AUTOMATED INSPECTION OF AN APPLE MOTH
Using Raspberry Pi and Python

HAMK

UNIVERSITY OF APPLIED SCIENCES

Bachelor’s thesis
Degree programme in Automation Engineering
Valkeakoski, spring 2014

El Motasim Gumaa, Mohamed Elfatih Taha

H AM K ABSTRACT

UNIVERSITY OF APPLIED SCIENCES

Valkeakoski

Degree programme in Automation Engineering

Option

Author

Gumaa, Taha Year 2014

Subject of Bachelor’s thesis The automated inspection of an apple moth

ABSTRACT

Keywords

Pages

This thesis is dedicated to the implementation of a machine vision algo-
rithm on a Raspberry Pi Microcomputer.

The commissioning client Teo Kanniainen conducted a research project on
the subject of arranging low-cost apple moth inspection on his garden. The
research resulted in production of a device collecting pictures of insects in
order to process these images later. The contact person Markku Kippola
discussed the issues of improved functionality and cost, so the overall aim
of this thesis thus was to develop a reliable cheap alternative to
Kanniainen’s device.

The end product of the this project is an autonomous embedded system for
inspection and reporting of apple moth, which functionalities can be fur-
ther extended to perform other tasks, such as dispatching pesticide control.
The designed system harnesses the powerful modularity of the Python
scripting language and the OpenCV machine vision framework and utilis-
es the widely used modular microcomputer, the ‘Raspberry P1i’.

The reader of this thesis will gain understanding of how to program a
Raspberry Pi microcomputer and will become familiar with algorithms
used in machine vision that take advantage of both vision and machine
learning capabilities. The thesis also provides a real life python code and
demonstrates how to install and program machine vision applications with
the OpenCV library.

This document describes the issues faced and the solutions found in this
particular case.

Python, OpenCV, Haar-like features, Raspberry Pi, machine vision

26 p. + appendices 6 p.

ABBREVIATIONS AND TERMINOLOGY

GPIO - General Purpose input/output

Raspberry PI - A single-board computer

IDLE - Integrated development environment

DEPIAN - Operating system developed by The Debian Project.

OS - Operating system

HISTOGRAM - Graphical representation of the distribution of data
GRAYSCALE - Image in which the only colors are shades of gray

OPENCYV - Open Source Computer Vision library

PYTHON - A general-purpose, high-level programming language

LIBRARY - A collection of implementations of behavior

NUMPY - A large library of high-level mathematical functions

SMTP - Simple Mail Transfer Protocol

RGB - Additive color model in which red, green, and blue

HSV - Cylindrical-coordinate representations of points in an RGB color model
THRESHOLD - Simplest method of image segmentation

WRAPPER - A function whose main purpose is to call a second function
COMPILER - A program that transforms a program into another language
CONTOUR - A line that joins points of equal elevation

MOMENT - A certain particular weighted average of the image pixels intensities

CONTENTS

9

INTRODUCTION ...ttt sttt ettt sneene e 1
DESIGN L.ttt ettt sttt R ettt nrenreerearen 2
2.1 CONIIOIIING 1.vveivieie et e e b e e e e e nreeee s 3
2.2 IMAQE ACGUISITION ...ttt 4
2.3 MOLION SENSINGveivieiiieiie ettt te e et e et e s e et e s neesbeenesreenreeneeas 6
2.4 IMAQGE PrOCESSING ...vevetitieteeiiesiest ettt sttt ettt ettt b et e et sb b b s e 7
USING OPENC YV ...ttt sttt bbbt nne s 7
3.1 OpenCV installation on Code::Blocks, C++IDEcccooeiiiiiiiiniiiiecieneens 7
3.2 Installing OpenCV 0N PYtNONcccoiiiiiiccece e 8
3.3 TESHNG OPENCV ...ttt 9
3.4 OPENCV TUNCHIONS.....cviiiieie ettt enee e 10
DETECTING THE APPLE MOTHcoiiiiiiiecee e 10
4.1 The Haar-like features deteCtioncccceveieieiine i 11
4.2 The Haar ClaSSITIENcvciiiieiiee et 13
4.3 Loading the CasCatiNgcccciveiiiieie et e 14
4.4 Problems with the “Haar-Cascade” method...........cccccoeviiiiiiiiiiie e, 14
PROCESS OF DETECTIONcuiiiiiiiiie ittt 14
5.1 GreysCale CONVEISIONcc.oiuiiiiiiiriieiieiieieie ettt sr bbb eneas 15
5.2 BGR TO HSV CONVEISION.....cciiiiiiiiiiiieieieiie et sneas 16
5.3 Calculating NISTOGIamcoiiiiiiiiiiiee e 17
5.4 Histogram equaliZationcccocveiieiieie e 18
5.5 Histogram CONVOIULIONcciiiiiiiiieieee e 18
5.6 Histogram back projeCtion:cccecvieiiiieeiieiie e 18
5.7 THIeSNOIAING.cceiiiiiieee e 19
MORPHOLOGICAL TRANSFORMATION. ..ottt 20
G T0 A = 0 oo P 20
8.2 DIHIALIONottt re s 21
CONTOURS. ...ttt ettt e e teeseese et e e e tesaestesresaeaneaneas 21
7.1 FiNAING CONTOUIS....c.viiuiiitieiie ettt ettt ste et e be e saaeneenne e 21
7.2 Drawing CONTOURScoueiiiteitiitesiieiesieeiee ettt sbe bbb eneas 22
7.3 Drawing bounding DOXESccveiuiiiiiieiie et 22
SOFTWARE STRUCTUREccoeiiiiiitceseeeeeese et aneas 23
8.1 EMAil MOTUIE.......coeie e e 24
8.2 AULOMALIC DOOL......cuiiiieiiieii ettt enee e 24
CONCLUSION ..ttt et e sneeneeneas 24

SOURCES ...ttt et nb et beenne s 26

Appendix 1 Program flowchart
Appendix 2 Python code

Appendix 3 Camera software setup
Appendix 4 Camera control options
Appendix 5 Camera IR Activation Code

The automated inspection of an apple moth
-

1

INTRODUCTION

The main objective of this project was to make a new design for the device
introduced in 2011 by the commissioner of this thesis Teo Kanniainen in
his research project “Feature extracting and classification of forewings of
three moth species based on digital images”.

