
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUTOMATED INSPECTION OF AN APPLE MOTH 

Using Raspberry Pi and Python 

 

 

 

 

 

 

 

 

 

 

Bachelor’s thesis 

 

Degree programme in Automation Engineering 

 

Valkeakoski, spring 2014 

 

El Motasim Gumaa, Mohamed Elfatih Taha 
 

 

 



 

 

 

 

   ABSTRACT 

 

 

Valkeakoski 

Degree programme in Automation Engineering 

Option 

 

Author   Gumaa, Taha  Year 2014 

 

Subject of Bachelor’s thesis  The automated inspection of an apple moth 

 

ABSTRACT 

 

This thesis is dedicated to  the implementation of a machine vision algo-

rithm on a Raspberry Pi Microcomputer. 

 

The commissioning client Teo Kanniainen conducted a research project on 

the subject of arranging low-cost apple moth inspection on his garden. The 

research resulted in production of a device collecting pictures of insects in 

order to process these images later. The contact person Markku Kippola 

discussed the issues of improved functionality and cost, so the overall aim 

of this thesis thus was to develop a reliable cheap alternative to 

Kanniainen’s device. 

 

The end product of the this project is an autonomous embedded system for 

inspection and reporting of apple moth, which functionalities can be fur-

ther extended to perform other tasks, such as dispatching pesticide control. 

The designed system harnesses the powerful modularity of the Python 

scripting language and the OpenCV machine vision framework and utilis-

es the widely used modular microcomputer, the ‘Raspberry Pi’. 

 

The reader of this thesis will gain understanding of how to program a 

Raspberry Pi microcomputer and will become familiar with algorithms 

used in machine vision that take advantage of both vision and machine 

learning capabilities. The thesis also provides a real life python code and 

demonstrates how to install and program machine vision applications with 

the OpenCV library. 

 

This document describes the issues faced and the solutions found in this 

particular case. 

 

Keywords Python, OpenCV, Haar-like features, Raspberry Pi, machine vision 

 

Pages 26 p. + appendices 6 p. 

 

 

 

 

  



 

 

 

 

ABBREVIATIONS AND TERMINOLOGY 

 

GPIO - General Purpose input/output  

Raspberry PI - A single-board computer 

IDLE - Integrated development environment 

DEPIAN - Operating system developed by The Debian Project. 

OS - Operating system 

HISTOGRAM - Graphical representation of the distribution of data 

GRAYSCALE - Image in which the only colors are shades of gray 

OPENCV - Open Source Computer Vision library 

PYTHON - A general-purpose, high-level programming language 

LIBRARY - A collection of implementations of behavior 

NUMPY - A large library of high-level mathematical functions 

SMTP - Simple Mail Transfer Protocol 

RGB - Additive color model in which red, green, and blue 

HSV - Cylindrical-coordinate representations of points in an RGB color model 

THRESHOLD - Simplest method of image segmentation 

WRAPPER - A function whose main purpose is to call a second function 

COMPILER - A program that transforms a program into another language 

CONTOUR - A line that joins points of equal elevation 

MOMENT - A certain particular weighted average of the image pixels intensities 

 

 

 



 

 

 

 

CONTENTS 

1 INTRODUCTION ....................................................................................................... 1 

2 DESIGN ...................................................................................................................... 2 

2.1 Controlling .......................................................................................................... 3 

2.2 Image acquisition ................................................................................................ 4 
2.3 Motion sensing .................................................................................................... 6 
2.4 Image processing ................................................................................................. 7 

3 USING OPENCV ........................................................................................................ 7 

3.1 OpenCV installation on Code::Blocks, C++IDE ................................................ 7 

3.2 Installing OpenCV on Python ............................................................................. 8 
3.3 Testing OpenCV .................................................................................................. 9 
3.4 OpenCV functions ............................................................................................. 10 

4 DETECTING THE APPLE MOTH .......................................................................... 10 

4.1 The Haar-like features detection ....................................................................... 11 
4.2 The Haar classifier ............................................................................................ 13 
4.3 Loading the cascading ....................................................................................... 14 

4.4 Problems with the “Haar-Cascade” method ...................................................... 14 

5 PROCESS OF DETECTION .................................................................................... 14 

5.1 Greyscale conversion ........................................................................................ 15 
5.2 BGR To HSV conversion .................................................................................. 16 
5.3 Calculating histogram ....................................................................................... 17 

5.4 Histogram equalization ..................................................................................... 18 
5.5 Histogram convolution ...................................................................................... 18 

5.6 Histogram back projection: ............................................................................... 18 
5.7 Thresholding...................................................................................................... 19 

