data will result in a superior prediction model, as Shah, Pandit, 

and Gaur (2022) revealed the substantial capability of microclimatic factors in forecasting 

UTCI and PET using an ANN algorithm. MRT is being calculated through Eq. (1), which reflects 
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the impacts of radiation, temperature, humidity, and wind on the level of human thermal 

comfort (Bröde et al., 2012). Another explanation for the poor performance might be the high 

volatility of MRT during the day. The spatial distribution of MRT shows that during peak 

temperature hours, the city undergoes cold and hot patches, causing the prediction model to 

fail to function on dispersed (non-normalized) data. Training various models for each hour is 

recommended to find the most robust prediction model fully based on the selected 

predictors. 

The previous ANN prediction models in UHI and thermal comfort field could be compared 

with the outcome of this study. Integrating the terrain factor (TF) significantly improved LST 

forecasts made using an ANN model for substantial terrain variation areas, with average 

RMSE decreasing from 1.26 to .90 °C and R2 increasing from .74 to .81 (Equere et al., 2021). 

Chan and Chau (2019) found that the inclusion of psychological factors in the prediction of 

outdoor thermal comfort along with microclimate parameters in the ANN model can 

positively improve the performance (R-value) by .33 and .3 in summer and winter, 

respectively. The outcome of a study by Shah, Pandit and Gaur (2022) showed a high 

coefficient of correlation of .87 to .99 and a low RMSE of .11 to 1.72, demonstrating the ANN 

model's exceptional predictive accuracy for UTCI prediction. 

7.1.2. Prediction Models Performance in Scenarios 

The Neural Network prediction model on LST showed a modest influence at the city level, 

which opens the fields for further investigations. Three scenarios were developed for the ANN 

model to predict the changes when vegetation and built-up are considered in different 

configurations. Two vacant lands were selected to discover the changes in detail at street 

level. One showed the positive impacts of applying 100% vegetation, while the other site 

experienced an insignificant decrease (less than .06 ° C) of LST as a result of the same portion 

of vegetation. In the 100% built-up cases predicted, LST rose in one context while dropping in 

the other. There are a few reasons behind the performance of the trained ANN model, 

including the data availability and data quality which play a pivotal role in machine learning 

prediction, which has been raised by (Gobakis et al., 2011) in the development of the  ANN 

model for UHI prediction. Gathering spatiotemporal data from multiple sources was 

considered a challenge throughout the procedure. Working with coarse resolution and 

resampling, for example, resulted in some data being missing or carrying bias throughout the 

workflow. In addition, even though both locations are near the city centre, they are in quite 

distinct urban settings. One is in a low-density neighbourhood, while the other is in a high-

density region.  
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7.2. Urban Design Factors in LST and MRT Prediction 

7.2.1. Significant Parameters in Prediction 

7.2.1.1. LST 

Pearson correlation coefficient proved the contribution of each variable for each response 

variable of this study. Under Pearson correlation of LST, NDBI, NDVI and VSF were the most 

crucial factors with a correlation of .696, -.637, and -.618, respectively, which was aligned 

with previous studies (Guha et al., 2018; Malik, Shukla and Mishra, 2019; Goldblatt et al., 

2021).  

In linear regression, the strongest predictors are NDBI, MeanHeight, CDSM, BSF, and PM10 

for their consistent importance and steady connection with LST. NDBI was identified as a 

significant predictor in the GWR model as well. 

It is believed that ANN is a black box that does not provide the contribution of each factor in 

the regression model, the same as linear regression models. The sensitivity analysis provided 

the most contributing factors in the model by the elimination of each factor by the difference 

of error metrics. In the case of LST, NDBI got the highest error difference in the elimination 

process. In the second place, DEM, DSM, PM10, NOx, NDVI, BSF and SVF got the same 

contributions. The overall difference between the changes in error metrics was not that 

significant to say there is a dramatic difference between what has been received from each 

round of sensitivity analysis. 