Kanniainen used a prototype for image acquisition in his research. The
prototype was to be placed in targeted fields to collect pictures of insects
and to upload them onto a server, where they would be later analysed to
recognize the targeted species. Figure 1 below shows the setup:

Figure 1 First prototype used by Kanniainen

The device needed to be optimized for better functionality and cost-
efficiency, since it was using a Canon 550D SLR and a special lightening
led as an image acquisition tools. Later Canon 550D was replaced with an
android based camera phone and an I0IO board for controlling, as the
phone’s camera needed to be triggered only in case that an object ”insect”
has entered the capture zone. Sensing insects entering the capture zone
was done by an infra-red sensor with a receiver and a transmitter aligned
against each other on both edges of the gate, if an object passed between
the transmitter and the receiver, the camera was activated and the captured
images were uploaded onto a cloud server such as Dropbox to be analysed
and categorized later on for research purposes. Figure 2 shows the con-
cept:

The automated inspection of an apple moth

Android Phone IR Sensor

Figure 2 Motion detection was used to activate the camera in the second prototype

These prototypes had several problems such as a high cost, a difficulty to
use and a lack of local processing. A combination of the above mentioned
factors created the need to develop a fully automated device to carry on
the required functions.

The negotiations with the commissioner of this project were focused on:

Finding which features were needed on the design.

Which device parts should be replaced, removed or redesigned.

The budget of each prototype compared to the current design.

Finding ways to improve the power supply issue of the device as it
should be placed in a remote area for long periods of time .

The connectivity of the device, and the possibility to remotely access
it in order to monitor the operations or to modify the settings.

Image quality and processing possibilities.

These points were taken into consideration, while comparing an array of
viable designs and potential replacements. Mainly by comparing the ad-
vantages and drawbacks of each potential replacement or design it was
possible to eliminate many designs either due to a high cost or not meeting
the objective’s minimum requirements.

2 DESIGN

To simplify the design, it was divided into parts based on function:

Controlling

The automated inspection of an apple moth
-
— Image acquisition
— Motion sensing
— Image processing

2.1 Controlling

There are many microprocessors on the market. suitable for research pur-
poses Taking a look at those will easily point out some of the leading mi-
croprocessors brands and products that should be considered, as seen be-
low in (figure 3

/- e -t L
— .,
© -7 -~y
<
Board: Arduino Uno L?v’nur:‘a.;‘go Arduino Due MADwno Netduino 2 Netay ;D Pus | raspberry P | BeagieBione
Price: $34-99 $29 59 $24 99 $49 99 $24 99 $34 99 356 99 $39.99 (NA) $89 69
Starter Kit: $64.99 $24.99 S o $124.99
Quick Current Somawnat Newest An Arguing Open Source |Open Source |Single board [ARM Based
summary: “oMmcial” experimental | Arguino Compatble |microcontrolier. |microcontroller |Linux nardware
Arduino USB |Arduino with |based ona board you Programmed Programmed _ [computer with |hacker
board, HID support rful ARM [busd yourself Jusing the NET |using the NET jvideo focused Linux
rie for mouse or ona /Co ICe Procossing board
USB-to-senal, |keyboard Packs many prog 9 g |and GPIO
BUD pOwWer emulaton new features languageo language pors
switching In a Mega Uses an Uses an
sizod form Arcuino layout |Arduino layout
factor for shield for shield
Spocial Onboard USB |HID Angroid ADK |DIY Arauino! | Programmed Programmed HD Capable |Onboarg USB
Foatures: controlier ” S 2 with NET with NET Video Host ang
USB. SPlon |12bit ADC / Micro N Processor, Emernet
ISP neacer DAC, USS Framework Framework: HOM! and
Host, CAN Onboard Composie
BUS support Ethemet Cutputs,
Onboard
|Ethernet
SANIXAE STMicro 32-bit | STMIcro 32.00 [ARM1 17602¢- | TLAMIISS
. icro 32-bit it 1 -
Processor: ATmogald2s | ATmegad2ud ARM&W:- ATmega3zs Conex-M3 Cornex-M3 s ARMAcaon.x-
3
A 16 Mz 16 MMz 84 MHZ 16 MHz 120 Mz 168 Mnz 700 MHz 720 MHz
8 (Ana = 22 (G0 - 22 (GMO - 8 (GO - 66 (GP1O -
Analog Pins 6 12 12 % ‘,‘:,? d.gial or Sigital o Digital and | Digital and
o analog) anaiog) Anaiog) Anaiog)
22 (GO - 22 (GPI0 - 8 (GO - 66 (GPIO -
Digital Pins 14 (6 PYWN) 20 (7 PV | 54 (12 PWIY) 14 (8 PWN) agigital or aigital or Digital and Digital ana
analog) analog) Analog) Analog)
SRAM 2 5 KB
SRAM 2KB - SRAM 2K8 - | Code 192K8 - | Code J84KS -
Memory -EEPROM 1 |SRAM - 96 KB RAM S12MB | RAM 256MB
EEPROM 1KB KB EEPROM 1KB| RAM 60KB RAM 100K8

Figure 3 Microcontroller comparison, (Marker Shed 2013.)

In this case the ability to use a camera with the chosen microprocessor was
essential, also connectivity, ease of programing and the cost of the board
should be considered.

Considering the points above Raspberry Pi was a very good candidate for
final selection. The Raspberry Pi board had advantages such as ease of
programming and use, ability to use a camera module, and an intuitive us-
er interface. Figure 4 shows the raspberry pi and its major components:

The automated inspection of an apple moth
-

GPIO HEADERS RCA VIDEO OUT

STAG AUDIO OUT

DSI DISPLAY
CONNECTOR

SD CARD SLOT
(BACK OF BOARD)
MICRO USB POWER BROADCOM CSI CONNECTOR
(5V 1A DC) BCM2835 CAMERA

ARMT1 700MHZ

HDMI OUT N On 3348 mODELS

Figure 4 Raspberry Pi board, (raspberrypi.org 2013.)