6 MORPHOLOGICAL TRANSFORMATION ........................................................... 20 

6.1 Erosion .............................................................................................................. 20 

6.2 Dilation .............................................................................................................. 21 

7 CONTOURS .............................................................................................................. 21 

7.1 Finding contours ................................................................................................ 21 
7.2 Drawing Contours ............................................................................................. 22 
7.3 Drawing bounding boxes .................................................................................. 22 

8 SOFTWARE STRUCTURE ..................................................................................... 23 

8.1 Email Module .................................................................................................... 24 
8.2 Automatic boot .................................................................................................. 24 

9 CONCLUSION ......................................................................................................... 24 

SOURCES ...................................................................................................................... 26 

 

 



 

 

 

 

Appendix 1 Program flowchart 

Appendix 2 Python code 

Appendix 3 Camera software setup 

Appendix 4 Camera control options 

Appendix 5   Camera IR Activation Code  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The automated inspection of an apple moth 

 

 

1 

1 INTRODUCTION 

The main objective of this project was to make a new design for the device 

introduced in 2011 by the commissioner of this thesis Teo Kanniainen in 

his research project “Feature extracting and classification of forewings of 

three moth species based on digital images”.  

 

Kanniainen used a prototype for image acquisition in his research. The 

prototype was to be placed in targeted fields to collect pictures of insects 

and to upload them onto a server, where they would be later analysed to 

recognize the targeted species. Figure 1 below shows the setup: 

 

Figure 1 First prototype used by Kanniainen 

The device needed to be optimized for better functionality and cost-

efficiency, since it was using a Canon 550D SLR and a special lightening 

led as an image acquisition tools. Later Canon 550D was replaced with an 

android based camera phone and an IOIO board for controlling, as the 

phone’s camera needed to be triggered only in case that an object ”insect” 

has entered the capture zone. Sensing insects entering the capture zone 

was done by an infra-red sensor with a receiver and a transmitter aligned 

against each other on both edges of the gate,  if an object passed between 

the transmitter and the receiver, the camera was activated and the captured 

images were uploaded onto a cloud server such as Dropbox to be analysed 

and categorized later on for research purposes. Figure 2 shows the con-

cept: 



The automated inspection of an apple moth 

 

 

2 

Figure 2 Motion detection was used to activate  the camera in the second prototype 

These prototypes had several problems such as a high cost, a difficulty to 

use and a lack of local processing. A combination of the above mentioned 

factors created the need to develop a fully automated device to carry on 

the required functions. 

 

The negotiations with the commissioner of this project were focused on: 

 Finding which features were needed on the design. 

 Which device parts should be replaced, removed or redesigned.  

 The budget of each prototype compared to the current design. 

 Finding ways to improve the power supply issue of the device as it 

should be placed in a remote area for long periods of time .  

 The connectivity of the device, and the possibility to remotely access 

it in order to monitor the operations or to modify the settings. 

 Image quality and processing possibilities. 

 

These points were taken into consideration, while comparing an array of 

viable designs and potential replacements. Mainly by comparing the ad-

vantages and drawbacks of each potential replacement or design it was 

possible to eliminate many designs either due to a high cost or not meeting 

the objective’s minimum requirements.    

2 DESIGN 

To simplify the design, it was divided into parts based on function: 

 Controlling  



The automated inspection of an apple moth 

 

 

3 

 Image acquisition  

 Motion sensing 

 Image processing  

2.1 Controlling 

There are many microprocessors on the market. suitable for research pur-

poses Taking a look at those will easily point out some of the leading mi-

croprocessors brands and products that should be considered, as seen be-

low in (figure 3 

 

Figure 3 Microcontroller comparison, (Marker Shed 2013.) 

In this case the ability to use a camera with the chosen microprocessor was 

essential, also connectivity, ease of programing and the cost of the board 

should be considered. 

 

Considering the points above Raspberry Pi was a very good candidate for 

final selection. The Raspberry Pi board had advantages such as ease of 

programming and use, ability to use a camera module, and an intuitive us-

er interface. Figure 4 shows the raspberry pi and its major components: 



The automated inspection of an apple moth 

 

 

4 

 

Figure 4 Raspberry Pi board, (raspberrypi.org 2013.) 

Raspberry Pi boards come in 3 models: A, B 256 and B 512 which have 

identical specifications except the following the ones compared in Table 1. 