7.2.1.2. MRT 

MRT Pearson correlation (16:00) revealed SVF as the most significant correlated component, 

as shown in a study by Gál and Kántor (2020). For the 13:00 (peak MRT), the CDSM, NDBI and 

NDVI were the principal factors indicating the impacts of vegetation and built-up. The 

difference is based on the variation of MRT during the day, which is mainly caused by the 

changes in radiation on heat stress (Thorsson et al., 2017). The minimal impact of RAR was 

not stable due to both positive and negative correlations with MRT at 13:00 and 16:00. 

Instability correlation was seen in the case of DSM as well. The instability of DSM and RAR 

needs further study to make a clearer outcome.  

The most powerful predictors of MRT (16:00) in linear regression are CDSM, NDBI, 

MeanHeight, VSF, and PM10.  
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In the ANN back box of the MRT model, SVF was by far the best factor in prediction. Research 

by Xie et al. (2022) also portrayed the importance of SVF in ANN model prediction of MRT. 

Other notable factors are NDBI, NDVI, and RAR. It is important to mention that CDSM and 

DSM elimination showed decreasing errors for 16:00, which might be accounted for the 

impacts of shading after the peak time. In other words, the factors which have been found 

most significant in a specific hour in regression can have negative impacts on the other hours 

due to their impact on shading and exposure to the radiation. 

7.2.2. Significant Dataset in Prediction 

In the non-linear prediction model of LST, the RSD dataset showed the best contribution 

compared to the other source of data which has been outperformed in the study of Goldblatt 

et al. (2021). On the other hand, the MRT ANN model showed the LiDAR dataset, LULC along 

with air pollution parameters were the most remarkable datasets for the prediction of MRT 

(at 16:00 PM). According to Yilmaz, Irmak and Qaid (2022), air pollution has an adverse impact 

on thermal comfort and may therefore be more important to consider in MRT prediction than 

LST. 

7.3. LST as Proxy of Thermal Comfort Studies? 

Land Surface Temperature, being one of the primary elements contributing to ambient 

temperature, plays a vital role in human lives, which is most impacted by unpredictability in 

air temperature variations (Irmak, Yilmaz and Dursun, 2017). The two recent studies by Kelly 

Turner et al. (2022) and Goldblatt et al. (2021) have tried to illustrate the potential use of LST 

as a proxy of thermal comfort at the local and hyper-local levels in the hot semi-arid area of 

Tuscan (Arizona) and arid region of Jeddah (Saudi Arabia). To generalise the significance of 

LST in thermal comfort, they argued that heat mitigation methods might have diverse effects 

in different contexts, which calls for more studies to illustrate the clearer result. 

The findings from LST-ANN reveal that increasing urban vegetation has a minor influence on 

reducing heat stress at the surface level. Vacant land conversion to fully green space can 

decrease the LST by .177 °C, while the built-up area could rise by 1.289 °C. For the same 

location, the UTCI modifications were seen to drop 3K by greening strategy (moving from 

Strong-TS to Moderate-TS and No-TS The shading effect of surrounding high-rise buildings 

reduced thermal stress as the built-up area increased. Compared to other studies’ findings, 

the impact of vegetation on achieving climate comfort conditions was shown to be modest, 

which was discovered by Stepani and Emmanuel (2022). Furthermore, shading through plants 
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or buildings is a great way to manage heat stress at the street level, which improves human 

thermal comfort by blocking solar exposure  (Ketterer and Matzarakis, 2014). Under the 

simulated condition, the effect of buildings’ shading was stronger than the vegetation in site 

A, which is located in denser urban settings surrounded by tall buildings. The results show 

that the LST mitigation strategy does not necessarily lead to thermal stress mitigation(Martilli, 

Krayenhoff and Nazarian, 2020), where the correlation between LST and MRT proved this. 

Enormous cooling spots are produced by the shadows of high-rise structures, which may have 

stronger impacts than vegetation and greenery. Furthermore, it is impractical in some regions 

of the city to correspond to thermal comfort using the same heat mitigation strategies 

(Stepani and Emmanuel, 2022).  