Raspberry Pi boards come in 3 models: A, B 256 and B 512 which have
identical specifications except the following the ones compared in Table 1.

Table 1 Differences between Raspberry pi models,(raspberrypi.org 2014)

Model A B 256 B 512
USB PORTS 1 2 2
ETHERNET No Yes Yes
RAM 256 256 512
PRICE 18 35 45

The factor affecting this project the most up to that point was the price of
the device. As already mentioned the cost efficiency was one of the most
critical points discussed with the thesis commissioner. Another notewor-
thy fact was that neither Ethernet nor the extra RAM were needed for this
type of process.

There were a few Linux editions that were made specifically to operate on
Raspberry Pi RASBIAN, the edition parallel to Debian Linux editions for
PCs. The system is provided with Python IDE.

2.2 Image acquisition

Raspberry Pi has its own camera module which was developed especially
for it. The camera module is connected to the Pi board through the CSI
port via a 15 pin ribbon cable. The camera module is 5 MP and it supports

The automated inspection of an apple moth

1080p/720p/640x480p high definition video. The module comes with a
fixed focus photo sensor. Figure 5 below shows the camera

Figure 5 Raspberry Pi Camera module with a standard ribbon cable, (Pi Camera in-
stallation guide 2014.)

Fixed focus later on became an issue later on as the image processing re-
quired sharp images that were impossible to get of objects closer than
550mm away from the sensor. In order to get sharper pictures for closer
objects a lens had to be installed in front of the sensor. Figure 6 shows im-
ages before and after correction.

Figure 6 Sharpness comparison before (left) and after(right) using a lens, object at
40mm

The automated inspection of an apple moth
-

2.3 Motion sensing

The same idea which was used in an earlier prototype was implemented to
this project as it was efficient enough and reliable. The GPIO General
Purpose Input/output port allowed easy installation of infrared sensing
components such as a phototransistor and an IR diode, needed to design
the sensing unit. The idea depends on the line-breaking method. Below is
detailed map of GPIO in figure 7:

left
bottom top
P1-01 P1-02

3v3 Power [© 5vPower
12c spa O -
i2cscL € © Ground
GPIoa) | UART TXD
- {C) UART RXD
Gric17 © © crio18
GrPic21 © O -
Grio22 © © crio 23
- © criO 24
spimost © -
seimiso © © crio2s
spisctk © © spPiceonN
- © sepiceln

P1-25 Pi1-26
bottom top
righi

Figure 7 GPIO port, (Clough 2012,8)

Any object passing between the transmitters (IR led) and receiver (photo-
transistor) should trigger the camera module. Figure 8 shows a schematic
on how this was done

e — vireced encar

‘ Camans modde Wi
foutmng Mea

.l
- <X
__»

N e e g
reoved "obyet
setectnd”

I oy tad recwer

7 Rangberry P Sowrd

Figure 8 Infra-red receiver and transmitter connection to GPIO

The automated inspection of an apple moth

2.4

Image processing

The system the client already had in place was not particularly sophisticat-
ed and it could not be described as automated and it certainly had no ma-
chine vision implemented.

Our final product was fully capable of achieving the same results and ad-
ditionally it will only notify the client if the target bug was detected. The
user will not have to visit the drop box website, because text message or
email will be sent to him once something is detected.

3 USING OPENCV

Implementing machine vision application with tools such MATLAB or
Lab VIEW turned out to be more complicated and costly than using
OpenCV and due to:

— the cost of buying these products
— portability
— compatibility with common market products

While trying to figure out a way to make a machine vision software that
works on the Raspberry Pi, Lab View was considered. However although
Lab View has an easy graphical programming interface, there is one prob-
lem that makes it virtually impossible to work with other products. One
reason for that is that Lab View requires runtime engine, meaning it can-
not run as independent software on PC, let alone on an embedded device
such as the Raspberry Pi.

Secondly, when programing for embedded devices with MATLAB , the
code has to be ‘translated’ to a C script which then undertake further edit-
ing to be run on such platforms. For all these reason, choosing a library
that allows to write “native code” that runs exactly as predicted the selec-
tion was made in favour of the OpenCV

Although virtually all documentation of OpenCV online was for code
written on C++ or C, python was chosen for two main reasons:

— Ease of installation
— Python module structure

Code written in python is much easier to read and thus debug, and the va-
riety of modules available makes programing more straightforward.

For comparison refer to the next 2 chapters for demonstration how instal-
lation of OpenCV is done on both C++ and python environment.

3.1 OpenCV installation on Code::Blocks, C++IDE

— Install Code:: Blocks IDE Form
— Install minGW

The automated inspection of an apple moth

— Add minGW to system path

— Download and install OpenCV

— Download and install Cmake

— Compile your OpenCV using Cmake

— Add OpenCV bin to system path (similar to the previous step)

— Build your OpenCV binaries using cmake form command prompt
— Link code blocks and OpenCV library

— Edit the compiler and linker

As demonstrated OpenCV installation is unnecessarily complicated, espe-
cially considering that each of the steps described above includes smaller
inside steps in itself which leaves room for errors in configuring the envi-
ronment.