Table 1 Differences between Raspberry pi models,(raspberrypi.org 2014) 

 Model A B 256 B 512 

 USB PORTS 1 2 2 

 ETHERNET No Yes Yes 

 RAM 256 256 512 

 PRICE  18 35 45 

 

The factor affecting this project the most up to that point was the price of  

the device. As already mentioned the cost efficiency was one of the most 

critical points discussed with the thesis commissioner. Another notewor-

thy fact was that neither Ethernet nor the extra RAM were needed for this 

type of process. 

 

There were a few Linux editions that were made specifically to operate on 

Raspberry Pi RASBIAN, the edition parallel to Debian Linux editions for 

PCs. The system is provided with Python IDE.  

2.2 Image acquisition 

Raspberry Pi has its own camera module which was developed especially 

for it. The camera module is connected to the Pi board through the CSI 

port via a 15 pin ribbon cable. The camera module is 5 MP and it supports 



The automated inspection of an apple moth 

 

 

5 

1080p/720p/640x480p high definition video. The module comes with a 

fixed focus photo sensor. Figure 5 below shows the camera 

 

Figure 5 Raspberry Pi Camera module with a standard ribbon cable, (Pi Camera in-

stallation guide 2014.) 

Fixed focus later on became an issue later on as the image processing re-

quired sharp images that were impossible to get of objects closer than 

550mm away from the sensor. In order to get sharper pictures for closer 

objects a lens had to be installed in front of the sensor. Figure 6 shows im-

ages before and after correction. 

 

Figure 6 Sharpness comparison before (left) and after(right) using a lens, object at 

40mm 



The automated inspection of an apple moth 

 

 

6 

2.3 Motion sensing 

The same idea which was used in an earlier prototype was implemented to 

this project as it was efficient enough and reliable. The GPIO General 

Purpose Input/output port allowed easy installation of infrared sensing 

components such as a phototransistor and an IR diode, needed to design 

the sensing unit. The idea depends on the line-breaking method. Below is 

detailed map of GPIO in figure 7: 

 

Figure 7 GPIO port, (Clough  2012,8) 

Any object passing between the transmitters (IR led) and receiver (photo-

transistor) should trigger the camera module.  Figure 8 shows a schematic 

on how this was done  

 

 

Figure 8 Infra-red receiver and transmitter connection to GPIO 



The automated inspection of an apple moth 

 

 

7 

2.4 Image processing 

The system the client already had in place was not particularly sophisticat-

ed and it could not be described as automated and it certainly had no ma-

chine vision implemented. 

 

Our final product was fully capable of achieving the same results and ad-

ditionally it will only notify the client if the target bug was detected. The 

user will not have to visit  the drop box website, because text message or 

email will be sent to him once something is detected. 

3 USING OPENCV  

Implementing machine vision application with tools such MATLAB or 

Lab VIEW turned out to be more complicated and costly than using 

OpenCV and due to: 

 

 the cost of buying these products   

 portability  

 compatibility with common market products  

 

While trying to figure out a way to make a machine vision software that 

works on the Raspberry Pi, Lab View was considered. However although 

Lab View has an easy graphical programming interface, there is one prob-

lem that makes it virtually impossible to work with other products. One 

reason for that is that Lab View requires runtime engine, meaning it can-

not run as independent software on PC, let alone on an embedded device 

such as the Raspberry Pi. 

 

Secondly, when programing for embedded devices with MATLAB , the 

code has to be ‘translated’ to a C script which then undertake further edit-

ing to be run on such platforms. For all these reason, choosing a library 

that allows to write “native code” that runs exactly as predicted the selec-

tion was made in favour of the OpenCV 

 

Although virtually all documentation of OpenCV online was for code 

written on C++ or C, python was chosen for two main reasons: 

 

 Ease of installation  

 Python module structure  

 

Code written in python is much easier to read and thus debug, and the va-

riety of modules available makes programing more straightforward. 

For comparison refer to the next 2 chapters for demonstration how instal-

lation of OpenCV is done on both C++ and python environment.  

3.1 OpenCV installation on Code::Blocks, C++IDE 

 Install Code:: Blocks IDE Form 

 Install minGW 



The automated inspection of an apple moth 

 

 

8 

 Add minGW to system path 

 Download and install OpenCV 

 Download and install Cmake  

 Compile your OpenCV using Cmake 

 Add OpenCV bin to system path (similar to the previous step) 

 Build your OpenCV binaries using cmake form command prompt  

 Link code blocks and OpenCV library 

 Edit the compiler and linker  

 

As demonstrated OpenCV installation is unnecessarily complicated, espe-

cially considering that each of the steps described above includes smaller 

inside steps in itself which leaves room for errors in configuring the envi-

ronment. 