However, the weaker impact of greening vacant land in reducing LST compared to 

intermediate and worst scenarios appeared to have less thermal stress by microclimate 

modelling. The contrast has been seen in the role of vegetation and built-up in two selected 

vacant lands. In site B, the vegetation decreased LST by .057, while the combination of both 

built-up and greenery ended with decreasing the LST by .281. It is worth mentioning that the 

worst scenario operated to mitigate LST by .217 (better than the best case). The UTCI index 

for this location reveals that vegetation had a beneficial effect on lowering UTCI by more than 

3.39K at street canyon. In contrast, the worst-case scenario caused UTCI to rise to 4.61K at 

the street level. Due to the higher rate of openness in site B, surrounded by the tallest building 

of 18 meters, the buildings’ shading appeared to have less impact than the vegetation under 

thermal stress. As a case in point, a tall building in a compact urban setting might have a better 

shading effect at a street level compared to a tree at the peak of solar radiation. It resulted in 

research conducted in Jakarta (Stepani and Emmanuel, 2022), where the LST favourable 

strategy in heat mitigation is a combination of building and vegetation together, and the UTCI 

responds positively to the greenery intervention.  

The negligible vegetation influence result for Site B scenarios from the ANN model might be 

because of the coarse resolution of RS-LST (30 m), which was found that underestimates the 

high and overestimates the low LST (Vanos et al., 2016; Kelly Turner et al., 2022) and 

comparison of LST changes from both ANN and microclimate simulation for scenarios justified 

this fact. Additional parameters that apply to street orientation, optimisation of street canyon 

layout, and urban form configuration would be useful in urban heat mitigation (Emmanuel, 

2021) and incorporating them in training ANN models are needed to clarify this distinction in 

results. It was found that the east-west canyon receives more solar radiation than the north-

south canyon, according to calculations of irradiance on the various canyons and has the 

largest impact on the microclimate (Ketterer and Matzarakis, 2014; Taleghani et al., 2021). In 

addition, street orientation, along with building density, can affect the wind velocity and 
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radiation angles on the surfaces and open areas (Thorsson et al., 2017), which leads to 

minimizing the frequency of high MRT and the spatial expansion of hot spots. Furthermore, 

the efficient tree orientation at the street level was attributed to managing shading and 

cooling effect (Chatzidimitriou and Yannas, 2017).  

A comparison of predicted and simulated LST showed a difference in the effect of vegetation 

and built-up role in surface temperature. In light of the fact that the simulated LST in ENVI-

met is not carried into consideration at the same time as RS-LST, the general trend of LST 

changes from ENVI-met simulation contrasted with the results of the ANN model. 

Additionally, the building footprint, which typically has the lowest LST, is not taken into 

account by ENVI-met when calculating LST. It is worth noting that in the ANN model, each cell 

(grid of 30 m) was predicted without the influence of its neighbouring cells, while the ENVI-

met computation of surface temperature is continuous and small changes in one part might 

affect the whole domain.  
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 
 

Apart from reducing energy usage and reliance on fossil fuels, city development methods can 

help to reduce heat stress caused by climate change. The contributing parameters to outdoor 

thermal comfort (OTC) and urban heat derived from historical and secondary data could be 

divided into five main categories: Remotely sensed derived (RSD): Landsat 8 dataset;  Urban 

morphology: derived from LiDAR, LULC; Vector-based at the level of building footprint; and 

Air quality factors. Among all the factors, SVF was by far the best factor in the prediction of 

MRT followed by vegetation-based predictors, including CDSM and VSF; however, it was 

found that the significant parameters depend on the time of the day. For the peak hour of 

MRT (13:00), CDSM and NDBI were recognized as significant variables. It reveals the 

importance of shading effect by greenery and build-up area in MRT mitigation. On the other 

hand, NDBI and NDVI were identified as the most significant predictors of LST.  

It was planned to train and evaluate the performance of various prediction models for 

outdoor thermal comfort indices. Generalized Linear Regression, Geographically Weighted 

Regression, Pearson Correlation Coefficient, as well as Artificial Neural Network were run. 