3.2 Installing OpenCV on Python

— o to: https://www.python.org/download/releases/2.7.6/

— select the “Windows X86-64 MSI Installer (2.7.6)

— http://sourceforge.net/projects/numpy/files/NumPy/1.7.1/numpy-
1.7.1-win32-superpack-python2.7.exe/download
All you need is to press next couple of times as shown in figure 9

15 Python 276 Setup (25| [14 python 276 Setup (==
J Select whether to install Python 2.7.6 Select Destination Directory
J for all users of this computer. / This update will replace your existing Python27

_/ installation.
Please select a directory for the Python 2.7.6 files.
© Install for all users P p—
2 python27 + up [new |
Install just for me (not availzble on Windows Vista) Dol
(CDac
Cinclude
Db
Clibs
(scripts
Ctd
(O Tools
python python
far for
. . [C:\Python27\
windows windows
Back Cancel < Back Cancel

Figure 9 Python setup screen

— download python numeric library, after installation it should be
downloaded on the following directory: C: /Python27/

— o to: opencv/build/python/2.7 folder

— copy cv2.pyd to C:/Python27/lib/site-packeges

— open Python IDLE and type following codes in Python terminal:

import cv2
print cv2. version_

For further assistance on installation go to:
http://docs.opencv.org/trunk/doc/py_tutorials/py_setup/py_setup_in_wind
ows/py_setup_in_windows.html

http://sourceforge.net/projects/numpy/files/NumPy/1.7.1/numpy-1.7.1-win32-superpack-python2.7.exe/download
http://sourceforge.net/projects/numpy/files/NumPy/1.7.1/numpy-1.7.1-win32-superpack-python2.7.exe/download

The automated inspection of an apple moth
-

3.3 Testing OpenCV

A simple test program can be used to verify the installation validity. The
program reads an image and displays it to the user. The following steps
must be taken:

— Download the famous Lena machine vision picture
— Save it to your desktop

— Give it the name Lena.jpg

— On python IDLE

— Gotofile and

— Make new window

— Paste the following code on it :

import numpy as np
import cv2

img = cv2.imread('D:/lena.]jpg')
cv2.imshow ('img', img)

cv2.waitKey (0)
cv2.destroyAllWindows ()

Afterwards the work is saved by again going to file and selecting “Save
as”. File extension has to be set as “.py”, like hello world.py for example.
This will help idle to compile the code; otherwise it will not be identified
as Python script. If all the above mentioned steps were followed the results
should be similar what you see in figure 10:

E 74 Helloworld - C:/Users/Administrator/Desktop/Hellowarld E@

q:' File Edit Format Run Options Windows Help

"‘L‘; " import numpy as np J
"‘ import cv2

import smtplib

img = cv2.imread('D:/lena.jpg")
cv2.imshow ('img', img)

cv2.waitEey (0)
cv2.destroyAllWindows ()

4 *Python Shell* == =]
File Edit Shell Debug Options Windows Help

Python 2.7.3 (default, Ap: ﬂimg
32

Type "copyright", "credit
¥
¥

EI@ .1500 32 bit (Intel)] on winJ

information.

Figure 10 Test program

The automated inspection of an apple moth

3.4 OpenCV functions

In real life applications one would read video or streams or pictures
straight from the camera. But for the purpose of this test program the pic-
ture is read from ‘file’ which is common practice to make sure the system
is well set up.

To explain the software a little:

import numpy as np
import cv2

This part of the script tells python that in order to run the program success-
fully, the following libraries are needed: CV2 (OpenCV library) and
Numpy (Python numeric library).

A library is a file that contains functions written in higher language with
instructions on how to operate it on a machine level. For python to know
what to do with the function “img = cv2.imread('D:/lena.jpg')”, it has to go
to the cv2 library and fetch the machine level instruction for imread . The
value between the two praises () is called parameter and it is how variable
is transferred to the function for processing.

4 DETECTING THE APPLE MOTH

Detecting the moth proved more difficult than expected. Most of the ‘off
the shelf ‘algorithms had two main principles:

— unified colour
— unified shape

The fact that a moth is a living organism brings to light the fact that it

comes in many different sizes, shapes and colours. See figure 11 for com-
parison:

10

The automated inspection of an apple moth

Figure 11 Sizes of moth

To overcome the challenge presented by multiple moth forms, a machine
learning algorithm called “Haar-like features” was considered. The basic
principle here is that the software is fed with a range of ‘Positive images’
ranging from 5000 to 9000 of the objects in question. Simultaneously an
equivalent amount of ‘Negative images’ is fed into to software. Based on
these two inputs, the software generates a set of descriptive vectors which
are stored in an XML format, to be used later in the detection.

However due to the time constraint, and discouraging result obtained from
a cascade trained with small ‘Positive data’ which was practically less
than 12 clear images, and another hundred that was obtained from data-
bases scattered on the internet a new method was put in place to achieve
the detection. However the ‘Haar cascade’ will be used after a better set
of ‘Positives’ is collected.

4.1 The Haar-like features detection

Haar like feature detection is based on the (Viola -Jones detection algorithm) that uses
Haar wavelet in mathematics which is sequence of rescaled rectangles analysis similar
to the Fourier analysis. The idea is to identify the rectangles by contrast, meaning pixel
intensity, in the viola jones algorithm a target size is placed on top of subject and simi-
larity is calculated based vectors length. Figure 12 below shows the scale and rotation
invariance of the algorithm. (Bressers 2009).To further illustrates this concept se figure
12

The automated inspection of an apple moth

A A
0
>
: };I :
: B) :
: v ;
¥ e %
: width : P8 EXEERTR SECTRRIRTS Y 0 width :
— P
X X
Haar feature defined by IppiRect structure Tilted Haar feature defined by IppiRect structure
x=2, y=3, width=5, height=3 (15 pixels) x=4, y=1, width=4, height=3 (24 pixels)

Figure 12 Haar feature, (OpenCV documentation 2013.)

From the figure above it is visibly clear that changes on the x plain are fol-
lowed by corresponding shift on the y plain, which makes Haar method
very efficient and rotation invariant, meaning that the object can’t take any
rotational position without affecting its detecting ability.

sum = I(C) + I{A) — I(B) — I(D).

Figure 13 Haar equation

But extracting the features of the moth is only first part of the task. The
Haar framework thus needs a mechanism to extract, archive, retrieve and
test. This is the machine learning part of it.