3.2 Installing OpenCV on Python 

 go to: https://www.python.org/download/releases/2.7.6/ 

 select the ‘Windows X86-64 MSI Installer (2.7.6)   

 http://sourceforge.net/projects/numpy/files/NumPy/1.7.1/numpy-

1.7.1-win32-superpack-python2.7.exe/download 

All you need is to press next couple of times as shown in figure 9 

 

 

Figure 9 Python setup screen  

 download python numeric library, after installation it should be 

downloaded on the following directory: C: /Python27/ 

 go to: opencv/build/python/2.7 folder 

 copy cv2.pyd to C:/Python27/lib/site-packeges 

 open Python IDLE and type following codes in Python terminal: 
import cv2 

print cv2._version_ 

 

For further assistance on installation go to: 

http://docs.opencv.org/trunk/doc/py_tutorials/py_setup/py_setup_in_wind

ows/py_setup_in_windows.html 

http://sourceforge.net/projects/numpy/files/NumPy/1.7.1/numpy-1.7.1-win32-superpack-python2.7.exe/download
http://sourceforge.net/projects/numpy/files/NumPy/1.7.1/numpy-1.7.1-win32-superpack-python2.7.exe/download


The automated inspection of an apple moth 

 

 

9 

3.3 Testing OpenCV 

A simple test program can be used to verify the installation validity. The 

program reads an image and displays it to the user. The following steps 

must be taken: 

 

 Download the famous Lena machine vision picture  

 Save it to your desktop  

 Give it the name Lena.jpg 

 On python IDLE  

 Go to file and  

 Make new window 

 Paste the following code on it : 

 
import numpy as np 

import cv2 

 

img = cv2.imread('D:/lena.jpg') 

cv2.imshow('img',img) 

 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 

Afterwards the work is saved by again going to file and selecting “Save 

as”. File extension has to be set as “.py”, like hello world.py for example. 

This will help idle to compile the code; otherwise it will not be identified 

as Python script. If all the above mentioned steps were followed the results 

should be similar what you see in figure 10: 

 

 
 

Figure 10 Test program 



The automated inspection of an apple moth 

 

 

10 

3.4 OpenCV functions 

In real life applications one would read video or streams or pictures 

straight from the camera. But for the purpose of this test program the pic-

ture is read from ‘file’ which is common practice to make sure the system 

is well set up. 

                     To explain the software a little: 

 
import numpy as np 

import cv2 

 

This part of the script tells python that in order to run the program success-

fully, the following libraries are needed: CV2 (OpenCV library) and 

Numpy (Python numeric library).  

 

A library is a file that contains functions written in higher language with 

instructions on how to operate it on a machine level. For python to know 

what to do with the function “img = cv2.imread('D:/lena.jpg')”, it has to go 

to the cv2 library and fetch the machine level instruction for imread . The 

value between the two praises () is called parameter and it is how variable 

is transferred to the function for processing.  

4 DETECTING THE APPLE MOTH 

Detecting the moth proved more difficult than expected. Most of the ‘off 

the shelf ‘algorithms had two main principles: 

 

 unified colour 

 unified shape 

  

The fact that a moth is a living organism brings to light the fact that it 

comes in many different sizes, shapes and colours. See figure 11 for com-

parison: 

 



The automated inspection of an apple moth 

 

 

11 

 

Figure 11 Sizes of moth  

To overcome the challenge presented by multiple moth forms, a machine 

learning algorithm called “Haar-like features” was considered. The basic 

principle here  is that the software is fed with a range of ‘Positive images’ 

ranging from 5000 to 9000 of the objects in question. Simultaneously an 

equivalent amount of ‘Negative images’ is fed into  to software. Based on 

these two inputs, the software generates a set of descriptive vectors which 

are stored in an XML format, to be used later in the detection.  

 

However due to the time constraint, and discouraging result obtained from 

a cascade trained with small ‘Positive data’ which was practically less 

than 12 clear images, and another hundred that was obtained from data-

bases scattered on the internet a new method was put in place to achieve 

the detection. However the ‘Haar cascade’ will be used after  a better set 

of ‘Positives’ is collected. 

4.1 The Haar-like features detection 

Haar like feature detection is based on the (Viola -Jones detection algorithm) that uses 

Haar wavelet in mathematics which is sequence of rescaled rectangles analysis similar 

to the Fourier analysis. The idea is to identify the rectangles by contrast, meaning pixel 

intensity, in the viola jones algorithm a target size is placed on top of subject and simi-

larity is calculated based vectors length. Figure 12 below shows the scale and rotation 

invariance of the algorithm. (Bressers 2009).To further illustrates this concept se figure 

12  

 



The automated inspection of an apple moth 

 

 

12 

 
 

Figure 12 Haar feature, (OpenCV documentation 2013.) 