Given its unbiased results and reduced residuals, the nonlinear model offers a better fit. 

However, the outliers were predicted with higher error. GWR was found as a substitute for 

GLR in LST prediction, although the redundancy and multicollinearity of predictors should be 

resolved for better performance.   

The microclimate modelling in ENVI-met for two selected sites in the city centre shed light on 

comparing the mitigation strategies for LST and thermal comfort. The concept of generating 

radical situations was to comprehend the quick changes and effects of Glasgow's rising 

vegetation, as well as how these modifications affect heat stress and people's comfort levels. 

The ML prediction of LST was validated by ENVI-met, which could somewhat enhance overall 

thermal comfort. It was intended to interpolate UTCI changes to the whole city based on the 

results from two sites, but MRT simulation made it clear that even minor changes and 

improvements in LST mitigation can cause different trends in MRT and UTCI improvement, 

and a complicated model is needed to generalize the changes. 

8.1. Summary of Findings 

The present study's primary findings are as follows: 

 The strongest predictor for LST is the NDBI variable in both linear and nonlinear 

regressions. Other significant predictors in linear relationship are MeanHeight, CDSM, 
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BSF, and PM10 for their consistent significance and stable relationship with LST. On 

the other hand, NDVI, DEM, DSM, SVF, BSF and air pollution variables are performing 

better in a nonlinear manner.  

 The most powerful predictors of MRT (non-peak time of 16:00) in a linear regression 

are CDSM, NDBI, MeanHeight, VSF, and PM10, whereas the most contributing 

variables in the nonlinear model are SVF, NDBI, NDVI, and RAR. 

 ANN as a powerful model with a wider range of applications, needs high-quality data 

with precise accuracy to be able to create a valid and generalized prediction. Aside 

from how accurate is the training process, there is no guarantee that the estimation 

of new data would be exactly the same under the same realistic settings. However, 

the outcomes will be expressed as Inhibitory actions. 

 Furthermore, the amount of heat that people can actually feel outside is not correctly 

reflected by the land surface temperature that is measured using satellite data. This is 

because other factors, including shade, wind speed, and relative humidity, can have 

an impact on how much heat people are exposed to. Because of the complexity of 

thermal stress, particularly at the level of human comfort, heat mitigation solutions 

must be researched in many contexts and locations for generalizing the mitigation 

approach. 

 The comparison of the three scenarios shows that when more lands are developed 

through construction, the overall UTCI index will rise. In other terms, the surrounding 

area will experience more severe heat stress following physical development unless 

their shading effect appears to be strong.  

 The impact of shadowing from plants and buildings, for instance, could alter thermal 

comfort depending on the area's compactness and openness in Glasgow's central 

district. Heat mitigation measures at the level of lowering the surface temperature do 

not always meet human thermal comfort. The association between LST and MRT has 

made it clear that it is impossible to establish a direct connection between them. 

8.2 Limitations  

In light of the study's intricate approach, the following is a list of the study's limitations and 

shortcomings in data and the process. 

1- In order to remove biases and develop an accurate and effective machine learning-based 

prediction model, data quality is crucial. 
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- The lack of continuous and heterogeneous data with an appropriate resolution for LST 

owing to a specific spatiotemporal resolution of Landsat 8  (Zhao, Ren and Tan, 2018; 

Anderson et al., 2021). A single date, the closest time to the heatwave was selected, 

which was taken before noon which might have not recorded the heatwave impact on 

surface temperature level.  

- Aside from the Landsat 8 dataset, the low resolution and unclassified point clouds of 

the LiDAR dataset were challenging and time-consuming.  

- The coarse resolution of air quality data (1 km) for the city of Glasgow, along with 

unavailability of PM2.5 data to cover the whole area of interest, made it impossible to 

consider all fine particulate matters in the air that is a concern for human’s health. 

- Lack of a homogeneous urban block zone for Glasgow ended in considering the grid 

size of 30 and 90 m, which causes data redundancy and multicollinearity.  