In the OpenCV this is done, by training the system using a "positive™ set
of images that contain the different varieties of rotation scaling and col-
ouring of the object in question, along that a set of "negative" images is al-
so introduced to the system. That way the computer can "learn™ when and
if an object is present. The numbers 1, 2 and 3 refers to the stages of train-
ing, with each stage the entire object is detected and passed on to the next
stage for more refining, see figure 14 below:

12

The automated inspection of an apple moth

All Sub-Windows Further
Processing
@4@9
Reject Sub-Window

Figure 14 Cascade is taking control of the identification process, (Bressers 2009)

4.2 The Haar classifier

The haar classifier is pretty straight forward in OpenCV. The process be-
gins with training the "Haar classifier". This process is basically teaching
the computer a set of negative and positive images and will result in the
generation of an XML file, containing the vectors of each positive and
negative image that was fed to the system. Based on it the computer will
compare each new input to its archive.

Steps of creating classifier in python:
— Create a text file of negative descriptions
— Create a text file of positive descriptions
— Use the create samples command to generate samples
— Train your cascade using the samples made in step 3
Figure 15 below contain command line on doing that.

"images/positive O.png" 1 120 160 40 40
"images,/positive l.png" 2 200 120 40 60 B0 &0 20
20

§ <opencv createsamples> -vec <binary description:> -
info <positive description=> -bg
=negative description:>

$ <opencv createsamples> -vec <binary description:> -
image =<positive image> -bg <negative description>

Figure 15 Creating samples and training the cascade, (Howse 2013,123-131)

There is a waiting period of around two days. During this time the com-
puter should be left powered. A notification message informing that the
process is complete will be sent.

13

The automated inspection of an apple moth
4.3 Loading the cascading

After the training of the system is complete, the resulting xml file has to
be imported into the software. A program based on the face detection xml
cascade that is provided by OpenCV. Below is code with comment in red.
See figure 16.

numpy np
ovd

#Load the cascade to the software
face cascade = cv2.CascadeClassifier('haarcascade frontalface default.xml')

#Read the image to =scan for faces
img = cvl.imread('"=zachi

#Convert the imge to grey scale

gray = cv2.cvtColor(img, cvZ.COLOR EGR2GRAY)

#Scan for faces using cascade

faces = face cascade.detectMultiScale(gray, 1.3, 5)

#Draw bounding box around faces and eyes

(®,v,w,) faces:
cvZ.rectangle (img, (X, V), (X+w, y+h), (255,0,0),2)
roi_gray = gray[y:y+h, =x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye cascade.detectMultiScale (roi_gray)

#5how the image
cvZ . imshow ('img', img)
#Dely key to prevent disappearing
cvZ . waitKey (0)
#Escape the program
cvZ . destroyRllWindows ()

Figure 16 Haar cascade sample with face detection cascade

4.4 Problems with the “Haar-Cascade” method

— Requires a huge amount of data
— False positive is a common occurrence
— Laborious

Using an alternative measure to a moth specific algorithm, detection was
achieved. The main features used were histogram of moth wings and a
calculated pixel area approximation for the enclosing contour.

The idea was to capture the image and perform histogram enhancement
and boosting in order to identify the moth. This approach has its own chal-
lenges but it is the most reliable method for this specific application.

The next chapters will deal with image processing, histogram calculation,

histogram back projection and extraction, contour allocation, contour
drawing, bounding boxes and bounding boxes thresholds.

5 PROCESS OF DETECTION

The goal of processing the image is to filter noise and boost desired fea-
tures, namely the characteristics on which the detection will be based. The

14

The automated inspection of an apple moth

|
following steps will guide the reader through the image processing that
was implemented in the program.

5.1 Greyscale conversion

The first image transformation to be done for reaching a detectible feature
is greyscale conversion. It simply means converting the RGB colour span
into a corresponding image with one colour (grey) with different intensity
across the image. Figure 17 illustrate the conversion

Figure 17 Grayscale conversion, (OpenCV documentation, 2014.)

Grayscale intensity is stored as an 8-bit integer giving 256 possible differ-
ent shades of grey from black to white. That is the reason that only one
channel (colour) is chosen to represent the image when converting from
RGB (which is an array of (255,255,255)). (OpenCV documentation
2014.)

To see split-channel RGB see figure 18:

Figure 18 Gray scale conversion, (OpenCV documentation 2014.)

The automated inspection of an apple moth

|
Grayscale conversion is performed in OpenCV using the following com-
mand:

cvtColor(image, grav image, CWV BGRZGRAY) !

Figure 19 Grayscale conversion command, (OpenCV documentation 2014.)

Implementation of the above function would thus look something like this:

namedWindow ([imageName, CV WINDOW AUICSIZE) ;-

L) :
namedWindow ("Gray image", CV WINDOW AUTOSIZE) ;

imshow(imageMName, image)
imshow("Gray image", gray image):

Figure 20 Grayscale conversion command implementation, (OpenCV documentation
2014.)

5.2 BGR To HSV conversion

OpenCV uses the BGR colour format as opposed to more commonly used
RGB which results in reversed values, if the format is not considered. The
focus on BGR to HSV is needed because histogram calculation at a later
stage requires the image to be in the HSV domain.

0 if max = min
(60° s —8=2_— 4 0°) mod 360°, if max=1r

ax — min

h =

b—r 3 _
609 x ——— 4 1207, if max =g
60° x ——Z— 4 240°, if max=~a
max — min
0, if max =0
F= max —min __ 1 — IIIiII, ot herwise
max max
= Inax
increasing hue
blue magenta
(H=2/3) (H=5/6)
cyan »~~ T TN . red
(H=1Yf2) ; (H=0)

increasing i i
saturation increasing
moves away value moves
from the axis toward

lighter
colors

black
(WV=0)

Figure 21 BGR to HSV formula and visualization (OpenCV documentation 2014.)

The automated inspection of an apple moth
-

HSV stands for Hue, Saturation, and VVolume, and the conversion com-
mand in OpenCV is as follows:

vert BGR Lo HSV
.oevtColor (frame, cv2.COLOR BGRZHSV)

Co

v

=]

]
Qo

= g

2

Figure 22 BGR to HSV conversion command

Because BGR to HSV changes only the domain but not the value, a con-
verted image would be exactly the same, only with new parameters.