From the figure above it is visibly clear that changes on the x plain are fol-

lowed by corresponding shift on the y plain, which makes Haar method 

very efficient and rotation invariant, meaning that the object can’t take any 

rotational position without affecting its detecting ability. 

 

  

Figure 13 Haar equation  

 

 

But extracting the features of the moth is only first part of the task. The 

Haar framework thus needs a mechanism to extract, archive, retrieve and 

test. This is the machine learning part of it. 

 

In the OpenCV this is done, by training the system using a "positive" set 

of images that contain the different varieties of rotation scaling and col-

ouring of the object in question, along that a set of "negative" images is al-

so introduced to the system. That way the computer can "learn" when and 

if an object is present. The numbers 1, 2 and 3 refers to the stages of train-

ing, with each stage the entire object is detected and passed on to the next 

stage for more refining, see figure 14 below: 

 



The automated inspection of an apple moth 

 

 

13 

 

Figure 14 Cascade is taking control of the identification process, (Bressers 2009) 

4.2 The Haar classifier 

The haar classifier is pretty straight forward in OpenCV. The process be-

gins with training the "Haar classifier". This process is basically teaching 

the computer a set of negative and positive images and will result in the 

generation of an XML file, containing the vectors of each positive and 

negative image that was fed to the system. Based on it the computer will 

compare each new input to its archive. 

 

Steps of creating classifier in python: 

 Create a text file of negative descriptions  

 Create a text file of positive descriptions 

 Use the create samples command to generate samples 

 Train your cascade using the samples made in step 3 

Figure 15 below contain command line on doing that. 

 

Figure 15 Creating samples and training the cascade, (Howse 2013,123-131) 

There is a waiting period of around two days. During this time the com-

puter should be left powered. A notification message informing that the 

process is complete will be sent. 



The automated inspection of an apple moth 

 

 

14 

4.3 Loading the cascading 

After the training of the system is complete, the resulting xml file has to 

be imported into the software. A program based on the face detection xml 

cascade that is provided by OpenCV. Below is code with comment in red. 

See figure 16. 

 

Figure 16 Haar cascade sample with face detection cascade 

  

 

4.4 Problems with the “Haar-Cascade” method 

 Requires a huge amount of data 

 False positive is a common occurrence  

 Laborious  

 

Using an alternative measure to a moth specific algorithm, detection was 

achieved. The main features used were histogram of moth wings and a 

calculated pixel area approximation for the enclosing contour. 

 

The idea was to capture the image and perform histogram enhancement 

and boosting in order to identify the moth. This approach has its own chal-

lenges but it is the most reliable method for this specific application. 

 

The next chapters will deal with image processing, histogram calculation, 

histogram back projection and extraction, contour allocation, contour 

drawing, bounding boxes and bounding boxes thresholds.  

5 PROCESS OF DETECTION 

The goal of processing the image is to filter noise and boost desired fea-

tures, namely the characteristics on which the detection will be based. The 



The automated inspection of an apple moth 

 

 

15 

following steps will guide the reader through the image processing that 

was implemented in the program. 

5.1 Greyscale conversion  

The first image transformation to be done for reaching a detectible feature 

is greyscale conversion. It simply means converting the RGB colour span 

into a corresponding image with one colour (grey) with different intensity 

across the image. Figure 17 illustrate the conversion  

 

 

Figure 17 Grayscale conversion, (OpenCV documentation, 2014.) 

Grayscale intensity is stored as an 8-bit integer giving 256 possible differ-

ent shades of grey from black to white. That is the reason that only one 

channel (colour) is chosen to represent the image when converting from 

RGB (which is an array of (255,255,255)). (OpenCV documentation 

2014.) 

To see split-channel RGB see figure 18: 

 

 

 
 

Figure 18 Gray scale conversion, (OpenCV documentation 2014.) 



The automated inspection of an apple moth 

 

 

16 

Grayscale conversion is performed in OpenCV using the following com-

mand: 

 

 

Figure 19 Grayscale conversion command, (OpenCV documentation 2014.) 

Implementation of the above function would thus look something like this: 

 

 

Figure 20 Grayscale conversion command implementation, (OpenCV documentation 

2014.) 

5.2 BGR To HSV conversion  

OpenCV uses the BGR colour format as opposed to more commonly used 

RGB which results in reversed values, if the format is not considered. The 

focus on BGR to HSV is needed because histogram calculation at a later 

stage requires the image to be in the HSV domain. 