- The meteorological data considered for both ENVI-met and SOLWEIG models were 

chosen from two dissimilar sources (one from the fifth generation ECMWF reanalysis 

for the global climate with a resolution of 30 km; the other from Paisley 

meteorological station).  

- The unavailability of some key factors like the diverse types of vegetation along with 

inaccessibility of urban geometry parameters(i.e. H/W ratio) made the analysis 

incomplete in some parts.  

2- Complexity of Applications and Models 

- SOLWEIG model is a developing software which is being upgraded through the online 

platform by connecting its end-users to developers. The application bugs made the 

process of this project longer through modelling the thermal comfort simulation.  

- SOLWEIG is suited for thermal comfort and heat management research that focuses 

on the hottest time of the day. However, because the model has a likelihood to 

exaggerate Tmrt in the shaded and underestimate it in the sun, heat mitigation studies 

may underestimate the influence of shading (Gál and Kántor, 2020). Due to the 

clustering impact of the result for peak time—hotspots versus cold spots, which are 

not normally distributed and suited for running regression models—the hottest hour 

was not taken into account in the predictive models of the study. 

- ENVI-met, as a complex and precise microclimate, took a long time to simulate the 

thermal comfort index in which the time limit could not allow running UTCI simulation 

for more sites in various parts of Glasgow. 

3- Time-limit 
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- Hourly MRT prediction models could not be run due to the high number of 

occurrences (198310) and the lengthy training times for ML models in MATLAB. 

8.3. Recommendation for Further Studies  

Due to the nature of this study on prediction modelling and microclimate simulation, further 

research is recommended through the following points. 

Training new prediction models under following conditions: 

- Incorporating the outcomes of the ENVI-met microclimatic simulation into the ANN 

prediction model to assess the effectiveness of new predictors 

- As the results showed the controversial impacts of the built-up area led to heat 

mitigation for LST and UTCI index, one recommendation should be the examination of 

heat mitigation at the scale of facade and surfaces for a built-up area to be included 

in the process of prediction. The façade material was chosen from the default 

category, which is one of the key parts to be considered. 

- It is recommended to consider street orientation as a predictor which has shown 

notable impacts on MRT and thermal comfort by affecting the wind velocity and 

radiation angles on the surfaces and open spaces.  

- Diverse kinds of vegetation can reveal different trends in reducing heat stress, and 

these trends should be investigated as an independent variable when training the ANN 

model. 

- The air temperature should be considered in the training model due to its strong 

relationship with thermal sensation, specifically helpful in windy temperate 

metropolitan (Oertel, Emmanuel and Drach, 2015), which is recommended to be 

collected in fine resolution. For instance, the method of crowdsourcing by citizens in 

the study of Zumwald et al. (2021) with reliable accuracy could be valuable in the 

prediction process. 

- The appropriate comparison between simulated LST by ENVI-met and the prediction 

of the ANN model was not possible due to the different computation processes for a 

target land. The ANN model was powerful in predicting the inside of the vacant land 

LST and the less concentration on its surroundings because of the small grid of 30 m. 

It is recommended to train a model at a large scale which consists of street orientation 

and heterogeneous urban blocks.  
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- ANN has been chosen in this study due to its strong performance in previous studies. 

The suggestion is to follow the same workflow under different ML regression models 

to find the impacts of other algorithms in thermal comfort prediction. 

Model Validation                          

- The same model configuration should be applied in similar cities under the same data 

source with a temperate climate to compare the performance of the prediction model 

- Field study could provide a ground-based validation dataset in the simulation and 

prediction process.  

Data collection 

- Centralized data collection system should be designed for outdoor thermal comfort 

considering air quality, urban geometry, and remotely sensed derived datasets,. 

Further research should be done on creating a data sourcing agency to supervise this 

data hub for future usage by decision-makers and scholars. 