5.3 Calculating histogram

An image histogram is a graphical representation of the number of pixels
in an image as a function of their intensity. Figure 23 below shows Histo-

gram distribution :

i Red
Green
i Blue

600
400
200

Figure 23 Histogram, (Class VLHistogram.TVLHistogram 2002.)

Performing Histogram in OpenCV is done through the following com-

mand:

[0, 1], None, [180, 256], [0, 180,

roihist = evl.calcHist ([hav], [

0, 256])

Figure 24 Histogram command, (OpenCV documentation 2014.)

The automated inspection of an apple moth

5.4 Histogram Equalization

Histogram equalization means averaging and redistributing intensity of
tones. An image in grayscale would look like this after histogram equali-
zation see figure 25:

|
4 ‘ o A , e
T T AN - =
[N = h s R]

Original image Contrast enhanced image using
global histogram equalization

Figure 25 Histogram equalization, (OpenCV documentation 2014.)

To perform equalization in OpenCV the following command is used:
cv2.normalize(roihist,roihist,0,255,cv2 . NORM MINMAX)

Figure 26 Histogram equalization command, (OpenCV documentation 2014.)

5.5 Histogram convolution

Convolution is redistributing histogram on an image, for example a func-
tion. Consider this: g(x,y) = h(x,y) * f(x,y). It is essential for performing
higher order processing like blurring and dilation. To perform convolution
in OpenCV the following is used:

Nov convelute with 17
dizc = cvZ.getStructuringElement (cv2.MORPH ELLIPSE, (5,5))
cvd.filter2D(dst,-1,di=sc, d=st)

ircular disc

10

Figure 27 Histogram equalization convolution, (OpenCV documentation 2014.)

5.6 Histogram back projection:

Back projection is, as the name implies, repainting a set of histogram val-
ues on gray scale or otherwise manipulated image, highlighting certain ar-
eas.

The automated inspection of an apple moth
-
The area isolated is then used for the detection after being refined, look at

figure 28 to get an idea:
Original lmage

Figure 28 Back projection, (OpenCV documentation 2014.)

To perform back projection in OpenCV the following command is used:

g =75 = s ——
¥ Normalize N15SCOoJram

ist, [0,180,0 256],1)

cv.
Ly LT Wy

Figure 29 Back projection command, (OpenCV documentation 2014.)

5.7 Thresholding
Thresholding is adjusting the HSV or BGR colour domain value. This is

done to enhance or to get rid of a particular colour.

ret,thresh cvZ.threshold (dst,50,255,0)

Figure 30 Thresholding command, (OpenCV documentation 2014.)
Numbers 50, 255, 0 represent the desired color in the HSV Domain. To
see the effect of thresholding refer to figure 31:

The automated inspection of an apple moth

slider threshold 127

4

contour lenzth vs. gray level contour contrast, weighted max contrast thrﬂshold 106

2500 o .
3

!

2000 /J 30 i

25 v

1500 o= Y

20 y

1000 15 !

1

1

1

—— — -
0 50 100 150 2..() 250 0 50 100 150 200 250

image 70: lena

500 ; [

image histogram W mht°d sum of variances: Otsu. min variance thre<hold 114

250 ‘ \ p 7
. 1500 \ ' /
200 ' . i
" : } ‘|| : 'v// "
150 fo ‘ lh 1000 .
' \ '
100 W \ e & o
AR so0
°° [W, |
{ 3 W 3

Figure 31 Thresholding, (OpenCV documentation 2014.)

6 MORPHOLOGICAL TRANSFORMATION

So far image processes that have been discussed related in one way or an-
other to the colours and its domain. But another form of processing is
equally needed and important - morphological processing. Morphological
processing is based on the image shape and coordinates. A lot of material
is available in the OpenCV documentation on this subject, but for the pur-
poses of this thesis only some aspects of morphological processing will be
mentioned.

6.1 Erosion

Erosion is used to eliminate foreground boundaries which result in shrink-
age of objects within the image. It is normally used in cases when noise
causes two objects to stick together forming a larger one. See figure 32 for
effect of erosion

Figure 32 Applying erosion, (OpenCV tutorials 2014.)

20

The automated inspection of an apple moth

To achieve results similar to the one in figure above, the following com-
mand is used:

karne = nr

erosion = con

Figure 33 Erosion command, (OpenCV tutorials 2014.)

6.2 Dilation

Dilation is the opposite of erosion and it is used in some cases to expand
an object area in order to ease detection or further processing. . See figure
32 for effect of erosion:

Figure 34 Dilation, (OpenCV tutorials 2014.)

7 CONTOURS

Contours is normally the final stage of object’s detection. The OpenCV li-
brary draws contours around pixels of different intensities. Based of prop-
erties of these contours, such as length, area, edges, openness or closeness
the detection of an object is done.

7.1 Finding contours

Images tend to have an abundance of details. As a result of this extracting
contours from multi-channelled image will not achieve useable results. A
better approach would be to thresh an image to binary state before at-
tempting to find contours. See figure 35:

rmt FRrzal = Frrd FResabkelAd6
ret,thresh = cvi.threshold(imgr

lmaje, COOTOUr3, nlerarchy

Figure 35 Code for threshold and contour finding, (OpenCV documentation 2014.)

After contours are found (list)/Moments, a multitude of operations can be
performed. See figure 36 it shows moments calculation:

21

The automated inspection of an apple moth

|
cnt = contours[0]

M = cw.moments (cnt)

print M

int (M['ml0"]/M['m00"])
int (M['m01']/M['m00"])

CX

oy
Figure 36 Operations, (OpenCV documentation 2014.)

For example, determining the area for each contour:
1cv2.contourAreal() or from moments, M[‘'m00].

Figure 37 Contour area, (OpenCV documentation 2014.)

Or Arc length of a contour:

perimeter = cvl.arclength{cnt,True

Figure 38 Contour area length (OpenCV documentation 2014.)

7.2 Drawing Contours

To draw all the contours in an image:

[

%]
o
o
[
Cali

imy = cvi.drawContour(img, contours, -1, |

Figure 39 Drawing all contours command, (OpenCV documentation 2014.)