 

 

Figure 21 BGR to HSV formula and visualization (OpenCV documentation 2014.) 



The automated inspection of an apple moth 

 

 

17 

HSV stands for Hue, Saturation, and Volume, and the conversion com-

mand in OpenCV is as follows: 

 

 

Figure 22 BGR to HSV conversion command  

Because BGR to HSV changes only the domain but not the value, a con-

verted image would be exactly the same, only with new parameters. 

5.3 Calculating histogram 

An image histogram is a graphical representation of the number of pixels 

in an image as a function of their intensity. Figure 23 below shows Histo-

gram distribution : 

 
 

Figure 23 Histogram, (Class VLHistogram.TVLHistogram 2002.) 

Performing Histogram in OpenCV is done through the following com-

mand: 

 

 

Figure 24 Histogram command, (OpenCV documentation 2014.) 



The automated inspection of an apple moth 

 

 

18 

5.4 Histogram Equalization 

Histogram equalization means averaging and redistributing intensity of 

tones. An image in grayscale would look like this after histogram equali-

zation see figure 25: 

 

Figure 25 Histogram equalization, (OpenCV documentation 2014.) 

To perform equalization in OpenCV the following command is used: 

 

 

Figure 26 Histogram equalization command, (OpenCV documentation 2014.) 

5.5 Histogram convolution 

Convolution is redistributing histogram on an image, for example a func-

tion. Consider this: g(x,y) = h(x,y) * f(x,y). It is essential for performing 

higher order processing like blurring and dilation. To perform convolution 

in OpenCV the following is used: 

 

 

Figure 27 Histogram equalization convolution, (OpenCV documentation 2014.) 

5.6 Histogram back projection: 

Back projection is, as the name implies, repainting a set of histogram val-

ues on gray scale or otherwise manipulated image, highlighting certain ar-

eas. 



The automated inspection of an apple moth 

 

 

19 

The area isolated is then used for the detection after being refined, look at 

figure 28 to get an idea: 

 
 

Figure 28 Back projection, (OpenCV documentation 2014.) 

To perform back projection in OpenCV the following command is used: 

 

 

Figure 29 Back projection command, (OpenCV documentation 2014.) 

5.7 Thresholding 

Thresholding is adjusting the HSV or BGR colour domain value. This is 

done to enhance or to get rid of a particular colour. 

 

 

Figure 30 Thresholding command, (OpenCV documentation 2014.) 

Numbers 50, 255, 0 represent the desired color in the HSV Domain. To 

see the effect of thresholding refer to figure 31: 



The automated inspection of an apple moth 

 

 

20 

 

Figure 31 Thresholding, (OpenCV documentation 2014.) 

6 MORPHOLOGICAL TRANSFORMATION 

So far image processes that have been discussed related in one way or an-

other to the colours and its domain. But another form of processing is 

equally needed and important - morphological processing. Morphological 

processing is based on the image shape and coordinates. A lot of material 

is available in the OpenCV documentation on this subject, but for the pur-

poses of this thesis only some aspects of morphological processing will be 

mentioned. 

6.1 Erosion 

Erosion is used to eliminate foreground boundaries which result in shrink-

age of objects within the image. It is normally used in cases when noise 

causes two objects to stick together forming a larger one. See figure 32 for 

effect of erosion 

 

     

Figure 32 Applying erosion, (OpenCV tutorials 2014.) 



The automated inspection of an apple moth 

 

 

21 

 

To achieve results similar to the one in figure above, the following com-

mand is used:  

 

Figure 33 Erosion command, (OpenCV tutorials 2014.) 

6.2 Dilation 

Dilation is the opposite of erosion and it is used in some cases to expand 

an object area in order to ease detection or further processing. . See figure 

32 for effect of erosion: 

 

    

Figure 34 Dilation, (OpenCV tutorials 2014.) 

7 CONTOURS 

Contours is normally the final stage of object’s detection. The OpenCV li-

brary draws contours around pixels of different intensities. Based of prop-

erties of these contours, such as length, area, edges, openness or closeness 

the detection of an object is done. 

7.1 Finding contours  

Images tend to have an abundance of details. As a result of this extracting 

contours from multi-channelled image will not achieve useable results. A 

better approach would be to thresh an image to binary state before at-

tempting to find contours. See figure 35: 

 

Figure 35 Code for threshold and contour finding, (OpenCV documentation 2014.) 

After contours are found (list)/Moments, a multitude of operations can be 

performed. See figure 36 it shows moments calculation: 



The automated inspection of an apple moth 

 

 

22 

 

Figure 36 Operations, (OpenCV documentation 2014.) 