- Although it is time-consuming and complicated to have people contribute to share 

their sense and experience of thermal stress, a wide range of studies on outdoor 

thermal comfort have attempted to involve human contact through survey and 

fieldwork studies. It is suggested to include people’s perceptions of heat stress in the 

process to establish a more comprehensive framework. 
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APPENDICES 

Appendix I 

LST retrieved from Landsat 8- 28/06/2019 
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Appendix II 

Meteorological data for SOLWEIG model 

 

iy id it imin Wind RH Td press rain Kdn ldown Wd 

2018 179 0 0 3.3 67 17.5 102.1 0 0 340 201 

2018 179 1 0 3.2 72 16.4 102.1 0 0 336 209 

2018 179 2 0 3.1 76 15.8 102.1 0 0 333 212 

2018 179 3 0 3.1 79 15.4 102 0 0 329 212 

2018 179 4 0 3.1 78 16.2 102 0 30 325 213 

2018 179 5 0 3.1 72 18.3 102 0 108 323 216 

2018 179 6 0 3 62 21 101.9 0 218 325 217 

2018 179 7 0 3.4 54 23.2 101.9 0 343 330 220 

2018 179 8 0 3.8 45 25.4 101.8 0 469 339 221 

2018 179 9 0 4.3 39 27.2 101.7 0 586 345 225 

2018 179 10 0 5 35 28.5 101.7 0 684 350 234 

2018 179 11 0 5.4 31 29.4 101.6 0 752 355 245 

2018 179 12 0 5.7 30 30 101.5 0 787 358 244 

2018 179 13 0 5.9 29 30 101.4 0 767 363 241 

2018 179 14 0 6.2 29 29.7 101.3 0 708 366 241 

2018 179 15 0 6.5 28 29.3 101.2 0 631 365 246 

2018 179 16 0 6.5 29 28.5 101.1 0 491 367 250 

2018 179 17 0 5.8 30 27.6 101 0 392 369 252 

2018 179 18 0 5 33 26.5 100.9 0 275 364 253 

2018 179 19 0 4.2 34 25.4 100.9 0 118 367 259 

2018 179 20 0 5.2 40 23.3 101 0 25 400 311 

2018 179 21 0 6.5 68 18.3 101.2 0 5 387 353 

2018 179 22 0 4.4 77 15.9 101.2 0 0 373 354 

2018 179 23 0 3.8 72 14.8 101.3 0 0 344 339 
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Appendix III 

Meteorological data for ENVI-met 

 

Time  Temperature  Humidity  Wind  Wind 
Speed  

12:00 AM 20 °C 35 % ENE 20 km/h 

1:00 AM 17 °C 72 % E 7 km/h 

2:00 AM 16 °C 77 % E 13 km/h 

3:00 AM 15 °C 82 % ENE 9 km/h 

4:00 AM 13 °C 94 % ENE 7 km/h 

5:00 AM 13 °C 94 % NE 6 km/h 

6:00 AM 14 °C 94 % NE 4 km/h 

7:00 AM 16 °C 82 % VAR 2 km/h 

8:00 AM 18 °C 77 % VAR 2 km/h 

9:00 AM 20 °C 68 % VAR 4 km/h 

10:00 AM 23 °C 61 % VAR 4 km/h 

11:00 AM 25 °C 54 % VAR 4 km/h 

12:00 PM 27 °C 48 % VAR 6 km/h 

1:00 PM 28 °C 37 % W 13 km/h 

2:00 PM 30 °C 31 % WNW 11 km/h 

3:00 PM 31 °C 29 % VAR 6 km/h 

4:00 PM 31 °C 29 % VAR 6 km/h 

5:00 PM 31 °C 29 % W 9 km/h 

6:00 PM 31 °C 33 % WNW 7 km/h 

7:00 PM 31 °C 35 % WNW 9 km/h 

8:00 PM 29 °C 40 % NW 11 km/h 

9:00 PM 25 °C 54 % NE 13 km/h 

10:00 PM 23 °C 47 % NE 22 km/h 

11:00 PM 21 °C 46 % ENE 19 km/h 
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Appendix IV 

Base case for Site B with SOLWEIG calculation 

 