Or the forth one:

o

img = cwv2.drawlontours (imy, contours, 3, (0,25

Figure 40 Drawing forth contour command, (OpenCV documentation 2014.)

7.3 Drawing bounding boxes

Drawing a box around a given closed contour requires 4 parameters:
width, height and y coordinates

x,y,w,h = cv2.boundingRect (cnt)
img = cv2.rectangle(img, (x,Vy), (x+w,y+h), (0,255,0),2)

Figure 41 shows result of this:

The automated inspection of an apple moth

Figure 41 Bounding box

8 SOFTWARE STRUCTURE

The architecture and data flow is designed to separate functionality, in or-
der to work around hardware limitations, mainly power and memory. For
example, the camera module needed extra dependencies to work in
OpenCV. Additionally, the SD card memory is limited to 4 GB, so storing
images on regular bases will damage the device’s memory. To avoid this
captured image is assigned to a location, from which OpenCV retrieves it.

The resulting processed image is forwarded via email, while overwriting
the previous one. This serves both as extra feature and helps to conserve
memory. Figure 42 below shows this graphically

g ™
Python

Numeric
INPUT LAYER Library

SENSOR

Figure 42 System Architecture

Such properties as power and connectivity would normally be included,
but due to the nature of this document they were left out. Although it is
noteworthy to point out that the completing the task assigned to us would

The automated inspection of an apple moth

have been vastly easier, if a constant supply of energy was available, but
because the unit will be installed in remote locations that was not possible.
Network coverage for 3G was also not tested.

8.1 Email Module

Email library for python to send an email notification to the user once the
previous function for detecting was compiled.
This feature can be implemented in two ways:

— sending a simple test message (SMS)

— Sending an email with a picture attachment of the moth.
In the appendix 2 python code a detailed and commented code for achiev-
ing this is presented.

In order to send as SMS message .Taha@student.namk.fi with a generic
email address provided by GSM provider, for example
040123456@dna.fi.

8.2 Automatic boot

To make Raspberry run directly to the software several steps must be un-
dertaken. First, write on the raspberry terminal:

‘#!/bin/bash
/bin/login f root

Second, make the code executable:

chmod a+x /bin/autologin.sh
Edit /root/.bashrc

if [[$(tty) == '"/dev/ttyl' 1]1; then
/root/operation/mothdetector.py
Endif’’

(Clough 2012, 7.)

This will root the device and give automatic login bypassing the login de-
tail. Then execute the software when booting.

9 CONCLUSION

The project was successful in detecting the apple moth from images across
the internet. Without controlled background, the accuracy stands at 72 %
.This number is based on testing 25 images of the target apple moth and
detection was achieved on 18 of them at the moment and will reach ap-
proximately 95 % when the casing with unified colour background is add-
ed. Adding the unified coloured background will dramatically increase the
accuracy by preventing confusion between wing colour histogram and
background colour.

24

mailto:.Taha@student.hamk
mailto:040123456@dna.fi

The automated inspection of an apple moth
-

To conclude:

- Reduction of cost from 600 euro (cost of DSLR camera and setup) to 50
euros (cost of raspberry and power backup) was achieved

-Automatic inspection of the moth was achieved, this replaced the manual
process

-Automated notification was setup by creating email alert with image at-
tachment

-well documented and commented code is kept for future modification

For full code check appendix 1 through 5 it contains software flowchart,
python software along with command for adjusting camera and GPIO
,appendix 6 contains IR camera activation.

Figure 43 below shows current detection accuracy with background closer
in properties to the moth .we can see it is still possible to accurately detect
the insect

Figure 43 Results of detection

The automated inspection of an apple moth

SOURCES

Bob Clough. 2012. Raspberry Pi as an Embedded Platform. Pdf file.
thinklI33t.co.uk)

Class VLHistogram.TVLHistogram. 2002.
http://www.mitov.com/wiki/index.php?title=Class_VLHistogram.TVLHistogram

David Beazley and Brian K Jones. 2013. Python Cookbook, 3rd edition.
ISBN 978-1-449-34037-7.

Daniel Lelis Baggio.2013. Mastering OpenCV with Practical Computer Vision.
ISBN 978-1-84951-782-9

Willem Bressers.2009.Real-time face verification using a low resolution camera
Bachelor Thesis, Universiteit van Amsterdam

Joseph Howse. 2013. OpenCV Computer Vision with Python
ISBN 978-1-78216-392-3

Kanniainen, T. 2011. Feature extracting and classification of forewings of
three moth species based on digital images. Licentiate's thesis, Tampere
University of Technology

Low level programming. 2014.
http://elinux.org/

OpenCV tutorials. 2014.
http://opencv-python-tutroals.readthedocs.org/

OpenCV documentation. 2014.
http://docs.opencv.org/

Pi Camera installation guide. 2014.
http://thepihut.com/pages/how-to-install-the-raspberry-pi-camera

Supaporn Spanurattana. 2012 Advanced Image Processing. Pdf file.
http://www.img.cs.titech.ac.jp/~akbari/pmwiki/uploads/Site/Supaporn-rep.pdf

GPIO programming, 2013.
http://www.raspberrypi.org/tag/gpio/

26

The automated inspection of an apple moth
-

Appendix 1

PROGRAM FLOWCHART

cv2 findContours(thresh,cv2.
RETR_TREE,cv2.)