For example, determining the area for each contour: 

 

 

Figure 37 Contour area, (OpenCV documentation 2014.) 

Or Arc length of a contour: 

 

Figure 38 Contour area length (OpenCV documentation 2014.) 

7.2 Drawing Contours  

To draw all the contours in an image: 

 

Figure 39 Drawing all contours command, (OpenCV documentation 2014.) 

 Or the forth one: 

 

Figure 40 Drawing forth contour command, (OpenCV documentation 2014.) 

7.3 Drawing bounding boxes 

Drawing a box around a given closed contour requires 4 parameters: 

width, height and y coordinates 
x,y,w,h = cv2.boundingRect(cnt) 

img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2) 

Figure 41 shows result of this: 

 

 

 



The automated inspection of an apple moth 

 

 

23 

 

Figure 41 Bounding box 

8 SOFTWARE STRUCTURE 

The architecture and data flow is designed to separate functionality, in or-

der to work around hardware limitations, mainly power and memory. For 

example, the camera module needed extra dependencies to work in 

OpenCV. Additionally, the SD card memory is limited to 4 GB, so storing 

images on regular bases will damage the device’s memory. To avoid this 

captured image is assigned to a location, from which OpenCV retrieves it.  

 

The resulting processed image is forwarded via email, while overwriting 

the previous one. This serves both as extra feature and helps to conserve 

memory. Figure 42 below shows this graphically  

 

 

Figure 42 System Architecture  

Such properties as power and connectivity would normally be included, 

but due to the nature of this document they were left out. Although it is 

noteworthy to point out that the completing the task assigned to us would 



The automated inspection of an apple moth 

 

 

24 

have been vastly easier, if a constant supply of energy was available, but 

because the unit will be installed in remote locations that was not possible. 

Network coverage for 3G was also not tested. 

8.1 Email Module 

Email library for python to send an email notification to the user once the 

previous function for detecting was compiled. 

This feature can be implemented in two ways: 

 sending a simple test message (SMS) 

 Sending an email with a picture attachment of the moth. 

In the appendix 2 python code a detailed and commented code for achiev-

ing this is presented. 

 

 

In order to send as SMS message .Taha@student.hamk.fi with a generic 

email address provided by GSM provider, for example 

040123456@dna.fi. 

 

8.2 Automatic boot 

To make Raspberry run directly to the software several steps must be un-

dertaken. First, write on the raspberry terminal: 

 
‘#!/bin/bash 

/bin/login f root 

 

Second, make the code executable: 

 
chmod a+x /bin/autologin.sh 

Edit /root/.bashrc 

if [[ $(tty) == '/dev/tty1' ]]; then 

/root/operation/mothdetector.py 

Endif’’ 

 

(Clough 2012, 7.) 

 

This will root the device and give automatic login bypassing the login de-

tail. Then execute the software when booting.  

9 CONCLUSION  

The project was successful in detecting the apple moth from images across 

the internet. Without controlled background, the accuracy stands at 72 % 

.This number is based on testing 25 images of the target apple moth and 

detection was achieved on 18 of them at the moment and will reach ap-

proximately 95 % when the casing with unified colour background is add-

ed. Adding the unified coloured background will dramatically increase the 

accuracy by preventing confusion between wing colour histogram and 

background colour.  

mailto:.Taha@student.hamk
mailto:040123456@dna.fi


The automated inspection of an apple moth 

 

 

25 

 

To conclude: 

- Reduction of cost from 600 euro (cost of DSLR camera and setup) to 50 

euros (cost of raspberry and power backup) was achieved  

-Automatic inspection of the moth was achieved, this replaced the manual 

process  

-Automated notification was setup by creating email alert with image at-

tachment 

-well documented and commented code is kept for future modification  

For full code check appendix 1 through 5 it contains software flowchart, 

python software along with command for adjusting camera and GPIO 

,appendix 6 contains IR camera activation. 

Figure 43 below shows current detection accuracy with background closer 

in properties to the moth .we can see it is still possible to accurately detect 

the insect  

 

 

Figure 43 Results of detection   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The automated inspection of an apple moth 

 

 

26 

 

 

SOURCES 

 
Bob Clough. 2012. Raspberry Pi as an Embedded Platform. Pdf file. 

thinkl33t.co.uk) 

 

Class VLHistogram.TVLHistogram. 2002. 

http://www.mitov.com/wiki/index.php?title=Class_VLHistogram.TVLHistogram 

 
David Beazley and Brian K Jones. 2013. Python Cookbook, 3rd edition. 

ISBN 978-1-449-34037-7.  