 

 

 

 

 

 

 

 

 

 

Base case for Site B without SOLWEIG calculation 
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Appendix V 

Optimisation and hyperparameter for ANN training 

Training Parameters 
and Hyperparameter 

Levenberg-Marquardt Algorithm 

goal 0 

show 25 

epochs 1000 

max_fail 6 

min_grad 1.0e-07 

time Infinite 

mu 1.0e-03 

mu_dec 0.1 

mu_inc 10 

mu_max 1.0e+10 
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Appendix VI 

Sensitivity Analysis for LST 

 

Exclusion RMSE MSE MAE R-Squared R-Squared 
Difference 

None -None 0.43617 0.19024 0.32862 0.80 - 

Feature 
elimination: 
predictor 

-DEM 0.49714 0.24714 0.37921 0.75 -0.05 

-DSMb 0.49926 0.24926 0.38062 0.75 -0.05 

-CDSM 0.49505 0.24508 0.37873 0.76 -0.04 

-SVF 0.50059 0.25059 0.38156 0.75 -0.05 

-NDVI 0.50233 0.25233 0.38457 0.75 -0.05 

-NDBI 0.5193 0.26967 0.39321 0.73 -0.07 

-BSF 0.50111 0.25111 0.3836 0.75 -0.05 

-Mean_Height 0.4908 0.24089 0.3749 0.76 -0.04 

-RAR 0.49291 0.24296 0.3766 0.76 -0.04 

-VSF 0.49284 0.24289 0.3756 0.76 -0.04 

-PM10 0.50079 0.25079 0.38392 0.75 -0.05 

-NOx 0.50289 0.25289 0.38524 0.75 -0.05 

Feature 
elimination: 
source of 
data 

-DEM 
-DSM 
-CDSM 
-SVF 

0.51693 0.26721 0.39624 0.73 -0.07 

-NDVI 
-NDBI 

0.54164 0.29338 0.41455 0.70 -0.10 

-RoadRatio 
-VegeRatio 

0.52261 0.27313 0.39953 0.73 -0.07 

-BSF 
-MeanHeight 

0.49623 0.24625 0.38039 0.75 -0.05 

-NOx 
-PM10 

0.52147 0.27193 0.40117 0.73 -0.07 
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Appendix VII 

Sensitivity Analysis for LST 

 

Exclusion RMSE MSE MAE R-Squared R-Squared 
Difference 

None -None 0.57814 0.33425 0.39548 0.66 - 

Feature 
elimination: 
predictor 

-DEM 0.59313 0.3518 0.4039 0.65 -0.01 

-DSMb 0.57373 0.32916 0.38909 0.67 +0.01 

-CDSM 0.57418 0.32969 0.39216 0.67 +0.01 

-SVF 0.6629 0.43944 0.48127 0.56 -0.10 

-NDVI 0.59695 0.35635 0.41131 0.64 -0.02 

-NDBI 0.59585 0.35504 0.40903 0.64 -0.02 

-BSF 0.58889 0.34679 0.40399 0.65 -0.01 

-Mean_Height 0.58047 0.33694 0.3999 0.66 -0.00 

-RAR 0.60232 0.36278 0.40966 0.64 -0.02 

-VSF 0.5915 0.34987 0.40512 0.65 -0.01 

-PM10 0.5949 0.3539 0.40526 0.65 -0.01 

-NOx 0.59288 0.3515 0.40364 0.65 -0.01 

Feature 
elimination: 
source of 
data 

-DEM 
-DSM 
-CDSM 
-SVF 

0.776 0.602018 0.57702 0.39 -0.27 

-NDVI 
-NDBI 

0.58725 0.34486 0.40105 0.65 -0.01 

-RoadRatio 
-VegeRatio 

0.61292 0.37567 0.41697 0.62 -0.04 

-BSF 
-MeanHeight 

0.59409 0.35295 0.41064 0.65 -0.01 

-NOx 
-PM10 

0.6099 0.37198 0.41556 0.63 -0.03 

 