For < in contours:

rect = cv2.boundingRect(c)

if rect[2] < 100 or rect[3] < 1L00:
- continue

cwv2.rectangle(target,(x,y),
(x+w,y+h),(0,255,0),2)

The automated inspection of an apple moth
-

Appendix 2
PYTHON CODE # is followed by comment (python comment standard)
importing librariea l-opencv and Z2-numiric library
import cv2

import numpy a5 np

#Eead image of target histogram(wing cropped image)

roi = cv2?.imread('C:/Users/Administrator/Desktop/Presentation/bugroi.jpg')
#Covert it to HSV

hsv = cv2.cvtColor(roi, cv?.COLOR BGRZHSV)

#Eead the image of subject (saved by rapberry camera

target = cv2.imread('C:/Users/Rdministrator/Desktop/Presentation/Samples /bugld.jpg")
#Eesize the image of subject

targetr = cv2.resize(target, (0,0), fx=0.2, f£v=0.2)

#Convert Subject image to H3V

hsvt = cv2.cvtColor(target,cv?.COLOR BGRZHSV)

calculating object histogram
roihist = cv2.calcHist ([hsv], [0, 1], Home, [180, 256], [0, 180, 0, 256])}

normalize histogram and apply backprojection
cvZ.normalize (roihist,roihist, 0,255, cv2 . HORM MTHMAX)
dst = cv2.calcBackProject|[hsvt], [0,1],roihis=t, [0,180,0,256],1)

Now convolute with circular disc
disc = cvd.getStructuringElement (cv2 .MORPH ELLIFSE, (5,5))
cv2.filter2D(d=t,-1,di=c,d=t)

threshold and binary AND
ret,thresh = cvl.threshold(dst,40,200,0)
#Find Contours in subject
contours, hierarchy = cvZ.findContours (thresh,cv2.RETR TREE, cv2.CHATN APPRCX STMPLE)
#Calcualte Bounding box ccording to Contour area
for ¢ in contours:
rect = ové.boundingRect (c)
if rect[2] < 100 or rect[3] < 100: continue
#Draw the bounding box
print cvZ.contourhrea(c)
X, v, W, h = cvi.boundingRect (c)
cvZ.rectangle (target, (X, V), (x+w,v+h), (0,255,0),2)
#Print ''Moth detected ''
cve.putText (target, "Moth Detected', (x+w+l0,v+h),0,0.3, (0,255,0))
#5ave the image

The automated inspection of an apple moth

Appendix 2

PYTHON CODE # is followed by comment (python comment standard)
{5ave the image
cv2.imwrice("'C: /Usera/Administrator/Desktop/Fresentation/result.jpg", cargec)

#Import Email libraries (All of cthem are needed
from email .mime.text irport MIMEText

om emajil.mime.application irmport MIMEApplication
om email.mime.mulcipart import MIMEMultiparc

n smcplib imporc SMIP
t smtplib

#Determine the server to be uszed
SMTP SERVER = 'smtp.gmail.com'
$Decermine the port of server (usually 587)
SMIF_PORT = 587
#Determine the logging detail= of the client
sender = 'taha.eslfatih@gmail.com’
pasaword = "GoogleearthworknewlO™
#Wrive down the recipient email address .subject and message body
recipient = 'mohamed.tahafztudenc.hamk.fi*
subjeact = 'attachement moth °*
message = "Images attached.®
#Directory of attachment image
directory = "/tmp/images/"
#Sending the email 'Class’'
def main():
meg = MIMEMultipart()
mag['Subject'] = 'Fython emaillib Test'
msg['To'] = recipient
meg(['From"] = sender
$Defining the image attachement directory
img = parc = MIMEApplication (open("D:/filtera.jpg","cb").read(}}
img.add header('Contenc-Disposition’', ‘atcachmenc®, filename= ‘filters.jipg')
msg.atcach (img)
§Server logging protocol for logging
part = MIMEText ('text', "plain")
part.set_payload(meazage)
m=g.attach (part)

session = smtplib.SMIP(SMIP SERVER, SMIP_ PORT])

zes=sion.ehlo ()
session.starttls ()

ses=sion.ehlo

sezsion.login (sender, password)

session.sendmail (sender, recipient, msg.as_stringl())
session.guit ()

if name == " main ":
main()

The automated inspection of an apple moth

Appendix 3
CAMERA SOFTWARE SETUP

Execute the following instructions on the command line to
download and install the latest kernel, GPU firmware and
applications. You will need an internet connection for this to work

correctly.
sudo apt-get update
sudo apt-get upgrade

Now you need to enable camera support, using the raspiconfig
program you will have used when you first set up your

Raspberry Pi.

sudo raspi-config

Use the cursor keys to move to the camera option and select
enable. On exiting raspi-config it will ask to reboot. The
enable option will ensure that on reboot the correct GPU
firmware will be running (with the camera driver and tuning), and
the GPU memory split is sufficient to allow the camera to acquire
enough memory to run correctly.

To test that the system is installed and working, try the following
command:

raspistill -v -o test.]jpg

The display should show a 5-second preview from the camera
and then take a picture, saved to the file test.jpg, while displaying
various informational messages.

The automated inspection of an apple moth
-

Appendix 4
CAMERA CONTROL OPTIONS

--sharpness, -sh Setimage sharpness (-100 to 100)

Set the sharpness of the image, 0 is the default.

--contrast, -co Setimage contrast (-100 to 100)

Set the contrast of the image, 0 is the default
--brightness, -br Setimage brightness (0 to 100)

Set the brightness of the image, 50 is the default. 0 is black, 100
is white.

--saturation, -sa Setimage saturation (-100 to 100)
Set the colour saturation of the image. 0 is the default.

--IS0, -ISO Setcapture ISO

Sets the ISO to be used for captures. Range is 100 to 800.
--vstab, -wvs Turnon video stabilization

In video mode only, turn on video stabilization.

--ev, -ev Set EV compensation

Set the EV compensation of the image. Range is -10 to +10, default is

The automated inspection of an apple moth
- |

Appendix 5

CAMERA IR ACTIVATION CODE (#) Isfollowed by Comment
Importing the needed modules for GPIO, Camera and time for waiting function
import RPi.GPIO as GPIO

import picamera

from time import sleep

To set the input 17 to read from phototransistor

GPIO.setup(17, GPIO.IN)

Definding the camera

camera = picamera.PiCamera()

while 1:

Input from phototransistor is not one so there is something in between the phototransistor and the IR Led
if GPIO.Input(17) =! 1 :

Wait 3 seconds till the insect is in front of camera

time.sleep (3)

Capture image

camera.capture('image.jpg')

time.sleep (3)

Capture another image

camera.capture('image2.jpg')

time.sleep (3)

Capture another image

camera.capture('image3.jpg')

The automated inspection of an apple moth
-