 
Daniel Lelis Baggio.2013. Mastering OpenCV with Practical Computer Vision. 

ISBN 978-1-84951-782-9 

 

Willem Bressers.2009.Real-time face verification using a low resolution camera 

Bachelor Thesis, Universiteit van Amsterdam 

 

 
Joseph Howse. 2013. OpenCV Computer Vision with Python 
ISBN 978-1-78216-392-3  
 

Kanniainen, T. 2011. Feature extracting and classification of forewings of   

three moth species based on digital images. Licentiate's thesis, Tampere  

University of Technology 

 
Low level programming. 2014. 

http://elinux.org/ 

 

OpenCV tutorials. 2014. 

http://opencv-python-tutroals.readthedocs.org/ 

 

OpenCV documentation. 2014. 

http://docs.opencv.org/ 
 

Pi Camera installation guide. 2014. 

http://thepihut.com/pages/how-to-install-the-raspberry-pi-camera 

 

Supaporn Spanurattana. 2012 Advanced Image Processing. Pdf file. 

http://www.img.cs.titech.ac.jp/~akbari/pmwiki/uploads/Site/Supaporn-rep.pdf 

 
GPIO programming, 2013. 
http://www.raspberrypi.org/tag/gpio/ 

 

 



The automated inspection of an apple moth 

 

 

1 

Appendix 1 

 

PROGRAM FLOWCHART 

 

 
 

 

 

 

 

 

 



The automated inspection of an apple moth 

 

 

2 

Appendix 2 

 

PYTHON CODE                          # is followed by comment (python comment standard) 

 



The automated inspection of an apple moth 

 

 

3 

 

 

Appendix 2 

 

PYTHON CODE                # is followed by comment (python comment standard) 

 



The automated inspection of an apple moth 

 

 

4 

 

Appendix 3 

 

CAMERA SOFTWARE SETUP 

 

Execute the following instructions on the command line to 

download and install the latest kernel, GPU firmware and 

applications. You will need an internet connection for this to work 

correctly. 
sudo apt-get update 

sudo apt-get upgrade 

Now you need to enable camera support, using the raspiconfig 

program you will have used when you first set up your 

Raspberry Pi. 
sudo raspi-config 

Use the cursor keys to move to the camera option and select 

enable. On exiting raspi-config it will ask to reboot. The 

enable option will ensure that on reboot the correct GPU 

firmware will be running (with the camera driver and tuning), and 

the GPU memory split is sufficient to allow the camera to acquire 

enough memory to run correctly. 

To test that the system is installed and working, try the following 

command: 
raspistill -v -o test.jpg 

The display should show a 5-second preview from the camera 

and then take a picture, saved to the file test.jpg, while displaying 

various informational messages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The automated inspection of an apple moth 

 

 

5 

 

Appendix 4 

 

CAMERA CONTROL OPTIONS 

 

--sharpness, -sh Set image sharpness (-100 to 100) 

Set the sharpness of the image, 0 is the default. 

--contrast, -co Set image contrast (-100 to 100) 

Set the contrast of the image, 0 is the default 

--brightness, -br Set image brightness (0 to 100) 

Set the brightness of the image, 50 is the default. 0 is black, 100 

is white. 

--saturation, -sa Set image saturation (-100 to 100) 

Set the colour saturation of the image. 0 is the default. 

--ISO, -ISO Set capture ISO 

Sets the ISO to be used for captures. Range is 100 to 800. 

--vstab, -vs Turn on video stabilization 

In video mode only, turn on video stabilization. 

--ev, -ev Set EV compensation 

Set the EV compensation of the image. Range is -10 to +10, default is 



The automated inspection of an apple moth 

 

 

6 

Appendix 5 

CAMERA IR ACTIVATION   CODE                                          ( # )  Is followed by Comment  

# Importing the needed modules for GPIO, Camera and time for waiting function 

import RPi.GPIO as GPIO 

import picamera 

from time import sleep 

# To set the input 17 to read from phototransistor 

GPIO.setup(17, GPIO.IN) 

# Definding the camera  

camera = picamera.PiCamera() 

while 1: 

# Input from phototransistor is not one so there is something in between the      phototransistor and the IR Led 

if GPIO.Input(17) =! 1 : 

#  Wait 3 seconds till the insect is in front of camera  

time.sleep (3) 

# Capture image  

camera.capture('image.jpg') 

time.sleep (3) 

# Capture another image  

camera.capture('image2.jpg') 

time.sleep (3) 

# Capture another image  

camera.capture('image3.jpg') 

 

 

 



The automated inspection of an apple moth 

 

 

7 

 


